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Abstract

The celebrated Paxos protocol implements a reliable
service as a state machine replicated over several ma-
chines. Replication provides reliability against perma-
nent failures and availability against temporary crash
failures. Whereas, in theory, Paxos can tolerate any num- i
ber f of crash failures usin@f + 1 replicas, in prac-
tice, it is often appealing to use it in order to tolerate a
single failure using three replicas for the probability of @
two simultaneous failures is sometimes considered low
enough. We show in this paper how, in this particular
case of three replicas, we can increase the throughpuiigure 1: The reduced number of messages in OneAc-
of Multi-Paxos, which is an efficient variation of Paxos ceptor compared to collapsed Multi-Paxos deployed on
used in deployed systems [4, 2], by a factor of 2 bythree servers. The dotted box represents the node bound-
using a new protocol we call OneAcceptor. In short,ary. The dashed messages, which do not cross the node
OneAcceptor changes Multi-Paxos to use only a singldoundary, do not consume the node bandwidth. P, A, and
acceptor role and to switch it with another acceptor inL represent the proposer, acceptor, and learner roles, re-
the case of failure. The number of exchanged messagespectively. The grayed acceptors and consequently the
between replicas reduces considerably, without tradinggommunications to/from them are eliminated in OneAc-
however, neither the consistency nor the availability ofceptor.
Multi-Paxos.

1 Introduction scenario in which the data is replicated over three servers.
Indeed, Multi-Paxos can tolerate any numigesf crash
Recently, the increased demand for data replication ovefailures usin@ f + 1 replicas. In practice, however, using
multiple, possibly geographically distributed, data cen-more number of replicas reportedly increases the average
ters, has raised interests to design, deploy, and excommit latency [7] and decreases the system through-
periment relevant protocols for maintaining consistencyput [2]. It is appealing, therefore, to consider only three
among replicas [4, 16]. Multi-Paxos [15] is one of the replicas which tolerate only a single failure (at a time).
most important such protocols. Even if it has been con-The probability of two replicas failing at the same time
sidered in a wide variety of settings [4, 16, 2, 7], it is sometimes considered low enough for the system de-
reportedly suffers from scalability issues [2]. In short, signer to accept to wait for at least one of them to recover
Multi-Paxos relies, at any point in time, on one of the in that rare failure scenario. OneAcceptor is very simi-
replicas to act as a leader. The client commands mudar to Multi-Paxos, with a small difference: OneAcceptor
be first received by that leader and the leader’s networkises only one acceptor. (In Multi-Paxos, the role of the
bandwidth limits the number of client messages that caracceptor is to resolve conflicts between multiple propos-
be received per unit of time. als.) Figure 1 illustrates the difference between OneAc-
In this paper, we propose a more efficient version ofceptor and Multi-Paxos by highlighting the changes in
Multi-Paxos, OneAcceptor, designed for the deploymenthe communication between nodes. The grayed accep-



tors are eliminated in OneAcceptor, and the communication 2 explains the design of Paxos and dissects the role
tions to/from them are also eliminated accordingly. of each Paxos participant. In Section 3, by explaining
Reducing the number of acceptors to one has a majadihe key insight of OneAcceptor, we illustrate the differ-
impact on improving the system performance, yet with-ences between OneAcceptor and Multi-Paxos. The de-
out jeopardizing neither the consistency nor the availtailed design of OneAcceptor is presented in Section 4.
ability of the system. In OneAcceptor, the acceptor'sWe present our experimental results in Section 5. Sec-
availability is provided bybackup acceptorshe leader tion 7 concludes the paper with some final remarks.
switches its failed acceptor with a fresh backup accepAppendix A presents the pseudo code of OneAcceptor
tor. Using three servers implies that the replicated datavhich is followed by the correctness proofs of OneAc-
is reliable even against two permanent failures and theeptor in Appendix B.
system can progress even with one failed server, just like

in Multi-Paxos. In the failure scenarios, however, the2 Background
commit latency increases slightly by OneAcceptor, due
to longer recovery time. In this section, we explain Paxos as well as Multi-Paxos,

To progress even with more number of crash failuresgn optimization of Paxos for practical applications [4].
[/, more replicas should be used, i.2f, 4 1. Inspired A single central server that services the commands re-
from previous work for switching safely between differ- cejved from a set of clients is clearly not fault-tolerant:
ent implementations of BFT protocols [6], we explain gny fajlure in the central server could take the whole sys-
how to safely switch from three replicas of OneAcceptoriem down. One way to address this problem is to use
to more replicas of Multi-Paxos. Therefore, the systempytiple servers and replicate the system state on them.
can still progress even with higher number of failures. | this way, if one of them fails, the others will continue
OneAcceptor targets reducing the Paxos-related trafserving the clients. There are certain challenges in pre-
fic on the leader and uses the freed bandwidth to SerVngerving the Consistency of the rep"casy especia”y with-
more client requests. Hence it can be more beneficial iyt making strong assumptions about the synchrony of
the systems that the Paxos-related traffic is the major loaghe network. For instance, two issued commands by the
on the leader. If the leader server is used to also servicglients could reach two servers in the inverse order and
other type of requests, to make the best use of OneActhat would cause inconsistency between the system state
ceptor, the non-Paxos traffic should be serviced via othejn those two servers.
servers perhaps by using proxies, as it is suggested by paxos is an algorithm proposed by Lamport [15] to ad-
Chubby [2]. We will discuss the workload issue in detail dress such challenges. Paxos assumes the service to be
in Section 5. implemented as a state machine, replicated on multiple
Also, the persistent storage of data has been one dfervers. It gives an order to the issued commands by the
the main challenges in efficiently implementing Multi- clients and guarantees that all servers execute the com-
Paxos [4]; the acceptors has to store their data persisnands in the same order. Note that the agreed order is
tently before responding to any request. After failure, thenot necessarily according to the time the commands have
failed acceptor is not usable until it recovers all the im-been issued by the clients. In other words, if a client is-
portant data from the persistent storage. In our approachues a command, before another client a commaag,
the data in the acceptor is no longer required to be storeghe algorithm guarantees that on all servers they will be
persistently; in the case of reboot and losing the data impplied in the same order, either@s-C, or asCs-C'.
the main memory, the crashed acceptor is replaced with \We now give a brief description of the original Paxos
another backup acceptor. This feature becomes possiblggorithm [15] which is called Basic-Paxos hereafter in
in OneAcceptor because it can survive loss of acceptothis paper.
data.
A system like Chubby [2] could greatly benefit 21 Basic-
from OneAcceptor if deployed on three replicas. In—"
Chubby [2], the client command messages are to acquir®he original version of Paxos was first presented in [15]
the lock on a particular file and are, hence, small. Onand was further explained in [11]. The participant servers
the other hand, the bandwidth of the leader is partly useih Basic-Paxos implement three different roles: proposer,
to receive client commands and partly to communicateacceptor, and learner. The proposers advocate the client
with the other replicas. By decreasing the number ofcommands, the acceptors resolve the contention between
exchanged messages between the leader and the othaultiple proposers, and the learners learn the chosen val-
replicas, the leader can use the freed bandwidth to seues.
vice more client commands. The ultimate goal of Basic-Paxos is to assign orders to
The rest of the paper is organized as follows: Sec-client commands. The order of a client command, which

Paxos



Client Proposer  Acceptors Learners already accepted a value, the value will be included

I R I N e in the prepargesponse message.
P> clnt_cmd
. el | | |prepros 4. accepfrequest: After receiving the pre-
- - - L = T - - 14— pareresponse messages from a majority of
)| prep_rsp the acceptors, the proposer assumes itself as the
T el | T acptres leader. It flrs_t decides onaya!ue; one selected frolm
R S v v D - values received from a majority of the acceptors if
pl >, they have already accepted a value, or any value
< —— learn otherwise. It then sends to all the acceptors an
AN [ N EE P acceptrequest message with the proposal number
I cint_ack pn and the proposed value.

Figure 2: The interaction between nodes in Basic-Paxos. 5. |earn: When an acceptor receives the accegtiest
This example consists of one proposer, three acceptors, message corresponding to the promise it has made,
and two learners. In MUlti-PaXOS, the leader Skips the it accepts the proposa| and broadcasts a learn mes-
first phase, i.e., preparequest and preparesponse. sage to all the learners as well as the proposer. The
accepted value must be stored in a persistent stor-

is called a value in Paxos terminology, is specified by an age.

instance number. To assign values to instance numbers,
Basic-Paxos requires two phases. In the first phase, a ™
proposer attempts to become leader for a particular in-
stance number. In the second phase, the leader proposes
a value to the acceptors and, this value is learned by the
learners. For each instance number, the proposers try
to settle on a value. All the message transmissions re-

lated to a particular order constitute a sepamstance - ;
X X ) . Basic-Paxos guarantees the following two safety prop-
of Basic-Paxos. The interaction between nodes is de- 9 9 y Prop

icted in Fi 5 erties [15]: i) non-triviality: only the proposed values
pictedin Figure 2. . . can be learned; and ii) consistency: two different learn-
We now explain one instance of Basic-Paxos, step b%rs cannot learn two different values
step: Each role can be implemented by a separate server.

1. clientcommand: The clientommand message, But usually a single machine implements all the three
which comes from a client to proposers, containsroles, which is then called Collapsed Paxos. The ad-
a command from the client. The proposer then advantage is that the transferred messages between two
vocates the client command. roles that are located on the same server do not cross
the node boundary and thus less bandwidth will be con-
2. preparerequest: The proposer first picks an ordersymed. According to the liveness property of Basic-
for the client command, which is called Paxos in- paxos[13] a value will be eventually chosen, given that
stance number. Then, it tries to take the Ieader'enough servers are running_ For examp|e’ in the men-
ship position and asks the acceptors to recognize ifioned deployment setup, the liveness property holds as

as such by broadcasting a prepagguest message, |ong as two of the three servers are running.
which contains a proposal numher. The proposal

number distinguishes different attempts of the pro- .
poser for the same instance number. 211 TheRolesin Paxos

clientack: When a learner receives the learn mes-
sage from a majority of the acceptors, it recognizes
the proposed value as chosen and can inform the
clients with a clientack message. Alternatively, this
can be done by the proposer that advocates the client
command.

3. prepareresponse:  Upon receipt of a pre- In this section, we take a closer look at the different
parerequest message, each acceptor checkiles in Paxos. This is essential to understand the ra-
the proposal number. If the proposal number,tionale behind the applied changes into Multi-Paxos by
pn, is greater than the proposal number of thethe proposed protocol, OneAcceptor. As mentioned be-
previous accepted proposals, the acceptor sendsfare, there are three major roles in Paxos: i) proposer, ii)
prepareresponse message back to the proposer. Bycceptor, and iii) learner.
that it promises not to accept any proposal number The proposer role is to advocate the client command.
smaller tharpn. The highest proposal number must This is essential for scalability of the system. If the
be stored in a persistent storage. If the acceptor haslients have to be involved in the consensus process (for



example by advocating their own request), then the sysanisms, then the replication of acceptor is no longer nec-
tem cannot scale with the number of clients. By relin- essary.

quishing this task to the proposers, the consensus is re-

quired_among only a few servers andthusitis more scaly 1 3 pergstent Stor age

able with the number of clients.

The learner is the actual long-term memory of the sys{f an acceptor node crashes, Paxos still can progress as
tem. When a Paxos instance is finished successfully an@ng as a majority of the acceptors are running. The
its value is learnt, this value is kept in the multiple avail- crashed acceptor can get back to the game as soon as it
able learners. The clients then can read this value fronfiecovers the stored data from the persistent storage, such
each of the learners. as the highest proposal number and the accepted propos-

The acceptor is the main role in Paxos that makes th@ls. Persistent storing of data is one of the main chal-
consensus achievable. If multiple proposers want to prol€nges in efficient implementation of Multi-Paxos [4].
pose values for the same Paxos instance, the acceptor 1§1€ memory buffer of the file must be flushed imme-
the key role to resolve the contention between the comdiately after each write; otherwise the data in the buffer
peting proposers. Suppose some acceptors accept val#@uld be lost by a sudden crash.

v from Proposer”,, and for some reasons the Paxos in-

stance does not complete successfully. Now, to finish the 2 M ulti-Paxos

instance, Proposdr; must first read thaccepted value

by the acceptors (i.evy) and propose theame value  After a proposer takes the leadership position for one
It |mp||es that the acceptors p|ay the role of the Short_instancem, it could be more efficient if it assumes
term memory for the system; they must remember a fev\ﬁhe leadership position for the next Paxos instaneés

values during the short period of one Paxos instance. (in’ > in) as well. The other proposers can still try to
become leader when they suspect that the last leader is

failed. Multi-Paxos [11] is the version of Paxos which

2.1.2 Replication in Paxos implements the mentioned optimization. The algorithm

In general, we have two types of replication: i) replica- IS Schematically explained in Figure 2.

tion of service and ii) replication of data. Replication of _ The first round is similar to Basic-Paxos. When a
service increases the availability of the system. In othef’TOPOSerP” becomes leader, it uses the same proposal
words, when a client requests for the service, we wanflumberpn for the next Paxos instances. Hence it can
to make sure that there is at least one responding servetiP the first phase of Basic-Paxos, i.e. prep@guest,
ready to receive the client commands. The replication ofnd start directly with the accepequest message. If in
data, however, is for increasing the reliability of the sys-the meanwhile, another Proposet tries to become the
tem. In other words, it decreases the chance of data lod§ader with a higher proposal numher’, then the pro-

by missing some servers (after permanent failures). ~ Posal number of” will not be the maximum proposal
The Paxos roles are replicated, but each one for a diffumper any longer, and its accapgjuest messages will

ferent purpose. The replication of the proposers is to inP€ réiected. Proposé? can then either relinquishes the
crease availability, as the proposers provide a service fofe@dership position to ProposeX or try to become the
the clients, i.e., advocating their request. In contrrg, t '€@der again by sending a prepaeguest message with
learners store the data of the system, and the purpose 8f1€W Proposal number.
their replication is to enhance reliability.
The acceptor replication is partly for service availabil- 3 Main I nsi ght of OneAcceptor
ity and partly for data reliability. The proposers start
the consensus process by contacting the acceptors. Thuss we explained in Section 2, the availability of the ac-
they require the provided service by the acceptor role taeptor role can be provided in different ways. One ap-
be available. In addition, as mentioned before, there are proach, which is taken by Multi-Paxos, is the replica-
few data kept by the acceptors such as the accepted valtien of the acceptor. A side-effect of this approach is the
and the promised proposal number, which should be kephcrease in the number of exchanged messages between
during the Paxos instance. However this data is require@dcceptors and other roles. An alternative approach is to
only for the active Paxos instance, and in the case of failhave somebackup acceptorseady to use, and replace
ure, we can think of some workaround solutions. the failed (or suspected to be failed) acceptor with a new
The main insight of this paper, which will be explained fresh one from them. Taking this approach is the main in-
later in Section 3, comes from the following observation: sight underlying OneAcceptor; which reduces the num-
the replication of the acceptor role is mainly for avail- ber of exchanged messages between servers by a factor
ability, and if its availability is provided via other mech- of two.



Figure 1 depicts message transmission in a collapseBaxos nodes are likely to be placed into separate racks,
Multi-Paxos setup that consists of three nodes. The meswhich are connected by a network switch. Broadcasting
sages that cross the node boundary must be included through switches is not free as itis inside a LAN. There-
the total number of messages. Therefore, we have thiore, assuming the availability of broadcast messages is
following equation for Msg, ,;1; 4.0+ the total num-  far from realistic scenarios.
ber of exchanged messages between servers in a normalSo far we have shown that instead of replicating the ac-

Multi-Paxos instance: ceptor role, we can keep the other acceptors as backup,
ready for use but not involved in the message passing
MSG,,1ti— pazos = (A —1).(A+1) (1) process of Multi-Paxos. Although, using backup accep-

) tors addresses the problem of availability and yet pro-
, whereA is the number of acceptors. Then, for the usual,;jeq petter performance, we still need to find a solution
setup of three nodes, this value would be equal to 8 Tor the reliability of the acceptor data.

Multi-Paxos as opposed to 4 in OneAcceptor. Recall that the acceptors also keep a few data, which
The total number of messages affects the overall con

. . . are necessary during short-term period of a single Paxos
sumeq bandwidth be_tween servers. Beside tha_\t, ON€ Nistance to address the possible contention between mul-
teresting parameter is the ”“r,”bgr of sentfreceived me?fple proposers. Missing this data by switching from the
sages by the leader node, i—pazos: The leader dactive acceptor to a fresh backup acceptor in the mid-
exchanges more messages compared to the other no @ of a Paxos instance can violate the reliability of the
E‘Sr)'/stem. For instance, if the active acceptor promises not

vice more client commands. This is reportedly a prob-,[0 take any proposal number less than then a fresh

leT for scalﬁblhty of Nllum'Pﬂxt?]s [I\Z/I]. ltl_nPthe comlmon grnnew acceptor would not be aware of this promise and
Selups, each server plays all the Mulli-Faxos roles an ight accept proposal numbers less thén Neverthe-
hence the leader node is also a learner as well as an ag:

tor. Thus. the total b ¢ h ss, if the proposers get properly notified of this data
ceptor. us, the fotal number of messages exchangq ss, they can safely restart the Paxos instance without
between the leader node and the other nodes is:

risking the protocol integrity. For example, upon receipt
cader f the failure notification of the active acceptor, the pro-
Msgfcade =3.(4-1 2) © _ '
i”“l“’p“os ( ) @ posers know that the promised sequence number by the

Again, for the usual setup that includes three servers, thiBrevious acceptor is no longer held.

number is equal t6. OneAcceptor reduces this number ~We will explain in Section 4 that if we assume that
to 3 by using only one acceptor. Consequently, we expedihe leader and the active acceptor nodes do not fail at the
at least a factor of two increase in the system throughpu$ame time, then there exist a process in which the leader
by switching from Multi-Paxos to OneAcceptor. can safely notify the other proposers of the active accep-

One interesting variation of collapsed Multi-Paxos tor switch. This assumption is valid in the common setup
that we also considered uses fewer acceptors. In suciat consists of three physical servers implementing three
a case, fewer messages would be exchanged since so@poser, three learner, and one acceptor roles.
acceptors are not active. For example, in the common By carefully placing the proposer and acceptor roles
setup with three nodes, if Multi-Paxos uses only two ofamong the physical servers, in a way that the leader and
them as acceptor, then the number of exchanged me#he active acceptor are placed in two separate physical
sages by the leader would be 4 per command, as ofservers, we can make the assumption that the leader and
posed to 6. Thus, the throughput would be improved bythe active acceptor do not fail at the same time. The
a factor of 1.5. This is less than the improvement by ourviolation of this assumption cannot occur unless two
protocol which is a factor of 2. Using fewer proposers of the three physical machines crash. In this case, we
and learners will reduce the availability and reliabilify o would be left with one machine which is less than the
the system, respectively. Therefore, we do not compar&linimum required machines for Multi-Paxos to progress
OneAcceptor with such variations. (min > total /2).

It is worth noting that the above argument is based Because OneAcceptor discards a failed acceptor, in
on the assumption that the nodes communicate throughontrast to Multi-Paxos, the acceptor data is no longer
unicast messages. In the particular case that the Multirequired to be stored persistently. We need only to iden-
Paxos nodes are deployed on the same LAN, the mediy the silently rebooted acceptors. The leader can detect
sages could be transferred via broadcast. However, wthe reboot by either using TCP as the transport protocol
do not confine OneAcceptor by making any assumption
about the deployment environment. Chubby [2] uses 1Goog|e_ reports that due to cost issues, thgy replace theswaok

. . of servers in the case of a failure. Therefore, if all of thelt\MBaxos
Multi-Paxos over wide-area networks where the broad'nodes are placed in the same rack, they all will be unavailafier a
cast is not available. Even inside a data server, the Multisingle failure.




or initializing the peer after the first contact. A simple 1) Leader? 1) Leader?
variable in the acceptor, such &snFresh, which is ini-
tialized by the first contact from the leader, can help the
other proposers to detect the reboot of the acceptor.

4 Design

In this section, we explain the design of OneAcceptor

in detail. As mentioned in Section 3, the idea is to use @ @ @

only one active acceptor and provide the availability via

some backup acceptors. The small changes applied to the ) i ,

protocol also take care of the reliability when the active '9ure 3: The interaction between nodes in OneAcceptor

acceptor is replaced. This idea can be applied to any of SW,itCh failed AcciptclarA with anokther backﬁp Ac.cep-.”
the numerous available versions of Paxos. For the sake 5?" A’ In step 1, the leader makes sure that it is sti

simplicity in presentation, in this paper we focus only on KNown as the leader byha rr;]ajorlty ?cf r’[]he nodes. Then
Multi-Paxos, which is the stable version used in practical™ St€P 2. it announces the change of the active acceptor.
deployments [4, 2]. Finally in step 3, it sends a preparequest message to

OneAcceptor uses all the Multi-Paxos messages in éhe new active Acceptod’.
similar format. We first start this section by describing
the process in the error-free scenario. Then, we explain
the changes we need to make in the Multi-Paxos algo-
rithm to handle each of the failure scenarios.

which it has given its promise, it accepts the pro-
posal and broadcasts a learn message to all the
learners.

4.1 Error-free scenario 4.2 Acceptor Failure

The steps in the error-free scenario are similar to Multi- . o . .
Here, we consider the scenario in which active Acceptor
Paxos, except that the messages are sent to only one aG . o
. . . fails and the leader switches it with another backup
ceptor, i.e. the active acceptor. The roles in OneAcceptot, P .
. . . . - AcceptorA’. It is worth noting that we do not assume
and the interaction between them is depicted in Figure 1. . . .
a perfect failure detection. Hence Acceptbmight be
still running and just mistakenly be suspected for failure.
Thus, the failure recovery scenario must take that into
"consideration.

When the active acceptor fails, the leader is the only
node that is allowed to switch it with another backup ac-
ceptor. This change, however, must be confirmed by a
majority of the nodes. This is necessary to avoid hav-
ing multiple instances of active acceptors running in the
2. If the proposal numbegpn, is greater than all the System. The scenario is illustrated in Figure 3.

previous proposal numbers received by the accep- Obtaining the confirmation of a majority of the pro-

tor, it sends a prepamesponse message back to posers is a separate consensus problem which can be

ProposerP. By that, the acceptor promises not to solved by any Paxos-like algorithm. Although, it is pos-

accept any proposal number smaller than sible to merge this consensus into the main operation of
Notice that, similar to Multi-Paxos, these two stepsthe algorithm, for the sake of S|m.pI|C|ty, we assume Fhat

- the consensus over the new active acceptor is achieved
are necessary only for the first time a proposer con; g . .
by a separate basic implementation of Paxos, which here-
tacts the acceptor. After that, the proposer becomes . - . oo
. after is called PaxosUtility. Notice that PaxosUTtility in-

leader and skips these two steps.

stance which handles consensus over the new active ac-
3. ProposerP then sends an acceptquest message Ceptor is totally separate and independent from OneAc-

including the proposal number. as well as a pro-  Ceptor algorithm that we are explaining here.
posed value, to Acceptot. Beside the Id of Acceptad’, the leader also includes

the uncommitted proposed values into the message sent
4. When Acceptod receives the accepequest mes- to the PaxosUtility. This is to cover the cases where Ac-
sage corresponding to the proposal number, taceptor A has received an accepquest message with

1. ProposerP decides to take the position of the
leader. It first obtains the Id of the active acceptor
A (we will explain the process of obtaining this Id
in the next subsection), and sends a prepageiest
message including a proposal humbet, to Ac-
ceptorA. By that, the proposer asks the acceptor to
recognize it as the leader.



1) Acceptor? 1) Acceptor? ment before switching the active acceptor. If the leader

- - observes this announcement, it must consider its position

S e e . . . . . .

2)P->P' 2)P _':P. as relinquished. This step is marked as step 1 in Figure 3.
3) prepare

4.4 Leader and Acceptor Failures

If the active acceptor fails, the leader is in charge of
switching it with a fresh backup acceptor. On the other
@ @ @ hand, if the leader fails, then any proposer can safely take
its position, given that the active acceptor is still run-
i i i ) ning. The only remaining case to handle is when both
Figure 4: The interaction between nodes in OneAccePiha |eader and the active acceptor fail together.
tor when ProposeP’ takes the leadership position from
LeaderP. In step 1, ProposeP’ inquires for the active
acceptor Id. It then announces itself as leader in step
Finally in step 3, it sends a preparequest message to
the active acceptor.

As mentioned in Section 3, to handle this failure sce-
ario we carefully assign the Multi-Paxos roles to the
hysical nodes in a way that the leader and the active

acceptor are located in two separate physical nodes. As-
sume that we havé&/ machines available and each ma-
chine implements all the roles; the proposer, the acceptor,

valueu;,, for instance numbein, but the corresponding @nd the learner. In OneAcceptor that there is only one ac-

issued learn message is not received by the other nodd¥€ acceptor, we have the option to pick the machine that
yet. In this way, it guarantees that the next leader will try Will @so play the active acceptor role. This deployment
to propose the same valueds for instance numbei,. 'S démonstrated in Figure 1.

After the leader finishes the consensus over the active 1he ideais to assign the active acceptor and the leader
acceptor, the leader switches from Acceptaio Accep- ro.les to two separate physical' nodes. In this way, the
tor A, i.e., the new active acceptor. Because the acceptdfilure of the leader and the active acceptor cannot occur
node has changed, the leader must start over with a prd29ether, unless two a¥ physical nodes fail at the same

parerequest message to take the leadership of the neffme- In the usual setup of Multi-Paxos which consists
acceptor. of three physical nodes, this failure scenario implies that

two of the three physical nodes are failed. On the other
] hand, Multi-Paxos cannot progress with just one running
4.3 Leader Failure server out of three. Consequently, we can assume that

. if the failures of the leader and the active acceptor oc-
In Multi-Paxos, every proposer can spontaneously try to

. L ) cur at the same time, there is only one machine left. In
take the leadership position by sending a prepatgiest

this situation, neither Multi-Paxos nor OneAcceptor can

message to the acceptors. In practice, this usually han'rogress

pens when a proposer suspects that the current leader IS\tis worth noting that the failure of the leader and

failed. In OneAcceptor also, when the leader fails, any, . . . .
: o . the active acceptor at the same time does not jeopardize
proposer can try to take its position by sending a pre-,

parerequest message to the active acceptor. the consistency of the system. It only prevents the sys-

. tem from progressing, which is the same way that Multi-
/
Assume_that Proposd?’ suspects failure of _Leader Paxos would react to this failure scenario.
P and decides to become the leader. The active accep- . .
) o S The detailed pseudo code of OneAcceptor is presented
tor Id, A, can be obtained by inquiring a majority of the . : : :
L n Appendix A. Furthermore, Appendix B provides the
nodes. This is because of the fact that the last leader al-
. . correctness proofs of OneAcceptor.
ways makes a consensus over changing the active accep-
tor. The sequence of messages is demonstrated in Fig-
ure 4. , 45 Morethan OneFailure
Care must be taken to ensure that in the meanwhile the
active Acceptord is not switched by the last leader. Oth- Using only three replicas, no consensus system including
erwise, we end up with two leaders which are using twoOneAcceptor can progress if more than one replica fail;
different active acceptors. To this aim, Propoféiuses both Multi-Paxos and OneAcceptor can resume though
PaxosUltility to start a consensus instance in which Proafter the failed replicas recover from failure. A re-
poserP’ announces that it is going to take the leadershipcent proposed framework [6] suggests methods to safely
position by assumingl as the active acceptor. Accord- switch from one byzantine tolerant consensus protocol
ingly, every leader must always check for this announce{BFT) to another. Inspired by that, we can switch from



OneAcceptor to other consensus protocol implementa-  if no entry in the meanwhile is inserted into Paxo-
tions such as Multi-Paxo% when more than one node sUtility.
are expected to fail in near future. For example, the first
failure can issue a warning triggering the switch to Multi- 5. Every node that is notified of the abort entry aborts.
Paxos. Note that by switching to Multi-Paxos, we will
lose the increased throughput offered by OneAcceptor 6. Each node of Multi-Paxos starts working after ini-
till we switch back to it. Therefore if recovery is quick, tialization by the proposals in the abort entry of Pax-
continuing with OneAcceptor offers better performance. osUtility.

The switching in crash-only failures is much simpler
than BFT since we do not need to consider malicious
nodes. To safely switch from OneAcceptor to Multi- 4.6 Avoid Persistent Storage

Paxos, it is required to ensure two properties: i) OneAc- ) . .
ceptor must abort, and ii) Multi-Paxos must be initialized | "€ Important data of the active acceptor is kept partly

with the pending proposals registered in PaxosUtility. PY the leader and partly by the PaxosUstility. Thus, upon

After getting to the aborted state, nodes must not is_the active acceptor failure the leader can safely discard it
) there is no need for a persistent storage in

sue proposals nor process messages of the OneAcceplQI@anseq”ently' ol
protocol. Not all the nodes might respond to an abort:€ acceptor. However, cares must be taken not to use a

request. However, to stop issuing learn messages, it igebooted accepto_r as its_ data is lost after reset. The pro-
enough to abort either the leader or the active acceptoF.’Osers need to distinguish between a rebooted acceptor

Care must be taken because the aborted node can be s@&d @ fresh one. To this aim, we use fam.Fresh vari-

pected to be failed and get replaced with another nodef".‘ble in the acceptor which is initially true. Upon adopt-

For example, even if the active acceptor aborts, the igno'—ng aleader, the active acceptor sets this variable to.false

rant leader can switch the active acceptor and the protol '€ Only time that the leader expects the acceptor to be

col continues working with the new active acceptor. fresh is immediately after switching to it. For the other
To make OneAcceptor safely abort, we make use of35€S: it_]hehp'roposgr C%n pafSlfO&M“StB eﬁm‘gh param-
PaxosUltility, similar to the solution for switching the ac- eter, which Is assigned to false, in each communication

tive acceptor and leader. All nodes abort after ObserVyvith the acceptors. If this parameter is not set while the
ing an abort entry in PaxosUtility. Before making any local IamFresh variable is set, the acceptor detects that

change into the working set, the nodes have to check th% Wfas si;e_ntly rebog_ted. The implementation details can
entries in PaxosUtility, and hence they will be surely no- e found in Appendix A.

tified of the abort. To ensure that the current working

set_ is also aware of the abort, elther_tht_e leader or thgL7 Performance Discussion

active acceptor must be the one that initiates the abort.

The node that initiates the abort, also include the pendon common error-free scenarios, OneAcceptor can per-
ing proposals into the abort message, i.e., the proposegym better because it involves only one acceptor instead
proposals in the leader and the accepted proposals in thg three. Hence the number of sent messages in the pro-
acceptor. The Multi-Paxos nodes must be initialized withtgcol reduces, which leads to less consumed bandwidth.
the pending proposals in the abort entry of PaxosUltility. gpecifically, less transmission to/from the leader enables
The detailed steps of switching the protocol from the |eader to service higher number of client commands
OneAcceptor are as following: per unit of time. Under high jitter in network delays, it
could also decrease the response time, as the leader and
&he learners would need to wait for the less number of ac-
ceptors to respond; waiting for less number of messages
implies being less sensitive to the variance of message
2. NodeN, goes to the aborted state. delays.
On failure scenarios, however, OneAcceptor requires
3. NodeN, tries inserting an abort entry into PaxosU- to take a few more steps compared to Multi-Paxos to re-
tility. If Node N, is a proposer (acceptor), it adds cover from a failure, i.e., steps of PaxosUtility instance.
the proposed proposals (accepted proposals) to thRevertheless, the frequency of failures is usually low
abort entry. enough that we can ignore the performance drawback of
the few additional steps in failure scenarios. Considering
oNlythe Amdanhl's law, the overall performance is still signif-
2The Multi-Paxos nodes can be located on separate serveasor p Icantly higher. Section 5 covers the experimental results
sibly share some servers with OneAcceptor. for both error-free and failure scenarios.

1. The node that initiates aborY,,, must be either the
leader or the active acceptor. This can be indicate
by checking the PaxosUltility entries.

4. Other nodes accept abort entry in PaxosUtility,




4.8 Complexity Discussion The workload is discussed in Section 5.2. The commit

latency of OneAcceptor is verified in Section 5.3. The

'tAr‘]S you catn seelm Flgu_re 1|1’ the handlgrts 'T/Iplﬁ.mpem'n%verhead of OneAcceptor in failure scenarios is illus-
€ acceplor role are simpier compared 1o MUlli-Fax0Sya4eq in Section 5.4. Section 5.5 presents experimental

This is because there is qnly one accep_tor |n.OneAccepr-esu|tS of comparison between the throughput of OneAc-
tor and thus the complexity due to dealing with quorumceptor and Multi-Paxos. The throughput under failure
of nodes is eliminated. The handlers of the proposer rOIescenarios is covered in Section 5.6

however, implement more logic for safe recovery from
failures. Overall, our implementation of OneAcceptor
service in Mace [9] framework is 460 LoC as opposed
to 539 LoC for implementation of Multi-Paxos service. 5.2 Workload

Note that the utility functionalitie_s such as memb_ership-l-he request payloads must be carried to the learners by
management are |mple_mented in separate services ang fast-path protocol messages (i.e., acaegiuest and
hence are not included in the reported LoC. learnrequest). Thus, the consumed bandwidth is still
proportional to the number of protocol messages. We
5 Evaluation are not aware of any application that does not require the
received payload by the leader to be transferred to the
In this section, we report on the evaluation of OneAccepJearners. Even so, a set of proxies that are located in
tor and Multi-Paxos. The main advantage of OneAccepthe same data center as the leader can receive the large
tor is the reduced traffic between servers, which becomeslient requests and instead issue some small requests to
the dominant factor when the servers are geographicalljhe leader, referring to the client requests. Inspired from
distributed. This is the case for many practical deploy-traffic size in Chubby [2], we do not consider large re-
ments of Paxos such as the global cell replication inquest sizes.
Chubby [2]. Therefore, in this section we focus on ex- The Paxos protocol messages are issued as a result of
perimental setups which emulate wide-area networks. each client command, which is the type of traffic targeted
We basically explore the following: by OneAcceptor. The leader might also be involved in
) other kind of traffics. For example, Chubby [2] reports
1. The OneAcceptor side-effect on the latency of com-sing some KeepAlive traffic related to the used lease
mitting the proposals mechanism. As proposed by Chubby [2], these kind of
traffics can be proxied to reduce their load on the leader.
In general, the read requests do also cause issuing
3. The increase of the system throughput usingPaxos protocol messages. This is because the read re-
OneAcceptor? guests often require the last updated data, which is not
necessarily updated in every learner, including the leader
node. Thus, the read traffic can be treated as normal
client command traffic. There are particular usecases that
Our experiments make use of three machines with 2.88an change the load on servers. For example, if the read
GHz Xeon X3360s and 8 GB of RAM. These machinesrequests do not necessarily ask for the last updated data,
run GNU/Linux 2.6.26-1. All machines are intercon- then they can be handled directly by each learner. Hence,
nected by a full-rate 1-Gbps Ethernet switch. We runthe read traffic will be balanced on all nodes. In this
the distributed system on top of the ModelNet [18] net-case, if the proportion of the read traffics is much more
work emulator. The one-way emulated delay of each linkthan client command traffic, then OneAccegtanpact
is 50 ms. Both Multi-Paxos and OneAcceptor are im-0n reducing the overall load will be less profound. The
plemented in Mace [9] framework. We use TCP as theother particular case is that the leader has the privilege
transport protocol. OneAcceptor also needs a PaxosUtilto directly respond the client read traffic without going
ity which can be any implementation of Paxos-like sys-through the Paxos steps. For example, in Chubby [2]
tems. For the sake of simplicity, we have implementedthanks to the employed additional lease mechanism be-
Basic-Paxos to be used as PaxosUstility. side Paxos, the leader directly respond the read traffic as
Each machine implements all three roles of Multi- long as the lease is not expired.
Paxos: proposer, acceptor, and learner. An application Not to lose the generality, we do not assume the
on top of the consensus service issues application callsbove particular cases for handling the read traffic in
for initialization and proposing values. We have imple- the experimental results. Nevertheless, as suggested by
mented a simple failure detector which is triggered byChubby [2], the read traffic will be proxied in such cases
receiving the TCP RST signal from the crashed nodeand will not consume tangible part of node’s bandwidth.

2. The overhead of OneAcceptor in failure scenarios

5.1 Experimental Setup



140 o requires further calls to PaxosUtility service, when aithe
OneAcceptor s the active acceptor or the leader fails. The first scenario
that we consider is the failure of the active acceptor in
OneAcceptor. We kill the process of active acceptor and
measure the delay between the time that the active accep-
tor crash is detected by the failure detector and the time
that the leader receives prepaesponse message from
the new active acceptor. This time is equal to 208 ms.

In the second failure scenario, we kill the leader pro-
cess in OneAcceptor and measure the delay between the
time that the leader crash is detected by the failure detec-
tor and the time that another proposer stands in the leader
position upon receipt of the preparesponse message
from the active acceptor. The delay is equal to 261 ms.
We repeat the same failure scenario for Multi-Paxos as
well. The difference is that in Multi-Paxos a proposer
becomes the leader after receiving the prepasponse
message from a majority of acceptors, i.e., two. The re-
covery delay in Multi-Paxos is equal to 156 ms.

As the results show, the recovery delay from the leader
failure in OneAcceptor is more than the delay in Multi-
Paxos. However, considering the fact that the failure
happens very rarely, the small overhead is acceptable.
OneAcceptor also takes some time to recover from fail-
ure of acceptor. This delay does not exist in Multi-Paxos
since Multi-Paxos uses replicated acceptors, and hence
Figure 6: Recovery delay from different failure scenariosdoes not need to recover from failure of one of them. Us-
in Multi-Paxos and OneAcceptor. ing the same argument as used for the leader failure, the

recovery delay is acceptable when the failure of servers
. happens rarely. Furthermore, this delay is much less than
5.3 Commit L atency the failure detection delay in practical deployments of

To measure the commit latency, the application layeMulti-Paxos. For example, Chubby [2] reports 4 to 6
generates 100 proposal requests at rate of 0.5 requests p¥c0nds (and sometimes up to 30 s) delay for election of
second. We chose this low request rate to make sure thgt New leader. Therefore, some extra milliseconds does
the measured latency is affected only by the message d&8°t affect the performance of practical systems such as
lays and not the competition between different request§&hubby [2]- o _

and queuing delays. After committing the last proposal, For the sake of simplicity, we used Basic-Paxos
we measure the average latency between the time a pré@ Serve OneAcceptor as PaxosUtility. Each commit
posal is made and the time it is learnt. Figure 5 depictdn Basic-Paxos requires 4 message transfers between
the average latency experienced by each client requestervers which partly contribute to the recovery overhead
The average latency is almost the same in both Multi-of OneAcceptor. For production quality implementatio_n
Paxos and OneAcceptor; 105 ms in Multi-Paxos and 104 OneAcceptor we can remedy the overhead by using
ms in OneAcceptor. This shows that in error-free scenarother more efficient versions of Paxos.

ios, OneAcceptor does not impose any overhead in terms

of commit latency. 5.5 Throughput

To measure throughput, the application layer generates
200,000 proposal requests at full rate. The buffer size
According to the OneAcceptor design, we expect morefor outstanding proposals is selected proportional to the
overhead in failure scenarios. Nevertheless, because thieroughput which is 1000 and 500 requests in OneAccep-
failure happens very rarely, a negligible amount of im-tor and Multi-Paxos, respectively. Using larger buffers
posed overhead would be acceptable. In this section, wir each of the protocols resulted in high fluctuation
measure the imposed overhead in different failure scenain throughput. After committing the last proposal, we
i0s. The results are depicted in Figure 6. OneAcceptomeasure the rate at which the client requests were ser-
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Figure 5: Comparison of commit latency observed in
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Figure 7: Comparison of throughput achieved by Multi- Figure 9: The changes in throughput achieved by Multi-
Paxos and OneAcceptor. Paxos when the leader fails.

12000 —————————————— 7
12000 ————— — i
Leader Failure Accep’t\‘or Ea!:ure ,,,,,,,,,,,
No Failure ———— o Failure

10000 10000 -

8000 8000 [

6000 6000

Proposals/sec
Proposals/sec

4000 4000

2000 2000

ol . N
ol v b

0 10 20 30 40 50 60 70 80 901001 10120130140150 Oww%mwwmwwwmwwmw
Time in 100 ms Time in 100 ms

Figure 8: The changes in throughput achieved byFigure 10: The changes in throughput achieved by
OneAcceptor when the leader fails. OneAcceptor when the active acceptor fails.

viced. Figure 7 presents the achieved throughput by each this period it cannot issue new proposals.

approach. Multi-Paxos managed to service 2816.9 re- Figure 10 plots the throughput of OneAcceptor when
quests per second. This number increases up to 8120 the active acceptor fails. Similar to leader failure,
OneAcceptor by a factor of 2.88. This increase was exOneAcceptor requires some extra steps to switch the ac-
pected because of the reduction in the inter-server traftive acceptor, during which the throughput drops to 0.

fic by OneAcceptor. The leader in OneAcceptor issues Overall, Multi-Paxos performs better during failure
acceptrequest commands to only one acceptor and rescenarios. Nevertheless, given that the failure happens
ceives replies from only one acceptor as well. The refarely, the significant increased throughput by OneAc-
duced outgoing and incoming traffic, allows the leader toceptor justifies its longer recovery time in the case of

use the freed bandwidth to service more client requestsfailures. In some practical implementations, the applica-
tion which uses Paxos is deliberately designed to be less

_ ) _ sensitive to unavailability. For example, Chubby [2] uses
5.6 Throughput in Failure Scenarios coarse-grained locks as opposed to fine-grained locks to

. . . be less sensitive to system availability. Therefore the
In this section, we measure the changes in syste

th hout in diff t fail . Th ¢ "Umall unavailability in the failure scenarios is well jus-
roughput in different failure scenarios. e setup iSytiad in such a systems.

the same as in Section 5.5 for measuring throughput.
Figure 8 plots the throughput of OneAcceptor when the

leader fails. There is a gap between the times thatthe lag§ Related Works

leader fails and the new leader is elected. In this period,

the throughput drops to 0. The Multi-Paxos algorithm Multi-Paxos is the optimized version of Paxos used in
behaves the same when the leader fails. As it is illuspractical deployed systems [4, 2]. Paxos provides both
trated in Figure 9, the low-throughput period is less inreliability and availability of acceptors via replicatioim
Multi-Paxos. This is because OneAcceptor needs som@®neAcceptor, we propose to use a single acceptor in the
extra steps to safely recover from the leader failure, andommon deployment setup that involves three servers.



We provide the availability of the acceptor via some acceptor messages of Multi-Paxos are eliminated in Fast
backup acceptors. To guarantee the reliability of the dat®axos, the messages must be sent to more acceptors,
kept by the active acceptor, OneAcceptor runs a sepa3f + 1. For f = 1, the message/node is equal to 6
rate consensus algorithm to achieve consensus over thger command, which is the same number as Multi-Paxos.
replaced acceptor. The main insight underlying OneAc-Moreover, recent studies have questioned the actual la-
ceptor is not weaved to any particular version of Paxogency of Fast Paxos under realistic deployment scenar-
and can be applied to all of them to increase the systerios [8].
throughput. In this paper, we applied OneAcceptor to The proposed BFT protocols [10, 3] target safety as-
Multi-Paxos. suming not only crash-only but also byzantine faults.

Mencius[17] is derived from Paxos to distribute the BFT protocols are more expensive than Paxos family of
load of client commands among multiple leaders [14].protocols as they provide stronger guarantees. Multi-
Assuming a balanced load of client commands receivedPaxos has been successfully integrated into a number of
by the leaders, it splits the space of Paxos instance nunpractical deployed [4, 16, 2] systems. OneAcceptor also
bers among the leaders and each leader proposes the fecuses on Paxos family of protocols.
ceived client commands only for its range of instance Zookeeper [1] is a centralized service for maintaining
numbers. By doing so, the leaders can in total serviceonfiguration information and providing distributed syn-
more aggregate commands from clients. Note that eacbhronization. It uses replication for scalability and aeli
leader still has to communicate with all the acceptors tability which means it prefers applications that are heavily
make a proposal. However, OneAcceptor is targeting theead-based. Taking advantage of the assumptions regard-
load on each leader individually. It is not limited by as- ing existence of some capabilities such as atomic file cre-
suming a balanced load on leaders. By reducing the numate and ephemeral files, Zookeeper’s design is much sim-
ber of messages exchanged between servers, each leagéar than Paxos. In contrast, OneAcceptor is designed for
in OneAcceptor can service more client commands. Theeneral usage of Paxos and it is not confined with any as-
main insight of OneAcceptor can be applied to any proto-sumption about the availability of such capabilities. For
col in the Paxos family. Mencius could also benefit from the similar reason, the workloads used in Zookeeper are
the main insight of OneAcceptor and increase the systemot good benchmarks for evaluation of OneAcceptor and
throughput even more. By that, each leader in Menciusther Paxos-based systems.
would be assigned to a single separate acceptor, and the
overall throughput would increase even more.

A subset of protocols in Paxos family target the com-

mit latency of client commands [13, 5, 12]. In Basic- i thi d OneA hich ch
Paxos, each client command takes four message delaﬁlt IS paper, we proposed Yne cceptor which ¢ anges
ulti-Paxos to use only a single acceptor and to switch

between the servers. Multi-Paxos is similar to Basic, ith her back i th £ fail
Paxos for the first command but for the next commandét with another backup acceptor in the case of failure.

it requires only two message delays between server -or the deployment setup which uses three servers, the
This does not include the RTT delay between the clien{c@der can safely handle the replacement of the accep-

and the leader. Fast Paxos [13] using more replicast,or' We have shown how to switch to more number of

3f + 1, saves the delay between the leader and the aé]odes, when more than one failure is envisaged in near
ceptors by allowing the client to optimistically send the future. Furthe_r moreb, n One(,jAccep_tor thle acr(]:_e prJ]tzrs ?)ata
acceptrequest messages directly to the acceptors. If thgoes.not require to. est.or.e p.erS|stent y. which has been
commands from different clients collide, it will be re- & MO challenge in efficient implementation of Multi-
solved by spending some more steps. The average I.2X0S: OneAcceptor addresses the problem of saturated
tency can be lower if the rate of collisions is low, as it is eaders which practical systems such as Chubby [2] have

stated by Lamport: "If collisions are too frequent, then ;)een d?a;lf:lg with. _Thﬁ experlmer;]tal rehsultsbshovy a
classic Paxos might be better than Fast Paxos.” actor of 2 increase in the system throughput by using

In the scenarios that the throughput of the system is zg) neAcceptor.
bottleneck, the number of client commands is very high,
and consequently the probability of collisions will in- References
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if (lamLeader)
in = nextuncommitedinstancenumber();
v = getAny(n);
sendtoA, acceptrequest{n, pn, v);
else
YouMustBeFresh = true;
pn = newpn();
if (A, ==null)
(Aq instance,proposals) =
PaxosUitility.lastActiveAcceptor();
success = PaxosUtility.proposéf.stance,
LeaderChangefte, A.));
if ('success)
A, =null; return;
registerProposalgfoposals);
YouMustBeFresh = true;
sendtoA, preparerequest{n, pn, YouMustBeFresh);

s7Upon Receive prepanesponsed;, pn, ap)

if (IamLeader || A; # A,) return;
IamLeader = true;

registerProposalsp);

in = nextuncommitedinstancenumber();
v = getAny(n);

sendtoA, acceptrequestn, v);

44
4s Upon Receive prepanequestp;, pn, YouMustBeFresh)

if (pn > hpn)
if (lamFresh '= YouMustBeFresh)
return;
IamFresh = false;
hpn = pn,;

sendtoP; prepareresponsefn, ap);
else sendtoP; abandonfpn);

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahades:Upon Receive accepequest(’, in, pn, v)

van, Dejan Kosfi, Jeff Chase, and David Becker. Scala®
bility and Accuracy in a Large-Scale Network Emulator’®
In OSDI, December 2002. 5

58
59

APPENDI X: OneAcceptor e

61

The pseudo code for our OneAcceptor algorithm, ex-
plained in Section 4, is presented in Figure 11. If the pro-

if (pn # hpn)
sendtoP; abandon();
eseif (ap[in] # null)
multicastL learn¢n, ap[in]);
else
aplin] = (pn, v);
multicastL Learnpn, accepted);

Figure 11: OneAcceptor Algorithm



poser recognizes itself as the leader of the active accepy oc init()

tor, VariableIam Leader is set. As in Multi-Paxos, the , 1amLeader = false; A, = null;

leader does not need to send a prepamiest message s ap = emptyMap();hpn = —oo

to the acceptor and starts directly with the acompjuest + [amFresh =true;

message using the last promised proposal number. Vaii- )
. . 6 proc getAny(@n, ap)

able A, refers to the active acceptor Idp is the map .= = proposed[in];

structure keeping the accepted proposisyFresh in- 5 if (v  null) return v;

dicates that the acceptor has adopted no leader yet. Tshev = nextClientRequest();

highest proposal number is stored in Variabje:. Ini- 1 proposed[in] =v;

tially the highest proposal number is equal ta.- Pro- * "€turno;

cedureinit, presented in Figure 12, initializes the men}i proc registerProposalgtoposals)

tioned variables. As for the rest of the variablgs,is ., foreach p inap

the proposal numbeir. is the Paxos instance number, s proposed|p.in] = p.v;

is the value (proposed or accepted)s the list of the

proposers/. is the list of learnersye is the node Id, and

YouMustBeFresh indicates that the proposer expects to

be the first proposer that contacts the acceptor.
Upon a failure of the active acceptor, the leader first
checks whether the others still believe him as the leader
or not. If not, one other proposer has taken its positionin the case of success, before sending the prefeaypaest
(probably because of a false leader failure alarm). Inmessage, it first registers the proposed values which have
this case, it relinquishes the leadership position and rebeen recorded with the last AcceptorChange entry. If the
turn. Otherwise, it callselectAcceptofunction to select acceptor is supposed to be a fresh backup acceptor, it
a new acceptor which is located on a separate machinalso sets Variabl&ouMustBeFresh which is sent by the
than the leader node. The leader then announces theessage.
change of the active acceptéwceptorChangethrough Upon receipt of the prepamequest message from
PaxosuUitility. It also attaches the uncommitted proposedProposerP;, the acceptor verifies the highest proposal
values to theAcceptorChangentry. The failure of this  numberhpn to be less than the requested proposal num-
step indicates that another item is chosen for the curreriter, pn. Otherwise, it sends an abandon message back
instance of PaxosUtility. In this case, the leader returnso Proposer?;. If Variable IamFresh is set but Variable
from this procedure to try again later. In case of successYouMustBeFresh is not, it indicates that the proposer
however, the leader resets Varialblen Leader because expected the acceptor to be already adopted by the last
it has to start from the first phase of Paxos with the newleader. However, due to the acceptor reset, the acceptor
active acceptor. has lost its data, includingpn andap. This check avoids
Upon failure of the current leader, a proposer tries tothe cases where the active acceptor silently reboots be-
take its position by calling Procedupgopose The pro-  fore the leader switch. In this case, the last leader should
cedure then obtains the active acceptor Id and sends switch the rebooted acceptor.
preparerequest message to it. Upon receipt of the prepamesponse message from
Procedureproposeproposes a value for the next un- the active acceptor, the proposer claims the leadership
committed instance number. If the node is already theposition by setting Variabldam Leader. The getAny
leader, it directly sends an accaptjuest message to the method, presented in Figure 12, picks a value to be ac-
active acceptor. Otherwise, it sends a prepamiest cepted for the instanci. The picked value can be any
message to the active acceptor, in accordance with thgiven value, unless there is already a proposed but un-
first phase of the Paxos algorithm. If the active acceptocommitted value for the instanée. This case can occur
Id is unknown to the proposer, it must be obtained viain change of the active acceptor, when some proposed
PaxosUtility. ThdastActiveAcceptomethod checks the values are not committed yet by the previous active ac-
sequence of committed entries looking for the last  ceptor. If any proposal matches the instance nunibger
ceptorChangentry; this entry contains the active accep-to avoid inconsistency, the proposer picks the same pre-
tor Id. Next, the proposer addslzaderChangesntry  viously proposed value. It then sends an aceceptiest
via PaxosUltility. The failure of this step indicates that message to the active acceptor.
another item is chosen for the current instance of Paxo- Upon receipt of the accepequest message from the
sUtility. In this case, the procedure resets the valug pf  leader, the acceptor first checks for the proposal number.
and returns. We assume that the implementation retrieAlso, it checks that there is no proposal accepted corre-
the failed attempt via timers or some other mechanismssponding to the instance number, i€n[in]. Otherwise,

Figure 12: The implementation of Procedures init,
getAny, and registerProposals, in OneAcceptor Algo-
rithm



it broadcasts the learn message of the accepted proposainsecutive Global acceptafsd, andG A, 1, respec-
again to cover the cases that the lost learn message hagely. If i, = iq41, thenv, = v,yq.
motivated the proposer to retry. It then stores the pro- Lemma 2a is directly followed by the implementa-
posal in the accepted proposal map|in|. Afterwards, tion of the ProcedurgetAnyin Figure 12. There, the
the accepted proposal is broadcasted to all the learnetsader first checks the history of the proposed values. If
accordingly. any value has already been proposed for the requested
instance number, then the procedure returns the same
value. Hence, as long as the Global leader is not changed,
B APPENDIX: Proof of Correctness the proposed value for a particular instance number will
be always the same.
Here, we prove the correctness of the algorithm pre- The next step is to show that an acceptor accepts the
sented in Appendix A. We first prove some properties forsame proposals from two consecutive Global leaders.
the entries in PaxosUitility, which we then use to prove | emma 2b Suppose that the active acceptor
that no two different values would be accepted for the; 4, accepts two accepequest messagesy ;) and
same instance number. The proof for the simple casg,, ., ;. ), from two consecutive Global leade@L,
where there is no change in the active acceptor nor thengGr, ., respectively. Ifi; = iy, 1, thenv, = vy41.
leader node, is trivial and similar to the proofs of Pax_os. Node G L, becomes the Global leader only after
Here, we focus on the complex cases where the algorithna ccessfully inserting a LeaderChange entry via Paxo-
switches the leader and the active acceptor. sUtility. In the algorithm presented in Figure 11, this
PaxosUtility contains entries for changing the activepappens only at Line 30 inside the Procedprepose
acceptor, i.e. AcceptorChange, and entries for changrt also implies that the value of Variableimlcader is
ing the leader, i.e. LeaderChange. We defineGlebal  faise (Line 25). GL,.; will not start proposing val-
leaderandGlobal acceptoras follows: ues unless the value of Variableimleader changes
definition In the sequence of PaxosUltility entries, the to true (Line 21). Line 41 is the only location where
node which has inserted the last LeaderChange entry iﬁhe value of this variable is Changed to true upon re-
the Global leader Similarly, the active acceptor an- ceipt of a prepareesponse message. It indicates that
nounced by the last AcceptorChange message, represenfge active acceptor has received the prepatpiest mes-
the Global acceptor We useGL; to represent théth  sage, approved the proposal number, and responded by
Global leader andr A4; to represent théth Global accep-  the prepargesponse message which is also piggybacked

tor. by all the previous accepted proposais;. The re-
Lemma 1 An AcceptorChange entry is inserted only ceived accepted proposals are registered by the leader
by the Global leader. (Line 42). The registered values will be later used for all

Lemma 1 is guaranteed by lines 3..13 of Figure 11. Inthe next proposals in ProceduyetAny In other words,
Line 4 the leader verifies that it is still the Global leader.the GL,; will propose the same values which acceptor
It also keeps the index of the last empty instance numbeiZ A, has already accepted.
instance. Later in Line 10, it proposes the Acceptor-  Similar to Basic-Paxos A4, will reject all the other
Change message for that instance number. The failure qfotential issued accepéquest messages WyL; after
this phase implies that another node has inserted somgending the prepanesponse message®l; ;. On the
thing in the meanwhile. In this case, the handler returnsther hand, as we showed aboveGifi, has accepted
to retry the procedure later from scratch. Therefore, theany value fromG L, for a particular instance number, it
AcceptorChange message is inserted only by the Globalkiill not receive any different value frol&@' L, for that
leader. sequence number. Consequentlyl, always accept the

According to Lemma 1, the Global acceptor representsame values from two consecutive Global leaders.
the active acceptor which the Global leader is working Having Lemma 2a and Lemma 2b, now we present the
with. correctness proof of the algorithm.

Now we prove by induction that the same value will ~ (*) Suppose that two acceptofsA, andG A, accept
always be accepted for a particular instance number. Thavo acceptrequest messagesyq(i,) and @qr,iq’), re-
first step is to show that a Global leader does not proposeeived from the Global leadelSL; and GL;, respec-
two different values for the same instance number wherively, where!’” > [ anda’ > a. If i, = 4, then
it switches between the acceptors. Hereafter, we use the, = v, .
pair (v,i) to represent the valueand instance numbeér The proof is by induction on the size of sequence of
of a given acceptequest messages. entries in the PaxosUtility utility. Assume that property

Lemma 2a Suppose thatzL; has issued two ac- (*) holds when PaxosUtility hak entries. We prove that
ceptrequest messagesy,(i,) and @q+1,74+1), to two it still holds when PaxosUTtility hak + 1 entries.



Recall that the entries in the PaxosUtility utility are ei-
ther AcceptorChange or LeaderChange. If the 1th
entry is AcceptorChange, based on Lemma 1 it is in-
serted by the last Global leader. Thus, g is the same
and theG A changes. This is the case in Lemma 2a for
which we proved that no two values will be proposed for
the same instance number. If ther 1th entry is Lead-
erChange, we can assume tl@at is the same during
this change. This is provided by the Lines 29..30 in Fig-
ure 11, where the new leader takes the same active accep-
tor as was taken by the last leader. This case is covered
by Lemma 2b for which we proved that no two values
will be accepted for the same instance number. Conse-
quently, if we assume that no two values are accepted for
the same instance number in the fikséntries of Paxo-
sUtility utility, this also holds for the firsk + 1 entries.

Now, to complete the proof, we need to show that the
theory holds fork = 2. We can make it hold by an ini-
tialization process. At the start up, the node with the
smallest Id can insert two entries for LeaderChange and
AcceptorChange to announce itself as the Global leader
and its active acceptor as the Global acceptor. Because,
no change in the roles happens in the initial case, neither
for the leader nor for the active acceptor, then the theory
directly holds for this case.



