
Static Analysis for the PHP Language

Etienne Kneuss
etienne.kneuss@epfl.ch

January 12, 2010

Abstract

This report presents the work that was done to implement a static
analysis tool for the PHP programming language. The kind of analysis
done by the compiler or by the multiple development environments are
very limited. This tool aims at providing further feedback to a devel-
oper by checking for multiple bug conditions or mis-uses of the language
and should reduce the risk of encountering fatal errors at runtime after
deployment of PHP based application.

1 Introduction

The PHP programming language is a compiled language. However, the compi-
lation is done by default each time a certain PHP file is requested. This means
that the compilation has to be fast and hence can’t do much analysis and checks.
Most of the checks are thus made at runtime. The purpose of this tool is to allow
the developer to check its work for runtime-errors, without actually running its
application.

2 Design

This tool consists of a custom PHP compiler, translating the code into structures
such as Abstract Syntax Trees (AST) and then Control Flow Graphs (CFG).
Fixpoint analysis is then performed on the control flow graphs. This compiler
is divided into five distinct parts:

1. Lexing

2. Parsing and Abstract Syntax Trees

3. Semantic Analysis

4. Control Flow Graphs

5. Type flow Analysis

1

2.1 Lexing

The lexer uses a modified version of JFlex1. It is thus written in java. The
original PHP compiler uses flex as scanner. The modification done to JFlex
is the implementation of flex’s yymore(), which currently lacks in JFlex. This
function is used to tell the scanner that the following rules should be appended
to yytext instead of overwriting it. The tokens generated are closely related to
those PHP 5.3.0 would generate. One notable difference is that we translated
every single-char tokens to their respective name.

2.2 Parsing and Abstract Syntax Trees

The parser, as mentioned before, is based on a modified version of CUP. CUP
is a java based parser generator which uses a syntax similar to yacc, the parser
generator used in the original PHP compiler. The version of CUP used for this
project differs from the original one in two points:

1. The original CUP cannot handle large syntax files. Indeed, since CUP
directly writes the parsing tables as properties of the generated class, the
size of the class properties can become too large for javac. The PHP
grammar being quite big, the resulting parser class couldn’t be compiled.
To solve the problem, CUP was modified to provide an option specifying
that the multiple tables should be written into files and loaded at runtime.

2. To avoid the troubles of referencing scala classes, the parser generator was
modified to translate the application of the production into a simple tree
which could then be translated by a Scala class entirely.

2.3 Semantic Analysis

Some checks can be done directly by looking at the AST. Indeed, PHP provides a
wide range of features, some of them being considered nowadays as bad practice.
This tool emits notices for the following issues:

• Non top-level declaration: PHP allows a developer to conditionally declare
functions or classes. This not only generates problems with the following
analysis, but also induces some performance hits on servers equipped with
so-called opcode cachers. Those opcode cachers are responsible for caching
the intermediate–or compiled version of each file, function and class. The
goal being to speed up the process by reducing the number of compilations
required per request. This cannot be done easily if those declarations are
conditional.

• Call-time pass-by-ref: a function accepting a reference2 has to be defined
as such, but PHP allows the developer to pass a reference at the time of
the call, even to a function not declared to receive one. This feature is
deprecated, and can cause unwanted side-effects.

1JFlex: http://jflex.de
2PHP References: https://php.net/references

2

• Non-trivial include calls: the include3 statement allows a developer to
execute the given file in the current scope. The argument representing
the file to include can be dynamic. This tool will try to resolve dynamic
expressions that are most commonly used to be able to extend the analysis
to that file. In case the expression is too dynamic, that include call will
be ignored. Any combination of those expressions are considered as trivial
dynamic expressions for include calls:

– the concatenation operator: ”.”

– the dirname()4 function, used to retrieve the parent directory of the
path passed as argument

– constants

– class constants

– string

With such trivial expressions, the analyzer will look for it in the multiple
include-paths entries and directly attach the corresponding AST to the
current one.

• Dynamic object properties: PHP allows dynamic references to an object
property using a variable or expression (e.g. $name = "a"; $obj->$name
instead of $obj->a). This is usually considered as bad practice since arrays
are usually preferred for such tasks.

• Dynamic variables: PHP allows to reference a variable using either a vari-
able, or an expression5: ($$var or ${’prefix’.$name.foo()}).

• Assignations in conditional expressions: assignations in PHP return the
value assigned, they are hence valid expressions inside conditional expres-
sions. However, history tells us that, most of the time, this is an actual
typographic error replacing the assignation operator = with the compari-
son operator ==. This tool will thus emit a warning if such expression is
found inside an if() or for() condition. We exclude while() on purpose
as there is a common use-case where assignations are done directly inside
the while() expression6.

Another part of the semantic analysis consists of validating the usage of
identifiers such as variables, functions or classes. The goal is to ensure that no
obvious semantic errors such as inheritance cycles, or visibility inconsistencies
exist.

2.3.1 API Importation

By default, PHP comes with a very dense library of functions and classes. In
fact, the main extensions that are shipped with PHP consist of more than 2’500
functions and classes. Being able to correctly represent this internal API is a
key factor to obtain useful analysis results. This API is stored in an external

3PHP Include: http://php.net/include
4PHP dirname: http://php.net/dirname
5PHP Variable variables: http://php.net/variables.variable
6PHP mysql fetch assoc: http://php.net/mysql fetch assoc

3

XML file, allowing easy modifications and also do not require a re-compilation.
Additionally, a --apis command line option is available to specify a list of API
files that can be imported into the symbol tables. This is especially useful for
large projects as it allows focused analysis.

2.3.2 Annotations

One of the language aspect that is limiting the analysis is that PHP does not
support type specifications–or type hinting for everything. In fact, it is only
accepted in function arguments, and the type specification is limited to arrays
and objects. As a result, the type of the return value cannot be specified, and
arguments that take scalar values such as booleans or integers cannot be specified
as such.

However, many project use formatted comments that they can then render
into an API documentation using some tools, such as php documentor7:

Listing 1 Block comments as annotations
<?php
class A {
/**
* @var int
*/
public $plop;

/**
* @param string $str
* @return int
*/
public function length($str) { return strlen($str); }

}

?>

The analyser will look in the AST for comments directly preceding functions,
methods or properties declarations. It will then try to extract such type infor-
mations and inject it as type hints in the AST. The analyzer will then simply
use them like normal type hints during the type checking phase.

2.4 Control Flow Graphs

In fact, the AST is only the intermediate step that only let us do trivial checks.
To analyse more complex aspects of a program, this tool will use control flow
graphs (CFG) which are derived from AST’s. Control flow graphs provide a
model of the flow of values through the different control structures. Because
PHP is dynamically typed, and since variables are not declared, it is impossible
to infer and check types solely based on the structural representation of the
code. For such tasks, we require CFG’s to be able to reproduce the flow of
types that would happen in an execution of the code. The main focus of this

7phpDocumentor: http://www.phpdoc.org

4

analysis will be on analysing type flows. In the CFG, each vertex correspond
to a program state between statements, and each directed edge represents the
application of a statement.

3 Analysis

3.1 PHP Overview

Before trying to see how to analyse PHP code, it is important to understand
how PHP works, this is a small overview of the features PHP provides that are
relevant to this analysis.

3.1.1 Types

PHP is a weakly, dynamically typed language, meaning that types are not spe-
cially associated to variables, but to values. A variable may hence hold values of
different types in its lifetime. It is also weakly typed as it allows automatic–or
implicit type conversions when performing an operation on values of different
types. This is specified as part of PHP as “type juggling”8. In PHP, we have
the following types:

• Booleans

• Integers

• Floating point numbers

• Strings

• Arrays: Arrays in PHP are ordered hashmaps, allowing either strings or
integers as keys. They can contain values of any type that may be mixed.

• Objects

• Resources: Resources represent special data types such as file handle,
database connection links. They can be of different types. PHP extensions
that define resource types are responsible of handling them appropriately.

• Null: This is the default type to any undefined or uninitialized variable.

3.1.2 Object Oriented Programing

PHP supports OOP as of PHP4, but many features have later been added into
PHP5. The OO model as well as the syntax used is closely related to a subset of
what Java offers: public/protected/private visibility, single inheritance, with the
support of interfaces. PHP provides object properties, object methods, static
properties, static methods and class constants. You can dynamically define an
object property in PHP, its visibility will default to public. However, you cannot
dynamically define methods, static members, or constants.

8PHP Type Juggling: http://php.net/language.types.type-juggling

5

3.1.3 Limitations on Analysis

Many of the dynamic features available in PHP will get in the way of a sound
analysis. Here is a non-exhaustive list of such features:

• autoload9: PHP allows you to trigger a function call in case an undefined
class was used. This function call is usually used to subsequently load the
appropriate class at runtime. This feature allows programmers to only
load classes on demand.

• call10: If a method call is defined in an object, calling an undefined
method of that object will instead call the __call method, with the name
of the original method, and the arguments used.

• callStatic: This is similar to __call but works for undefined static
method calls.

• get11: This method will get called in case an access to an undefined
object property is done. The value returned by the method will correspond
to the property value.

• ArrayAccess12: The ArrayAccess interface allows an object to be used as
an array. For example, if we have class Foo implements ArrayAccess,
then $foo = new Foo; echo $foo[’index’] is accepted.

• Dynamic accesses PHP allows multiple ways to dynamically access vari-
ables, classes, members. . . Here are a couple of examples:

– $$n: Accesses the variable named by the value of $n.

– $$$n: Accesses the variable named by the value of $$n.

– new $n(): Constructs an object of the class named by the value of
$n.

– $c::$n(): Call the static function named by the value of $n on the
class named by the value of $n.

– $n(): Call the function named by the value of $n.

• eval13: The eval() construct allows a developer to evaluate the code
passed in as a string.

3.2 Typeflow Analysis

As said earlier, the main focus of this analysis tool is on types. Even though
PHP is dynamically typed, and provides very few indications of types. It is still
interesting to try to infer types and check for type safety.

9PHP Autoload: http://php.net/autoload
10PHP Overloading: http://php.net/ call
11PHP Overloading: http://php.net/ set
12ArrayAccess Interface: http://php.net/arrayaccess
13PHP Eval: http://php.net/eval

6

3.2.1 Type model

We now provide a detailed description of every elements of our type model:

• TAny (>): Top of our lattice, represents any type

• TNone (⊥): Bottom of our lattice, represents no type

• TBoolean: Any boolean type.

• TFalse, TTrue : True/False types, used for conditional type filtering (See
3.4.1).

• TInt : Integers

• TFloat : Floating point numbers

• TResource: Resources. We make no distinction between resources of dif-
ferent types. This could be improved in the future.

• TNull : Null value.

• TString : Strings.

• TUnion: Union of multiple distinct types, represented as the infix ∪ op-
erator. The result of this union of types depends on the operands, it will
be described into further details in its own section.

• Arrays: Arrays are represented using a quite precise model, it is structured
as follows:

– A set of (index → type) associations for every well-defined array
entries. The rationale behind having such a precise representation
is that PHP arrays are often used as containers for multiple named
values. Unlike other languages like C, PHP allows values in arrays to
be of multiple types. Those values are then used independently. It is
thus important to keep track of the types associated to each index.

– An optional array-wise default type. This type represents the possible
contamination of an array via a dynamic access. This type is called
the “polluted type”. For example, the code $a[$foo] = 2; will have
the following effect on a well-defined array: ∀(e→ t) ∈ entries : t =
t t TInt. Also, we have polluted type = polluted type t TInt. We can
also represent this default type as (?→ type). A side effect of having
a non-empty polluted type will be to turn off any notices related to
undefined entries. In fact, any lookup for an undefined entry in an
array will default to the polluted type, if any, or issue a notice for a
potentially undefined index.

We note that, even though PHP are ordered hashmaps, we totally ignore
to model the order as it is not something that people commonly rely upon.
Additionally, we argue that if somebody is traversing an array in order,
potentially all types of the array will get visited. Hence, iterating over an
array will yield values of type equal to the union of all possible types of
the array.

Two types are used internally to represent arrays:

7

– TArray : The general type representing the model described above.

– TAnyArray : This represents an array being the supertype of all ar-
rays. It is in fact an alias to an array whose only entry is (?→ TAny).

• Objects: Objects are represented differently than other types. The reason
is that when passing, assigning or returning objects PHP will pass the ob-
ject reference. For example, in $a = new Foo; $b = $a; $a->foo = 2,
both $a and $b represent the same object, hence both variables are affected
by the object modification. We need to reproduce that level of indirection
as part of our type model for objects. This is done by introducing object
references as types, mapping the real object in an object store. That way
the type can be copied around and propagated to different values and still
point to the same real object type. We thus have two different levels of
types:

– Object references: This is the type to which any object value is
assigned.

– Real objects: The real object is pointed to by the object reference.
This is the actual object type storing mappings to methods, proper-
ties and constants. It is stored in the object store and is not directly
exposed as types of values.

Real objects are decomposed into two object types:

– TRealClassObject : Representing an object of a defined class. This
type will have, like arrays, a index-type mapping for properties. Since
object properties can be dynamically defined, we also have a so-called
polluted type for properties.

– TRealObject : This is very similar to TRealClassObject, the only dif-
ference is that this object carries no class information. It is mostly
used for type constructions. For instance, in the code $a = new A;
$a->b = 2; the statement $a->b = 2; will merge the type of $a
which is TRealClassObject(A)(· · ·) with a constructed TRealObject(a→
TInt). This will result in TRealClassObject(A)(· · · , a→ TInt).

3.3 Type Lattice

A lattice is usually defined by three things: a partial order relation (v), a join
operation (t), and a meet operation (u). As noted earlier, the v relation is
the subtyping relation, we have that A v B ⇔ A <: B. The join operation
A t B returns the smallest type C such that A v C ∧ B v C. As for the meet
operation we can ignore it in our case since it is not necessary for top-down
analysis.

3.3.1 Definition of v

Those are, in order, the rules that apply to determine whether t1 v t2:

1. ∀t2 ∈ types : TNone v t2

2. ∀t1 ∈ types : t1 v TAny

8

3. TFalse v TBoolean

4. TTrue v TBoolean

5. ∀(t1 : TObjectRef) : t1 v TAnyObject

6. ∀(t1, t2 : TObjectRef) : t1 v t2 if all the following rules apply (o1 =
store(t1.ref), o2 = store(t2.ref)):

(a) o1.class <: o2.class if o1 and o2 are real class objects

(b) o1.pollutedType v o2.pollutedType if any

(c) ∀f ∈ o3.fields : f ∈ o1.fields ∧ o1.fields(f) v o2.fields(f)

7. ∀(a : TArray) : a v TAnyArray

8. ∀(a1, a2 : TArray) : a1 v a2 if all the following rules apply:

(a) a1.pollutedType v a2.pollutedType if any

(b) ∀e ∈ a2.entries : e ∈ o1.entries ∧ a1.entries(e) v a2.entries(e)

9. ∀(u1, u2 : TUnion) : u1 v u2 ⇔ ∀t2 ∈ u2 : ∃t1 ∈ u1 : t1 v t2

10. ∀t1 ∈ types, (u2 : TUnion) : t1 v u2 ⇔ ∀t2 ∈ u2 : t1 v t2

11. ∀(u1 : TUnion), t2 ∈ types : u1 v t2 ⇔ ∀t1 ∈ u1 : t1 v t2

12. ∀t1, t2 ∈ types : t1 � t2 If none of the rules above applies

3.3.2 Definition of Join (t)

Those are, in order, the rules that apply to determine the result of t1 t t2:

1. ∀t ∈ types : t t TNone = TNone t t = t

2. ∀t ∈ types : t t t = t

3. ∀(t : TObjectRef) : t t TAnyObject = TAnyObject t t = TAnyObject

4. ∀(t1, t2 : TObjectRef) : t1 t t2 = TUnion(t1t2). As we know that at this
point, the types must be different, which means they point to different
objects.

5. ∀(t : TArray) : t t TAnyArray = TAnyArray t t = TAnyArray

6. ∀(t1, t2 : TArray) : t1t t2 = an array where the polluted type is the join of
both polluted types, and the entries is the union of both entry sets. Note
that for an entry present in both arrays, the join of its types is taken.

7. ∀t1, t2 ∈ types : t1 t t2 = TUnion(t1, t2). If none of the above applies, we
get a union of types.

9

3.4 Analysis Mechanics

As we know, this analysis is based on point-wise lattices. A lattice is a struc-
ture providing a partial order between its elements. This is specially useful to
represent types (the order relation being subtyping) which is what we use in our
case.

The role of a point-wise lattice is to keep track of a lattice value, or type in
our case, for every values. We will denote those point-wise lattice elements as
type environments. A type environment is basically a mapping between values
and types.

The analysis algorithm starts by assigning a base type environment to every
CFG vertexes, or a global bottom (⊥g) value, indicating whether such a vertex
has been visited yet. Then, the algorithm starts with the entry of the CFG,
and will visit the graph in order. For each edge e = v1 →s v2 where s is the
statement, we can calculate the environment at v2 coming from ei by applying
a transfer function on v1 with s. This will represent the type environment
in which v2 will be in case that edge e was taken to get to v2. Of course,
one vertex may have multiple entry edges and so, to calculate the actual type
environment of v2 we will have to join every environment envi defined as envi =
transferFunction(vi, si) where (vi →si v2) ∈ edges. This type environment
join operator (∪e) is defined as follows:

• ⊥g ∪e Ei = Ei and Ei ∪e ⊥g = Ei

• For Ei ∪e Ej where Ei 6= ⊥g and Ej 6= ⊥g, we construct Eu = Ei ∪e

Ej using the following set of rules: First, we define Ei(vj) as the type
associated to the value vj in the environment Ei. We have that ∀vk ∈
values(Ei) ∪ values(Ej) :

Eu(vk) =

 Ei(vk) t Ej(vk) vk ∈ values(Ei) ∧ vk ∈ values(Ej)
Ei(vk) t TNull vk ∈ values(Ei) ∧ vk /∈ values(Ej)
TNull t Ej(vk) vk /∈ values(Ei) ∧ vk ∈ values(Ej)


Note that the join operator t used with two types represents the join op-
eration on our type lattice, as described earlier in the type lattice section.

We see that traversing the CFG only once will not be sufficient. For in-
stance, in an loop, in the first vertex in the loop, the entry edge coming from
the end of the loop is not known when we enter the loop the first time. Multiple
passes are hence required! In order for this algorithm to terminate, we check
whether we actually changed the environment. This so called “fix-point” algo-
rithm will stop whenever no change has been made to any environment during
a complete traversal of the graph. By design, the type lattice join operation
will not generate types that will always change, as it can only go “up” in our
lattice. However, we need to take special care in the type transfer function
that it doesn’t generate differences that would jeopardize the termination. For
instance $a = new MyClass cannot be made to create a new object reference
for every traversal! To solve this case, we set the reference value to the program
point.

10

3.4.1 Conditional Type Filtering

So far, the analysis features are quite common and could be applied to most
languages. This is however insufficient to give a good analysis. The reason is
that most internally defined PHP functions will return false or null in case of
error. For a function normally returning an integer, this means that any return
value of this function should be typed TInt ∪ TBoolean. However, this would
lead to massive amount of false positives. Consider the following code example
which can be seen in most procedural scripts dealing with mysql queries:

Listing 2 Fetching query results
<?php
$result = mysql_query(..);
if ($result) {

while($row = mysql_fetch_assoc($result)) {
..

}
}
?>

mysql_query either return a result resource or false in case the query failed.
mysql_fetch_assoc takes a resource, and return an array representing the row,
unless it reached the end of the result set in which case it will return false.
Naively checking types would give us many false positives:

• mysql_fetch_assoc’s argument would be of type TBoolean∪TResource,
which would fail with a type mismatch saying that it expects a TResource.

• Inside the while body, $row would still be of type TBoolean ∪ TArray,
generating a false positive for any usage of $row as an array.

The solution to this problem is in two parts. First of all, it was necessary
to improve the precision of the boolean type and introduce TTrue and TFalse.
That was, a function can be described as returning TResource ∪ TFalse. From
those types, it becomes quite trivial to filter incompatible values when taking a
branch.

For instance, with if ($result) the CFG will create two branches, one
for $result = true and one for $result 6= true. In the first branch, we can
filter out types of $result that represent strictly false values, which includes
TFalse and TNull. The same applies for the second branch, in which we filter out
strictly true values, namely TTrue and TResource. In our previous example, the
type of $result inside the if body would thus be filtered to TResource which
is correct. Moreover, it will also filter assigns as conditionals, meaning that
in while($row = mysql_fetch_assoc($result)), the while body will have
TResource for type of $row. In summary, this simple filtering trick allows for
precise prototyping with reduced false-positives!

11

4 Limitations and Future Work

Most serious PHP applications out there are often based on some heavy frame-
works that may require a lot of “magic“ features to work. Analysing such
projects would currently yield a flood of false-positive, totally hiding any po-
tential real problem.

Lots of features are not completely checked or integrated in the analysis,
such as exceptions, namespaces, or closures. In general, there are still lot of
areas of the language for which the analysis is not done or hasn’t been properly
tested.

This tool still fails at analysing one “core” feature of PHP, which is refer-
ences. As of PHP5, the usage of references is in most case obsolete or even
harmful. However, it is still used by lots of projects, for reasons such backward
compatibility or performance improvements.

5 Conclusion

Doing precise analysis on PHP is hard, and that is because the language has
never been developed with such concerns in mind. We can however see the
potential applications of such tool, like direct integration as part of an IDE
or plugged to a source repository as a quality assurance tool. The fact that
only few developments are aimed at providing analysis for PHP can possibly
be explained by its difficulty. As a consequence, the PHP world still has a
lot of room for analysis tools such as the one described here, which makes its
development quite interesting and motivating.

References

[1] A.W. Appel Modern Compiler Implementation in Java Cambridge Univer-
sity Press (2002)

[2] Benjamin C. Pierce Types and Programming Languages The MIT Press
(2002)

[3] N. Jovanovic, C. Kruegel, E. Kirda Precise Alias Analysis for Static De-
tection of Web Application Vulnerabilities Technical University of Vienna

[4] S. Hangal, M.S. Lam Automatic Dimension Inference and Checking for
Object-Oriented Programs Standford University

[5] http://lara.epfl.ch/dokuwiki/compilation: example efficient code for conditionals

12

	Introduction
	Design
	Lexing
	Parsing and Abstract Syntax Trees
	Semantic Analysis
	API Importation
	Annotations

	Control Flow Graphs

	Analysis
	PHP Overview
	Types
	Object Oriented Programing
	Limitations on Analysis

	Typeflow Analysis
	Type model

	Type Lattice
	Definition of
	Definition of Join ()

	Analysis Mechanics
	Conditional Type Filtering

	Limitations and Future Work
	Conclusion
	References

