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Biomechanics may be considered as central in the development of bone tissue engineering. The initial mechanical aspects
are essential to the outcome of a functional tissue engineering approach; so are aspects of interface micromotion, bone
ingrowths inside the scaffold and finally, the mechanical integrity of the scaffold during its degradation. A proposed view is
presented herein on how biomechanical aspects can be synthesised and where future developments are needed. In particular,
a distinction is made between the mechanical and the mechanotransductional aspects of bone tissue engineering: the former
could be related to osteoconduction, while the latter may be correlated to the osteoinductive properties of the scaffold. This
distinction allows biomechanicians to follow a strategy in the development of a scaffold having not only mechanical targets

but also incorporating some mechanotransduction principles.
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Introduction
Bone tissue engineering in short

The justification for developing a bone scaffold is usually
motivated by the fact that the gold standard for bone
substitutes is still the autograft despite the invasive,
traumatic procedure it requires and the limited amount of
bone that can be obtained. As most of the researchers in this
field have no surgical background to adequately appreciate
exactly how invasive such a procedure truly is, we report, in
Figure 1(a), the particular case of a posterior surgical
approach to the iliac crest to underscore what ‘traumatic’
really means during the collection process of an autograft.
Moreover, as can be seen in Figure 1(b), the volume of the
obtained bone graft is limited. The low yield as well as the
aggressiveness of such a procedure motivates the need to
develop alternatives to autografts for bone reconstruction.
Bone tissue engineering is an attractive approach,
providing its results match those obtained with autografts.
Bone tissue engineering consists of the combination
between a scaffold for the osteoconductive aspect, cells
and/or growth factors for the osteoinductive aspect and
biomechanics as most of the treated sites are load bearing.
In this paper, the aspects of biomechanics will be reviewed,
and it will be shown that osteoinductive properties may also
be harnessed from the mechanical stimulation of cells
resulting from scaffold deformation.

Bone tissue engineering offers a new field for
biomechanics

Traditionally, biomechanical investigations have heavily
focused on bones and orthopaedic implants. The

knowledge acquired in these applications can be applied
and extended to the field of bone tissue engineering, as it
combines aspects of both bone and implant biomechanics.
Moreover, as noted by Meyer et al. (2004), biomechanical
considerations have not been completely integrated into
the development of bone tissue engineering solutions. The
need for biomechanical studies is clearly justified when we
consider, for instance, that the absence of mechanical
loading could affect the osteoconduction of well-accepted
biomaterials such as calcium phosphate granules
(Handschel et al. 2002). Indeed, bone tissue engineering
constructs promote more bone repair when dynamic
loading is applied (Guldberg 2002). Biomechanical
aspects of bone tissue engineering have therefore become
as important as biomaterial considerations.

From a general point of view, two aspects have been
considered with biomechanical studies in bone tissue
engineering: structural biomechanics and mechanotrans-
duction. The former is related to the osteoconductive
properties of the scaffold, while the latter concerns its
potential osteoinductive properties.

Different applications may require different scaffold
biomechanics

Applications for bone reconstruction often require
scaffolds with a specific set of mechanical properties,
which may vary greatly from one case to another, as can be
seen in Table 1. Revision procedures in total hip
arthroplasty, tibial or femoral osteotomy and maxillofacial
situations are the most demanding in terms of scaffold
biomechanics. In other applications reported in Table 1,
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Figure 1. (a) Posterior surgical approach to the iliac crest.
(b) Total amount of autograft obtained during the procedure
(courtesy of Dr Constantin Schizas from the Orthopedic Hospital,
CHUYV, Lausanne, Switzerland).

the load could be distributed between the scaffold and the
implant or the external fixation. The required volume of
the bone substitute varies between different applications;
the largest defects usually arise following massive tumour
resections. Important volumes may also be needed in
osteotomies. It is important to note that the access to the
iliac crest may not always be possible in certain surgical
procedures involving traumas, for instance. For

Table 1. Different applications for bone grafts.

maxillofacial surgery, the access to the iliac crest
necessitates different surgical facilities and anaesthesia
procedure from those commonly used for maxillofacial
surgery. For all applications needing a bone graft taken
from the iliac crest and especially for maxillofacial
applications, the graft collection is then an additional,
heavy surgical procedure which, reports show, has non-
negligible associated morbidity (Silber et al. 2003).

In musculoskeletal applications, bone scaffolds need to
have carefully defined biomechanical properties so as to
use them in situations where they can function
immediately following their surgical insertion. This
requirement is at the origin of a new approach called
‘functional tissue engineering’, coined as such as early as
1998 during a meeting of the American Society of
Biomechanics. One emphasis of functional tissue engin-
eering is ‘to identify the critical structural and mechanical
requirements needed for each tissue engineered construct’
(Butler et al. 2000). Moreover, for bone tissue engineering,
the most important design parameter is to allow the
scaffold an effective remodelling/adaptation to physical
demand. We see then, as already mentioned, that
biomechanics in the development of a bone scaffold has
so far mainly focused on mechanical aspects and only
partially on mechanotransduction.

Mechanical aspects for bone tissue engineering
Bone mechanics

The definition put forth by Juncosa et al. (2003) regarding
functional tissue engineering states that ‘functional tissue
engineering seeks to regenerate damaged tissue by first
measuring in vivo forces and/or strains transmitted by the
normal tissue and then using these results to develop
design criteria so that engineered constructs can
effectively resist these loading regimes after surgery’.
In a first step, bone mechanical properties should indeed be
well defined. This includes morphological aspects such as
bone permeability which directly affects interstitial fluid
flow (Tate and Knothe 2000), bone anisotropy which is
considered either transverse isotropic or orthotropic

Surgical applications Mech. prop. Volume Access iliac crest
Spinal fusion +/ - 4/ - ¥

TKA revision + + +/ -

THA revision ++ + 4
Trauma +/ - +/ - +/—
Osteotomy ++ ++ +
Maxillofacial 4+ +/ - o
Tumour + +++ +/ -

Notes: For these applications, an evaluation of the mechanical properties, volume and access to iliac crest is given. 4 indicates either high mechanical properties, high volume or
easy access to iliac crest while — represents the opposite. * corresponds to an average situation.
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(Cowin 2001) and hierarchical tissue organisation which is
described through a multi-scale approach (Ghanbari and
Naghdabadi 2009). As it is not the goal of this review to
report in detail this kind of information, interested readers
should refer to the numerous literature listings already
existing in this field and in particular to those focusing
on bone tissue engineering applications (e.g. Athanasiou
et al. 2000).

Loading conditions

The material properties of bone are but one part of the
mechanical aspects to be taken into account. It is obvious
that the particular loading condition also needs to be
evaluated. In the case of tibial osteotomy, for example, a
biomechanical analysis was performed to define mechan-
ical targets for scaffold development (Blecha et al. 2005).
These targets were partially reached by developing a
composite scaffold made of polylactic acid reinforced with
micrometre calcium phosphate particles (Mathieu et al.
2006). Many different scaffolds have been developed for
bone tissue engineering, but only a few have taken into
consideration the mechanical aspect as a main design
target. Usually, mechanical aspects are described only at
the end of the development by quantifying the scaffold
mechanical properties. In the development of a biodegrad-
able scaffold, evaluation of how changes in the relative
amount of porogen and calcium phosphate affect the
strength of the material has been studied (Porter et al.
2000). As porosity plays a significant role in the
mechanical properties of the scaffold, development of a
design optimisation scheme for 3D internal scaffold
architecture to match desired elastic properties and
porosity has been simultaneously proposed (Lin et al.
2004). Indeed, highly interconnected porous scaffolds are
needed to promote 3D tissue growth, nutrient diffusion and
vascularisation. The matching of trabecular morphological
and mechanical properties has then been a natural target,
which has been reached using a technique based on super-
critical CO, foaming (Mathieu et al. 2005). As can be seen
in Figure 2, the developed scaffold has morphological
properties similar to trabecular bone, and its elastic
compressive modulus at 75% porosity is around 160 MPa,
close to the human bone trabecular compressive modulus.
The next step in the mechanical characterisation of bone
scaffolds will certainly need to account for their
viscoelastic behaviour, mirroring what has been done for
soft tissues (e.g. Pioletti and Rakotomanana 2000),
especially if the scaffold is made of synthetic polymer.

Interface biomechanical analysis

The aspects of scaffold incorporation were also mentioned
in the definition of functional tissue engineering

Trabecular bone
(rod-like structure)

Biocomposite

Figure 2. wCT images of trabecular bone presenting a rod-like
morphology (top) and a biocomposite scaffold made of PLA and
B-TCP particles similar to trabecular bone morphology. Different
morphological structures (plate-like or hybrid-like) can be
obtained simply by modifying physical parameters with a super-
critical CO, foaming technique (Mathieu et al. 20006).

(Butler et al. 2000). As usual for orthopaedic implants,
the micromotions at the interface of the scaffold and the
bone certainly play an important role in scaffold
incorporation. Excessive micromotion at the interface
may mechanically impair the osteointegration of the
scaffold (Meyer et al. 2004). Indeed, for aspects of
scaffold integration, Brunski (1991) proposed that
biomechanics is more important than biomaterial proper-
ties per se.

Unlike metallic orthopaedic implants, which have an
elastic modulus several orders of magnitude higher than
bone, the amplitude of the micromotion at the interface of
the scaffold and the bone is correlated to the scaffold’s
mechanical properties as well as to its size (Blecha et al.
2005). Depending on the values of the micromotions, bone
resorption can be induced (Stadelmann et al. 2008) and a
fibrous tissue may be produced around the scaffold (Jasty
et al. 1997). Biomechanical analyses could also be used to
anticipate the tissue differentiation based on the knowl-
edge of the micromotion values (Prendergast et al. 1997;
Carter et al. 1998; Buchler et al. 2003).

Evolution of scaffold mechanical properties

The major difference in the biomechanical analysis of
conventional orthopaedic implants versus bone scaffolds is
that the mechanical properties of the scaffold will change
over time as its degradation occurs. The cornerstone of
biodegradable bone scaffolds is that the decreased
mechanical properties of the scaffold during its degradation
will be compensated for by the increased mechanical
properties of the new bone formation inside the scaffold
(Behravesh et al. 1999). It would then be important to
anticipate the degradation process with respect to the
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scaffold mechanical properties. We may imagine the
following similar theoretical developments as those done
with bone remodelling driven by biomechanical parameters
(Carter et al. 1987; Huiskes et al. 2000), but applying this
approach to scaffold remodelling. In this case, scaffold
remodelling will mean bone ingrowths in the scaffold and
scaffold degradation. Experimental data on scaffold
degradation will then be necessary. Indeed, most synthetic
biodegradable polymers degrade by passive hydrolysis.
They undergo bulk degradation, which leads to a sudden
drop in mechanical properties without a change in the
overall dimensions of the polymer. It will then be difficult to
evaluate its biomechanical properties solely based on
imaging data. Moreover, depending on the scaffold
composition, its degradation time can range from weeks
to years (Behravesh et al. 1999). Obviously, only in vivo
studies would be able to feed the parameters of a model for
scaffold remodelling. Specific in vivo studies on the
degradation aspect of bone scaffolds are almost non-
existent, and this point will certainly need to be further
described in the future. Relevant in vivo models need to be
developed, which brings another complexity to the study.
Large animal models are usually preferred for biomechani-
cally oriented questions, while small animals are preferred
for biologically oriented questions (Liebschner 2004).
There is an interesting paradox in the development of
scaffolds for tissue engineering in the sense that a lot of
effort is invested in trying to mimic the morphological
and mechanical properties of natural bone, while the final
goal is that the scaffold will be degraded and completely
replaced by natural bone. Despite how frustrating this
may seem, the rationale for this approach is supported by
some experimental data. For example, in the field of
orthopaedic implants used as drug delivery systems, it has
been demonstrated that the use of anti-resorptive drugs
such as bisphosphonate coated on the implant increases
the osteointegration of the implant and its mechanical
stability (Peter et al. 2006). A possible explanation for
such a result has been suggested by Aspenberg who
described the effect of the anti-resorptive as a protection
against early bone resorption following the insertion of an
implant (Aspenberg 2009). The maintained bone then
plays the role of a scaffold allowing new bone formation
and remodelling. The artificial bone scaffold, with
morphological and mechanical properties close to the
natural bone, therefore, probably has the same role in
supporting new bone formation before being resorbed.
A completely different view also exists in the sense that
during the healing of a tissue, the initial structures are
different from normal tissue. It was then proposed to
engineer scaffolds that promote tissue remodelling,
instead of trying to mimic the final tissue form and
function (Ingber et al. 2006). The knowledge gathered
from developmental biology and systems biology could
also be harnessed to better design tissue engineering

applications (Lenas et al. 2009). Both approaches in the
development of bone scaffolds are probably complemen-
tary, especially if the design of a functional tissue is
the target.

Computer methods for bone tissue engineering
mechanics

To tackle the mechanical aspects for bone tissue
engineering, computer methods have been extensively
used. One of the major questions addressed in these studies
concerns the mechanical integrity of the scaffold used in
loaded situations. For example, Brazel and Taylor (2009)
extended a technique used to predict fatigue failure in
metal and composites and applied it for bone graft
material. The results showed that graft materials with
much lower mechanical properties than cortical bone
could sustain physiological loads due to a reduction in
local stress concentration. Computational analysis could
also be used to evaluate the mechanical properties of
custom-made scaffolds and verify that targeted values are
obtained (Williams et al. 2005). For an application in
revision knee arthroplasty, Terrier et al. (2009) evaluated
the impact of scaffold size on primary stability when used
to fill bone defects in the tibial plateau. A more specific
application lies in a proposed patient-based approach for
replacing vertebral bodies with the help of computational
methods as central tools using building blocks for the
biomechanical evaluation of the developed scaffold
(Wettergreen et al. 2005). A detailed biomechanical
description of scaffolds can be obtained through a
microcomputed tomography-based finite element model.
With this approach, it is possible to evaluate the
inhomogeneity of the stress and strain fields in a scaffold
submitted to mechanical loading, which could be
correlated to bone formation in specific scaffold locations
(Sandino et al. 2008). Regarding the evolution of the
scaffold and bone mechanical properties, an original
computational approach evaluated the change in strain
energy of bone scaffold systems during the bone
regeneration process (Adachi et al. 2006). The optimal
scaffold system was defined as the one with its
microstructure, inducing a constant stiffness close to
healthy bone over the entire scaffold degradation and bone
regeneration process. This approach could then open the
door to incorporating mechanotransductional consider-
ations in scaffold development.

Mechanotransduction aspects for bone tissue
engineering

Mechanical effect on cells

While it is clear that the mechanical aspects are essential

for the clinical success of a bone scaffold, bone ingrowths
in the scaffold are necessary, a factor that does not come
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into play for metallic implants. The ‘remodelling’ of the
scaffold should finally lead to a complete healing of
the treated bone. Bone ingrowth is driven by cells from the
host. It is therefore evident that the effect of biomechanical
stimuli on cells due to the scaffold deformation has to be
taken into account. As mentioned by Sikavitsas et al.
(2001), apart from the biochemical strategy which mostly
relies on the addition of growth factors and the selection of
ideal osteoconductive and biodegradable materials for the
scaffold, mechanotransduction could be used to control the
proliferation and differentiation of bone cells. This point
has also been observed by Klein-Nulend et al. (2005) who
stated that ‘in bone tissue engineering, it is essential
to understand how mechanical conditions affect the
formation of bone matrix components by the cells at a
local level in order to generate tissues which will be
functionally appropriate’. Mechanotransduction aspects
per se of bone cells have been well studied and some
aspects are reported here.

Mechanotransduction in bone cells

Bone cells are known to be responsive to mechanical
stimulation. For example, the effect of different regimes
of fluid flow on bone cells has been studied, which
demonstrated that mechanical stimulation plays an
important role (Jacobs et al. 1998). In addition to
effects obtained via fluid-mediated stimulation, stretch-
ing the surface on which the cells are attached can also
induce bone cell differentiation (Cavalcant-Adam et al.
2002). This mechanical stimulus has been shown to be
integrin mediated (Lacouture et al. 2002). These two
examples highlight the two possible mechanisms — fluid
flow and/or stretching of the cells through extra-cellular
matrix deformation — by which bone cells may be
mechanically stimulated. Different models have been
developed to gain more information on the mechan-
otransduction aspect of bone, such as, for instance, the
use of an analytical approach for osteocyte-level fluid
flow induced in a bone (Srinivasan and Gross 2000). A
specific model was proposed to explain the paradox
between in vivo strain and in ovitro mechanical
experiments, which needed one order of magnitude
higher strain to induce a biological response. Indeed,
transverse tethering filaments were described to amplify
small forces by transmitting from large structures to
transducers (Han et al. 2004). When we want to interpret
mechanotransduction results to target bone scaffold
development, it is important to recall that cells do not
sense the mathematical concepts of stress or strain but
that instead, as proposed by Humphrey, we should focus
on force aspects at the atomic or molecular level
(Humphrey 2001). However, the concepts of stress and
strain for translational characterisations have so far been
the only ones that could be effectively used.

Translation of mechanotransduction knowledge in the
development of bone scaffold

As for mechanotransduction studies, it has been proposed
that fluid flow and its corresponding transport-induced
process are important mechanical aspects to be considered
in the development of bone scaffolds (Tate and Knothe
2000). Despite all these results, most of the gathered
mechanotransduction knowledge has been used only for
the development of bioreactors to optimise in vitro tissue
formation in scaffolds (Bilodeau and Mantovani 2006).
Rotating bioreactors have been designed to increase mass
transfer by inducing dynamic flow conditions in culture
(Yu et al. 2004). Fluid shear stress generated in a flow
perfusion bioreactor was used as an osteoinductive factor
on mesenchymal stromal cells (Datta et al. 2006). Other
mechanical stimulations, such as strain induced by a
scaffold subjected to a four-point bending, induced the
osteogenic differentiation of mesenchymal stromal cells
(Mauney et al. 2004). Rotating bioreactor and flow
perfusion bioreactor approaches are therefore successful in
enhancing the mineralisation of the formed matrix;
however, no mechanical properties of the constructs have
usually been reported. In a review of bone tissue
engineering for maxillofacial surgery, it was reported
that the early positive results obtained in rotating
bioreactors are not always reproducible, suggesting the
possibility that the non-physiological forces generated
may damage the cells in the scaffolds (Wiesmann et al.
2004). It has also been reported that the conditions of the
fluid flow in a bioreactor affect the pattern of bone
formation in general (Meinel et al. 2004), particularly the
osteogenic differentiation process in mesenchymal stromal
cells (Stiehler et al. 2009). New designs, such as the biaxial
rotating bioreactor (Zhang et al. 2009), are continuously
developed and are mostly based on empirical approaches,
with the exception of those designed based on theoretical
developments (Singh et al. 2005) or the description of
local strains sensed by the cells (Pfeiler et al. 2008). To
increase the responsiveness of the mechanically stimulated
cells in a bioreactor, mechanical stimulation was
combined with drug supplementation, which has an effect
in increasing the opening time of mechanosensitive
voltage-operated calcium channel (Wood et al. 2006). A
positive effect using this strategy was observed for the
calcification of the osteoid.

As previously mentioned, the in wvitro bioreactor
approach to create functional bone tissue engineering has
not yet been fully successful. A recent review by Martin
et al. (2009) highlights the difficulty of obtaining
consistent engineered tissue. With bioreactors for large
scaffolds, the transport of nutrients must be provided
through convection, and it is a challenge to find the optimal
perfusion velocity ensuring, for example, an oxygen
supply in the centre of the scaffold without inducing a



15:46 10 December 2010

[EPFL Lausanne] At:

Downloaded By:

842 D.P. Pioletti

detrimental shear stress on the membrane (Pierre and
Oddou 2007). Nevertheless, a bioreactor with controlled
mechanical stimuli is a very interesting in vitro system for
studying mechanotransduction phenomena and could be
correlated to numerical studies (e.g. Jungreuthmayer et al.
2009). Given the hurdles still facing in vitro bioreactor
approaches, reconstructing large bone defects where the
need for engineered bone is important may require
alternative approaches such as using bone itself as a
bioreactor to produce an engineered bone construct
(Stevens et al. 2005). This concept has been demonstrated
in a rabbit model where an artificial space between the
tibia and the periosteum was created and filled with a
hydrogel, thereby creating an in vivo bioreactor. This
bioreactor yielded engineered bone presenting similar
biomechanical properties compared to native bone.
Despite being difficult to translate to a clinical application,
the study of Stevens et al. at the very least demonstrated
that the best bioreactor for bone scaffold is therefore
probably bone itself with the idea that a scaffold could
indeed mature into a normal bone tissue if an adequate
environment is provided in vivo. Following this obser-
vation, it would then be advantageous to use mechan-
otransduction phenomena in vivo by designing a scaffold
with mechanical properties allowing ‘osteoinductive fluid
flow’ in the scaffold.

As mentioned by Guldberg (2002), ‘an understanding
of how mechanical signals affect construct integration and
regeneration of function may provide microstructural
design objectives for 3-D scaffold architectures and may
have an impact on the selection of scaffold material, cell
type or seeding density, and other construct parameters’.
Based on this need, an analytical model has been
developed allowing to optimise the fluid flow exchange
between the scaffold and its surrounding, while maintain-
ing the value of shear stress on cells within physiological
ranges (Blecha et al. 2009). The advantages of the
analytical approach reside in an effective parameter study,
particularly determining the impact of the elastic modulus,
Poisson’s ratio, porosity and permeability of the scaffold
on fluid motion, which is complementary to numerical
studies (e.g. Byrne et al. 2007). There is probably an
important potential in developing bone scaffolds by
combining mechanical aspects and mechanotransduction
knowledge in order to target simultaneously the mechan-
ical integrity of the reconstructed bone defect and
osteoinduction through the scaffold-mediated mechanical
stimulation of cells.

Computer methods for bone tissue engineering
mechanotransduction

Unlike the computer methods described above for
mechanical aspects of bone tissue engineering where
no consideration of the biological system is made, in this

section the described computer methods clearly try to
incorporate some mechanotransduction aspects in their
description. For example, by combining 3D imaging and
numerical simulation of scaffold physical properties,
information on pore morphologies can be deduced to
obtain bone ingrowth in bone scaffold (Jones et al.
2009). In particular, it was verified that a threshold
permeability of ~3 X 107''m? was necessary for
inducing vascularisation and mineralisation in the bone
graft. One of the most rational targets for a scaffold
development would probably be mimicking the native
bone strain. Following this idea, wCT measurement and
FEM could be used to develop a scaffold for which the
strain histograms for scaffold and native trabecular bone
under the same loading conditions must be similar.
Osteogenic loading conditions for bone tissue engineer-
ing should then be obtained (Jaecques et al. 2004). By
combining finite element methods with computational
fluid dynamics, it could be possible to optimise the level
of compression and strain rate applied on a scaffold to
favour osteogenesis (Milan et al. 2009). Computational
models can also describe the large difference in cell wall
shear stress induced by fluid flow either between
different scaffolds or even in the same scaffold
presenting an inhomogeneous distribution of pore
diameters (Jungreuthmayer et al. 2009). The introduction
of mechanotransduction aspects for bone tissue engin-
eering clearly necessitates a multi-scale approach in
order to transform the macromechanical stimulation at
the level of the scaffold to a micromechanical
stimulation acting at the cellular level, which will drive
the biological response needed for adequate bone
ingrowth. This multi-scale approach has been followed
by Sanz-Herrera et al. (2008), and it was found that bone
ingrowth at the scaffold surface was proportional to the
cell concentration and regulated by the local strain
energy. The multi-scale approach is indeed the only way
to obtain an evaluation of cell deformation embedded in
a scaffold as apparent from the work done, for example,
on muscle tissue construct (Breuls et al. 2002). Another
approach by Prendergast consists in applying a
mechanoregulation algorithm, which drives the tissue
differentiation by taking into account the mechanical
properties of a scaffold for an osteochondral defect
(Kelly and Prendergast 2006). This strategy was
extended to bone tissue engineering and a new approach
was introduced, which consisted in applying stochastic
processes for describing cell proliferation and migration
(Byrne et al. 2007). One of the major results showed that
due to the different loading situations found in the body,
scaffolds should be tailored specifically for each
implantation site. This loading-specific approach in the
development of scaffolds has been recently taken into
account in the development of an algorithm optimising
the fluid flow to maximise transport, while keeping the
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shear stress on cells within an osteogenic range (Blecha
et al. 2009).

In addition to mechanotransduction aspects, other
factors such as nutrient transport, cell adhesion and
migration or cell-scaffold mechanical interaction have
been considered in different computational models and
were recently reviewed (Sengers et al. 2007). As
mentioned by Lacroix et al. (2009), only a few
computational models take into account biology when
describing bone scaffolds. Finally, an important body of
literature exists on computational aspect of bone healing
taking into account mechanotransduction aspects (e.g.
Epari et al. 2006). Although these are not biologically
similar to the bone tissue engineering situation, some
developments could still be adapted for the development
of new bone scaffolds.

Biomechanical paradigm in bone tissue engineering

In summary, the biomechanical paradigm in bone tissue
engineering could be split into four steps as described in
Figure 3, which uses the particular example of a tibial
osteotomy. In each of the four steps, the mechanical aspects
are central to insure the safety of the surgical procedure
using a bone scaffold. The mechanical aspects also induce,
at each step, a biological reaction around and in the scaffold
through the process of mechanotransduction. On one hand,
the mechanical and mechanotransductional aspects are
obviously linked in each step, while on the other hand the
separation of the four steps follows a chronological process
from a mechanical point of view. These separations
between the four steps and between mechanics and
mechanotransduction could be used as an engineering
approach in the design of bone scaffolds, allowing the

Biomechanical paradigm in bone tissue engineering
Tibia

Mechanics Mechanotransduction
model
Bone mechanical Bone
properties remodelling
Periosteum Knee
s Osteotomy
elongation model model
model ) 3.5 x BW
A 3 l Y
Loading 10° I " | Mechanical cell
conditions - . stimulation
Surgery Gai =
. ait
-induced Ioaclls 7’
loads I
3.5 x BW
A A
Interface . ) Tissue
biomechanics = Micromotions differentiation
JV Y
Scaffold Bone
evolution . Scaffold ingrowths
degradation

Figure 3.

The mechanical aspects for bone tissue engineering are separated into four steps. The first two steps can be considered as the

primary fixation of the scaffold by analogy to the terminology used in orthopaedic implant practice. The third step is comparable to a
secondary fixation, while the fourth step introduces a new concept specific to biodegradable materials, which could be called ‘final

fixation’. Each step has a corresponding mechanotransduction as

pect.
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discrimination between possible mechanical targets.
For example, the degradation of the scaffold would also
influence the interface biomechanics, which could in turn
affect the loading transmission between the scaffold and
the bone, therefore affecting bone ingrowth into the
scaffold. A dynamic coupling then certainly exists
between the four steps and between mechanics and
mechanotransduction.

Paralleling the nomenclature used with non-cemented
metallic orthopaedic implants, we could consider the first
two steps (bone mechanical properties and loading
conditions) analogous to the primary fixation of the
scaffold, while the third step (interface biomechanics)
would be identified as the secondary fixation. For the
fourth step (scaffold evolution), we would need to
introduce a new concept, namely ‘final fixation’. At this
final step, the mechanical support should be taken by the
host bone.

Future position of biomechanics in bone tissue
engineering

As our understanding of mechanotransduction phenomena
in bone increases, it is clear that the next step for
biomechanics in bone tissue engineering is to integrate
more extensively this knowledge in the development of
bone scaffolds (Butler et al. 2009). Mechanotransduction
aspects could be considered in each of the four steps given
in Figure 3. In the first and second steps, the so-called
primary fixation, it is clear that the developed scaffold
should not induce a stress-shielding effect, resulting in
peri-scaffold bone resorption as seen for the metallic joint
implants. The elastic property of the scaffold should
therefore not exceed that of bone in order to maintain a
proper mechanical stimulation on the peri-scaffold bone.
This mechanical stimulation will also obviously be driven
by the loading conditions given by the clinical situation
considered in order to be osteogenic. Scaffolds should then
ideally be developed for particular clinical situations
corresponding to particular loading conditions as
suggested recently (Byrne et al. 2007). In the third step,
called the secondary fixation, mechanotransduction
knowledge gathered from tissue differentiation around
metallic implants could generate some applications. In
particular, micromotions were shown to influence the
tissue differentiation around metallic implants (Jasty et al.
1997). This effect has also been modelled (e.g. Buchler
et al. 2003). The mechanical properties of the scaffold
could then be adapted to generate interface scaffold/bone
micromotions, inducing an osteointegration of the scaffold
as proposed for a tibial osteotomy application (Blecha et al.
2005). In the fourth step, called the final fixation, the bone
should support the mechanical load as the scaffold
degrades. This is certainly the most difficult part in the
scaffold design, as there is no clear target regarding the

degradation rate for the scaffold. This load transfer
between the scaffold and the bone could be appreciated in
the context of fracture healing or foetal development,
where this phenomenon of load transfer between different
structures is happening. Mechanotransduction knowledge
of these two situations could then find some applications in
scaffold development as suggested by Lacroix et al.
(2009).

In conclusion, the ideal situation would, through
mechanical considerations, confer osteoinductivity to a
synthetic bone scaffold in order to reduce the dependency
of this material on osteogenic factors such as drugs or
biological products. If the developed scaffold can in and of
itself induce bone ingrowth, following the incorporation of
mechanotransduction concepts in its development, an off-
the-shelf product could be obtained. This approach would
obviously avoid the burden of the regulatory affairs related
to bioreactors (Martin et al. 2009) and facilitate the
translation of the developed scaffold into clinical practice.

Mechanical aspects are therefore fundamentally
central in bone, so much that biomechanics obviously
has to play an important role in the development of bone
tissue engineering. We can take advantage of this notion
not only by describing the mechanical aspects involved but
also by suggesting new solutions to obtain a more effective
biomechanical strategy when a bone graft is needed.
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