
Complete Program Synthesis for Linear Arithmetics

by

Mikaël Mayer

BSc., Computer Science
École Polytechnique de Paris (2008)

Submitted to the EPFL School of Computer and Communication
Sciences - LARA

in partial ful�llment of the requirements for the degree of

Master of Science in Computer Science

at the

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

October 2010

c© Mikaël Mayer, MMX. All rights reserved.

The author hereby grants to EPFL and Ecole Polytechnique de Paris
permission to reproduce and distribute publicly paper and electronic

copies of this thesis document in whole or in part.

EPFL School of Computer and Communication Sciences - LARA
January 15, 2010

2

Complete Program Synthesis for Linear Arithmetics

by
Mikaël Mayer

Submitted to the EPFL School of Computer and Communication Sciences - LARA
on January 15, 2010, in partial ful�llment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

Program synthesis, or their fragments, is a way to write programs by providing only its
meaning, without worrying about the implementation details. It avoids the drawback
of writing sequential code, which might be di�cult to check, error-prone or tedious.

Our contribution is to provide complete program synthesis algorithms with un-
bounded data types in decidable theories. We present synthesis algorithms for Lin-
ear Rational Arithmetic, Linear Integer Arithmetic and Parametrized Linear Integer
Arithmetic. Our implementation and the associated Scala compiler plug-in have al-
ready been used to implement Boolean Algebra for Presburger Arithmetic synthesis.

◦ ◦ ◦

La synthèse de programmes est une manière d'écrire les programmes en spé-
ci�ant uniquement la signi�cation du programme, sans se préoccuper des détails
d'implémentation. Cela évite le désagrément d'avoir à écrire du code séquentiel,
souvent di�cile à véri�er, fastidieux à écrire et sujet à l'erreur.

Notre contribution est d'apporter des algorithmes de synthèse sur des types de
données non bornées dans des théories décidables. Nous présentons des algorithmes
de synthèse pour l'Arithmétique Linéaire Rationnelle, pour l'Arithmétique Linéaire
Entière, et pour l'Arithmétique Linéaire Entière Paramétrisée. L'implémentation de
notre synthétiseur et l'extension du compilateur Scala associée ont déjà été utilisées
pour implémenter la synthèse de programmes sur la théorie de l'Algèbre Booléenne
pour l'Arithmétique de Presburger.

◦ ◦ ◦

Thesis Supervisor: Viktor Kuncak
Title: Assistant Professor, IC, EPFL

Thesis Supervisor: Ruzica Piskac
Title: PhD Student, IC, EPFL

External Expert: Barbara Jobstmann
CNRS Researcher, VERIMAG, Grenoble, France

3

4

Acknowledgments

Special thanks to :
Viktor Kuncak, my highly experienced supervisor, also my previous advanced

software analysis and veri�cation professor, whom I consider being my best master
thesis coach, for all the useful references on my subject and the help he provided me,
for the continuous constructive feedback for my project and for this thesis, and much
more.

Ruzica Piskac, for the help she brought me throughout my project, for supporting
my thesis by writing for many chapters of it, and for her nice implementation of
BAPA1 synthesis built on my arithmetic synthesizer, etc.

Philippe Suter, for his nice Scala implementation of synthesis as a compiler plugin,
for all the tips and discussions we had to make this project go up to this point, etc.

Fabien Salvi, for his highly responsive speed when I had infrastructure problems.
All the remaining people in my lab, including Hossein, Giuliano, Eva, for every-

thing they did for me, for the discussions we had together, and for their support.
My brother Erwin and my friend Joël, for the Happy New Year 2010 project,

which unexpectedly proved to be an indirect but nice synthesis application.
Barbara Jobstmann, for her great feedback for my report.
And all those who believed in the project, and/or contributed to it, whom I might

have forgotten.

1Boolean Algebra for Presburger Arithmetic, i.e. arithmetic augmented with simple set theory

5

6

Contents

1 Introduction 11

1.1 About Synthesis . 11
1.2 First Synthesis Steps . 13

1.2.1 Run-time Resolution . 13
1.2.2 Compile-time Resolution - Synthesis 13

1.3 Contributions . 14
1.4 Outline . 14

2 Motivating examples 17

2.1 Explicit meaning vs. explicit code . 17
2.1.1 Estimating time left . 17
2.1.2 Hours, Minutes, Seconds . 18
2.1.3 Fast exponentiation . 19
2.1.4 Indexing multi-dimensional arrays 19
2.1.5 Ratio between two numbers 20

2.2 The Happy New Year Poem . 22
2.2.1 Project context . 22
2.2.2 Arranging the poem . 24

3 Synthesis formalism 29

3.1 The choose programming language construct. 29
3.2 Model-generating decision procedures. 30
3.3 Invoking a decision procedure at run-time. 30
3.4 Synthesis based on decision procedures. 31
3.5 E�ciency of synthesis. 31
3.6 From quanti�er elimination to synthesis 32
3.7 Propositional Operations in Synthesis 33

3.7.1 Synthesis for Propositional Logic 33
3.7.2 Propositional Connectives in First-Order Theories 33

4 Linear Rational Synthesis 35

4.1 Synthesis for Linear Rational Arithmetic 35
4.1.1 Solving Conjunctions of Literals 35
4.1.2 Disjunctions in Linear Rational Arithmetic 37

7

5 Linear Integer Synthesis 39

5.1 Equality Constraints . 40
5.1.1 Reducing the Number of Output Variables 41
5.1.2 E�cient Computation of Linear Sets 42
5.1.3 Finding a Solution of an Equation 43

5.2 Processing Inequality Constraints . 44
5.3 Disjunctions in Presburger Arithmetic 46
5.4 Clari�cations and Optimizations . 46
5.5 Complexity . 47

5.5.1 Synthesizer Time Complexity 47
5.5.2 Generated Programs Size . 47
5.5.3 Generated programs Time Complexity 47
5.5.4 Bézout witness and base generation Complexity 47

6 Parametrized Linear Integer Synthesis 49

6.1 Equality contraints . 49
6.2 Processing Inequality Constraints . 51

6.2.1 Sign abstraction . 51
6.2.2 Splitting on the sign . 52
6.2.3 Normalizing inequations . 53

7 Implementation and Performance 57

7.1 Implementation . 57
7.2 Performance . 59

8 Related work 61

8.1 Overview . 61
8.2 Comparison of our Synthesis algorithms to other systems 62
8.3 Existing Synthesis Ideas . 63

8.3.1 Regular expressions . 64
8.3.2 Parser combinators . 64
8.3.3 Dealing with unknown coe�cients 65

8.4 BAPA Synthesis . 65

9 Future work 67

9.1 Improvement for the current synthesizer 67
9.2 Synthesis ideas . 68

9.2.1 Induction axioms for recursive programs 69
9.2.2 Other theories . 69

10 Conclusion 71

A Derivation of Complexities 73

A.1 Linear Rational complexity . 73
A.1.1 Removing 1 equality . 73
A.1.2 Removing E equalities . 74

8

A.1.3 Removing V variable when E = 0, N = 0 74
A.1.4 Removing 1 variable when E = 0, N = 1 74
A.1.5 Removing 1 variable when E = 0, N ≥ 2 75
A.1.6 Merging and upper bound . 75
A.1.7 Proof by induction . 75
A.1.8 Size and execution time . 78

A.2 Linear Integer complexity . 78

B Bézout witnesses and base vectors 81

C Abstract syntax tree 83

D Parametrized Linear Integer Synthesis Full Example 85

9

10

Chapter 1

Introduction

Be careful about reading health

books. You may die of a misprint.

Mark Twain (1835 - 1910)

Programs and books are similar, in the sense that, depending on its author and
the language style used, both are certainly more or less understood and coherent.
However, although a book informally written might contain typos, a program should
clearly not. Why do errors in a book not really matter? The real purpose of letters,
words and sentences is to provide a meaning, an imaginary scene, a complex reasoning,
much beyond the words. Even with errors, the great human capacity to grab a
meaning makes this process often fruitful. Why do errors in a program really matter?
The main �reader� of a program is the computer, which does not have the �global
picture�. For example, even though 'slightest' is misspelled in the description on the
left of Fig. 1-1, it does not a�ect our understanding of what William said. However,
the i and l inversion in the program on the right of Fig.1-1 would badly a�ect the
behaviour of the computer, with respect to its expected meaning.

1.1 About Synthesis

Program synthesis, or their fragments, is a way to write programs by providing only its
meaning, without worrying about the implementation details. It avoids the drawback
of writing sequential code, which might be di�cult to check, error-prone or tedious.

The goal of program synthesis is to hide low-level complexity by providing another
layer of abstraction on top of the abstractions provided by the existing programming
languages. Conceptually, the program would re�ect its own meaning, like on the right
of Figure 1-2.

When using Hoare logic [20] for program veri�cation, theorem provers verify that
given a function f and a speci�cation Q, the Hoare triple {P} f {Q} is correct for
some precondition P . If we describe synthesis with Hoare logic, it would correspond
to �nding, given Q, both a weakest precondition P and a command f such that

11

Figure 1-1: Errors in books vs. errors in Programs

Figure 1-2: Explicit programming vs. Program Synthesis Concept

12

{P} f {Q} is valid. For example, a solution corresponding to the Hoare triple
{?} ? {2x = a+ 1} would be {2|a+ 1} x← (a+ 1)/2 {2x = a+ 1} .

1.2 First Synthesis Steps

Let us take an example from arithmetic to understand the basics of program synthesis
(see Chapter 2 for detailed explanations). Our task is to �nd the closest minute m
to a given number of seconds T :

“De�ne (m, s) such that (T = 60 ·m+ s, −30 < s ≤ 30)′′

There are two main directions in the quest for providing such high-level constructs
to the programmers: run-time and compile-time resolution.

1.2.1 Run-time Resolution

One way to solve these equations is to call an external solver like Z3 [40] or CVC3 [5]
to return a solution if it exists. Such command sent to a solver could look like that:

val (m, s) = solver(T + "== 60*m + s and -30 < s and s ≤ 30", ("m", "s"))

The approach to use a solver at run-time, has several drawbacks. First, it highly
depends on the external solver, which is designed to perform much more powerful
tasks and is not optimized to solve this particular problem. In some sense, this is
like burning the house to fright the mouse away1. Second, it does not take into
account that the equations are always the same and just the input values change.
Third, the memory necessary to provide the solution cannot be bounded, which makes
the performance of the resulting program unpredictable. Embedded systems are an
example of systems, in which it is necessary to bound the amount of memory used,
or even to avoid dynamic memory allocation at all. The approach to avoid dynamic
memory allocation has been used by geometric libraries for robotics such as KDL [43].
In the particular class of our synthesis algorithms, mostly arithmetic synthesis, the
generated programs do not have dynamic memory allocation, and thus would be
suitable in general for embedded systems.

1.2.2 Compile-time Resolution - Synthesis

Let us apply our �synthesis� approach. One would write:

val (m, s) = choose{(m, s)⇒ T = 60 ∗m+ s && − 30 < s && s ≤ 30}
1French original: Tuer une mouche avec un canon

13

and the synthesizer would convert this code to

val m = (29 + T)/60
val s = T − 60 ∗m

This is the result of our synthesis procedure. Since it produces source code,
the run-time of the �nal program will be comparable to run-time of a hand-written
version, but the input code is clearer.

1.3 Contributions

This thesis makes the following contributions.

• We describe a methodology to convert decision procedures for a class of formulas
into synthesis procedures that can rewrite the corresponding class of expressions
into e�cient executable code.

• We describe synthesis procedures for rational, integer linear arithmetic and
especially for parametrized linear integer arithmetic, i.e. with coe�cients un-
known at compile-time. We show that, compared to invocations of constraint
solvers at run-time, the synthesized code can have better worst-case complexity
in the number of variables. This is because our synthesis procedure converts
the given constraint (at compile time) into a solved form that can be executed
while avoiding most of the search. The synthesized code is guaranteed to be
correct by construction.

• We describe an approach for deploying algorithms for synthesis within pro-
gramming languages. Our approach introduces a higher-order library function
choose of type (α ⇒ Bool) ⇒ α, which takes as an argument a function F of
type α ⇒ Bool. Our compiler extension rewrites calls to choose into e�cient
code that �nds a value x of type α such that F (x) is true. Building on the
choose primitive, we also show how to support substantially more expressive
pattern matching expressions in programming languages.

1.4 Outline

The next chapters are organized as follow.
Chapter 2 (p. 17) presents concrete examples about how and where synthesis

can be used, and section 2.2 (p. 22) describe a recent application of synthesis as a
sub-program for a poem generator.

Chapter 3 (p. 29) presents the synthesis formalism and some common synthesis
steps for the next three chapters.

Chapter 4 (p. 35) to Chapter 6 (p. 49) present the synthesis algorithms for Lin-
ear Rational Arithmetic, Linear Integer Arithmetic and Parametrized Linear Integer
Arithmetic.

14

Chapter 7 (p. 57) presents the main implementation details and the performances
of our synthesizer.

Chapter 8 (p. 61) presents the related work, among which the Boolean Algebra
for Presburger Arithmetic synthesizer. Finally, Chapter 9 (p. 67) presents future
enhancements for the existing synthesizer as well as for general Program Synthesis
concepts.

15

16

Chapter 2

Motivating examples

Example is not the main thing in

in�uencing others. It is the only

thing.

Albert Schweitzer (1875 - 1965)

Section 2.1 contains examples of synthesis like base decomposition, advanced pat-
tern matching, and coordinates aliasing. In Section 2.2 we explain how synthesis was
used in a real unrelated public example, namely the Happy New Year Poem.

2.1 Explicit meaning vs. explicit code

In the following examples, we will present both the code that can be written to solve
a problem with synthesis available, and the code our synthesizer generates. The aim
is to show that programming with synthesis makes code much clearer and easier to
understand than regular code, where the computation is described explicitly.

The generated code from section 2.1.1 has been found by manually applying the
algorithm of Chapter 4, but the generated code from sections 2.1.2 to 2.1.5 came out
of our real synthesizer.

2.1.1 Estimating time left

This is a common encountered problem in many applications. A process is going
on, it is known how many data has already been processed (downloaded bytes, moved

17

High-level code Generated code

val r = choose(r ⇒ p + r∗(p/t) == K) val r = (K−p)/(p/t)

Table 2.1: Synthesis for elapsed time - Proportional

High-level code Generated code

val r = choose(r ⇒ p + r∗rate == K) val r = (K− p)/rate

Table 2.2: Synthesis for elapsed time - Local

data, number of �les already copied. . .) and how many data remains (remaining
bytes, original data, number of �les to copy. . .).

There are several ways to provide the user feedback about the time when the
process is �nished. A �rst way to compute the remaining time is to say that elapsed
time is proportional to the amount of data processed.

Given the number of data processed p after time t, and the total amount of data
K, the implicit equation de�ning the remaining time r is given in table 2.1. A warning
would be also presented, indicating that nor p nor K should be zero. In the case it
takes the current transfer instead of the ratio p/t, the solution is displayed in table
2.2. The choose method is a high-order function used to synthesize code fragments,
and we explain it later in section 3.1 page 29.

2.1.2 Hours, Minutes, Seconds

Assume that we are given a remaining time in seconds and we want to display it
using regular hours, minutes and seconds.

The point of this example is not the �nal code, which is relatively simple to write
for an average programmer, but rather the way it could have been programmed with
synthesis.

When someone thinks about computing hours, minutes and seconds from a given
number of seconds, then one rarely starts by thinking about divisions, one would
rather think about bounds and the formula de�ning the decomposition. This is
exactly the way the program is written on the left side of Table 2.3, which is the
input for the program synthesizer. The right side of table 2.3 is the code generated
at compile-time. Note that the division is a �oored one, otherwise we could get
negative numbers for seconds and minutes. Note that the integer division div used
here is slightly di�erent than the usual computer division as it is �oored. That is,
(−3) div 8 = −1 and not 0.

18

High-level code Generated code

val (hours, minutes, seconds) =
choose((h: Int, m: Int, s: Int) ⇒ (

h ∗ 3600 + m ∗ 60 + s == totsec
&& 0 ≤ m && m < 60
&& 0 ≤ s && s < 60))

val (hours, minutes, seconds) = {
val loc1 = totsec div 3600
val num2 = totsec + ((−3600) ∗ loc1)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((−3600) ∗ loc1) +

(−60 ∗ loc2)
(loc1, loc2, loc3)

}

Table 2.3: Synthesis in the hour-minute-second problem

High-level code Generated code

def pow(base: Int, p: Int) = {
def fp(m: Int, b: Int, i: Int) = i match {
case 0 ⇒ m
case 2∗j ⇒ fp(m, b∗b, j)
case 2∗j+1 ⇒ fp(m∗b, b∗b, j)

}
fp(1,base,p)

}

def pow(base: Int, p: Int) = {
def fp(m: Int, b: Int, i: Int) = i match {
case 0 ⇒ m
case i if i%2 == 0 ⇒
val j = i/2
fp(m, b∗b, j)

case i ⇒
val j = (i−1)/2
fp(m∗b, b∗b, j)

}
fp(1,base,p)

}

Table 2.4: Synthesis in fast exponentiation

2.1.3 Fast exponentiation

Since b2i = (b2)i and b2i+1 = b ∗ (b2)i, we can compute a power of a number in
logarithmic time. The general well-known algorithm looks similar to the one on the
right of table 2.4. With synthesis, we can write the very clear code shown on the left
of table 2.4, which compiles into the code on the right.

2.1.4 Indexing multi-dimensional arrays

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

Multi-dimensional arrays are sometimes stored as a uni-dimensional array. This is
actually the case in the computer memory. The drawback of using a uni-dimensional
array is that accessing array elements is more complicated. In table 2.5 we simulate
coordinate conversions from a 3-bytes (0 ≤ c < 3) colored screen of size 640 × 480
(0 ≤ i < 640, 0 ≤ j < 480) to a memory contains 1024-bytes blocks, where each block
is indexed by x (0 ≤ x < 1024) and the block number is indexed by y (unbounded).

19

High-level code Generated code

val (color, i, j) =
choose((c: Int, i: Int, j: Int) ⇒ (

x+1024∗y = c+3∗(i + 640∗j)
&& 0 ≤ c && c < 3
&& 0 ≤ i && i < 640
&& 0 ≤ j && j < 480
&& 0 ≤ x && x < 1024

val (color, i, j) = {
val yb = Math.min(479, (x+1024∗y)/1920)
val ya = Math.min(639, ((x+1024∗y−1920∗yb)
− (3 + (x+1024∗y−1920∗yb)%3)%3)/3)

val j = yb
val i = ya
val c = x+1024∗y−3∗ya−1920∗yb
(c, i, j)

}

val (x, y) =
choose((x: Int, y: Int) ⇒ (

x+1024∗y = c+3∗(i + 640∗j)
&& 0 ≤ c && c < 3
&& 0 ≤ i && i < 640
&& 0 ≤ j && j < 480
&& 0 ≤ x && x < 1024

val (x, y) = {
val ya = Math.min(1023, (c+3∗i+1920∗j)/1024)
val y = ya
val x = c+3∗i+1920∗j−1024∗ya
(x, y)

}

Table 2.5: Synthesis in a multi-dimensionnal conversion problem

Notice that with synthesis only one formula is needed to express the conversion for
both directions (see the code on the left of table 2.5).

2.1.5 Ratio between two numbers

Given two integers b and c, we want to know the integer ratio y between them if it
exists. The corresponding formula is y ∗ b = c∧ y ∗ c = b, and the resulting generated
program is displayed in table 2.6.

The generated precondition is the following:

((b = 0 ∧ c = 0) ∨ (¬(b = 0) ∧ (−c)%|b| = 0))
∨ ((c = 0 ∧ b = 0) ∨ (¬(c = 0) ∧ (−b)%|c| = 0))

It is interesting to note that the program is exhaustive, that is, if there is a solution,
it will �nd it, and it is guaranteed there will not be any division by zero nor modulo
by zero, if the original equation has a solution; or equivalently, if the precondition is
satis�ed.

This example is interesting because the original code is much more simple than the
generated code, even if the latter is not fully optimized; furthermore, this example uses
a linear constraint with non-constant coe�cients, as it will be described in Chapter
6.

20

High-level code Generated code

val y = choose(y ⇒
y∗c == b || y∗b == c)

val y = if((b == 0 && c == 0) ||
((!(b == 0)) && (−c) % Math.abs(b) == 0)) {

val y = if(b == 0 && c == 0) {
val y = 0
y

} else if((!(b == 0)) && (−c) % Math.abs(b) == 0) {
val K1 = Math.abs(b)
val K0 = (−c)/K1
val K2 = (−1)∗(b/K1)
val y = K0∗K2
y

} else { throw new Error("No solution exists") }
y

} else if((c == 0 && b == 0) ||
((!(c == 0)) && (−b) % Math.abs(c) == 0)) {

val y = if(c == 0 && b == 0) {
val y = 0
y

} else if((!(c == 0)) && (−b) % Math.abs(c) == 0) {
val K1 = Math.abs(c)
val K0 = (−b)/K1
val K2 = (−1)∗(c/K1)
val y = K0∗K2
y

} else { throw new Error("No solution exists") }
y

} else { throw new Error("No solution exists") }

Table 2.6: Synthesis in the ratio problem

21

2.2 The Happy New Year Poem

The Happy New Year Poem was a personal project in which we send our wishes in
video to our contacts. The project took a lot of time, fortunately we discovered during
the development that synthesis could help us.

2.2.1 Project context

My brother, a friend and I were thinking about a special surprise to send to all our
Facebook contacts and to our family. The idea was the following. We would create
for each one of us a video where we would sing a poem containing the names of our
friends, and where the text would go from a house labelled 2009 to a house labelled
2010, with slowly falling snow, relaxing sweet music and a sun moving around (see
Figure 2-1) 1.

Besides the huge challenges of the names importation, the movie soundtrack and
synchronization, the 3D rendering of the 17300 pictures on several computers, the
names alignment problem with a tricky change from absolute coordinates (house) to
relative coordinates (camera), the recording of the voice and the automated publi-
cation on all our Facebook friends' walls, there was also the challenge of creating a
correct poem with the names of our friends.

To put it in a nutshell, the speci�cations and relaxation points were the following.

• The input is a (huge) set of the pronounciations of our friends' names with
their corresponding number of syllables. The convention used to represent the
phonemes has been taken from AJL[44]. Example: for the two names Philippe
and Philipp, we had only one entry, {filip, 2}. For Ruzica, we have the entry
{rUjitsa, 3}.

• In order to be in harmony with the already composed music, each line (verse)
should always contain exactly 8 syllables.

• The lines should be arranged in rhyming successions. In short, the line 2n + 1
should rhyme with the line 2n+ 2.

• Because of the music, the lines should be arranged in a sequence of quatrains2

and therefore, the number of lines should be divisible not only by 2 but also by
4.

One quatrain


Viktor Gaëtan et Jean-Claude

Tihomir Adélaïde Maud

Marcello Belabess Lucie

Trevor Valentine Félicie

(2.1)

1http://www.youtube.com/watch?v=E2aPFdu0FNA
2A quatrain is a poem in four lines.

22

http://www.youtube.com/watch?v=E2aPFdu0FNA

Figure 2-1: Extracts of the Happy New Year animation

23

• For the reasons of �family politics�, speci�c names, e.g. names of close family
members, have been placed, and there are some incomplete lines. For example,
the static input of my poem was the following:

Cynthia Mikaël et Erwin

Cédric Arthur Sara Christine

Laurent Grand-père et Papili

Maman Grand-mère et Mamili

Franck Yvann Annick et Elric

Carole JB Thomas Eric

Nicolas

Papa

• A �exibility arises from the following point. There are two types of verses.
Either the 8 syllables are part of names, like in �Marc Shirley Marçal Danila �.
Or thanks to the french word �et� (and) which can be added, only 7 syllables
are part of names, like in �Philippe Alexandre et Christy�

2.2.2 Arranging the poem

We will retrace the development of the program that computes some variables to
determine how to globally arrange the names. For this project, we con�gured the
synthesizer to output Python code because the main script was written in this lan-
guage.

Let us consider as the �rst approximation a number Nsyls of syllables in input, and
without assuming every line to be complete at the end, we wonder how many complete
lines line8 of 8 syllables it can generate, and how many syllables remaining_syls

would remain. The corresponding code is shown in (2.2).

Using synthesis Generated Python program
Nsyls == line8 ∗ 8 + remaining_syls

0 ≤ remaining_syls

remaining_syls < 8

tmp = Nsyls/8
remaining_syls = Nsyls− 8 ∗ tmp
line8 = tmp

(2.2)
This is nice, but we don't want remaining single names at the end of the poem,

this would not be interesting.
Let us now modify the code to have the �exibility to have lines of 7 syllables

as well (2.3). We hide the preconditions because we expect that Nsyls takes large
values.

24

Using synthesis Generated Python program
Nsyls == line8 ∗ 8 + line7 ∗ 7
0 ≤ line8

0 ≤ line7

tmp = (−Nsyls)/8
line8 = Nsyls + 7 ∗ tmp
line7 = −Nsyls− 8 ∗ tmp

(2.3)

At this point, the code on the left of (2.3) is much clearer than the code on the
right. Although the code on the right is explicit in terms of programming, the left
code is explicit in terms of meaning.

Now, we assume that we have existing complete lines Elines (see Figure 2-2 p.
27), which are not part of the input of syllables. We can introduce the total number
of lines Tlines in (2.4).

Using synthesis Generated Python program
Nsyls = line8 ∗ 8 + line7 ∗ 7
Tlines = Elines + line8 + line7

0 ≤ line8

0 ≤ line7

tmp = (−Nsyls)/8
line8 = Nsyls + 7 ∗ tmp
line7 = −Nsyls− 8 ∗ tmp
Tlines = Elines− tmp

(2.4)

Note that the computation of Tlines on the right code of (2.4) takes less additions
than computing the sum of Elines, line7 and line8. Well, let's continue the
program.

We now provide the number of existing incomplete lines Ilines, along with the
number of provided syllables Isyls. We ask to extract the total number of new lines
Nlines and the number of lines created from scratch NSLines. Note that we apply
few changes to the left code of (2.4) to obtain the left code of (2.5), while the two
generated versions on the right of (2.4) and (2.5) di�er quite a lot.

Using synthesis Generated Python program
Nsyls + Isyls = line8 ∗ 8 + line7 ∗ 7
Tlines = Elines + Nlines

Nlines = line8 + line7

Nlines = Ilines + NSLines

0 ≤ line8

0 ≤ line7

tmp = (Isyls + Nsyls)/7
Tlines = Elines + tmp

line7 = −Isyls− Nsyls + 8 ∗ tmp
line8 = Isyls + Nsyls− 7 ∗ tmp
Nlines = tmp

NSLines = −Ilines + tmp

(2.5)
Now, we add the constraint that the number of total lines should be divisible by

4 in (2.6).

25

Using synthesis Generated Python program

Nsyls + Isyls = line8 ∗ 8 + line7 ∗ 7
Tlines = Elines + Nlines

Nlines = line8 + line7

Nlines = Ilines + NSLines

0 ≤ line8

0 ≤ line7

Tlines divisible_by 4

tmp = (−8 ∗ Elines− Isyls−
Nsyls)/32

Tlines = −4 ∗ tmp
line7 = −8 ∗ Elines− Isyls−

Nsyls− 32 ∗ tmp
line8 = 7 ∗ Elines + Isyls+

Nsyls + 28 ∗ tmp
Nlines = −Elines− 4 ∗ tmp
NSLines = −Elines− Ilines−

4 ∗ tmp
(2.6)

The right code of (2.6) is very di�erent from the right code of (2.5) to support
this new non trivial constraint.

A detailed summary of this program is available in Figure 2-2. In the closing
credits of the video, the synthesizer was referred as �Comfusy�, meaning �Complete
Functional Synthesis�.

As the speci�cations were evolving, the generated code constantly changed. There-
fore we always used the generated code in the �nal poem generator without any
manual adjustment, which would have been overwritten after a each new synthesis.

26

Figure 2-2: Generating the number of lines

27

28

Chapter 3

Synthesis formalism

Everything is vague to a degree you

do not realize till you have tried to

make it precise.

Bertrand Russell (1872 - 1970)

We are now going to explain the details on what it means to embed synthesis
into an existing programming language. We implemented synthesis as a plug-in for
the Scala [42] compiler, but the presented steps can be applied to any programming
language.

3.1 The choose programming language construct.

We integrate into a programming language a construct of the form

~x = choose(~t ⇒ F [~t,~a]) (3.1)

Here F [~x,~a]1 is a formula in a decidable logic, which has variables ~x and parameters
~a. The parameters ~a are program variables known at the time the statement is
executed, whereas ~x are values that need to be computed so that F [~x,~a] holds2. We
can translate the choose construct into the following sequence of commands in the
guarded command languages [12]:

assert(∃~x.F [~x,~a]);
havoc (~x);
assume(F [~x,~a]);

1~t is an anonymous variable, so we prefer to use ~x in the remaining chapter.
2Notation: if F is an expression containing variables ~x and ~a, then F [~x,~a] is the same expression,

F [~y,~b] or F [~x := ~y,~a := ~b] is the expression where the ~x and ~y have been respectively replaced by ~y
and ~x, and ~x 7→ F [~x,~a] would be the function mapping from ~x to this expression, assuming that ~a
is globally de�ned.

29

The simplicity of the translation of the choose construct also means that such con-
struct is easier to use in veri�cation systems such as [4, 16, 59, 60, 9] compared to
the standard imperative code that would have the same e�ect.

3.2 Model-generating decision procedures.

As a starting point for our synthesis algorithms we consider model-generating decision
procedures. We assume that a decision procedure works on a class of �rst-order
formulas Formulas de�ned in terms of terms Terms. The formulas can contain free
variables, and we denote FV(F) the set of free variables in a formula F . Given
a substitution σ : FV(F) → Terms, we write Fσ for the result of substituting each
x ∈ FV(F) with σ(x). Formulas are interpreted over elements of a �rst-order structure
D with a countable domain D. We assume that for each e ∈ D there exists a ground
term ce whose interpretation in D is e; let C = {ce | e ∈ D}. We further assume that
if F ∈ Formulas then also F [x := ce] ∈ Formulas (the class of formulas is closed under
partial grounding with constants). Given F ∈ Formulas we expect a model-generating
decision procedure δ to produce either

a) a substitution σ : FV(F)→ C such that Fσ is a true, or

b) a special value unsat indicating that the formula is unsatis�able.

We assume that the decision procedure is deterministic and behaves as a function
δ. We write δ(F)=σ or δ(F)=unsat to denote the result of applying the decision
procedure δ to F .

3.3 Invoking a decision procedure at run-time.

Just like an interpreter can be considered as a baseline implementation for a compiler,
deploying a decision procedure at run-time can be considered as a baseline for our
approach (see also section 1.2.1 page 13). In this scenario, we replace the invocation
of (3.1) with

F = makeFormulaTree(makeVars(~x), makeGroundTerms(~a));
~r = (δ(F) match {
case σ ⇒ (σ(x1), . . . , σ(xn))
case unsat ⇒ throw new Exception("No solution exists")

})

The dynamic invocation approach is �exible and useful. It can give some advantages
of constraint logic programming [23] and can also be done using e.g. the Z3 SMT
solver [40] with quotations of the F# language [56]. However, there are important
advantages of the compilation approach in terms of performance and predictability,
as we discuss next.

30

3.4 Synthesis based on decision procedures.

Our goal is to explore a compilation approach where a modi�ed decision procedure is
invoked at compile time, converting the formula F [~x,~a] into a �solved form� F [f(~a), a].
More precisely, by a synthesis procedure, we mean a procedure that takes as input a
formula F with two vectors of variables ~x,~a, and outputs:

1. a precondition predicate pre[~a] equivalent to ∃~x.F [~x,~a].

2. a sequence of instructions Ψ[~a] describing how to calculate a value of ~x given the
values of ~a. Mathematically speaking, f : ~a 7→ Ψ[~a] de�nes a (maybe partial)
function such that for each ~a, if pre[~a] then f(~a) is de�ned and F [f(~a),~a] holds.

The sequence of instructions Ψ[~a] is emitted in compiler intermediate representation
and compiled with the rest of the code. Furthermore, when we compile the choose
statement (3.1), we added the following compilation steps:

• emit a non-feasibility warning if the formula ¬pre[~a] is satis�able, reporting the
model for ~a as a counterexample for which the given constraint has no solution;

• emit a non-uniqueness warning if the formula

F [~x,~a] ∧ F [~y,~a] ∧ ~x 6= ~y

is satis�able, reporting the model for ~a, ~x and ~y as a counterexample showing
that for the values ~a, there are at least two solutions;

• as the compiled code, emit the code that behaves as

assert(pre[~a])
~x = Ψ[~a]

Among the advantages of the compilation approach � see also section 1.2.2 page
13 � are:

• improved run-time e�ciency: part of the reasoning is done at compile-time;

• improved error reporting: the existence and uniqueness of solutions can be
checked at compile time;

• simpler deployment: the emitted code can be compiled to any of the targets of
the compiler, and requires no additional run-time support.

3.5 E�ciency of synthesis.

We introduce the following measures to quantify the behavior of our synthesis proce-
dure:

• time to synthesize the code, as a function of F ;

31

• size of the synthesized code, as a function of F ;

• running time of the synthesized code as a function of F and a measure of the
run-time values of ~a.

When using F as the argument of the above measures, we often consider not only the
size of F , but also the dimension of the variable vector ~x and the parameter vector ~a
in F .

3.6 From quanti�er elimination to synthesis

Quanti�er elimination ∃x.F [~x,~a] −→ pre[~a]
⇓ ⇓

Synthesis ∃x.F [~x,~a] −→ “F [Ψ[~a],~a]′′

The precondition pre can be viewed as a result of applying quanti�er elimination
(see e.g. [41]) to remove ~x from F . Synthesis procedures strengthen quanti�er elim-
ination procedures by identifying not only pre but also emitting the code Ψ[~a] that
e�ciently computes a witness for ~x. On the other hand, quanti�er elimination is
typically applied to arbitrary quanti�ed formulas of �rst-order logic by successively
eliminating quanti�ers, so pre is in the same fragment of formulas as F ; this condition
is not required in our case (we do expect the language of pre to have a decision pro-
cedure for the purpose of warnings). Naturally, the results on quanti�er elimination
measure the size of the generated formula and the time needed to generate it, but
not the size of Ψ[~a] or the execution time for Ψ[~a].

Despite the di�erences, we have found that we can naturally extend existing quan-
ti�er elimination procedures with explicit computation of witnesses that constitute
the program Ψ[~a]; the general idea of eliminating variables one by one is as follows.
Given (3.1), we consider the formula ∃x1, . . . , xn.F . Suppose we have a quanti�er
elimination procedure that eliminates xn from ∃xn.F . This results in a formula F1

possibly containing x1, . . . , xn−1,~a. We extend the quanti�er elimination to a syn-
thesizer in a way described above and the result is the precondition predicate pre1

(which is actually the formula F1[x1, . . . , xn−1,~a]) and the sequence of commands
Ψ1[x1, . . . , xn−1,~a] where the value of a witness for xn is computed. We proceed
with the quanti�er elimination of the next output variable xn−1 from the formula
F1[x1, . . . , xn−1,~a] and the resulting code Ψ2 we concatenate with Ψ1. We repeat this
procedure until all output variables are eliminated.

We formalize that as a translation scheme JF,~a, ~x,ΓK. It takes four arguments: a
formula F , a list of input variables ~a, a list of output variables ~x and a list of code Γ
and returns a pair (pre,Ψ), where pre is a precondition predicate that takes ~a as an
argument and Ψ is a list of commands that e�ectively computes values of witnesses.
With ::: we denote the concatenation of two lists. Here is a formal de�nition of the
translations scheme which also handles multiple number of output variables:

32

JF,~a, ∅,ΓK = (F,Γ)
JF,~a, x,ΓK = (pre[~a],Ψ[~a] ::: Γ)
JF,~a, (x1, . . . , xx−1, xn),ΓK = Jpre1,~a, (x1, . . . , xx−1),Ψ1K ,

where (pre1,Ψ1) = JF,~a ::: (x1, . . . , xx−1), xn,ΓK

Having this scheme, we are able to express one simple optimization which we will
use whenever applicable, and thus we do not mention it explicitly in the rest of the
paper. This optimization is used when a formula F is a conjunction of two formulas
F1(~a), which contains only input variables, and F2(~a, ~x). In that case we add F1(~a)
to pre and continue to synthesize only F2(~a, ~x).

JF1(~a) ∧ F2(~a, ~x),~a, ~x,ΓK = (pre[~a] ∧ F1(~a),Ψ[~a]),
where (pre[~a],Ψ[~a]) = JF2(~a, ~x),~a, ~x,ΓK

3.7 Propositional Operations in Synthesis

The main algorithms presented in the next chapters are dealing with conjunctions of
literals. We now present we deal with arbitrary formula with disjunctions.

3.7.1 Synthesis for Propositional Logic

In order to illustrate the potential gain of precomputation, �rst consider the fol-
lowing simple approach when F is a propositional formula (see e.g. [31] for a more
sophisticated approach). Build an ordered binary decision diagram (OBDD) [7] for F ,
treating both ~a and ~x as variables, using an ordering that puts all parameters ~a before
the variables ~x. Then split the OBDD graph at the point where all the decisions on
~a have been made. For each of the OBDD nodes in this slice, we can precompute
whether it reaches the true node. We emit the code that consists of nested if-then-else
tests encoding the upper slice of the OBDD, followed by the code that, for nodes that
reach true emits one path that reaches true. Although the size of the code can be
singly exponential, the code executes in time linear in the dimension of ~a and ~x. This
is in contrast to NP-hardness of �nding a satisfying assignment for a propositional
formula F , which would occur in the baseline approach of invoking a SAT solver at
run-time. In summary, for propositional synthesis we can precompute solutions to an
NP-hard problem and generate code that computes unknown propositional values in
polynomial time.

In the next several sections, we describe synthesis procedures for several useful
decidable logics over in�nite domains (numbers and data structures) and discuss the
e�ciency improvements due to synthesis.

3.7.2 Propositional Connectives in First-Order Theories

Consider quanti�er-free formulas in some �rst-order theory. To check satis�ability
or apply quanti�er elimination for arbitrary propositional combinations of literals,
we can transform the formula to disjunctive normal form and process each disjunct

33

independently. We can also adopt this method to synthesis. Let D1, . . . , Dn be the
disjuncts in disjunctive normal form of a formula, with variables ~x and parameters ~a.
Apply synthesis to each Di yielding a precondition prei(~a) and the solved form Ψi(~a).
The �nal translation schema can be explicited as follow:

JD1 ∨ . . . ∨Dn,~a, ~x,ΓK =

(
∨n
i=1 prei(~a),



if (pre1(~a)) Ψ1(~a)
else if (pre2(~a)) Ψ2(~a)

...
else if (pren(~a)) Ψn(~a)
else

throw new Exception(�No solution exists�)


),

where
(pre1(~a),Ψ1(~a)) = JD1,~a, ~x,ΓK
. . .
(pren(~a),Ψn(~a)) = JDn,~a, ~x,ΓK

While the disjunctive normal form can be exponentially larger than the original
formula, the transformation to disjunctive normal form is used in practice [48] and
has advantages in terms of the quality of synthesized code generated for individual
disjuncts. What further justi�es this approach is that we expect a small number of
disjuncts in our speci�cations, and expect to need di�erent synthesized values for
variables in di�erent disjuncts. Other methods can have better worst-case quanti�er
elimination complexity [10, 15, 58, 41].

Our solver is slightly more optimized than that. We �rst try to solve top-level
equalities before starting to split the formula to disjunctive normal form. For example,
in x+ y = 4 ∧ (x > y ∨ x < y) we �rst solve x+ y = 4 and replace the expression in
the subsequent equations, yielding the new problem 4 > 2y ∨ 4 < 2y.

34

Chapter 4

Linear Rational Synthesis

Don't reinvent the wheel, just

realign it

Anthony J. D'Angelo

In spite of its relative simplicity, the algorithm to de�ne linear rational synthesis
is a good start to understand the principles of general synthesis algorithms. Although
we did not implement it, we entirely designed it and computed its complexity.

4.1 Synthesis for Linear Rational Arithmetic

We next consider synthesis for quanti�er-free formulas of linear arithmetic over ratio-
nals. In this theory, variables range over rational numbers, terms are linear expres-
sions c0 + c1x1 + . . .+ cnxn, and the relations in the language are < and =. Synthesis
for this theory can be used to describe exact fractional arithmetic computations or
prototype �oating-point computations. It also serves as an introduction to the more
complex problem of integer arithmetic synthesis.

Given a quanti�er-free formula, we can e�ciently transform it to negation-normal
form. Furthermore, we observe that ¬(t1 < t2) is equivalent to (t2 < t1) ∨ (t1 = t2)
and that ¬(t1 = t2) is equivalent to (t1 < t2) ∨ (t2 < t1). Therefore, there is no need
to consider negations in the formula. We can also normalize the equalities to the form
t = 0 and the inequalities to the form 0 < t.

4.1.1 Solving Conjunctions of Literals

Given the observations in Section 3.7.2, we consider conjunctions of literals. The
method follows Fourier-Motzkin elimination [49]. Consider the elimination of a vari-
able x.

35

Equalities

If x occurs in an equality constraint t = 0, then rewrite the constraint as x = t′. We
eliminate x from consideration, and continue recursively with the remaining variables.
The synthesized code for computing x is the term t′. This step is Gaussian elimination,
and we use it whenever it is applicable. We therefore eliminate �rst those variables
that occur in some equalities.

Inequalities.

Next, suppose that x occurs only in strict inequalities 0 < t. Depending on the sign
of x in t, we can rewrite these inequalities into ap < x or x < bq for some terms ap
and bp. Consider the more general case when there is both at least one lower bound
ap and at least one upper bound bq. We then continue recursively with the formula∧
p,q ap < bq and generate code for it. To compute xn, we take the mean between the

max of lower bounds and min of upper bounds.
The corresponding translation scheme is the following:

r
F [~a, ~y] ∧ (

∧
p ap < x) ∧ (

∧
q x < bq),~a, ~y ::: (x),Γ

z
=

(pre[~a],Ψ[~a] :::


val b = minq{bq}
val a = maxp{ap}
val x = (a+ b)/2

 ::: Γ)

where

(pre[~a],Ψ[~a]) =
r
F [~a, ~y] ∧

∧
p,q ap < bq,~a, ~y,Γ

z

In case there are no lower bounds, we can compute val x = b − 1; if there are no
upper bounds, we compute val x = a+ 1.

Complexity of synthesis for conjunctions.

Consider a formula of with N inequality literals, E equality literals, A input variables
and V output variables (with V ≥ E) whose values need to be synthesized.

The number of operations required to synthesize a program is bounded from above
(modulo multiplication by a constant) by

2V (A+ V) ·N2V

22V −1
+ V (A+ V)(E +N)

This bound is explained in details in appendix A.1.
The size of the generated program is bounded by:

O

(
(A+ V)

(
E +

N2V +1−1

22V +1−2

))

The generated program is a sequence of linear arithmetic operations; if we assume
that the arithmetic operations take constant time, its execution time is proportional

36

to program size.
Note that, the algorithm has good e�ciency in the absence of inequalities. In any

case, it is polynomial when V is constant (e.g. synthesizing individual variable that
satis�es a constraint).

4.1.2 Disjunctions in Linear Rational Arithmetic

One way to lift synthesis for rational arithmetic from conjunctions of literals to ar-
bitrary propositional combinations is to apply the method of Section 3.7.2. We then
obtain complexity that is one exponential higher in formula size than the complexity
of synthesis for conjunctions.

37

38

Chapter 5

Linear Integer Synthesis

When you can't have what you

want, it's time to start wanting

what you have.

Kathleen A. Sutton

We next consider synthesis for quanti�er-free formulas of Presburger arithmetic [47]
(integer linear arithmetic). In this theory variables range over integers. Terms are
linear expressions of the form c0 + c1x1 + . . .+ cnxn, n ≥ 0, ci is an integer constant
and xi is an integer variable. Atoms are build using relations ≥, = and |. The atom
c|t is interpreted as true i� an integer constant c divides term t. We also sometimes
use the predicate < as shorthand for a < b i� a ≤ b ∧ ¬(a = b).

Given a quanti�er-free formula F , we assume that F is in disjunctive normal
form. We will describe a synthesis algorithm which works only for a formula which
is a conjunction of literals. This algorithm can be further extended to be a synthesis
algorithm for F as described in Section 3.7.2.

Pre-processing.

Before we can apply the algorithm, we need to do some pre-processing steps and
eliminate negations and divisibility constraints. We remove negations by transforming
a formula into its negation-normal form and then we eliminate negative literals by
translating them into equivalent positive one: ¬(t1 ≥ t2) is equivalent to t2 ≥ t1 + 1
and ¬(t1 = t2) is equivalent to (t1 ≥ t2 + 1) ∨ (t2 ≥ t1 + 1). We also normalize
equalities into the form t = 0 and inequalities into the form t ≥ 0.

Divisibility constraints of a form K|t are transformed into equalities while adding
a fresh variable. The obtained value of the fresh variable y is ignored in the �nal
synthesized program.

J(K|t) ∧ F,~a, ~x,ΓK = (pre1,Ψ[~a] ::: Γ), where
(pre1,Ψ[~a]) = Jt = Ky ∧ F,~a, ~x ::: (y), ∅K

Ψ[~a] is a sequence of commands for computing the values of ~x.

39

The negation of divisibility ¬(K|t) can be handled in a similar way by introducing
two fresh variables l1 and l2 and replacing the divisibility constraint with

Kl1 = t+ l2 ∧ 0 < l2 < K

In the rest of this section we consider a formula without negation or divisibility
constraints.

5.1 Equality Constraints

We next present a procedure which eliminates equality constraints from a formula F .
For this we will use the algorithm eqSyn described in Section 5.1.1. It takes as an
input an equality1 E[~b, ~y] ≡ Σm

i=1βibi + Σn
j=1γjyj = 0, and returns

• an integer δ such that δ = gcdj(γj).

• an integer linear arithmetic formula preE[~b] describing what is required for E[~b, ~y]
to have a solution.

• a fresh input variable d such that it should be assumed that δd = Σm
i=1βibi

• a list of linear terms ti to describe the solutions for yj.

The returned terms ti are such that the equality E[~b, y1 := t1, . . . , yn := tn] ≡
δd + Σn

j=1γjtj evaluates to true. Each term ti is a linear combination of new fresh
output variables zi and the input fresh variable d. Important is that the number
of zi variables is strictly smaller than the number of yi variables. This way we will
reduce the number of output variables for at least one. In the rest of the formula
F we replace each occurrence of yi with corresponding term ti and we proceed with
synthesis of the rest of the formula F .

r
E[~b, ~y] ∧ F,~a, ~x,Γ

z
=

(pre[~a] ∧ preE[~b],
{
val d = 1

δ
Σm
i=1βibi

}
::: Ψ[~a, d] :::


val y1 = t1
...
val yn = tn

 ::: Γ), where

(preE[~b], d, δ,~t) = eqSyn(E[~b, ~y]) and
(pre[~a],Ψ[~a]) = JF [y1 := t1, . . . , yn := tn],~a ::: (d), (~x\~y) ::: ~z, ()K

With ~x\~y we denote here a vector of variables ~x without ~y variables. For example,
(x1, x2, x3, x4)\(x2, x3) = (x1, x4).

1We assume that ~b ⊆ ~a and ~y ⊆ ~x

40

5.1.1 Reducing the Number of Output Variables

In this section we describe the algorithm eqSyn. Let Σm
i=1βibi + Σn

j=1γjyj = 0 be
an equality. By Bézout's theorem, this equality has a solution i� gcdj(γj)|Σm

i=1βibi.

Therefore, we de�ne δ = gcdj(γj) and preE[~b] ≡ δ|Σm
i=1βibi. As d has an implicit de�-

nition, eqSyn only has to generate a new name for it, so there remains the generation
of the terms tj.

First we consider the case when there is only one output variable in the equality.
In that case the algorithm eqSyn returns the following result, in which we quickly
verify that E[~b, y := −d] ≡ γd− γd == 0 evaluates to true.

eqSyn(Σm
i=1βibi + γy = 0) =


δ 7→ γ

preE[~b] 7→ δ|Σm
i=1βibi

d 7→
[
A new fresh input variable where
it is needed that δd = Σm

i=1βibi
t 7→ −d

From now on we assume that there is more than one output variable in the equality.
Out goal is to derive an alternative de�nition of the setK = {~y | Σm

i=1βibi+Σn
j=1γjyj =

0} which will allow a simple and e�ective computation of elements in K. Note that
the set K describes the set of all solutions of a Presburger arithmetic formula and
following [17, 18] there is a semilinear set describing it. A semilinear set is �nite
union of linear sets. Given an integer vector ~b and a �nite set of integer vectors S,
a linear set is a set {~x | ~x = ~b + ~s1 + . . . + ~sn; si ∈ S;n ≥ 0}. Vector ~b is called
a base vector while vectors in S are called step vectors. Every semilinear set is a
solution of some Presburger arithmetic formula. Ginsburg and Spanier showed that
converse holds as well: the set of all solutions of a Presburger arithmetic formula can
be described with a semilinear set. However, we cannot apply this result immediately
because there are also input variables whose values are not known until the execution
time. We overcome this problem by introducing witnesses. We now explain in details
three steps in de�ning a set describing set K.

Given the equality Σm
i=1βibi + Σn

j=1γjyj = 0 in the �rst step we de�ne the set
SH = {~y | Σn

j=1γjyj = 0} which describes a solution set of a homogeneous equality.
This is a linear set and it has a form {~y | ~y = α1~s1 + . . . + αk~sk;αi ∈ Z}. Vectors ~si
are known and their e�ective computation is described in Section 5.1.2. Important is
that the number of si vectors is strictly smaller than n.

In the second step we compute a witness vector ~w. For this we use generalization
of Bézout's identity: for any numbers k1, . . . , kn with greatest common divisor d
there exist integers α1, . . . , αn such that α1k1 + · · ·+ αnkn = d. A fast algorithm for
computing those integers is described in Section 5.1.3.

Recall that δ = gcdj(γj) and let us de�ne I = Σm
i=1βibi. Let J = I/δ. We apply

Bézout's identity on numbers γ1, . . . , γn and compute numbers v1, . . . , vn such that
v1γ1+· · ·+vnγn = δ. Multiplying this equality with J results in v1Jγ1+· · ·+vnJγn =
δJ = I. We de�ne wi = −viJ and form vector ~w. Therefore Σm

i=1βibi + w1γ1 + · · ·+
wnγn = Σm

i=1βibi − I = 0, so the vector ~w belongs to the set K.

41

In the last step we show that K = SH + {~w}, i.e. ~y ∈ K ⇔ ~y = ~yh + ~w∧ ~yh ∈ SH .
If ~y ∈ K, we need to show that ~y − ~w ∈ SH . Let zi = yi − wi. Applying few simple
computation steps we show that Σn

j=1γjzj = 0 and thus ~z ∈ SH . The other direction
is analogous.

To conclude, the algorithm eqSyn returns two things: the �rst is precondition
δ|Σm

i=1βibi and the second is list of terms ti. Using the computed values for generators
of set SH and a witness ~w, terms ti are computed as: ti = wi + λ1s1i + . . .+ λkski.

5.1.2 E�cient Computation of Linear Sets

To complete handling of equalities in our linear integer arithmetic synthesizer, the
last hurdle we need to address is an e�cient computation of a set describing the set
of solutions of an equation Σn

i=1γiyi = 0. Following the Omega test [48], we know the
structure of this set. It is a linear set with ~0 as the base vector and at most n − 1
step vectors: {α1~s1 + . . .+αn−1~sn−1 | αi ∈ Z}. The Omega test is an algorithm which
describes, among others, a computation of those step vectors. However, we �nd it
too complex for our purposes, so here we propose direct computation of those step
vectors without applying the Omega test.

Let S = {~y | Σn
i=1γiyi = 0}. Note that S is always a non-empty set, since ~0 ∈ S.

We will show that S is equal to the following set:

SL =

α1

 K11
...

Kn1

+ . . .+ αn−1

 K1(n−1)
...

Kn(n−1)


∣∣∣∣∣∣∣αi ∈ Z


where integer values Kij are computed as follows:

• if i < j, Kij = 0

• Kjj =
gcd((γk)k≥j+1)

gcd((γk)k≥j)

• remaining values Kij are computed as follows: for each index j, 1 ≤ j ≤ n− 1,
consider the equation

γjKjj +
n∑

i=j+1

γiuij = 0

and �nd any solution. Let kij be a value of a variable uij in the found solution.
For all the remaining Kij for this �xed j, output Kij = kij. In Section 5.1.3 we
describe how to �nd a solution using only the Euclidean algorithm.

If one considers a matrix formed with coe�cients Kij, it is a lower triangular
matrix. The reason for this is because vectors ~sj are forming a basis for the set S
and we compute them in a way that guarantees their mutual independence.

We next show the correctness of the construction by showing that S = SL. First
we show that each vector ~sj belongs to S: ~sj ∈ S ⇔ Σn

i=1γiKij = 0 ⇔ γjKjj +∑n
i=j+1 γiKij = 0 which trivially holds by construction. Set S is a homogeneous set

and therefore any linear combination of its elements is again an element in S.

42

To prove that the converse also holds, we show that a vector ~x ∈ S can be written
as a linear combination of ~sj vectors. Let G1 = gcd((γk)k≥1). It follows that:

~x ∈ S
⇔ Σn

i=1γixi = 0
⇔ G1 · (Σn

i=1βixi) = 0

where βi = γi/G1. This implies that β1x1+Σn
i=2βixi = 0 and all βi values are coprime,

i.e. gcd((βk)k≥1) = 1. Let G2 = gcd((βk)k≥2). We can then further rewrite the fact
~x ∈ S as:

~x ∈ S
⇔ Σn

i=1βixi = 0
⇔ β1x1 +G2(Σ

n
i=2β

′
ixi) = 0

⇔ x1 = −G2(Σ
n
i=2β

′
ixi)/β1

Since β1 and G2 are coprime, it means that β1|Σn
i=2β

′
ixi and x1 can be written as

x1 = α1G2 for the integer α1 = −Σn
i=2β

′
ixi/β1. Applying the de�nitions of G2, βi and

G1 results in x1 = α1K11. Consider now a new vector ~y = ~x − α1~s1. Since ~x and ~s1

are elements of S, vector ~y is also an element of S. However, vector ~y has a special
structure: its �rst component is 0. We repeat the described procedure on ~y and ~s2.
This way we derive the value for an integer α2 and a new vector ~z who has the �rst
two components 0.

We continue with the described procedure until we obtain a vector ~u that has
all components 0 except for the last two components. Since it is also an element of
S, γn−1un−1 + γnun = 0. Using this, we conclude that un−1 · gcd(γn−1, γn)/γn is an
integer. Our goal is to show that ~u = αn−1~sn−1, for some integer value αn−1. Next we
observe that vector ~sn−1 has a form (0, . . . , 0, γn/ gcd(γn−1, γn),−γn−1/ gcd(γn−1, γn)).
By de�ning αn−1 to be αn−1 = un−1 · gcd(γn−1, γn)/γn, it can easily be veri�ed that
~u = αn−1~sn−1.

This whole procedure showed that every element of S can be represented as a
linear combination of the ~sj vectors and this �nishes the proof of the correctness of a
linear set construction.

5.1.3 Finding a Solution of an Equation

Finally, we describe a fast way of �nding a solution for an equation K + Σn
i=1γiui =

0. This equation has an integer solution only if gcd((γk)k≥1)|K. For a purpose of
constructing a linear set, this requirement holds in every equation for which we aim
to �nd a solution. Therefore we are not addressing the case when the equation does
not have a solution. The basis for the computation is again Bézout's identity: given
integers a1 and a2 with greatest common divisor δ there exist integers w1 and w2 such
that a1w1 + a2w2 = δ. The �nal solution of the equation will be constructed by using
induction.

We start with a base case when there are only two variables: K+γ1u1 +γ2u2 = 0.
Because K/ gcd(γ1, γ2) is an integer, we introduce the integer α = K/ gcd(γ1, γ2).

43

Following Bézout's identity there exist integers v1 and v2 such that γ1v1 + γ2v2 =
gcd(γ1, γ2). By multiplying this last equation by−α, we obtain γ1(−α)v1+γ2(−α)v2+
K = 0 We de�ne ui = vi · (−α) and therefore u1 and u2 are correct solutions of the
equation.

If there are more than two variables, we observe that Σn
i=2γiui will be a multiple

of gcd((γk)k≥2). We introduce the new variable uN and �nd a solution of the equation
K+γ1u1 + gcd((γk)k≥2) ·uN = 0 as described above. This way we obtain values of u1

and uN . To derive values of u2, . . . , un we solve the equation Σn
i=2γiui = gcd((γk)k≥2) ·

uN . It satis�es the requirements to have a solution, has one variable less than the
original equation and thus we can apply induction.

Another algorithm for �nding a solution of an equation K + Σn
i=1γiui = 0 is

presented in [3]. It also runs in polynomial time and allows bounded inequality
constraints as well. However, we chose the algorithm presented here because it of its
simplicity. It can be easily implemented. Moreover, we are only interested in �nding
one solution of an equation. We have no additional constraints nor we are interested
in a characterization of all solutions under such additional constraints.

Here we did not describe an algorithm how to �nd integers integers w1 and w2

such that a1w1 + a2w2 = gcd(a1, a2), for given integers a1 and a2. It is a well-know
algorithm, present in most of the textbooks on algorithms under the name Extended
Euclidean algorithm. We refer to a reader to contact any of textbooks, for example
[11][Figure 31.1].

5.2 Processing Inequality Constraints

From now on, we assume that all equalities are already processed and that a formula is
a conjunction of inequalities. Dealing with inequalities in the integer case is somehow
similar to the case of rational arithmetic: we process variables one by one and then
proceed further with the resulting formula.

Let x be an output variable which we are processing. Every conjunct can be
rewritten in one of the two following forms, for i ∈ [1, I] and j ∈ [1, J]:

[Lower Bound] Ai ≤ αix
[Upper Bound] βjx ≤ Bj

As before, x should be a value which is greater than all lower bounds and smaller
than all upper bounds. However, this time we also need to take into an account that
x has to be an integer, so we convert upper and lower bounds to integers. We de�ne
x as the minimum of the upper bounds b, if it exists, and the maximum of the lower
bounds a otherwise.

a = maxi dAi/αie
b = minj bBj/βjc
x = b if b de�ned, else a.

The corresponding formula which we proceed further is a conjunction stating that
each integer lower bound is smaller than every integer upper bound:

44

∧
i,j

dAi/αie ≤ bBj/βjc (5.1)

Terms Ai and Bj may contain input and output variables and thus the obtained
formula is not a linear arithmetic formula. In order to invoke our synthesizer on that
formula, we have to convert it into an equivalent linear arithmetic formula. For this
purpose we need to eliminate fractionals, �oor and ceiling functions.

With LCM we denote the least common multiple. Let L = LCMi,j(αi, βj). We
introduce new terms A′i = L

αi
Ai and B′j = L

βj
Bj. Those terms are linear integer

arithmetic terms and using them, for each i and j, we derive a new formula which is
almost an integer linear arithmetic formula:

dAi/αie ≤ bBj/βjc

⇔
⌈
A′i
L

⌉
≤
⌊
B′j
L

⌋
⇔ A′i

L
≤
B′j −B′j%L

L

⇔ B′j%L ≤ B′j − A′i. (5.2)

In order to convert the modulo expression to linear arithmetic expressions, we
either decompose the B′j or the A′i modulo L. Suppose, for example, J ≤ I. In
order to generate a small formula, we prefer to decompose B′j from (6.2) (a similar
decomposition can be made on the A′i). We introduce J special input variables
k′1, . . . k

′
J which will be in the range [0, L − 1] and J new output variables x′1, . . . x

′
J .

We de�ne the following new formula:

∧
j∈[1,J]

B′j = Lx′j + kj ∧
∧
i∈[1,I]

kj ≤ B′j − A′i

 (5.3)

Then, we solve the problem by replacing all inequalities containing x by (5.3). The
solution of the general problem is obtained by iterating the (kj)j variables through
all possible values in [0, L− 1]J . For this purpose, we introduce a for-loop structure
iterating over the solution (pre′[~a, k1 . . . kJ],Ψ′[~a, k1 . . . kJ]) of (5.3), which results in
a program Ψ[~a] of the form:

[0, L]J �nd { (k1 . . . kJ)⇒ pre′[~a, k1...kJ] } match {
case Some((k1 . . . kJ)) ⇒
~rs = Ψ[~a, k1...kJ]

case None ⇒
throw new Exception("No solution exists")

}

Note that the synthesizer terminates because we introduced J new output variables
but also J new equalities containing them, so by removing equalities like in Section 5.2,
we will be able to remove J output variables before dealing with inequalities again.

45

The result is correct because for each possibility of writing B′j%L, the remaining
conditions are exactly the ones mentioned above. Finally, the precondition of such a
generated program is the �nite existentially quanti�ed condition:

pre[~a] = ∃(i1...iJ) ∈ [0, L]J .pre′[~a, i1...iJ]

5.3 Disjunctions in Presburger Arithmetic

We can again lift synthesis for conjunctions to synthesis for arbitrary propositional
combinations is to apply the method of Section 3.7.2. We also obtain complexity
that is one exponential higher than the complexity of synthesis from previous section.
Approaches that avoid disjunctive normal form can be used in this case as well [41,
15, 58], and we expect the lower and upper bounds on quanti�er elimination [58] to
apply to the size of the synthesized code.

5.4 Clari�cations and Optimizations

Merging inequalities.

Two exactly opposed inequalities can be merged to produce an equality, which allows
eliminating variables more e�ciently.

Heuristic to choose the variable.

When removing equalities in Section 5.2, choosing the variable xn can be done by
choosing the one whose least common multiple over all the coe�cients is the smallest.
This reduces the number of integers to iterate over.

Partial modulo ending.

Partial modulo ending is an optimization derived from the case of base decomposition,
e.g. a = x1 + 2048 ∗ x2 where 0 ≤ x1 < 2048. Consider the equation (6.2) page 54 for
some pair of lower and upper bound (A′i, B

′
j). If B′j − A′i is reducible to a constant

K ≥ L − 1, then we can dismiss the subsequent modulo splitting for the particular
pair of equations, because B%L ≤ L− 1 ≤ K = B′j − A′i.

Consider the equivalent equation (6.1) page 54 for some pair of lower and upper
bound (Ai, αi, βi, Bj). If αi = 1, then we can rewrite (6.1) to

Ai ≤
⌊
Bj

βj

⌋
(5.4)

⇔ βjAi ≤ Bj (5.5)

so we do not need to split the condition. A similar optimization can be made if βj = 1.

46

5.5 Complexity

We next describe the complexity of our algorithms, for both the synthesis process
itself and the synthesized programs. A conversion of the formula to Disjunctive
Normal Form might increase by an exponential factor both the running time and the
space of our synthesizer and also the size of the generated program (see 5.5.2). The
execution time would also be multiplied by an exponential factor as we are checking
the conditions in sequence. In the following, we consider the complexity when F is a
conjunction of literals.

5.5.1 Synthesizer Time Complexity

The number of times Ω(E,N, V) our solver goes back to 5.1, given the number of
equalities E, inequalities N and output variables V , is bounded from above by:

Ω(E,N, V) = O

(
2 +

N2V

22V +1−1
+ min(V,E)

)
This result is proved in appendix A.2 page 78. Note that, the algorithm has again

good e�ciency in the absence of inequalities. In any case, it is also polynomial when
V is constant.

5.5.2 Generated Programs Size

Each recursive call to 5.1. also means at least an assignment, so there can be at least
doubly exponential assignments.

5.5.3 Generated programs Time Complexity

Without inequalities, the complexity is linear in the number of equations. Else, it
can also be doubly exponential.

5.5.4 Bézout witness and base generation Complexity

The current code used to compute solutions can be found in appendix B page 81.
The complexity of computing advancedEuclid of two numbers x and y is bounded

by O(max(ln(x), ln(y))) (Finck's theorem[13]).
The computation of the successive GCDs in bezoutWitness is done in

O(|a| ln(max(a)))

, where a is the input vector of coe�cients. Then the loop body is called O(|a|) times,
and the execution of its body is constant, with at most one call to advancedEuclid.
The total complexity of bezoutWitness is therefore in

O(|a| ln(max(a)))

47

The computation of the successive GCDs in bezoutWitnessWithBase is done in
O(|a| ln(max(a))), where a is the input vector of coe�cients. Then the loop body is
called O(|a|) times, with at most one call to bezoutWitness.

The total complexity of bezoutWitnessWithBase with the list of input coe�cients
named a is therefore in

O(|a|2 ln(max(a)))

It looks hard to do better, since the complexity matches to a log factor the size of
the 2D array to be �lled with coe�cients.

48

Chapter 6

Parametrized Linear Integer

Synthesis

Indecision may or may not be my

problem.

Jimmy Bu�ett

In the previous Chapter, we explained how to generate programs satisfying linear
equations and inequations with integer coe�cients. The coe�cients of the output
variables can be arbitrary expressions in the input variables. This allows us to state
problems like the following:{

ax1 + (a2 + 1)x2 = a3 − a, ax1 ≥ b, x2 ≤ b3
}

The main algorithm is very similar to the one of Chapter 5 but instead of manip-
ulating known integers coe�cients, it manipulates arbitrary expressions. Since the
only previous compile-time decisions on coe�cients were to check their sign (negative,
zero, positive), the generated programs now have to do these checks at run-time.

6.1 Equality contraints

We need to extend the algorithm which deals with equalities in Chapter 5 to support
arbitrary expressions as coe�cients c[~a] in front of output variables. For that, we
integrate the coe�cient transformation1 described in section 5.1.2 into the synthesized
code, as a new primitive.

1For the complete code of bezoutWitnessWithBase, see appendix B

49

q
c0[~a] + c1[~a] · x1 + c2[~a] · x2 + c3[~a] · x3 = 0 ∧ F [~a, ~x] ,~a, ~x,Γ

y
=

(pre[~a] ∧ pree,

({
(kij)[1...3]2 = bezoutWitnessWithBase(c0, c1, c2, c3)

}
:::

Ψ[~a] :::
{
val ~x1...3 = (kij)[1...3]2 · (1, ~x′1...2)

}
::: Γ

)
), where

pree = gcd(c1, c2, c3)|c0 and
(pre[~a],Ψ[~a]) =

q
F [~a, ~x1...3 := (kij)[1...3]2 · (1, ~x′1...2),~a, (~x\~x1...3) ::: ~x′1...2, ()]

y

The computation of the coe�cients (kij)[1...3]2 which used to be done at compile-
time, is now done at run-time. Of course, if all coe�cients ci are known, we can do
the computations at compile-time. If only a part of the coe�cients are known at
compile-time, it is still possible to specialize the computation in order to introduce a
least number of variables. We added such an optimization when a coe�cient is equal
to 1, independent of the other coe�cients.

Furthermore, if the coe�cients c1, c2, c3 are all zero, keeping the precondition
gcd(c1, c2, c3)|c0 would lead to a division by zero exception. In this case, the precon-
dition pree should be de�ned as c0[~a] == 0.. To deal with such situation, we need to
embed a new abstraction into linear combinations of output variables to describe the
fact that all coe�cients are zero, or not all of them are zero.

In the following code, we describe the implementation of this abstraction. Two
�elds record the possible values, and two methods are provided to show how to assume
facts about an expression which contains an abstraction.

If all_coefficients_can_be_zero is false, then it means that all coe�cients
within this expression can be zero a the same time.

If one_coefficient_can_be_nonzero is false, then it means that all coe�cients
are zero. If both variables are true we do not have information about the current
linear combination.

trait Coe�cientAbstraction {
// Abstraction to express that all coe�cients are zero or not
private var all_coe�cients_can_be_zero: Boolean = true
private var one_coe�cient_can_be_nonzero: Boolean = true
...
def allCoe�cientsAreZero = (

all_coe�cients_can_be_zero &&
!one_coe�cient_can_be_nonzero)

...
def assumeNotAllCoe�cientsAreZero = {
cloneWithCoe�cientAbstraction(false, one_coe�cient_can_be_nonzero)

}
def assumeAllCoe�cientsAreZero = {
cloneWithCoe�cientAbstraction(all_coe�cients_can_be_zero, false)

}
}

The code summary to solve equalities is the following. It takes the �rst equality
available, then it splits on the previously mentioned abstraction value. If the abstrac-
tion asserts that all coe�cients are zero, the stand-alone coe�cient c0[~a] is assumed

50

to be zero, and the solver keep on dealing with the rest. If the abstraction asserts
that not all coe�cients are zero, then solves it naturally. Finally, if the abstraction
is not de�ned, then it solves the two possibilities and creates a if-then-else structure.

sorted_equalities match {
case (EqualZero(combination@Combination(const_part, linear_part)))::rest_equalities ⇒
if(combination.allCoe�cientsAreZero) {
addPrecondition(const_part===0)
...solves remaining...

} else if(combination.notAllCoe�cientsAreZero) {
var coe�cients = getCoe�cients(linear_part)
val gcd = InputGCD(coe�cients)
addPrecondition(Divides(gcd, Combination(const_part, Nil)))
...solves remaining...

} else {
val coefs_are_zero = ... // Formula to express that all coe�cients are zero
var (cond1, prog1) =
solve((combination.assumeAllCoe�cientsAreZero === 0) :: rest_equalities ...)

var (cond2, prog2) =
solve((combination.assumeNotAllCoe�cientsAreZero === 0) :: rest_equalities ...)

return ((cond1 || cond2),
IfThenElse(coefs_are_zero && cond1,

prog1,
ElseIf(!coefs_are_zero && cond2,

prog2) }

6.2 Processing Inequality Constraints

The �rst step of the algorithm to solve inequalities (see Section 5.2 page 44) was to
take a variable, and to separate upper and lower bounds. We cannot do this now,
because we might not know all signs of the coe�cients.

Consider the following example, where we restrict the variables x and y using the
two unknown coe�cients a and b. Depending on the sign of a or b, we have di�erent
upper and lower bounds, and thus di�erent solutions.{

1− 2x+ ay ≤ 0
−1 + bx+ 3y ≥ 0

}
This is why we need a way to store the sign of expressions. The complete solution

is presented in appendix D page 85

6.2.1 Sign abstraction

Our �rst idea is to embed a sign abstraction inside each expression of input vari-
ables. In the same manner some program checkers symbolically execute programs by
abstracting variables domains to P ({]−∞, 0[, {0},]0,∞[}), we extend the existing
input expressions classes (see appendix C page 83) with a trait containing the possible

51

signs of the current input expression. Other possible future implementations of this
abstraction are explained in Chapter 9 page 67.

trait SignAbstraction {
// Simple >0, =0 and <0 abstraction
private var can_be_positive: Boolean = true
private var can_be_zero : Boolean = true
private var can_be_negative: Boolean = true
def isPositive() = can_be_positive && !can_be_negative && !can_be_zero
def isPositiveZero()= (can_be_positive || can_be_zero) && !can_be_negative
def isZero() = can_be_zero && !can_be_positive && !can_be_negative
...
def assumePositiveZero() = {
cloneWithSign(can_be_positive, can_be_zero, false)

}
...

}

We also implemented sign propagation through expressions. Our algorithm is
able to deduce and propagate constraints such that a sum of positive numbers is
positive, a product of two non-zero numbers non-zero and vice-versa, the absolute
value of a non-zero expression strictly positive, etc. This allows us to optimize cases
like bx + (b + b3)y ≥ c, where if the algorithm assumes b > 0, it will deduce that
b + b3 > 0, to avoid the extra e�ort of making an assumption about the sign of this
expression.

6.2.2 Splitting on the sign

When we determine the lower and upper bounds of a variable x in inequations, if not
all the signs of the coe�cients in front of x are determined, we repeatedly assume a
sign for each one of them, and solve the resulting inequations as in section 5.2. To
operate a sign split, our algorithm takes the variable which has the least undetermined
coe�cients.

Let us take the variable x in the previous example to apply the sign determination.
The algorithm considers the three possibilities for b's sign, and splits the main problem
into three sub-problems. The inequation in which x appears is �rst considered as an
upper bound when b > 0, as nothing if b = 0, and as a lower bound if b < 0.

Main problem:

{
1− 2x+ ay ≤ 0
−1 + bx+ 3y ≥ 0

}
Precondition Lower bounds Upper bounds Remaining

b > 0

{
1− 3y ≤ bx
1 + ay ≤ 2x

}
∧ ∅ ∧ ∅

b = 0 {1 + ay ≤ 2x} ∧ ∅ ∧ {1− 3y ≤ 0}
b < 0 {1 + ay ≤ 2x} ∧ {(−b)x ≤ −1 + 3y} ∧ ∅

Below we show the corresponding code in which the sign is applied by calls to

52

assume methods. This code outputs the stream of (upper bounds, lower bounds,
remaining equations) for all the di�erent signs that a coe�cient b of a variable x can
take in a given inequality. If the sign is determined, which is the case of the �rst three
if-then-else, it returns a stream with a single element. If the sign is not determined,
then it will gather all possibilities thanks to the Stream command append. If the
coe�cient b can be positive, it is assumed so and the algorithm creates a sub-problem.
Same consideration when b can be zero or when it can be negative.

// b is a coe�cient for a variable x, in an inequality (E) −1 + b · x+ 3y ≥ 0
// This expression return a stream of [lower_bounds, upper_bounds, remaining]

if(b.isPositive) {
/// This inequality is a lower bound, we handle it so.
Stream(lower_bounds ++ E, upper_bounds, remaining)

} else if(b.isZero) {
/// This is not a bound for variable x so we continue without it.
...
Stream(lower_bounds, upper_bounds, remaining ++ E)

} else if(b.isNegative) {
/// This inequality is an upper bound, we handle it so.
...
Stream(lower_bounds, upper_bounds ++ E, remaining)

} else {
(if(b.can_be_positive) {
val b_positive = b.assumeSign(1) // Then replace b by b_positive
...
Stream(lower_bounds_replaced ++ E, upper_bounds_replaced, remaining_replaced)

} else Stream()) append
(if(b.can_be_zero) {
val b_zero = b.assumeSign(0) // Then replace b by b_zero
...
Stream(lower_bounds_replaced, upper_bounds_replaced, remaining_replaced ++ E)

} else Stream()) append
(if(b.can_be_negative) {
val b_negative = b.assumeSign(−1) // Then replace b by b_negative
...
Stream(lower_bounds_replaced, upper_bounds_replaced ++ E, remaining_replaced)

} else Stream())
}

6.2.3 Normalizing inequations

For a given coe�cients sign choice, we obtain the following upper and lower bounds
for some i ∈ [1, I] and j ∈ [1, J].

[Lower Bound] Ai ≤ αix
[Upper Bound] βjx ≤ Bj

The di�erence with section 5.2 is that now the αi and βi are arbitrary expressions
made of input variables, not only numbers. Due to our sign determinization procedure

53

explained in section 6.2.2, we are guarantying that the αi and βj are positive, so we
can divide by them. De�ne the witness for x as the minimum of the upper bounds,
if it exists, otherwise let x be the maximum of the lower bounds:

a = maxi dAi/αie
b = minj bBj/βjc
x = b if b de�ned, else a.

In the case when there are upper and lower bounds, we have to continue to solve
the equations with the constraint maxi dAi/αie ≤ minj bBj/βjc. This means that for
each i and j, we need to add the constraint corresponding to⌈

Ai
αi

⌉
≤
⌊
Bj

βj

⌋
(6.1)

De�ne L = LCMi,j(αi, βj), A′i = L
αi
Ai, B′j = L

βj
Bj If the αi and βj are not integers,

the variable L is computed at run-time, as a new non-zero input variable. This is the
same for the expressions L

αi
and L

βj
, which are in the same case computed at run-time,

and replaced with new input variables. First, we rewrite these inequalities:⌈
A′i
L

⌉
≤
⌊
B′j
L

⌋

⇔ A′i
L
≤
B′j −B′j%L

L

⇔ B′j%L ≤ B′j − A′i (6.2)

Then we decompose either the B′j or the A
′
i modulo L. Suppose, for example,

J ≤ I. In this case we decompose B′j from (6.2) (a similar decomposition can be done
for the A′i). We introduce J input variables k1, . . . kJ and J new output variables
x′1, . . . x

′
J and de�ne the following new equations:

∧
j∈[1,J]

B′j = Lx′j + kj ∧
∧
i∈[1,I]

kj ≤ B′j − A′i

 (6.3)

Then, we replace all inequalities containing x by (6.3) and solve the resulting problem
with the remaining inequations F1.

(pre′[~a, k1, . . . , kj],Ψ
′[~a, k1, . . . , kj]) =

J(6.3) ∧ F1,~a ::: (k1, . . . , kj), ~x ::: ~x′,ΓK

Since the bounds of the (kj) variables are in [0, L−1]J , and Lmight be computed at
run-time, we need a loop to iterate over the possibilities. We introduce such a for-loop
structure which �nds the �rst value of ~k satisfying the precondition pre′[~a, k1 . . . kJ],
and executes the corresponding program Ψ′[~a, k1 . . . kJ] when it encounters one.

[0, L]J �nd { (k1 . . . kJ)⇒ pre′[~a, k1...kJ] }
match { case Some((k1 . . . kJ)) ⇒

54

~rs = Ψ[~a, k1...kJ]
case None ⇒
throw new Exception("No solution exists")

}

Note that the synthesizer terminates because we introduced J new output vari-
ables but also J new equalities containing them, so by removing equalities like in
Section 5.2, we will be able to remove J output variables before dealing with in-
equalities again. Note as well that the resulting program terminates, because L is
determined at run-time, even if the number of times this for-loop executes is not
bounded by a known constant anymore. For a full version of the generated code for
the example in section 6.1 see Appendix D page 85.

Note on complexity. The size of the generated programs is larger if there are
run-time decisions to take. The size increases exponentially with the number of
undetermined coe�cients.

55

56

Chapter 7

Implementation and Performance

In this section we describe the output format produced by our synthesizer and its
performance.

7.1 Implementation

Our synthesis procedure outputs an abstract syntax tree containing the generated
program with conditions. The �rst conversion we made was to generate a parsable
string of the program, naturally in Scala. Indeed, Scala has nice idioms to implement
some non-trivial features we needed for synthesis: the local variable assignment in if-
conditions, bounded existentially quanti�ed formulas, and the extraction of witnesses
in these bounded existentially quanti�ed formulas (see the mid-column of table 7.1).
We also present the case split idiom after these three main features.

Then for the purpose of the example presented in section 2.2 page 22, we also
implemented a converter from our abstract syntax tree to a parsable string in Python.
This could be done using Python's lambda expression, non-boolean evaluation for
boolean operators � like (false or �Test�) == �Test�, list comprehensions and
the reduce function (see the right-column of table 7.1).

Third, we1 have implemented our synthesis procedures as a Scala compiler ex-
tension. We chose Scala because it supports higher-order functions that make the
concept of a choose function natural, and extensible pattern matching in the form of
extractors [14]. Besides, the compiler supports plugins that can serve as additional
phases in the compilation process.2 We used an o�-the-shelf decision procedure [40]
to handle the compile-time checks.

Our plugin supports the synthesis of integer values through the choose function
constrained by linear arithmetic predicates, as well as the synthesis of set values
constrained by predicates of the logic described in Section 8.4. Additionally, it can
synthesize code for pattern-matching expressions on integers such as the ones pre-
sented in Section 2.1.3.

1Contrary to the �rst two string generation that I wrote, the compiler extension and the subse-

quent abstract syntax tree conversion is mostly Philippe Suter's work
2http://www.scala-lang.org/node/140

57

http://www.scala-lang.org/node/140

Feature to implement Generated Scala code Generated Python code

Variable assignment
in an if-condition

if({var c = b/2;
c > 5 && c < 7}) {

...
}

if (lambda c:c > 5 and
c < 7)(b/2):

...

Bounded existential
quanti�ers

in if-conditions.

if((1 to b) exists {
i => i % c == 0 }) {

...
}

if(reduce((lambda a, i:a or
i % c == 0),
[i for i in xrange(1, 1 + b)],
False))):

...

Extraction
of witnesses
for for-loops.

(1 to b) �nd { i =>
i % c == 0 } match {

case Some(i) => ...
case None => ...

}

kp = reduce((lambda a, i:a or
i % c == 0),
[i for in in xrange(1, 1 + b)],
False)))

if kp:
i = kp
...

Case split and
variable

assignment

val (x, y) = if(...) {
(5, b+c)

} else if (...) {
(−c, b/c)

} else if (...) {
...

} else throw ...

if ...:
(x, y) = (5, b+c)

elif ...:
(x, y) = (−c, b/c)

elif ...:
...

else:
raise ...

Table 7.1: Comparison of Generated Scala code and Generated Python code

58

scalac w/ plugin w/ checks
SecondsToTime 3.05 3.2 3.25
FastExponentiation 3.1 3.15 3.25
ScaleWeights 3.1 3.4 3.5
PrimeHeuristic 3.1 3.1 3.1
SetConstraints 3.1 3.5 �
SplitBalanced 3.2 5.3 �
All 5.25 6.35 6.5

Figure 7-1: Measurement of compile times: without applying synthesis (scalac), with
synthesis but with no call to Z3 (w/ plugin) and with both synthesis and compile-time
checks activated (w/ checks). All times are in seconds. There are no compile-time
checks for the synthesis of set values.

7.2 Performance

Figure 7-1 shows the compile times for a set of benchmarks, with and without our
plugin (in the latter case, the generated code is of course of no use). The examples
SecondsToTime, FastExponentiation were presented in Section 2.1.3. ScaleWeights
computes solutions to a puzzle, PrimeHeuristic contains a long pattern-matching
expression where every pattern is checked for reachability. SplitBalanced is a set
problem using the BAPA theory (see related work section 8.4) and SetConstraints is
a variant of it. We also measured the times with all benchmarks placed in a single �le,
as an attempt to balance out the time taken by the Scala compiler to start up. Our
numbers show that the additional time required for the code synthesis is minimal.
One should also note that the code we tested contained almost exclusively calls to the
synthesizer, which is clearly not representative of what we expect will be the common
practice of using a selective number of invocations.

Overall, we believe that implementation is fast enough to be practical and allows
us to have bene�ts of synthesis in Scala.

59

60

Chapter 8

Related work

I have never met a man so ignorant

that I couldn't learn something

from him.

Galileo Galilei (1564 - 1642)

In this section, we present related synthesis concepts, ideas, algorithms, that have
in�uenced us or helped us to design our own synthesis algorithms.

8.1 Overview

Our work di�ers from the past ones in 1) using decision procedures to guarantee
the computation of synthesized functions whenever a synthesized function exists, 2)
bounds on the running times of the synthesis algorithm and the synthesis code size
and running time, and 3) deployment of synthesis in well-delimited pieces of code of
a general-purpose programming language.

Early work on synthesis [35, 34] focused on synthesis using expressive and unde-
cidable logics, such as �rst-order logic and logic containing the induction principle.
Consequently, while it can synthesize interesting programs containing recursion, it
cannot provide completeness and termination guarantees as synthesis based on deci-
sion procedures.

Recent work on synthesis [53] resolves some of these di�culties by decoupling
the problem of inferring program control structure and the problem of synthesizing
the computation along the control edges. Furthermore, the work leverages veri�ca-
tion techniques that use both approximation and lattice theoretic search along with
decision procedures. This work is more ambitious and aims to synthesize entire algo-
rithms. By nature, it cannot be both terminating and complete over the space of all
programs that satisfy an input/output speci�cation (thus the approach of specifying
program resource bounds). In contrast, we provide completeness guarantees for a
given speci�cation, but focus on synthesis of program fragments with very speci�c
control structure dictated by the nature of the decidable logical fragment.

61

Program sketching has demonstrated the practicality of program synthesis by
focusing its use on particular domains [52, 50, 51, 27, 54]. The algorithms employed in
sketching are typically focused on appropriately guided search over the syntax tree of
the synthesized program. In contrast, our synthesis uses the mathematical structure of
a decidable theory to explore space of all functions that satisfy the speci�cation. This
enables our approaches to achieve completeness without putting any a priori bound
on the syntax tree size. Indeed, some of the algorithms we describe can generate
fairly large and e�cient programs. We expect that our techniques could be fruitfully
integrated into sketching frameworks.

Synthesis of reactive systems generates programs that run forever and interact
with the environment. However, known complete algorithms for reactive synthesis
work with �nite-state systems [46] or timed systems [1]. Such techniques have ap-
plications to control the behavior of hardware and embedded systems or concurrent
programs [57]. These techniques usually take speci�cations in a fragment of temporal
logic [45] and have resulted in tools that can synthesize useful hardware compo-
nents [25, 24]. Our work examines non-reactive programs, but supports in�nite data
without any approximation, and incorporates the algorithms into a compiler for a
general-purpose programming language.

Automata-based decision procedures, such as those implemented in the MONA
tool [28] could be used to synthesize e�cient (even if large) code from expressive
speci�cations. The work on graph types [29] proposes to synthesize �elds given by
de�nitions in monadic second-order logic. The subsequent work [38] has focused on
veri�cation as opposed to synthesis.

The way we deal with inequations is partially based on a quanti�er elimination
procedure [48]. Several other linear inequalities solving techniques over integers and
rationals have also been explored in [22, 8]. Some have even been applied to syn-
thesis [21] from Input/Output examples, which is in contrast to synthesis from full
formal speci�cation.

Our approach can be viewed as sharing some of the goals of partial evaluation
[26]. However, we do not need to employ general-purpose partial evaluation tech-
niques (which typically provide linear speedup), because we have the knowledge of a
particular decision procedure. We use this knowledge to devise a synthesis algorithm
that, given formula F , generates the code corresponding to the invocation of this
particular decision procedure. This synthesis process checks the uniqueness and the
existence of the solutions, emitting appropriate warnings. Moreover, the synthesized
code can have reduced complexity compared to invoking the decision procedure at
run time, especially when the number of variables to synthesize is bounded.

8.2 Comparison of our Synthesis algorithms to other

systems

Our synthesis algorithms manipulate unbounded data structures and deal with para-
metrized input. With this perspective, we can compare their category to other logic
and arithmetic synthesis-related tools. The result is shown in Fig. 8-1. On the left

62

Figure 8-1: Complete algorithms for correct-by-construction synthesis

column, we show synthesis systems dealing with �nite states. A simple SAT solver
� Satis�ability of propositionnal formulas like p ∧ (¬P ∨ Q) � produces boolean
�nite-state models of the formula. Boolean functions generators [30] are stronger,
because they produce input-dependent models, which can be represented on BDD1.
LTL2 synthesis is even stronger, as it can deal with in�nite and repeatitive processes in
which the input can constantly change [24]. On the right column, we show synthesis
systems dealing with in�nite states. A integer decision procedure using quanti�er
elimination is one example. Finally, our synthesis algorithms produce unbounded
integer functions.

8.3 Existing Synthesis Ideas

Synthesis is also an old concept about the idea of reducing the burden of the pro-
grammer. A compiler itself is nothing more than a synthesizer from one middle-level
code representation (e.g. C++) to another low-level code representation (e.g. x86
assembly).

From time to time new programming constructs emerge, for which it is the com-
piler's burden to create a program that meets the speci�cation. We will now discuss

1Binary Decision Diagrams
2Linear Temporal Logic

63

two examples of such programming constructs.

8.3.1 Regular expressions

To recognize structures de�ned by the regular language {(a+b)*(b+c)*(a+c)*} , one
could write the following state machine by hand.

var state=0
string_to_test foreach { x =>
if(state=0) { if(x != 'c') state = 1 else state = 2 }
else if(state=1) { if(x == 'c') state = 3 }
else if(state=2) { if(x == 'a') state = 4 }
else if(state=3) { if(x == 'a') state = 4 else if(x=='b') state = 2 }
else if(state=4) { if(x == 'b') state = 5 }

}
return (state != 5)

However, it is much easier to use an existing library to compile the language
string {(a+b)*(b+c)*(a+c)*} into an automaton that does the same as the previous
program. For instance, the high-level code for this example could be written as follow.

val Language = new Regex("""(?:a|b)∗(?:b|c)∗(?:a|c)∗""")
string_to_test match {
case Language() => return true
case _ => return false

}

The variable Language represents a dynamically compiled form of the program
above. It is close to the notion of synthesis, because this variable can be reused
afterwards without loosing performance. This regular expression pattern matching
feature is available in Scala.

8.3.2 Parser combinators

The use of high-order functions on parsers allows to write a code to parse a string
and to obtain a syntax tree in a very clear way. Without high-order functions, the
code would be long and di�cult to write. For instance, let us consider the following
basic lambda expressions.

T := B B {B}
| B

B := λx. T
| (T)
| x

Writing a parser for this grammar is a painful task in a low-level programming lan-
guages, because it consists of a lot of functions and if-then-elses statements. Thanks
to the expressivity of for example the Scala [42] programming language, it is possible
to hide such complexity by special pattern matching.

64

(...)
def T: Parser[T] = (

B~B~rep(B) ^^ {case t1~t2~otherBs => ApplicationSequence(t1, t2, otherBss)}
| B
| failure("illegal start of term"))

def B: Parser[T] = (
"λ" ~> (ident ~ "." ~ T) ^^ { case s ~ "." ~ t => Abstraction(Variable(s), t) }

| "(" ~> T <~ ")" ^^ { case t1 => t1 }
| ident ^^ { case s => Variable(s) }
| failure("illegal start of BasicTerm")

)

It does not only reduce the amount of code but it is almost as fast as a hand-
written parser. The code is much clearer and represents better what the programmer
has in mind.

8.3.3 Dealing with unknown coe�cients

The idea to introduce for-loops when coe�cients are unknown, explained in Chapter
6, has been tackled in [58, 33] by introducing the notion of �bounded quanti�ers�, in
the case of decision procedures.

8.4 BAPA Synthesis

BAPA [6] stands for Boolean Algebra for Presburger Arithmetic. It contains arith-
metic, set operations, and a function symbol to represent the cardinality of a set, thus
making the link between both.

As a separate work, we3 discovered that the algorithms described in this thesis
could be used to obtain synthesis for BAPA expressions, namely to produce functions
which output not only integers, but also sets. For that, we took an existing decision
procedure described in [32] and updated it to obtain a BAPA synthesizer [36].

3This is mostly Ruzica Piskac's work, both for theory and implementation, and Philippe Suter

made the Scala plug-in work with this theory.

65

66

Chapter 9

Future work

The best way to predict the future

is to invent it.

Alan Kay

Anyone looking for ideas on how to make it better might be interested in this
section. We will also present others interesting synthesis problems.

9.1 Improvement for the current synthesizer

Although our current synthesizer is now complete, there are several ways to improve
both the quality of the synthesizer and the quality of the synthesized programs.

Modular Arithmetic. Most programming languages do not use unbounded inte-
gers. Usually, they use 32 or 64 bits integers. Our synthesizer is correct if the integers
are implemented as BigInts, i.e. unbounded integers. With bounded integers, neither
functions like LCM or Bézout would work for large numbers, nor would the gener-
ated programs. Whenever it is needed, for robustness against failure, for industrial
applications, we could extend the synthesizer to handle modular arithmetic.

External abstraction storing. The current abstraction implementation is to ex-
tend the existing InputTerm classes (see appendix C page 83) with an abstraction
trait (see section 6.2.1 page 51).

Although this allows us to write nice sign checks like coef.isPositive, it is not
optimized for propagating assumptions about the sign of an expression. To improve
the implementation, we could store the sign abstraction in an external map, along
with a dependency graph between values in order to quickly propagate signs. The
resulting simpli�cations would enhance both the program generation speed and the
quality of the generated programs.

67

Better abstractions. Although it is not entirely obvious, we encountered lack
of optimization on the code 2.5 page 20. For the code shown on the right, the
current abstractions cannot detect that the expression x+ 1024y−1920yb is positive.
Therefore, the synthesizer forces the computation of a �oored division:

min(639, ((x+ 1024y − 1920yb)− (3 + (x+ 1024y − 1920yb)%3)%3)/3)

In the equivalent optimized program, the synthesizer would have discovered that
the expression x + 1024y − 1920yb is positive and the computation of the previous
expression would only use a simple division by 3 :

min(639, (x+ 1024y − 1920yb)/3)

With even better abstractions, the synthesizer could detect that the expression to the
right of the min is always less or equal to 639, so it would reduce this expression to

(x+ 1024y − 1920yb)/3

Furthermore there are many abstractions available for symbolic program execution
and veri�cation, e.g. the octagon abstraction [37] or the congruence abstraction [19].
Such abstractions could be implemented in our synthesizer, if the external storage
for abstractions is available. It could even be possible to use di�erent abstractions at
the same time, even if the sign abstraction is always a minimal requirement for the
synthesizer. Finally, it would result in more optimized generated programs.

Scalability and robustness. To verify that a theorem prover is sound, i.e. the
theorems it proves are true, and the conjectures it disproves are false, it has to pro-
vide proofs, which can be checked by other independent formal proof checkers. For
synthesis, we have the same objective. The synthesizer is written by humans, thus it
might contain undiscovered bugs. To overcome this problem, there are two solutions.
One possibility is to prove the synthesizer correct once and for all, which would be a
great challenge but then nothing else would be needed. Alternatively, we could en-
hance the synthesizer to output a veri�able proof tree to explain why the generated
programs are correct.

Independent post-optimization. Even though we already put some e�ort to gen-
erate short programs, and the �nal compiler optimizes further, it could be interesting
to automatically optimize the resulting code by some independent ways like symbolic
execution, or partially evaluating conditionals using validity checkers.

9.2 Synthesis ideas

In this section, we now present other synthesis ideas that we explored in parallel, but
we did not focus on. They are always about reusing existing formal knowledge to
automatically produce code that is otherwise painful to write.

68

9.2.1 Induction axioms for recursive programs

One of the �rst synthesis ideas we explored was to use a constructive version of the
induction axiom. In contrast to the usual induction axiom used by theorem provers,
it produces code. Furthermore, it can be used to generate recursive code given some
properties about a recurring function f , an initial value a, a decreasing function w,
and a property P . In the indexes, we show the signatures of the variables, where o
represents a Boolean and i an integer or equivalent.

∀P: i→i→o∀w: i→i∀f: i→i→i∀a: i

[P (0, a), ∀n: i 6= 0. w(n) < n, ∀n: i∀u: iP (w(n+ 1), u)→ P (n+ 1, f(n+ 1, u))]
−→ ∀n: i.P (n,
val g = (_ match { case 0⇒ a; case n+ 1⇒ f(n+ 1, g(w(n+ 1))))
g(n))

This high-order logic rule describes a skeleton for programs. With i representing
integer pairs, such kind of axiom could be re�ned and used for example to syn-
thesize a Greater Common Divisor recursive algorithm, where w(x, y) := if (y <
x) (y, x) else (x, y − x)�, f((x, y), g) := g.

def gcd(x: Int, y: Int): Int = [
if(x == 0)
y

else
if(y < x)
gcd(y, x)

else
gcd(x, y−x)

}

However, the main di�culty is to �nd inductive proofs, which was one of the �rst
concerns of early program synthesis [35].

9.2.2 Other theories

Here are some small examples illustrating additional domains for synthesis.

String theory. To express the function StringEndsWith(t, s), a function deter-
mining if s is a su�x of t, one could use the following implicit de�nition and apply a
synthesis algorithm on it:

Input StringEndsWith(t, s) ≡ ∃w.t = w ⊕ s
Output StringEndsWith(t, s) = t.substring(t.size− s.size, s.size) == s

Examples
StringEndsWith(“dogiscute′′, “iscute′′) == true

StringEndsWith(“dogiscute′′, “mydogiscute′′) == false

With synthesis, one would not bother about computing the length, doing the
subtraction, etc. Even better, we could return the corresponding pre�x w by an

69

implicit function like

Input StringGetPrefix(t, s) ≡ w where t = w ⊕ s
Output StringGetPrefix(t, s) = t.substring(0, t.size− s.size)

Examples
StringGetPrefix(“dogiscute′′, “iscute′′) == ‘dog‘′′

StringGetPrefix(“dogiscute′′, “mydogiscute′′) == “′′

Trigonometry. Trigonometry conversion can be painful, because of multiple cases.
To convert Cartesian (x, y) coordinates to polar (r, θ) coordinates, it would be con-
venient to write the following code and let a synthesizer do the dirty job.

Input val (r, θ) where x = r∗cos(θ) && y = r∗sin(θ) && 0 < θ ≤ 2 ∗ π

Output
val (r, θ) = (sqrt(x^2 + y^2), {val t = 4∗arctan(y/(x+|z|));
if (t ≤ 0) t + 2∗π else t
})

Binary trees When working in binary trees, it could be convenient to implicitly
express some properties, like to compute the minimum. Let us suppose that we have
the following abstract syntax tree, where binary trees are represented either as a Leaf
or a Node with two binary trees and an integer.

sealed abstract class Tree
case class Node(l: Tree, i: Int, r: Tree) extends Tree
case class Leaf extends Tree

A minimum might not be de�ned on such a tree. Therefore, an implicit minimum
function would not return an Int, but an Option[Int] 1. Considering the two cases,
it would be convenient to supply the following code, and let a synthesizer infer the
real code, with all the necessary pattern matching.

def minimum(t: Tree[Int]): (n: Option[Int]) = {
if(t==Leaf) {
n where n == None

} else {
n where n ∈ content(t) && ∀m ∈ content(t). n ≤ m

}
}

where the function content is a trivial catamorphism on such binary trees map-
ping the tree to the set of all its elements.

def content(t: Tree[T]): Set[T] =
t match {
case Leaf =>
case Node(l, i, r) => content(l) ∪ {i} ∪ content(r)

}

Decision procedures for such recursive algebraic data types have been recently
described [55], and it would be interesting to extend these procedures to synthesis.

1 If t is of type Option[A], then either t=Some(a) where a is of type A, or t = None

70

Chapter 10

Conclusion

Let us retrace the main steps we went through. We explained our concept of pro-
gram synthesis in general arithmetic, and we illustrated it through various examples.
After having identi�ed three theories, namely linear rational arithmetic, linear inte-
ger arithmetic and parametrized linear integer arithmetic, we explained for each of
them a corresponding optimized program synthesis algorithm in detail. Last but not
least, we showed the power of such synthesis as part of a Scala compiler plug-in to
demonstrate the future power of such synthesis.

Years of programming taught me that the more you program, the more you intro-
duce bugs, and you learn from them. However, I am not convinced by the omnipresent
program-debug method, it becomes exceedingly frustrating when the programs are
huge. At some point, one might know what he wants, but if the displayed program
does not correspond to her mental model of the problem anymore, it is harder and
error-prone to try to maintain it.

My main motivation to begin and to keep working on this project was to move
toward my personal goal of reaching the so dreamed zero-bug software development
language. It would looks like an semi-automated multi-users context-aware and full
of knowledge programming platform, where one would formulate her desires�not
programs�in high-level natural language, re�ning it using more advanced vocabulary
or more sentences, to obtain the desired program.

71

72

Appendix A

Derivation of Complexities

This part contains proof complements about the complexities of our synthesis algo-
rithms.

A.1 Linear Rational complexity

We assume A input variables (containing the constant coe�cient), V output variables,
E equalities (E ≤ V), and N inequalities.

We want the number of arithmetic operations during synthesis, which we write
Ω(A, V,E,N).

We will prove that:

Ω(A, V,E,N) ≤ U(A, V,E,N)

where

U(A, V,E,N) = K5 ·

(
2V (A+ V)

V∑
k=2

N2k−1

22k−1
+ f(A, V,E,N)

)

where
f(A, V,E,N) = V · (A+ V)(E +N)

After bounding from above the sum, we get the expected result:

Ω(A, V,E,N) = O

(
2V (A+ V) ·N2V

22V −1
+ V (A+ V)(E +N)

)

A.1.1 Removing 1 equality

We take a variable xV , and we solve one of its equations xV = t . This takes
O(A+ V − 1) operations.

Then, for each other (E − 1 +N) equations, we replace xV by its expression, this
takes O(A+V −1) per equation, so total replacement takes O((E−1 +N) · (A+V))
operations.

73

Therefore, we have the following relation:

Ω(A, V,E,N) = Ω(A, V − 1, E − 1, N) +O((E − 1 +N)(A+ V − 1))

A.1.2 Removing E equalities

By summing up the terms while decreasing the number of equalties and variables, we
obtain:

Ω(A, V,E,N) = Ω(A, V − E, 0, N)

+ O
(∑E

i=1(E − i+N)(A+ V − i)
)

Let us simplify the inner term:∑E
i=1(E − i+N)(A+ V − i)

= (E +N)(A+ V)
∑E

i=1 1 − (A+ V + E +N)
∑E

i=1 i

+
∑E

i=1 i
2

= (E +N)(A+ V)E − (A+ V + E +N)E(E+1)
2

+E(E+1)(2E+1)
6

≤ E
6

(6(E +N)(A+ V) −3(A+ V + E +N)(E + 1))
+(E + 1)(2E + 1))

. . .
≤ E

6
((A+ V)(3E + 6I)− 3IE − E2 − 3IE + 1)

≤ E
6

((A+ V)(6E + 6I))
≤ E · (A+ V)(E +N)

Therefore, we have the following relation:

Ω(A, V,E,N) = Ω(A, V − E, 0, N)
+ O (E · (A+ V)(E +N))

A.1.3 Removing V variable when E = 0, N = 0

Without equations nor inequations, we assign 0 to all remaining variables.

Ω(A, V, 0, 0) = O(V)

A.1.4 Removing 1 variable when E = 0, N = 1

With only one inequation, we treat it as an equality +1, solve it and then assign 0 to
all remaining variables.

Complexity :

Ω(A, V, 0, 1) = O(A) +O(V)

74

A.1.5 Removing 1 variable when E = 0, N ≥ 2

Once all equalities are removed (E = 0), what is the complexity of removing one
variable if there are at least two inequalities?

First, we take a variable, split the inequations between L inequations on the left,
R on the right, and U nothing. Assuming the worst-case complexity, U = 0, and
L+R = N

The split operation is done in O((A+ V)(L+R)) operations, so O((A+ V) ·N)
operations.

The expression (max(. . .) + min(. . .))/2 of section 4.1.1 is constructed, not com-
puted, so this counts as O(1).

After the split, we relaunch the same process with N −L−R+L ·R inequalities,
which is less than N2

4
.

Each merge takes O(A + V) operations, so there are O(N
2

4
(A + V)) operations,

which is greater than the previous O(N · (A+ V)).
Therefore, we have the following relation:

Ω(A, V, 0, N) = Ω

(
A, V − 1, 0,

N2

4

)
+O

(
N2

4
· (A+ V)

)

A.1.6 Merging and upper bound

So we have the following results, and we will now prove that the upper bounds U on
Ω holds by induction.

(1) Ω(A, V, 0, 0) ≤ K1 · V
(2) Ω(A, V, 0, 1) ≤ K2 · A+K3 · V
(3) Ω(A, V, 0, N) ≤ K4 ·

(
N2

4
· (A+ V)

)
+Ω

(
A, V − 1, 0, N

2

4

)
(4) Ω(A, V,E,N) ≤ K0 · (E · (A+ V)(E +N))

+Ω(A, V − E, 0, N)

A.1.7 Proof by induction

Let us examine the base cases (1) and (2). They are all satis�ed if we choose K5 ≥
max(K1, K2, K3) in the provided formula of section A.1.

Now let us examine the cases (3) and (4) by induction to prove that the given
upper bound expression U holds.

(4) The complete induction hypothesis let us assume that

∀v < V. Ω(A, v, E,N) ≤ U(A, v, E,N)

.
Therefore, for v = V − E:

75

Ω(A, v, 0, N) ≤ K5 · (2v(A+ v)
∑v

k=2
N2k−1

22k−1

+f(A, v, 0, N))

≤ K5 ·

(
2V (A+ V)

V−E∑
k=2

N2k−1

22k−1
+ f(A, V − E, 0, N)

)
Using this result in (4), we obtain:

Ω(A, V,E,N) ≤ K0 · (E · (A+ V)(E +N))

+K5 · (2V (A+ V)
∑V−E

k=2
N2k−1

22k−1

+f(A, V − E, 0, N))

This is trivial for E = 0, so let us assume E > 0. We regroup terms to form U ,
and then examine the remaining terms.

Ω(A, V,E,N)
≤ U(A, V,E,N)

+K0 · (E · (A+ V)(E +N))

+K5 · (−2V (A+ V)
∑V

k=V−E+1
N2k−1

22k−1

+f(A, V − E, 0, N)− f(A, V,E,N))

Furthermore, if we assume K5 ≥ K0 :

K0 · (E · (A+ V)(E +N)) + K5(f(A, V − E, 0, N)
−f(A, V,E,N))

≤ K5 · (E · (A+ V)(E +N)) + (V − E) · (A+ V − E)(N)
−V · (A+ V)(N + E))

≤ K5 · (E · (A+ V)(E +N)) + (V − E) · (A+ V)(N + E)
−V · (A+ V)(N + E))

≤ 0

So by simpli�cation, we obtain:

Ω(A, V,E,N) ≤ U(A, V,E,N)

(3) The complete induction hypothesis let us assume that

∀v < V. Ω(A, v, E,N) ≤ U(A, v, E,N)

76

Using this result in (3) for v = V − 1, we obtain:

Ω(A, V, 0, N)

≤ K4 · (N
2

4
· (A+ V)) + U(A, V − 1, 0, N

2

4
)

≤ K4 · (N
2

4
· (A+ V))+

K5 · (2(V − 1)(A+ V − 1)
∑V−1

k=2
(N2/4)2

k−1

22k−1
+

f(A, V − 1, 0, N2/4))

≤ K4 · (N
2

4
· (A+ V))+

K5 · (2V (A+ V)
∑V−1

k=2
N2k+1−1

22k+1−1
+

f(A, V − 1, 0, N2/4))

≤ K4 · (N
2

4
· (A+ V))+

K5 · (2V (A+ V)
∑V

k=2
N2k−1

22k−1
+

f(A, V − 1, 0, N2/4))
≤ U(A, V, 0, N)+

K4 · (N
2

4
· (A+ V))+

K5 · (−2V (A+ V)N
2

4
+

f(A, V − 1, 0, N2/4)− f(A, V, 0, N))

Assuming that K5 ≥ K4 :

Ω(A, V, 0, N)
≤ U(A, V, 0, N)+

K5 · (N2

4
· (A+ V)

−2V (A+ V)N
2

4
+

f(A, V − 1, 0, N2/4)− f(A, V, 0, N))
≤ U(A, V, 0, N)+

K5 · (−N2

4
· (A+ V)

f(A, V − 1, 0, N2/4)− f(A, V, 0, N))

By bounding from above :

Ω(A, V, 0, N)
≤ U(A, V, 0, N)+

K5 · (−V (A+ V)N
2

4

+(V − 1)(A+ V − 1)N
2

4
− V (A+ V)N)

≤ U(A, V, 0, N)+

K5 · (−V (A+ V)N
2

4

+V (A+ V)N
2

4
− V (A+ V)N)

≤ U(A, V, 0, N) +K5 · (−V (A+ V)N)
≤ U(A, V, 0, N)

QED.

77

A.1.8 Size and execution time

For each variable solved from an equality, the size of its assigned expression will be
bounded from above by P0 · (A+ V − 1); where V is the number of variables at this
point and P0 a certain constant. For each variable solved from an inequality, the size
of its assigned expression (the mean of the min of lower bounds and max of upper
bounds) will be in P1((A+ V − 1) ·N), where N is the number of inequaltiies at this
point, knowing that the next time, there might be up to N2/2 new inequalities.

Therefore, with E equalities, the size of the program is bounded from above by:

P0 · (A+ V − 1)+ . . . +P0 · (A+ V − E)+

P1 · (A+ V − 1)N+ . . . +P1 · (A+ V − V)N
2V−1

22V −2

This can be bounded from above by

P2 ·

(
(A+ V)

(
E +

N2V +1−1

22V +1−2

))
where P2 = max(P0, P1)
As we do not have any loops in the linear case, the execution time is roughly linear

to the size of the program, so it has the same complexity.

A.2 Linear Integer complexity

To prove the complexity result presented in section 5.5.1 page 47, let us examine
the number of times Ω(E,N, V) our solver goes back to 5.2, given the number of
equalities E, inequalities N and output variables V .

By induction on the number of output variables V , we show that

Ω(E,N, V) ≤ U(E,N, V)

where

U(E,N, V) = 2 + 2
V∑
k=1

N2k−1

22k−1
+ min(V,E)

By arithmetic properties, it implies the following expected result

Ω(E,N, V) ≤ 2 +
N2V

22V +1−1
+ min(V,E)

The base case is Ω(E,N, 0) = 1, so this holds. Indeed, without output variables,
all equations go directly to the precondition. We suppose now that V ≥ 1.

1. The �rst remark is that if there are equalities remaining (E ≥ 1), we can remove
one variable in one step.

Ω(E,N, V) ≤ Ω(E − 1, N, V − 1) + 1

78

By induction hypothesis, we obtain:

Ω(E,N, V) ≤ 1 + 2 + 2
V−1∑
k=1

N2k−1

22k−1
+ min(V − 1, E − 1)

Ω(E,N, V) ≤ U(E,N, V)− 2
N2V−1

22V −1
≤ U(E,N, V)

Now, equations are removed.

2. If a variable is bounded on one side only by M inequalities:

Ω(0, N, V) ≤ Ω(0, N − L, V − 1)
≤ U(0, N − L, V − 1)
≤ U(0, N, V)

3. Partial modulo ending does not make the behavior of synthesis or synthesized
program worse, only better, so we can ignore it for the purpose of complexity
upper bound.

4. After handling equalities and inequalities of step 6, we can assume that N ≥ 2.
If L is the number of lower bounds and R the number of upper bounds, it
generates L · R new inequalities and R equalities, where 1 ≤ L ≤ N − 1,
1 ≤ R ≤ N − 1 and of course L + R ≤ N . If L < R, we would split on the L
equations, so by taking R we can assume that R ≤ N/2.

Ω(0, N, V) ≤ maxL,R Ω(R,N − L−R + L ·R, V − 1 +R) + 1

As the next steps will be consecrated to removing the R equalities, we obtain
that:

Ω(0, N, V) ≤ maxL,R Ω(0, N − L−R + L ·R, V − 1) + 1 +R

Among the choices of L, the highest complexity is given for L = N −R.
Ω(0, N, V) ≤ maxR Ω(0, (N −R) ·R, V − 1) + 1 +R

As R ≤ N/2, we can maximize it with N/2

Ω(0, N, V) ≤ Ω(0, N2/4, V − 1) + 1 +N/2

So by induction :

Ω(0, N, V) ≤ 2 + 2
∑V−1

k=1
(N2/4)2

k−1

22k−1
+ 1 +N/2

Ω(0, N, V) ≤ 2 + 2
∑V−1

k=1
N2k

22k+1−1
+ 1 +N/2

Ω(0, N, V) ≤ 2 + 2
∑V

k=2
N2k−1

22k−1
+ 1 +N/2

Ω(0, N, V) ≤ 2 + 2
∑V

k=1
N2k−1

22k−1
+ 1 +N/2− 2(N/2)

Ω(0, N, V) ≤ U(0, N, V)

QED.

79

80

Appendix B

Bézout witnesses and base vectors

The following Scala functions are used to �nd witness to equations of the form a0 +
a1 · x1 + . . . + an · xn = 0, and to �nd n − 1 base vectors to equations of the form
a1 · x1 + . . .+ an · xn = 0.

// Finds (x1, x2, k) such that x1.a + x2.b + gcd(a,b) = 0 and k = gcd(a ,b)
def advancedEuclid(ain: Int, bin: Int):(Int, Int, Int) = {
var (x, lastx) = (0, 1)
var (y, lasty) = (1, 0)
var (a, b) = (ain, bin)
var (quotient, temp) = (0, 0)
while(b != 0) {

val amodb = (Math.abs(b) + a%b)%b
quotient = (a − amodb)/b
a = b
b = amodb
temp = x
x = lastx−quotient∗x
lastx = temp
temp = y
y = lasty−quotient∗y
lasty = temp

}
if(a < 0)
return (lastx, lasty, −a)

else
return (−lastx, −lasty, a)

}

// Finds coe�cients x such that k∗gcd(ain) + x.ain = 0
def bezoutWitness(a: List[Int], k: Int):List[Int] = {
var coefs = a
var a_in_gcds = a.foldRight(Nil:List[Int]){
case (i, Nil) => List(i)
case (i, p::q) => gcd(p, i)::p::q

}
var result:List[Int] = Nil
var last_coef = −1

81

while(coefs != Nil) {
coefs match {
case Nil =>
case 0::Nil =>
result = 0::result
coefs = Nil

case el::Nil =>
// Solution is −el/abs(el)
result = (k∗(−last_coef ∗ (−el/Math.abs(el))))::result
coefs = Nil

case (el1::el2::Nil) =>
val (u, v, _) = advancedEuclid(el1, el2)
result = (−v∗k∗last_coef)::(−u∗k∗last_coef)::result
coefs = Nil

case (el1::q) =>
val el2 = a_in_gcds.tail.head
val (u, v, _) = advancedEuclid(el1, el2)
result = (−u∗k∗last_coef)::result
last_coef = −v∗last_coef
coefs = q
a_in_gcds = a_in_gcds.tail

}
}
result.reverse

}

def bezoutWitnessWithBase(e: Int, a: List[Int]): (List[List[Int]]) = {
var coefs = a
var coefs_gcd = coefs.foldRight(Nil:List[Int]){
case (i, Nil) => List(Math.abs(i))
case (i, a::q) => gcd(a, i)::a::q

}
var n = a.length
var result = List(bezoutWitness(a, e/coefs_gcd.head)) // The gcd of all coefs divides e.
var i = 1
var zeros:List[Int] = Nil
while(i <= n−1) {
val kii = coefs_gcd.tail.head / coefs_gcd.head
val kijs = bezoutWitness(coefs.tail, coefs.head/coefs_gcd.head)
result = (zeros ::: (kii :: kijs))::result
coefs = coefs.tail
coefs_gcd = coefs_gcd.tail
zeros = 0::zeros
i += 1

}
result.reverse

}

82

Appendix C

Abstract syntax tree

We present the abstract syntax tree for Parametrized Integer Linear Arithmetic. Note
that our synthesizer accepts Formula expressions for input, which can contains only
up to linear combinations of output variables. Division is only available in output,
not as input. The other non-linearities available from the InputTerm expressions
are authorized because InputTerm expressions form the coe�cients of the output
variables.

abstract class Expression
abstract class Formula
case class Conjunction(Formula∗) // f1 ∧ f2 ∧ ...fn
case class Disjunction(Formula∗) // f1 ∨ f2 ∨ ...fn
case class Negation(Formula) // ¬f1

abstract class Equation
case class EqualZero(Combination) // c = 0
case class GreaterEqZero(Combination) // c ≥ 0
case class GreaterZero(Combination) // c > 0
case class False
case class True
case class Divides((InputTerm, Combination) // i|c

abstract class Term // t
case class Combination(InputTerm, (InputTerm, OutputVariable)∗)

// i0 + i1x1 + ...+ ikxk
case class Maximum(Term∗) // max(t1, ..., tn)
case class Minimum(Term∗) // min(t1, ..., tn)
case class Division(Term, InputTerm) // t

i

abstract class InputTerm // i
case class InputCombination(Int, (Int, InputVariable)∗) // K0 +K1a1 + ...+Kkak
case class InputAbs(InputTerm) // abs(i)
case class InputAddition(InputTerm∗) // i1 + i2 + ...+ ik
case class InputDivision(InputTerm∗, InputTerm∗) // i1i2...ik

i′1i
′
2...i
′
q

case class InputMultiplication(InputTerm∗) // i1i2...ik
case class InputGCD(InputTerm∗) // gcd(i1, i2, ...ik)
case class InputLCM(InputTerm∗) // lcm(i1, i2, ...ik)
case class InputMod(InputTerm∗) // mod (i1, i2, ...ik)

83

84

Appendix D

Parametrized Linear Integer

Synthesis Full Example

The input corresponding to the example in section 6.2 page 51 is the following, where
x and y are the output variables.

1− 2x+ ay ≤ 0
−1 + bx+ 3y ≥ 0

When we give our synthesizer this input, it outputs the following code. This code
is not intented to be understood, because its meaning is represented exactly by the
two equations above. This example shows some of the potential of writing code with
synthesis.

Although this code is supposed to be correct by construction, it has also been
tested in real. It also assumes that the bezoutWithBase, lcmlist and gcdlist functions
are de�ned.

def PLISExample(a : Int, b : Int):(Int, Int) = {
val (x, y) = if(−a > 0) {
val x = 0
val y = Math.max((−a)/(−a), 1)
(x, y)

} else if(a == 0) {
val x = 1
val y = ((3+(−b)∗x) − (3 + (3+(−b)∗x)%3)%3)/3
(x, y)

} else if({val k0 = Common.lcmlist(List(3,a))
(a > 0) && ((0 to (−1) + Common.lcmlist(List(3,a))) exists {
case k1 => { val k3 = Common.gcdlist(List(2∗(k0/a),

(−1)∗Common.lcmlist(List(3,a))))
val k2 = ((−k1) + ((−1)∗(k0/a)))/k3
val List(List(k4,k5),List(k6,k7)) =
Common.bezoutWithBase(1, 2∗(k0/a)/k3, ((−1)∗Common.lcmlist(List(3,a)))/k3)
(((−k1) + ((−1)∗(k0/a))) % Common.gcdlist(List(2∗(k0/a),
(−1)∗Common.lcmlist(List(3,a)))) == 0) &&

((k6∗(b∗(k0/3) + 2∗(k0/a)) > 0) || ((−k1) + ((−1)∗(k0/a)) +
((−1)∗(k0/3)) + k2∗k4∗(b∗(k0/3) + 2∗(k0/a)) >= 0 && k6∗(b∗(k0/3) +

85

2∗(k0/a)) == 0) || ((−k6)∗(b∗(k0/3) + 2∗(k0/a)) > 0))} })}) {
val k0 = Common.lcmlist(List(3,a))
val (x, ya) = ((0) to ((−1) + Common.lcmlist(List(3,a)))) �nd { case k1 =>
{val k3 = Common.gcdlist(List(2∗(k0/a),(−1)∗Common.lcmlist(List(3,a))))
val k2 = ((−k1) + ((−1)∗(k0/a)))/k3
val List(List(k4,k5),List(k6,k7)) = Common.bezoutWithBase(1,
2∗(k0/a)/k3, ((−1)∗Common.lcmlist(List(3,a)))/k3)

(((−k1) + ((−1)∗(k0/a))) % Common.gcdlist(List(2∗(k0/a),
(−1)∗Common.lcmlist(List(3,a)))) == 0) && ((k6∗(b∗(k0/3) + 2∗(k0/a)) > 0)
|| ((−k1) + ((−1)∗(k0/a)) + ((−1)∗(k0/3)) + k2∗k4∗(b∗(k0/3) + 2∗(k0/a)) >= 0
&& k6∗(b∗(k0/3) + 2∗(k0/a)) == 0) || ((−k6)∗(b∗(k0/3) + 2∗(k0/a)) > 0))}

} match {
case Some(k1) =>
val k3 = Common.gcdlist(List(2∗(k0/a),(−1)∗Common.lcmlist(List(3,a))))
val k2 = ((−k1) + ((−1)∗(k0/a)))/k3
val List(List(k4,k5),List(k6,k7)) = Common.bezoutWithBase(1, 2∗(k0/a)/k3,

((−1)∗Common.lcmlist(List(3,a)))/k3)
val yb = if(k6∗(b∗(k0/3) + 2∗(k0/a)) > 0) {
val yb = (((−1) + ((−1)∗((−k1) + ((−1)∗(k0/a)) + ((−1)∗(k0/3)) +
k2∗k4∗(b∗(k0/3) + 2∗(k0/a)))) + k6∗(b∗(k0/3) + 2∗(k0/a))) −
((k6∗(b∗(k0/3) + 2∗(k0/a))) + ((−1) + ((−1)∗((−k1) + ((−1)∗(k0/a)) +
((−1)∗(k0/3)) + k2∗k4∗(b∗(k0/3) + 2∗(k0/a)))) + k6∗(b∗(k0/3) +
2∗(k0/a)))%(k6∗(b∗(k0/3) + 2∗(k0/a))))%(k6∗(b∗(k0/3) +
2∗(k0/a))))/(k6∗(b∗(k0/3) + 2∗(k0/a)))

yb
} else if((−k1) + ((−1)∗(k0/a)) + ((−1)∗(k0/3)) + k2∗k4∗(b∗(k0/3) +
2∗(k0/a)) >= 0 && k6∗(b∗(k0/3) + 2∗(k0/a)) == 0) {
val yb = 0
yb

} else if((−k6)∗(b∗(k0/3) + 2∗(k0/a)) > 0) {
val yb = (((−k1) + ((−1)∗(k0/a)) + ((−1)∗(k0/3)) + k2∗k4∗(b∗(k0/3) +
2∗(k0/a))) − (((−k6)∗(b∗(k0/3) + 2∗(k0/a))) + ((−k1) + ((−1)∗(k0/a)) +
((−1)∗(k0/3)) + k2∗k4∗(b∗(k0/3) + 2∗(k0/a)))%((−k6)∗(b∗(k0/3) +
2∗(k0/a))))%((−k6)∗(b∗(k0/3) + 2∗(k0/a))))/((−k6)∗(b∗(k0/3) + 2∗(k0/a)))

yb
} else { throw new Error("No solution exists") }
val ya = k2∗k5+(k7)∗yb
val x = k2∗k4+(k6)∗yb
(x, ya)
case None => throw new Error("No solution exists")

}
val y = ((−1+2∗x) − (a + (−1+2∗x)%a)%a)/a
(x, y)

} else { throw new Error("No solution exists") }
(x, y)

}

86

Bibliography

[1] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete
and timed systems. In Hybrid Systems II, pages 1�20, 1995.

[2] I. Asimov. Gold: The Final Science Fiction Collection. Eos paperback edition,
2003.

[3] U. K. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Norwell, MA, USA, 1988.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS: Int. Workshop on Construction and Analysis of Safe,
Secure and Interoperable Smart devices, 2004.

[5] C. Barrett and C. Tinelli. CVC3. In CAV, volume 4590 of LNCS, 2007.

[6] A. Bes. BAPA was shown decidable in 1959 paper by Feferman and Vaught.
Personal communication, November 2004.

[7] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677�691, August 1986.

[8] A. Chaieb and T. Nipkow. Proof synthesis and re�ection for linear arithmetic.
J. Automated Reasoning, 41:33�59, 2008.

[9] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent c.
In Conf. Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of
LNCS, 2009.

[10] D. C. Cooper. Theorem proving in arithmetic without multiplication. In
B. Meltzer and D. Michie, editors, Machine Intelligence, volume 7, pages 91�
100. Edinburgh University Press, 1972.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (Second Edition). MIT Press and McGraw-Hill, 2001.

[12] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., 1976.

[13] J. S. E. Bach. Algorithmic number theory.

87

[14] B. Emir, M. Odersky, and J. Williams. Matching objects with patterns. In
ECOOP, 2007.

[15] J. Ferrante and C. W. Racko�. The Computational Complexity of Logical Theo-
ries, volume 718 of Lecture Notes in Mathematics. Springer-Verlag, 1979.

[16] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended Static Checking for Java. In ACM Conf. Programming Language De-
sign and Implementation (PLDI), 2002.

[17] S. Ginsburg and E. Spanier. Bounded algol-like languages. Transactions of the
American Mathematical Society, 113(2):333�368, 1964.

[18] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas and languages.
Paci�c Journal of Mathematics, 16(2):285�296, 1966.

[19] P. Granger. Static analysis of linear congruence equalities among variables of a
program, 1991.

[20] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576�580, 1969.

[21] M. Hofmann, A. Hirschberger, E. Kitzelmannn, and U. Schmid. Inductive syn-
thesis of recursive functional programs. In KI '07: Proceedings of the 30th annual
German conference on Advances in Arti�cial Intelligence, pages 468�472, Berlin,
Heidelberg, 2007. Springer-Verlag.

[22] A. A. Isil Dillig, Thomas Dillig. Cuts from proofs a complete and practical
technique for solving linear inequalities over integers, 2009.

[23] J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. J. Log.
Program., 19/20:503�581, 1994.

[24] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FMCAD,
2006.

[25] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for property
synthesis. In CAV, 2007.

[26] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. 1993.

[27] E. Kitzelmann. Data-driven learning of functions over algebraic datatypes from
input/output-examples. In P. Geibel and B. J. Jain, editors, KI-2007 Workshop
on Learning from Non-Vectorial Data, volume 6 of Publications of the Institute
of Cognitive Science, pages 36�45. Institute of Cognitive Science, Universität
Osnabrück, 2007.

88

[28] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS Notes
Series NS-01-1, Department of Computer Science, University of Aarhus, January
2001.

[29] N. Klarlund and M. I. Schwartzbach. Graph types. In POPL, Charleston, SC,
1993.

[30] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program
synthesis. In ICLP'93: Proceedings of the tenth international conference on logic
programming on Logic programming, pages 441�455, Cambridge, MA, USA, 1993.
MIT Press.

[31] J. H. Kukula and T. R. Shiple. Building circuits from relations. In CAV, 2000.

[32] V. Kuncak and M. Rinard. Towards e�cient satis�ability checking for boolean
algebra with presburger arithmetic. In CADE-21: Proceedings of the 21st inter-
national conference on Automated Deduction, pages 215�230, Berlin, Heidelberg,
2007. Springer-Verlag.

[33] A. Lasaruk and T. Sturm. Weak quanti�er elimination for the full linear theory
of the integers: A uniform generalization of presburger arithmetic. Appl. Algebra
Eng., Commun. Comput., 18(6):545�574, 2007.

[34] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst., 2(1):90�121, 1980.

[35] Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Commun.
ACM, 14(3):151�165, 1971.

[36] M. Mayer, P. Suter, R. Piskac, and V. Kuncak. On Complete Functional Syn-
thesis. Technical report, 2009.

[37] A. Miné. The octagon abstract domain. Higher Order Symbol. Comput.,
19(1):31�100, 2006.

[38] A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. In
Programming Language Design and Implementation, 2001.

[39] M. Moncur. The quotations page. http://www.quotationspage.com.

[40] L. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS, 2008.

[41] T. Nipkow. Linear quanti�er elimination. In IJCAR, 2008.

[42] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: a comprehensive
step-by-step guide. Artima Press, 2008.

[43] Orocos. KDL. http://www.orocos.org/kdl.

[44] J.-L. Piedanna. AJL. http://jlpfractware.free.fr/ajl.htm.

89

http://www.quotationspage.com
http://www.orocos.org/kdl
http://jlpfractware.free.fr/ajl.htm

[45] N. Piterman, A. Pnueli, and Y. Sa'ar. Synthesis of reactive(1) designs. In
VMCAI, 2006.

[46] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, 1989.

[47] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Aritme-
thik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
In Comptes Rendus du premier Congrès des Mathématiciens des Pays slaves,
Warsawa, pages 92�101, 1929.

[48] W. Pugh. A practical algorithm for exact array dependence analysis. Commun.
ACM, 35(8):102�114, 1992.

[49] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1998.

[50] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodík, V. A. Saraswat, and S. A.
Seshia. Sketching stencils. In PLDI, 2007.

[51] A. Solar-Lezama, C. G. Jones, and R. Bodík. Sketching concurrent data struc-
tures. In PLDI, 2008.

[52] A. Solar-Lezama, L. Tancau, R. Bodík, S. A. Seshia, and V. A. Saraswat. Com-
binatorial sketching for �nite programs. In ASPLOS, 2006.

[53] S. Srivastava, S. Gulwani, and J. S. Foster. From program veri�cation to program
synthesis. In POPL, 2010.

[54] P. D. Summers. A methodology for lisp program construction from examples.
New York, NY, USA, 1976. ACM.

[55] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types
with abstractions. In POPL, 2010.

[56] D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.

[57] M. T. Vechev, E. Yahav, and G. Yorsh. Inferring synchronization under limited
observability. In TACAS, 2009.

[58] V. Weispfenning. Complexity and uniformity of elimination in presburger arith-
metic. In Proc. International Symposium on Symbolic and Algebraic Computa-
tion, pages 48�53, 1997.

[59] K. Zee, V. Kuncak, and M. Rinard. Full functional veri�cation of linked data
structures. In PLDI, 2008.

[60] K. Zee, V. Kuncak, and M. Rinard. An integrated proof language for imperative
programs. In PLDI, 2009.

90

Printed at EPFL - Lausanne - Switzerland

Mikaël Mayer
17 rue des champs Moré
90150 Menoncourt, France

mikael.mayer.2005@polytechnique.org

91

mikael.mayer.2005@polytechnique.org

	Introduction
	About Synthesis
	First Synthesis Steps
	Run-time Resolution
	Compile-time Resolution - Synthesis

	Contributions
	Outline

	Motivating examples
	Explicit meaning vs. explicit code
	Estimating time left
	Hours, Minutes, Seconds
	Fast exponentiation
	Indexing multi-dimensional arrays
	Ratio between two numbers

	The Happy New Year Poem
	Project context
	Arranging the poem

	Synthesis formalism
	The choose programming language construct.
	Model-generating decision procedures.
	Invoking a decision procedure at run-time.
	Synthesis based on decision procedures.
	Efficiency of synthesis.
	From quantifier elimination to synthesis
	Propositional Operations in Synthesis
	Synthesis for Propositional Logic
	Propositional Connectives in First-Order Theories

	Linear Rational Synthesis
	Synthesis for Linear Rational Arithmetic
	Solving Conjunctions of Literals
	Disjunctions in Linear Rational Arithmetic

	Linear Integer Synthesis
	Equality Constraints
	Reducing the Number of Output Variables
	Efficient Computation of Linear Sets
	Finding a Solution of an Equation

	Processing Inequality Constraints
	Disjunctions in Presburger Arithmetic
	Clarifications and Optimizations
	Complexity
	Synthesizer Time Complexity
	Generated Programs Size
	Generated programs Time Complexity
	Bézout witness and base generation Complexity

	Parametrized Linear Integer Synthesis
	Equality contraints
	Processing Inequality Constraints
	Sign abstraction
	Splitting on the sign
	Normalizing inequations

	Implementation and Performance
	Implementation
	Performance

	Related work
	Overview
	Comparison of our Synthesis algorithms to other systems
	Existing Synthesis Ideas
	Regular expressions
	Parser combinators
	Dealing with unknown coefficients

	BAPA Synthesis

	Future work
	Improvement for the current synthesizer
	Synthesis ideas
	Induction axioms for recursive programs
	Other theories

	Conclusion
	Derivation of Complexities
	Linear Rational complexity
	Removing 1 equality
	Removing E equalities
	Removing V variable when E=0, N=0
	Removing 1 variable when E=0, N =1
	Removing 1 variable when E=0, N2
	Merging and upper bound
	Proof by induction
	Size and execution time

	Linear Integer complexity

	Bézout witnesses and base vectors
	Abstract syntax tree
	Parametrized Linear Integer Synthesis Full Example

