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Abstract— Recent results have shown that interference align-
ment can achieve K/2 degrees of freedom in a K-user interfer-
ence channel with time or frequency varying channel coefficients.
For fixed number of users K, the number of degrees of freedom
characterizes the asymptotic behavior of the performance in the
high SNR limit but it does not answer the question of how the
performance scales with K for any fixed SNR. In particular,
it is unclear if a constant rate per user can be maintained as
more users enter into the system. In this paper, we investigate
the performance of the interference alignment scheme proposed
in [5] for fixed SNR. We assume that the channel coefficients
between the users are of the form r ejθ where r is fixed over
the duration of communication and θ is a fast fading phase. We
show that for any value of the SNR and K, the aggregate rate
achieved by the interference alignment scheme of [5] is lower
bounded by c1K log(1 + c2 SNR) where c1 and c2 are positive
constants independent of both SNR and K. This result establishes
the linear scaling of the interference alignment scheme for the
considered random phase channel model.

I. INTRODUCTION

There has been a lot of effort in developing efficient commu-
nication schemes for wireless networks in the last decade. The
central phenomenon is dealing with interference when multiple
users try to communicate over a shared medium. The state-of-
the-art approaches of orthogonalizing the communication links
or treating interference as noise become inefficient especially
when the number of users that share the same spectrum is
large. The scaling law formulation proposed in [1] and later
studied by [2] highlights this aspect by seeking for network
communication schemes that scale in system size. The key
ideas that emerge from this line of research are spatial reuse,
cooperation between users and distributed MIMO communi-
cation.

Apart from this line of research, the recent idea of in-
terference alignment suggested by [3], [4], [5] introduces a
new approach to cope with interference. Users design their
signals so that they align at the receivers where they constitute
interference while the desired signal at every receiver remains
distinguishable from the interference. Cooperation between
users is still the key but spatial reuse is not needed as in
[1], [2]. In particular, [5] constructs an interference alignment
scheme for the well-studied K-user interference channel that
achieves K/2 degrees of freedom when the channel is time-
varying. K/2 degrees of freedom imply linear scaling in the

number of users K (with pre-constant 1/2) in the high SNR
limit. However it is not clear if this linear scaling kicks in at
any finite SNR. The SNR required to enter the linear scaling
regime may be increasing with K. (Imagine, for example,
the case when the aggregate performance of a scheme is of
the form K

2 log(1 + SNR/K2) or K
2 log(1 + SNR/eK). The

degrees of freedom are K/2 in both cases but the performance
quickly vanishes with increasing K for any fixed SNR.)

The interference alignment scheme in [5] is constructed
over multiple time-realizations of the fast-fading interference
channel. The signalling vectors for each transmitter (formed
over multiple channel uses) are designed carefully so that they
compact into small dimensional subspaces at the receivers
where they are not desired. This requirement leads to a very
particular structure for the signalling vectors as functions of
the channel coefficients. In order to approach the theoretical
upperbound of K/2 degrees of freedom, the length of the
signalling vectors should grow large, in other words, we need
to code over many realizations of the interference channel. In
particular, to achieve cK/2 degrees of freedom per dimension
for a constant 0 < c < 1, the coding length should increase
roughly as K2K2

in the number of users K. Is there an
associated cost in terms of SNR for increasing the block
length? This question is out of the scope of a degrees-of-
freedom discussion since degrees of freedom relate to the limit
when SNR goes to infinity. In particular, it has been shown in
[5] that for their construction of the signalling subspace, the
interference subspace at each receiver remains distinct from
the desired signal space with high probability for any block
length. However, it is not clear if a constant angle between the
two subspaces can be maintained for increasing block-length
which otherwise would imply an associated cost in terms of
SNR. This is the question that motivates this paper and that
we are able to answer in the affirmative for the random phase
channel model.

A similar result is presented in a concurrent work [6]. The
result in [6] is stronger than the result of the current paper in
the sense that it establishes linear scaling for a larger class of
channel fading distributions with a tighter lowerbound while
here we restrict attention to the random phase channel model.
The main difference between [6] and the current paper is that
[6] constructs a new interference alignment scheme that relies



on the ergodicity of the channel. In this paper we consider
the original interference alignment scheme proposed in [5].
We believe linear scaling for the scheme in [5] is of interest
in its own right since this scheme can offer an advantage in
terms of the number of dimensions required to achieve the
same performance. In particular, to achieve an aggregate rate
cK
2 log SNR for a constant 0 < c < 1, the ergodic scheme of

[6] requires an order of (K2SNRc)K2
independent realizations

of the fading interference channel while the modified version
of the interference alignment scheme of [5], that we discuss
in Section IV, requires an order of 2K2

independent channel
realizations.

In the next section, we introduce the random phase channel
model considered in this paper. Section III contains our main
result and Section V is devoted to its proof. Section IV
contains an overview of a modified version of the interference
alignment scheme presented in [5]. Section VI provides a
discussion on the extension of our result to other channel
models. Notationwise, we use lower case for scalars, bold
font lower case to denote vectors and upper case to denote
matrices. Vectors are column vectors by default. H† denotes
the complex conjugate transpose of the matrix H , H(p, t)
denotes its entry on the p’th row and t’th column, H(p, t)∗ is
the complex conjugate of H(p, t). The trace of the matrix H
is denoted by tr(H). Id is the d× d identity matrix. C(n, k)
denotes the choose function of n and k.

II. MODEL

We consider a K-user interference network composed of
2K nodes paired up into K pairs. Transmitter k wants to
communicate to receiver k, k ∈ {1, . . . ,K}, in the presence
of interference from the other users. The signal received by
receiver k is given by

yk = hk1x1 + hk2x2 + · · ·+ hkKxK + zk

where x1, . . . , xK are the corresponding signals transmitted
by transmitters 1, . . . ,K. Each of these signals is constrained
to an average power of P Watts. zk is the circularly symmetric
white Gaussian noise at receiver k of unit variance. The
channel coefficient hkl between transmitter l and receiver k
is of the form

h
(b)
kl = rkle

jθ
(b)
kl (1)

where the magnitude rkl is an arbitrary positive and finite
number, fixed over the duration of communication. We assume
a block fading model for the phase. The phase θ(b)kl remains
constant during a given block b of certain duration and
fades independently across blocks according to a uniform
distribution over [0, 2π]. Thus, θ(b)kl is i.i.d across k, l and b.

III. MAIN RESULT

The following theorem is the main result of this paper.
Theorem 1: On the random phase K-user interference

channel described in Section II, interference alignment can
achieve a per user rate

Rk ≥
2
5

(
1
2
− µ

)2

log (1 + 2µSNRk) .

for any 0 < µ < 1/2, where SNRk is the received SNR of
user k defined as SNRk = r2kk P .

For any 0 < µ < 1/2, Theorem 1 provides a lower bound
on the per user rate that is independent of the number of users
in the system. This allows to conclude that on the random
phase fast fading channel, interference alignment can achieve
linear scaling in the number of users.

IV. OVERVIEW OF THE INTERFERENCE ALIGNMENT
SCHEME

In this section, we give a brief overview of the interference
alignment scheme. We consider a slightly modified version
of the original scheme in [5], so that each user uses the
same signalling vectors that are simpler functions of the
channel coefficients. As the blocklength increases to infinity,
this modified scheme achieves K/2 degrees-of-freedom as the
original scheme in [5] but the blocklength of the scheme scales
slightly better with K.

Communication is performed by jointly coding over M
independent realizations (blocks) of the interference channel.
The M blocks can be regarded as M parallel interference
channels. Following [5], communication over these M parallel
channels is denoted as

yk =
K∑

l=1

Hklx̃l + zk (2)

where Hkl’s are M × M diagonal matrices with diagonal
entries corresponding to different blocks, Hkl(b, b) = h

(b)
kl , 1 ≤

b ≤ M given in (1), x̃l is an M × 1 vector containing the
M symbols transmitted by transmitter l over the M parallel
channels and yk is an M × 1 vector of the observed signals
at receiver k.

The message of transmitter l is encoded into ds indepen-
dent streams xl(1), . . . , xl(ds) and transmitted along vectors
s̃1, . . . , s̃ds

so that x̃l in (2) is given by

x̃l =
ds∑

i=1

s̃i xl(i) = S̃xl

where S̃ is an M×ds matrix with columns s̃1, . . . , s̃ds and xl

is an ds×1 vector. The signaling vectors s̃1, . . . , s̃ds are same
for each transmitter and are chosen as the following particular
function of the channel coefficient matrices,

s̃i =

∏
k 6=l

(Hkl)αkl[i]

 w (3)

where w is the M × 1 all-1 vector and αkl[i], for k, l ∈
{1, . . . ,K}, k 6= l take values in {0, 1, 2, . . . , n} subject to
the constraint

K∑
k,l=1
k 6=l

αkl[i] = n,

where n is a positive integer. The K(K − 1)-length sequence
{α12[i], α13[i], . . . , αK(K−1)[i]} of α’s is different for differ-
ent i’s, so that no two signaling vectors are identical. The



number of distinct signalling vectors that can be constructed
in this way is given by

ds = C
(
n+K(K − 1) + 1 , K(K − 1) + 1

)
.

The signal received by receiver k under this strategy is given
by

yk = HkkS̃xk +
∑
l 6=k

HklS̃xl + zk. (4)

The interference experienced by each receiver is aligned to the
columns of the M × dI matrix B where the i’th column bi

of B is given by

bi =

∏
k 6=l

(H [kl])βkl[i]

 w

where βkl[i]’s take values in {0, 1, 2, . . . , n+1} subject to the
constraint

∑K
k,l=1,k 6=l βkl[i] = n+ 1. Note that

dI = C
(
n+K(K − 1) + 2 , K(K − 1) + 1

)
.

We choose M = ds + dI .

In [5], it has been shown that if the channel coefficients h(b)
kl

are drawn from a continuous distribution and are i.i.d across
k, l and b, then with high probability the signalling vectors
constructed in (3) are linearly independent. Moreover, at each
receiver k, the desired signal space spanned by the columns of
the matrix HkkS̃, and the interference space spanned by the
columns of the matrix B are disjoint. (We say two subspaces
are disjoint if there is no vector other than the zero vector
that lies in both of these subspaces.) Thus, performing zero-
forcing at the receivers that nulls out the interference space,
the degrees of freedom achieved by this scheme are

lim
n→∞

K ds

M
=
K

2
. (5)

Note that although the signal subspace and the interference
subspace remain disjoint for any n (and M ) and this is what
matters in the high SNR limit, the angle between the two
subspaces may be decreasing with increasing n (and M ) which
may be a limitation at finite SNR.

V. PROOF OF MAIN RESULT

In this section, we lowerbound the performance of the
scheme presented in the previous section for any SNR and K
assuming the channel model in (1). Let us start by normalizing
the signaling vectors defined in (3) to unit length. Let

di =
∏
k 6=l

r
αkl[i]
kl si =

1
di

√
M

s̃i,

and S be the corresponding signalling matrix with columns
s1, . . . , sds

. Recall that the randomness in the channel in (1)
comes from the phases and rkl’s are given finite numbers. For
the entries of the normalized signalling matrix S, we have

|S(p,m)|2 =
1
M

for 1 ≤ p ≤M, 1 ≤ m ≤ ds, (6)

and

E[S(p,m)S(t,m)∗] = 0 for p 6= t (7)
E[S(p,m)S(p, t)∗] = 0 for m 6= t (8)

where the first line follows from the fact that if p 6= t,
S(p,m) and S(t,m)∗ relate to different rows of S, i.e,
independent sets of θ’s. This yields E[S(p,m)S(t,m)∗] =
E[S(p,m)]E[S(t,m)∗] = 0 since if θ is uniformly distributed
over [0, 2π], the distribution of ejθ is identical to ejαθ for any
integer α 6= 0.The second line follows from the fact that when
m 6= t, S(p,m) 6= S(p, t) and there will remain at least one
random variable Hkl(p, p) in (3) that is not multiplied with its
complex-conjugate.

Using the signalling matrix S at the transmitters, the re-
ceived vector at user k is given by

yk = HkkSxk +
∑
l 6=k

HklSxl + zk. (9)

In general, we have the freedom to choose an arbitrary
covariance matrix for the signals xk that can depend on S,Hkk

and B as long as the power constraint ES,xk [‖Sxk‖2] ≤
MP is satisfied. Since we claim achievability, we arbitrarily
assume that we transmit independent streams encoded using a
Gaussian codebook of power MP

ds
, that is

Exk
[xkxk

†] =
MP

ds
Ids
.

Note that this specific choice satisfies the power constraint
E[‖Sxk‖2] ≤MP .

Let Q be an M × ds matrix whose columns form an
orthonormal basis for the orthogonal complement of the in-
terference space, that is

Q†Q = Ids

Q†B = 0. (10)

Recall that the dimension of the interference space is dI so its
orthogonal complement has dimension M − dI = ds. Given
(9), receiver k nulls out the interference by multiplying its
observation by Q†,

ŷk = Q†yk = Q†HkkSxk +Q†zk.

We can view ŷk as the output of a MIMO channel with
input xk and channel transfer matrix Q†HkkS. Note that
the additive Gaussian noise has covariance Q†IMQ = Ids

.
Normalizing by the number of blocks M , user k can achieve
the rate (see [7]),

Rk =
1
M

log det(Ids
+ (MP/ds)Q†HkkSS

†H†
kkQ). (11)

Note that the rate Rk is a random variable since S, Hkk and
Q in (11) are functions of the random channel realizations. In
the sequel, we will prove that when M is large

Rk ≥
ds

M ( ds

M − µ)2

1 + d2
s

M2

log
(

1 + r2kkP
Mµ

ds

)
. (12)



for any 0 < µ < ds

M with high probability. Recall from (5)
that limn→∞ ds/M = 1/2. Thus, taking n → ∞ yields the
result in Theorem 1.

The lower bound (12) will be proven in two steps: We will
first prove a lower bound on the expected value of Rk over
the random channel realizations,

Eθ[Rk] ≥
ds

M ( ds

M − µ)2

1 + d2
s

M2

log
(

1 + r2kkP
Mµ

ds

)
(13)

and then show that Rk concentrates around its expected value
when M is large,

P
(∣∣Rk − Eθ[Rk]

∣∣ ≥ t
)
≤ 2e−t2M/2(η log M)2 . (14)

for any t > 0 and a constant η > 0 independent of M and t.

Let us start by proving (13). We have,

Eθ[Rk]

=
1
M

EHkk,S,Q[log det(Ids
+ (MP/ds)Q†HkkSS

†H†
kkQ)]

=
ds

M
EHkk,S,Q[log(1 +

MP

ds
λ)]

≥ ds

M
log(1 +

MP

ds
ν) P(λ > ν)

for any ν ≥ 0, where λ is a random eigenvalue of the positive
semi-definite matrix Q†HkkSS

†H†
kkQ. We can further lower

bound Eθ[Rk] by using the Paley-Zygmund inequality (see [2,
App. I]),

P(λ > ν) ≥ (E[λ]− ν)2

E[λ2]
,

Below, we compute E[λ] and E[λ2] and show that

E[λ] =
ds

M
r2kk (15)

E[λ2] ≤ r4kk +
d2

s

M2
r4kk. (16)

Choosing 0 < µ < ds

M and ν = r2kk µ yields the lower bound
(13). Equations (15) and (16) are proven below.

We have

E[λ] =
1
ds

EHkk,S,Q[tr(Q†HkkSS
†H†

kkQ)]

=
1
ds

EHkk,S,Q

[
M∑

m,r=1

Hkk(m,m)(SS†)(m, r)

H†
kk(r, r)(QQ†)(r,m)

]

=
1
ds
r2kk ES,Q

[
M∑

r=1

(SS†)(r, r)(QQ†)(r, r)

]
(17)

=
1
ds
r2kk EQ

[
M∑

r=1

ds

M
(QQ†)(r, r)

]
(18)

=
ds

M
r2kk, (19)

where (17) follows by taking the expectation with respect to
Hkk that yields E[Hkk(m,m)Hkk(r, r)] = δmr. Note that
Hkk is independent of S and Q. Step (18) follows from the
fact that (SS†)(r, r) = ds/M which follows from (6). Step
(19) follows from the fact that tr(QQ†) = tr(Q†Q) = ds.

We can upper bound the second moment of λ as follows,

E[λ2] =
1
ds

EHkk,S,Q[tr(Q†HkkSS
†H†

kkQQ
†HkkSS

†H†
kkQ)]

=
1
ds

EHkk,S,Q

[
M∑

m,r,p,t=1

Hkk(m,m)(SS†)(m, r)H†
kk(r, r)

(QQ†)(r, p)Hkk(p, p)(SS†)(p, t)H†
kk(t, t)(QQ†)(t,m)

]

=
1
ds
r4kk ES,Q

[
M∑

m,p=1

(SS†)(m,m)(SS†)(p, p)
∣∣(QQ†)(p,m)

∣∣2]

+
1
ds
r4kk ES,Q

 M∑
m,r=1
m6=r

∣∣(SS†)(m, r)∣∣2 (QQ†)(r, r)(QQ†)(m,m)


(20)

where the last equality follows by identifying the non-zero
terms after taking the expectation with respect to Hkk. The
first term in (20) yields,

1
ds
r4kk ES,Q

[
M∑

m,p=1

(SS†)(m,m)(SS†)(p, p)
∣∣(QQ†)(p,m)

∣∣2]

=
1
ds
r4kk ES

[
M∑

m,p=1

d2
s

M2

∣∣(QQ†)(p,m)
∣∣2]

=
d2

s

M2
r4kk

since
∑M

m,p=1

∣∣(QQ†)(p,m)
∣∣2 = tr(QQ†QQ†) = tr(QQ†)

= ds. The second term in (20) can be upper bounded as

1
ds
r4kk ES,Q

 M∑
m,r=1
m6=r

∣∣(SS†)(m, r)∣∣2 (QQ†)(r, r)(QQ†)(m,m)



≤ 1
ds
r4kk ES

 M∑
m,r=1
m6=r

∣∣(SS†)(m, r)∣∣2
 (21)

=
1
ds
r4kk

M∑
m,r=1
m6=r

ds∑
p,t=1

ES [S(m, p)S∗(r, p)S∗(m, t)S(r, t)]

=
1
ds
r4kk

M∑
m,r=1
m6=r

ds∑
p=1

|S(m, p)|2|S(r, p)|2 (22)

≤ r4kk (23)

where inequality (21) follows from the fact that 0 ≤
(QQ†)(r, r) ≤ 1 and (22) follows from (7) and (8).



In order to prove (14), we make use of the following
concentration inequality due to McDiarmid [8].

Theorem 2: Let (L1, L2, . . . , Ln) be a family of indepen-
dent random variables with Lk taking values in a set Ak for
each k. Suppose that the real-valued function f defined on
ΠAk satisfies

sup
l1,...,ln,l′k

|f(l1, . . . , lk, . . . , ln)− f(l1, . . . , l′k, . . . , ln)| ≤ ck.

Then, for any t ≥ 0,

P (|f(L1, . . . , Ln)− E[f(L1, . . . , Ln)]| ≥ t) ≤ 2e
−2t2
P

c2
k .

Let θ1 denote the vector of K2 channel state realizations
for the first block, i.e., θ1 = [θ(1)kl , k, l = 1, . . . ,K]. Note that
θ1,θ2, . . . ,θM are independent random variables and they
determine the corresponding rows of S, B and Hkk’s. To apply
Theorem 2, we will first show that

|Rk(θ1,θ2, . . . ,θM )−Rk(θ′
1,θ2, . . . ,θM )| ≤ 2η

M
logM

for a constant η > 0. To show this, first note that the choice of
the Q matrix in (10) is not unique but any matrix that satisfies
the conditions in (10) will yield the same rate in (11). Let us
choose Q in the following particular way: Let b1 denote the
first row of the matrix B and B̂ denote the (M − 1) × dI

matrix containing the remaining M − 1 rows. Let Q̂ be an
(M − 1)× (ds − 1) matrix such that

Q̂†Q̂ = Ids−1

Q̂†B̂ = 0.

There exists a matrix Q satisfying (10) and of the form

Q =

 v

0 · · · 0

Q̂

 :=
[

v Q̃
]
,

where Q depends on b1 only through v. Observe that the
last ds − 1 columns of Q are orthonormal to each other and
at the same time orthogonal to the columns of B. They are
independent of b1 by construction. The vector v is chosen such
that it completes these ds−1 column vectors to an orthonormal
basis for the orthogonal complement of the range space of B.

For this choice of Q, Fischer-Hadamard’s inequality yields

Rk =
1
M

log det(Ids
+ (MP/ds)Q†HkkSS

†H†
kkQ)

≤ 1
M

log det(1 + (MP/ds)v†HkkSS
†H†

kkv)

+
1
M

log det(Ids−1 + (MP/ds)Q̃†HkkSS
†H†

kkQ̃). (24)

The first term in this expression can be upper bounded
by η logM/M for a constant η while the second term is
independent of the channel states θ1 at first block, due to
the all-zero first row of Q̃. Let us denote the second term in
(24) by ψ(θ2, . . . ,θM ). It can be shown that

Rk(θ1,θ2, . . . ,θM )− ψ(θ2, . . . ,θM ) ≥ 0,

by considering the interlacing property for eigenvalues of
Hermitian matrices and the fact all eigenvalues of the matrix
Ids + (MP/ds)Q†HkkSS

†H†
kkQ are larger than or equal to

1. This fact together with the triangle inequality yields

|Rk(θ1,θ2, . . . ,θM )−Rk(θ′
1,θ2, . . . ,θM )|

≤ |Rk(θ1,θ2, . . . ,θM )− ψ(θ2, . . . ,θM )|

+ |Rk(θ′
1,θ2, . . . ,θM )− ψ(θ2, . . . ,θM )| ≤ 2η

M
logM.

Noting that this bound applies uniformly for all θ’s and using
Theorem 2 yields the concentration inequality in (14). This
completes the proof of the main result of this paper.

VI. DISCUSSION

The degrees of freedom result in [5] is established for any
fast fading channel model with channel coefficients drawn
from an i.i.d continuous distribution. In this paper, we establish
a linear scaling result for the channel model where the
fading is only through the phases and the magnitudes of the
channel coefficients remain constant during communication.
The extension of our result to channel distributions with
fading magnitudes is non-trivial. Two problems arise with
the construction of signalling vectors in Section IV when the
magnitudes are fading. First, the signalling vectors constructed
in (3) become correlated and secondly as the blocklength
increases most of them start to resemble standard basis vectors
which are eigenvectors for the diagonal channel matrices in
(4). This is not the case for the random phase model we
consider in this paper. The first problem can be simply resolved
by using an orthogonal basis for signalling, instead of using
directly the columns of S as we did in here. The question
that remains is whether these orthogonal basis vectors also
converge to standard basis vectors or not. If they do, since
standard basis vectors are eigenvectors for diagonal matrices,
the direct channel matrices may not be able to rotate the
signalling vectors and provide enough separation between the
desired signal and interference subspaces at the receivers.
This may, in turn, imply low SNR for the signal component
orthogonal to interference.
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