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Abstract
The celebrated Paxos protocol implements a reliable

service as a state machine replicated over several ma-
chines. Replication provides reliability against perma-
nent failures and availability against temporary crash
failures. Whereas, in theory, Paxos can tolerate any num-
ber f of crash failures using2f + 1 replicas, in prac-
tice, it is often appealing to use it in order to tolerate a
single failure using three replicas for the probability of
two simultaneous failures is sometimes considered low
enough. We show in this paper how, in this particular
case of three replicas, we can increase the throughput
of Multi-Paxos, which is an efficient variation of Paxos
used in deployed systems [4, 2], by a factor of 2 by
using a new protocol we call OneAcceptor. In short,
OneAcceptor changes Multi-Paxos to use only a single
acceptor role and to switch it with another acceptor in
the case of failure. The number of exchanged messages
between replicas reduces considerably, without trading,
however, neither the consistency nor the availability of
Multi-Paxos.

1 Introduction

Recently, the increased demand for data replication over
multiple, possibly geographically distributed, data cen-
ters, has raised interests to design, deploy, and ex-
periment relevant protocols for maintaining consistency
among replicas [4, 16]. Multi-Paxos [15] is one of the
most important such protocols. Even if it has been con-
sidered in a wide variety of settings [4, 16, 2, 7], it
reportedly suffers from scalability issues [2]. In short,
Multi-Paxos relies, at any point in time, on one of the
replicas to act as a leader. The client commands must
be first received by that leader and the leader’s network
bandwidth limits the number of client messages that can
be received per unit of time.

In this paper, we propose a more efficient version of
Multi-Paxos, OneAcceptor, designed for the deployment

Figure 1: The reduced number of messages in OneAc-
ceptor compared to collapsed Multi-Paxos deployed on
three servers. The dotted box represents the node bound-
ary. The dashed messages, which do not cross the node
boundary, do not consume the node bandwidth. P, A, and
L represent the proposer, acceptor, and learner roles, re-
spectively. The grayed acceptors and consequently the
communications to/from them are eliminated in OneAc-
ceptor.

scenario in which the data is replicated over three servers.
Indeed, Multi-Paxos can tolerate any numberf of crash
failures using2f +1 replicas. In practice, however, using
more number of replicas reportedly increases the average
commit latency [7] and decreases the system through-
put [2]. It is appealing, therefore, to consider only three
replicas which tolerate only a single failure (at a time).
The probability of two replicas failing at the same time
is sometimes considered low enough for the system de-
signer to accept to wait for at least one of them to recover
in that rare failure scenario. OneAcceptor is very simi-
lar to Multi-Paxos, with a small difference: OneAcceptor
uses only one acceptor. (In Multi-Paxos, the role of the
acceptor is to resolve conflicts between multiple propos-
als.) Figure 1 illustrates the difference between OneAc-
ceptor and Multi-Paxos by highlighting the changes in
the communication between nodes. The grayed accep-



tors are eliminated in OneAcceptor, and the communica-
tions to/from them are also eliminated accordingly.

Reducing the number of acceptors to one has a major
impact on improving the system performance, yet with-
out jeopardizing neither the consistency nor the avail-
ability of the system. In OneAcceptor, the acceptor’s
availability is provided bybackup acceptors; the leader
switches its failed acceptor with a fresh backup accep-
tor. Using three servers implies that the replicated data
is reliable even against two permanent failures and the
system can progress even with one failed server, just like
in Multi-Paxos. In the failure scenarios, however, the
commit latency increases slightly by OneAcceptor, due
to longer recovery time.

To progress even with more number of crash failures,
f , more replicas should be used, i.e.,2f + 1. Inspired
from previous work for switching safely between differ-
ent implementations of BFT protocols [6], we explain
how to safely switch from three replicas of OneAcceptor
to more replicas of Multi-Paxos. Therefore, the system
can still progress even with higher number of failures.

OneAcceptor targets reducing the Paxos-related traf-
fic on the leader and uses the freed bandwidth to service
more client requests. Hence it can be more beneficial in
the systems that the Paxos-related traffic is the major load
on the leader. If the leader server is used to also service
other type of requests, to make the best use of OneAc-
ceptor, the non-Paxos traffic should be serviced via other
servers perhaps by using proxies, as it is suggested by
Chubby [2]. We will discuss the workload issue in detail
in Section 5.

Also, the persistent storage of data has been one of
the main challenges in efficiently implementing Multi-
Paxos [4]; the acceptors has to store their data persis-
tently before responding to any request. After failure, the
failed acceptor is not usable until it recovers all the im-
portant data from the persistent storage. In our approach,
the data in the acceptor is no longer required to be stored
persistently; in the case of reboot and losing the data in
the main memory, the crashed acceptor is replaced with
another backup acceptor. This feature becomes possible
in OneAcceptor because it can survive loss of acceptor
data.

A system like Chubby [2] could greatly benefit
from OneAcceptor if deployed on three replicas. In
Chubby [2], the client command messages are to acquire
the lock on a particular file and are, hence, small. On
the other hand, the bandwidth of the leader is partly used
to receive client commands and partly to communicate
with the other replicas. By decreasing the number of
exchanged messages between the leader and the other
replicas, the leader can use the freed bandwidth to ser-
vice more client commands.

The rest of the paper is organized as follows: Sec-

tion 2 explains the design of Paxos and dissects the role
of each Paxos participant. In Section 3, by explaining
the key insight of OneAcceptor, we illustrate the differ-
ences between OneAcceptor and Multi-Paxos. The de-
tailed design of OneAcceptor is presented in Section 4.
We present our experimental results in Section 5. Sec-
tion 7 concludes the paper with some final remarks.
Appendix A presents the pseudo code of OneAcceptor
which is followed by the correctness proofs of OneAc-
ceptor in Appendix B.

2 Background

In this section, we explain Paxos as well as Multi-Paxos,
an optimization of Paxos for practical applications [4].
A single central server that services the commands re-
ceived from a set of clients is clearly not fault-tolerant:
any failure in the central server could take the whole sys-
tem down. One way to address this problem is to use
multiple servers and replicate the system state on them.
In this way, if one of them fails, the others will continue
serving the clients. There are certain challenges in pre-
serving the consistency of the replicas, especially with-
out making strong assumptions about the synchrony of
the network. For instance, two issued commands by the
clients could reach two servers in the inverse order and
that would cause inconsistency between the system state
in those two servers.

Paxos is an algorithm proposed by Lamport [15] to ad-
dress such challenges. Paxos assumes the service to be
implemented as a state machine, replicated on multiple
servers. It gives an order to the issued commands by the
clients and guarantees that all servers execute the com-
mands in the same order. Note that the agreed order is
not necessarily according to the time the commands have
been issued by the clients. In other words, if a client is-
sues a commandC1 before another client a commandC2,
the algorithm guarantees that on all servers they will be
applied in the same order, either asC1-C2 or asC2-C1.

We now give a brief description of the original Paxos
algorithm [15] which is called Basic-Paxos hereafter in
this paper.

2.1 Basic-Paxos

The original version of Paxos was first presented in [15]
and was further explained in [11]. The participant servers
in Basic-Paxos implement three different roles: proposer,
acceptor, and learner. The proposers advocate the client
commands, the acceptors resolve the contention between
multiple proposers, and the learners learn the chosen val-
ues.

The ultimate goal of Basic-Paxos is to assign orders to
client commands. The order of a client command, which



Figure 2: The interaction between nodes in Basic-Paxos.
This example consists of one proposer, three acceptors,
and two learners. In Multi-Paxos, the leader skips the
first phase, i.e., preparerequest and prepareresponse.

is called a value in Paxos terminology, is specified by an
instance number. To assign values to instance numbers,
Basic-Paxos requires two phases. In the first phase, a
proposer attempts to become leader for a particular in-
stance number. In the second phase, the leader proposes
a value to the acceptors and, this value is learned by the
learners. For each instance number, the proposers try
to settle on a value. All the message transmissions re-
lated to a particular order constitute a separateinstance
of Basic-Paxos. The interaction between nodes is de-
picted in Figure 2.

We now explain one instance of Basic-Paxos, step by
step:

1. client command: The clientcommand message,
which comes from a client to proposers, contains
a command from the client. The proposer then ad-
vocates the client command.

2. preparerequest: The proposer first picks an order
for the client command, which is called Paxos in-
stance number. Then, it tries to take the leader-
ship position and asks the acceptors to recognize it
as such by broadcasting a preparerequest message,
which contains a proposal numberpn. The proposal
number distinguishes different attempts of the pro-
poser for the same instance number.

3. prepareresponse: Upon receipt of a pre-
parerequest message, each acceptor checks
the proposal number. If the proposal number,
pn, is greater than the proposal number of the
previous accepted proposals, the acceptor sends a
prepareresponse message back to the proposer. By
that it promises not to accept any proposal number
smaller thanpn. The highest proposal number must
be stored in a persistent storage. If the acceptor has

already accepted a value, the value will be included
in the prepareresponse message.

4. acceptrequest: After receiving the pre-
pareresponse messages from a majority of
the acceptors, the proposer assumes itself as the
leader. It first decides on a value; one selected from
values received from a majority of the acceptors if
they have already accepted a value, or any value
otherwise. It then sends to all the acceptors an
acceptrequest message with the proposal number
pn and the proposed value.

5. learn: When an acceptor receives the acceptrequest
message corresponding to the promise it has made,
it accepts the proposal and broadcasts a learn mes-
sage to all the learners as well as the proposer. The
accepted value must be stored in a persistent stor-
age.

6. client ack: When a learner receives the learn mes-
sage from a majority of the acceptors, it recognizes
the proposed value as chosen and can inform the
clients with a clientack message. Alternatively, this
can be done by the proposer that advocates the client
command.

Basic-Paxos guarantees the following two safety prop-
erties [15]: i) non-triviality: only the proposed values
can be learned; and ii) consistency: two different learn-
ers cannot learn two different values.

Each role can be implemented by a separate server.
But usually a single machine implements all the three
roles, which is then called Collapsed Paxos. The ad-
vantage is that the transferred messages between two
roles that are located on the same server do not cross
the node boundary and thus less bandwidth will be con-
sumed. According to the liveness property of Basic-
Paxos[13] a value will be eventually chosen, given that
enough servers are running. For example, in the men-
tioned deployment setup, the liveness property holds as
long as two of the three servers are running.

2.1.1 The Roles in Paxos

In this section, we take a closer look at the different
roles in Paxos. This is essential to understand the ra-
tionale behind the applied changes into Multi-Paxos by
the proposed protocol, OneAcceptor. As mentioned be-
fore, there are three major roles in Paxos: i) proposer, ii)
acceptor, and iii) learner.

The proposer role is to advocate the client command.
This is essential for scalability of the system. If the
clients have to be involved in the consensus process (for



example by advocating their own request), then the sys-
tem cannot scale with the number of clients. By relin-
quishing this task to the proposers, the consensus is re-
quired among only a few servers and thus it is more scal-
able with the number of clients.

The learner is the actual long-term memory of the sys-
tem. When a Paxos instance is finished successfully and
its value is learnt, this value is kept in the multiple avail-
able learners. The clients then can read this value from
each of the learners.

The acceptor is the main role in Paxos that makes the
consensus achievable. If multiple proposers want to pro-
pose values for the same Paxos instance, the acceptor is
the key role to resolve the contention between the com-
peting proposers. Suppose some acceptors accept value
v0 from ProposerP0, and for some reasons the Paxos in-
stance does not complete successfully. Now, to finish the
instance, ProposerP1 must first read theaccepted value
by the acceptors (i.e.v0) and propose thesame value.
It implies that the acceptors play the role of the short-
term memory for the system; they must remember a few
values during the short period of one Paxos instance.

2.1.2 Replication in Paxos

In general, we have two types of replication: i) replica-
tion of service and ii) replication of data. Replication of
service increases the availability of the system. In other
words, when a client requests for the service, we want
to make sure that there is at least one responding server,
ready to receive the client commands. The replication of
data, however, is for increasing the reliability of the sys-
tem. In other words, it decreases the chance of data loss
by missing some servers (after permanent failures).

The Paxos roles are replicated, but each one for a dif-
ferent purpose. The replication of the proposers is to in-
crease availability, as the proposers provide a service for
the clients, i.e., advocating their request. In contrary, the
learners store the data of the system, and the purpose of
their replication is to enhance reliability.

The acceptor replication is partly for service availabil-
ity and partly for data reliability. The proposers start
the consensus process by contacting the acceptors. Thus,
they require the provided service by the acceptor role to
be available. In addition, as mentioned before, there are a
few data kept by the acceptors such as the accepted value
and the promised proposal number, which should be kept
during the Paxos instance. However this data is required
only for the active Paxos instance, and in the case of fail-
ure, we can think of some workaround solutions.

The main insight of this paper, which will be explained
later in Section 3, comes from the following observation:
the replication of the acceptor role is mainly for avail-
ability, and if its availability is provided via other mech-

anisms, then the replication of acceptor is no longer nec-
essary.

2.1.3 Persistent Storage

If an acceptor node crashes, Paxos still can progress as
long as a majority of the acceptors are running. The
crashed acceptor can get back to the game as soon as it
recovers the stored data from the persistent storage, such
as the highest proposal number and the accepted propos-
als. Persistent storing of data is one of the main chal-
lenges in efficient implementation of Multi-Paxos [4].
The memory buffer of the file must be flushed imme-
diately after each write; otherwise the data in the buffer
would be lost by a sudden crash.

2.2 Multi-Paxos

After a proposer takes the leadership position for one
instancein, it could be more efficient if it assumes
the leadership position for the next Paxos instancesin′

(in′ > in) as well. The other proposers can still try to
become leader when they suspect that the last leader is
failed. Multi-Paxos [11] is the version of Paxos which
implements the mentioned optimization. The algorithm
is schematically explained in Figure 2.

The first round is similar to Basic-Paxos. When a
ProposerP becomes leader, it uses the same proposal
numberpn for the next Paxos instances. Hence it can
skip the first phase of Basic-Paxos, i.e. preparerequest,
and start directly with the acceptrequest message. If in
the meanwhile, another ProposerP ′ tries to become the
leader with a higher proposal numberpn′, then the pro-
posal number ofP will not be the maximum proposal
number any longer, and its acceptrequest messages will
be rejected. ProposerP can then either relinquishes the
leadership position to ProposerP ′ or try to become the
leader again by sending a preparerequest message with
a new proposal number.

3 Main Insight of OneAcceptor

As we explained in Section 2, the availability of the ac-
ceptor role can be provided in different ways. One ap-
proach, which is taken by Multi-Paxos, is the replica-
tion of the acceptor. A side-effect of this approach is the
increase in the number of exchanged messages between
acceptors and other roles. An alternative approach is to
have somebackup acceptorsready to use, and replace
the failed (or suspected to be failed) acceptor with a new
fresh one from them. Taking this approach is the main in-
sight underlying OneAcceptor; which reduces the num-
ber of exchanged messages between servers by a factor
of two.



Figure 1 depicts message transmission in a collapsed
Multi-Paxos setup that consists of three nodes. The mes-
sages that cross the node boundary must be included in
the total number of messages. Therefore, we have the
following equation for Msgmulti−paxos, the total num-
ber of exchanged messages between servers in a normal
Multi-Paxos instance:

Msgmulti−paxos = (A − 1).(A + 1) (1)

, whereA is the number of acceptors. Then, for the usual
setup of three nodes, this value would be equal to 8 in
Multi-Paxos as opposed to 4 in OneAcceptor.

The total number of messages affects the overall con-
sumed bandwidth between servers. Beside that, one in-
teresting parameter is the number of sent/received mes-
sages by the leader node, Msgleader

multi−paxos. The leader
exchanges more messages compared to the other nodes
and hence when it gets saturated, the system cannot ser-
vice more client commands. This is reportedly a prob-
lem for scalability of Multi-Paxos [2]. In the common
setups, each server plays all the Multi-Paxos roles and
hence the leader node is also a learner as well as an ac-
ceptor. Thus, the total number of messages exchanged
between the leader node and the other nodes is:

Msgleader
multi−paxos = 3.(A − 1) (2)

Again, for the usual setup that includes three servers, this
number is equal to6. OneAcceptor reduces this number
to 3 by using only one acceptor. Consequently, we expect
at least a factor of two increase in the system throughput
by switching from Multi-Paxos to OneAcceptor.

One interesting variation of collapsed Multi-Paxos
that we also considered uses fewer acceptors. In such
a case, fewer messages would be exchanged since some
acceptors are not active. For example, in the common
setup with three nodes, if Multi-Paxos uses only two of
them as acceptor, then the number of exchanged mes-
sages by the leader would be 4 per command, as op-
posed to 6. Thus, the throughput would be improved by
a factor of 1.5. This is less than the improvement by our
protocol which is a factor of 2. Using fewer proposers
and learners will reduce the availability and reliability of
the system, respectively. Therefore, we do not compare
OneAcceptor with such variations.

It is worth noting that the above argument is based
on the assumption that the nodes communicate through
unicast messages. In the particular case that the Multi-
Paxos nodes are deployed on the same LAN, the mes-
sages could be transferred via broadcast. However, we
do not confine OneAcceptor by making any assumption
about the deployment environment. Chubby [2] uses
Multi-Paxos over wide-area networks where the broad-
cast is not available. Even inside a data server, the Multi-

Paxos nodes are likely to be placed into separate racks,1

which are connected by a network switch. Broadcasting
through switches is not free as it is inside a LAN. There-
fore, assuming the availability of broadcast messages is
far from realistic scenarios.

So far we have shown that instead of replicating the ac-
ceptor role, we can keep the other acceptors as backup,
ready for use but not involved in the message passing
process of Multi-Paxos. Although, using backup accep-
tors addresses the problem of availability and yet pro-
vides better performance, we still need to find a solution
for the reliability of the acceptor data.

Recall that the acceptors also keep a few data, which
are necessary during short-term period of a single Paxos
instance to address the possible contention between mul-
tiple proposers. Missing this data by switching from the
active acceptor to a fresh backup acceptor in the mid-
dle of a Paxos instance can violate the reliability of the
system. For instance, if the active acceptor promises not
to take any proposal number less thanN , then a fresh
new acceptor would not be aware of this promise and
might accept proposal numbers less thanN . Neverthe-
less, if the proposers get properly notified of this data
loss, they can safely restart the Paxos instance without
risking the protocol integrity. For example, upon receipt
of the failure notification of the active acceptor, the pro-
posers know that the promised sequence number by the
previous acceptor is no longer held.

We will explain in Section 4 that if we assume that
the leader and the active acceptor nodes do not fail at the
same time, then there exist a process in which the leader
can safely notify the other proposers of the active accep-
tor switch. This assumption is valid in the common setup
that consists of three physical servers implementing three
proposer, three learner, and one acceptor roles.

By carefully placing the proposer and acceptor roles
among the physical servers, in a way that the leader and
the active acceptor are placed in two separate physical
servers, we can make the assumption that the leader and
the active acceptor do not fail at the same time. The
violation of this assumption cannot occur unless two
of the three physical machines crash. In this case, we
would be left with one machine which is less than the
minimum required machines for Multi-Paxos to progress
(min > total/2).

Because OneAcceptor discards a failed acceptor, in
contrast to Multi-Paxos, the acceptor data is no longer
required to be stored persistently. We need only to iden-
tify the silently rebooted acceptors. The leader can detect
the reboot by either using TCP as the transport protocol

1Google reports that due to cost issues, they replace the whole rack
of servers in the case of a failure. Therefore, if all of the Multi-Paxos
nodes are placed in the same rack, they all will be unavailable after a
single failure.



or initializing the peer after the first contact. A simple
variable in the acceptor, such asIamFresh, which is ini-
tialized by the first contact from the leader, can help the
other proposers to detect the reboot of the acceptor.

4 Design

In this section, we explain the design of OneAcceptor
in detail. As mentioned in Section 3, the idea is to use
only one active acceptor and provide the availability via
some backup acceptors. The small changes applied to the
protocol also take care of the reliability when the active
acceptor is replaced. This idea can be applied to any of
the numerous available versions of Paxos. For the sake of
simplicity in presentation, in this paper we focus only on
Multi-Paxos, which is the stable version used in practical
deployments [4, 2].

OneAcceptor uses all the Multi-Paxos messages in a
similar format. We first start this section by describing
the process in the error-free scenario. Then, we explain
the changes we need to make in the Multi-Paxos algo-
rithm to handle each of the failure scenarios.

4.1 Error-free scenario

The steps in the error-free scenario are similar to Multi-
Paxos, except that the messages are sent to only one ac-
ceptor, i.e. the active acceptor. The roles in OneAcceptor
and the interaction between them is depicted in Figure 1.

1. ProposerP decides to take the position of the
leader. It first obtains the Id of the active acceptor,
A (we will explain the process of obtaining this Id
in the next subsection), and sends a preparerequest
message including a proposal number,pn, to Ac-
ceptorA. By that, the proposer asks the acceptor to
recognize it as the leader.

2. If the proposal number,pn, is greater than all the
previous proposal numbers received by the accep-
tor, it sends a prepareresponse message back to
ProposerP . By that, the acceptor promises not to
accept any proposal number smaller thanpn.

Notice that, similar to Multi-Paxos, these two steps
are necessary only for the first time a proposer con-
tacts the acceptor. After that, the proposer becomes
leader and skips these two steps.

3. ProposerP then sends an acceptrequest message
including the proposal numberpn as well as a pro-
posed value, to AcceptorA.

4. When AcceptorA receives the acceptrequest mes-
sage corresponding to the proposal number, to

Figure 3: The interaction between nodes in OneAcceptor
to switch failed AcceptorA with another backup Accep-
tor A′. In step 1, the leader makes sure that it is still
known as the leader by a majority of the nodes. Then
in step 2, it announces the change of the active acceptor.
Finally in step 3, it sends a preparerequest message to
the new active AcceptorA′.

which it has given its promise, it accepts the pro-
posal and broadcasts a learn message to all the
learners.

4.2 Acceptor Failure

Here, we consider the scenario in which active Acceptor
A fails and the leader switches it with another backup
AcceptorA′. It is worth noting that we do not assume
a perfect failure detection. Hence AcceptorA might be
still running and just mistakenly be suspected for failure.
Thus, the failure recovery scenario must take that into
consideration.

When the active acceptor fails, the leader is the only
node that is allowed to switch it with another backup ac-
ceptor. This change, however, must be confirmed by a
majority of the nodes. This is necessary to avoid hav-
ing multiple instances of active acceptors running in the
system. The scenario is illustrated in Figure 3.

Obtaining the confirmation of a majority of the pro-
posers is a separate consensus problem which can be
solved by any Paxos-like algorithm. Although, it is pos-
sible to merge this consensus into the main operation of
the algorithm, for the sake of simplicity, we assume that
the consensus over the new active acceptor is achieved
by a separate basic implementation of Paxos, which here-
after is called PaxosUtility. Notice that PaxosUtility in-
stance which handles consensus over the new active ac-
ceptor is totally separate and independent from OneAc-
ceptor algorithm that we are explaining here.

Beside the Id of AcceptorA′, the leader also includes
the uncommitted proposed values into the message sent
to the PaxosUtility. This is to cover the cases where Ac-
ceptorA has received an acceptrequest message with



Figure 4: The interaction between nodes in OneAccep-
tor when ProposerP ′ takes the leadership position from
LeaderP . In step 1, ProposerP ′ inquires for the active
acceptor Id. It then announces itself as leader in step 2.
Finally in step 3, it sends a preparerequest message to
the active acceptor.

valuevin for instance numberin, but the corresponding
issued learn message is not received by the other nodes
yet. In this way, it guarantees that the next leader will try
to propose the same value asvin for instance numberin.

After the leader finishes the consensus over the active
acceptor, the leader switches from AcceptorA to Accep-
tor A′, i.e., the new active acceptor. Because the acceptor
node has changed, the leader must start over with a pre-
parerequest message to take the leadership of the new
acceptor.

4.3 Leader Failure

In Multi-Paxos, every proposer can spontaneously try to
take the leadership position by sending a preparerequest
message to the acceptors. In practice, this usually hap-
pens when a proposer suspects that the current leader is
failed. In OneAcceptor also, when the leader fails, any
proposer can try to take its position by sending a pre-
parerequest message to the active acceptor.

Assume that ProposerP ′ suspects failure of Leader
P and decides to become the leader. The active accep-
tor Id, A, can be obtained by inquiring a majority of the
nodes. This is because of the fact that the last leader al-
ways makes a consensus over changing the active accep-
tor. The sequence of messages is demonstrated in Fig-
ure 4.

Care must be taken to ensure that in the meanwhile the
active AcceptorA is not switched by the last leader. Oth-
erwise, we end up with two leaders which are using two
different active acceptors. To this aim, ProposerP ′ uses
PaxosUtility to start a consensus instance in which Pro-
poserP ′ announces that it is going to take the leadership
position by assumingA as the active acceptor. Accord-
ingly, every leader must always check for this announce-

ment before switching the active acceptor. If the leader
observes this announcement, it must consider its position
as relinquished. This step is marked as step 1 in Figure 3.

4.4 Leader and Acceptor Failures

If the active acceptor fails, the leader is in charge of
switching it with a fresh backup acceptor. On the other
hand, if the leader fails, then any proposer can safely take
its position, given that the active acceptor is still run-
ning. The only remaining case to handle is when both
the leader and the active acceptor fail together.

As mentioned in Section 3, to handle this failure sce-
nario we carefully assign the Multi-Paxos roles to the
physical nodes in a way that the leader and the active
acceptor are located in two separate physical nodes. As-
sume that we haveN machines available and each ma-
chine implements all the roles; the proposer, the acceptor,
and the learner. In OneAcceptor that there is only one ac-
tive acceptor, we have the option to pick the machine that
will also play the active acceptor role. This deployment
is demonstrated in Figure 1.

The idea is to assign the active acceptor and the leader
roles to two separate physical nodes. In this way, the
failure of the leader and the active acceptor cannot occur
together, unless two ofN physical nodes fail at the same
time. In the usual setup of Multi-Paxos which consists
of three physical nodes, this failure scenario implies that
two of the three physical nodes are failed. On the other
hand, Multi-Paxos cannot progress with just one running
server out of three. Consequently, we can assume that
if the failures of the leader and the active acceptor oc-
cur at the same time, there is only one machine left. In
this situation, neither Multi-Paxos nor OneAcceptor can
progress.

It is worth noting that the failure of the leader and
the active acceptor at the same time does not jeopardize
the consistency of the system. It only prevents the sys-
tem from progressing, which is the same way that Multi-
Paxos would react to this failure scenario.

The detailed pseudo code of OneAcceptor is presented
in Appendix A. Furthermore, Appendix B provides the
correctness proofs of OneAcceptor.

4.5 More than One Failure

Using only three replicas, no consensus system including
OneAcceptor can progress if more than one replica fail;
both Multi-Paxos and OneAcceptor can resume though
after the failed replicas recover from failure. A re-
cent proposed framework [6] suggests methods to safely
switch from one byzantine tolerant consensus protocol
(BFT) to another. Inspired by that, we can switch from



OneAcceptor to other consensus protocol implementa-
tions such as Multi-Paxos2 when more than one node
are expected to fail in near future. For example, the first
failure can issue a warning triggering the switch to Multi-
Paxos. Note that by switching to Multi-Paxos, we will
lose the increased throughput offered by OneAcceptor
till we switch back to it. Therefore if recovery is quick,
continuing with OneAcceptor offers better performance.

The switching in crash-only failures is much simpler
than BFT since we do not need to consider malicious
nodes. To safely switch from OneAcceptor to Multi-
Paxos, it is required to ensure two properties: i) OneAc-
ceptor must abort, and ii) Multi-Paxos must be initialized
with the pending proposals registered in PaxosUtility.

After getting to the aborted state, nodes must not is-
sue proposals nor process messages of the OneAcceptor
protocol. Not all the nodes might respond to an abort
request. However, to stop issuing learn messages, it is
enough to abort either the leader or the active acceptor.
Care must be taken because the aborted node can be sus-
pected to be failed and get replaced with another node.
For example, even if the active acceptor aborts, the igno-
rant leader can switch the active acceptor and the proto-
col continues working with the new active acceptor.

To make OneAcceptor safely abort, we make use of
PaxosUtility, similar to the solution for switching the ac-
tive acceptor and leader. All nodes abort after observ-
ing an abort entry in PaxosUtility. Before making any
change into the working set, the nodes have to check the
entries in PaxosUtility, and hence they will be surely no-
tified of the abort. To ensure that the current working
set is also aware of the abort, either the leader or the
active acceptor must be the one that initiates the abort.
The node that initiates the abort, also include the pend-
ing proposals into the abort message, i.e., the proposed
proposals in the leader and the accepted proposals in the
acceptor. The Multi-Paxos nodes must be initialized with
the pending proposals in the abort entry of PaxosUtility.

The detailed steps of switching the protocol from
OneAcceptor are as following:

1. The node that initiates abort,Na, must be either the
leader or the active acceptor. This can be indicated
by checking the PaxosUtility entries.

2. NodeNa goes to the aborted state.

3. NodeNa tries inserting an abort entry into PaxosU-
tility. If Node Na is a proposer (acceptor), it adds
the proposed proposals (accepted proposals) to the
abort entry.

4. Other nodes accept abort entry in PaxosUtility, only

2The Multi-Paxos nodes can be located on separate servers or pos-
sibly share some servers with OneAcceptor.

if no entry in the meanwhile is inserted into Paxo-
sUtility.

5. Every node that is notified of the abort entry aborts.

6. Each node of Multi-Paxos starts working after ini-
tialization by the proposals in the abort entry of Pax-
osUtility.

4.6 Avoid Persistent Storage

The important data of the active acceptor is kept partly
by the leader and partly by the PaxosUtility. Thus, upon
the active acceptor failure the leader can safely discard it.
Consequently, there is no need for a persistent storage in
the acceptor. However, cares must be taken not to use a
rebooted acceptor as its data is lost after reset. The pro-
posers need to distinguish between a rebooted acceptor
and a fresh one. To this aim, we use anIamFresh vari-
able in the acceptor which is initially true. Upon adopt-
ing a leader, the active acceptor sets this variable to false.
The only time that the leader expects the acceptor to be
fresh is immediately after switching to it. For the other
cases, the proposer can pass aYouMustBeFresh param-
eter, which is assigned to false, in each communication
with the acceptors. If this parameter is not set while the
local IamFresh variable is set, the acceptor detects that
it was silently rebooted. The implementation details can
be found in Appendix A.

4.7 Performance Discussion

On common error-free scenarios, OneAcceptor can per-
form better because it involves only one acceptor instead
of three. Hence the number of sent messages in the pro-
tocol reduces, which leads to less consumed bandwidth.
Specifically, less transmission to/from the leader enables
the leader to service higher number of client commands
per unit of time. Under high jitter in network delays, it
could also decrease the response time, as the leader and
the learners would need to wait for the less number of ac-
ceptors to respond; waiting for less number of messages
implies being less sensitive to the variance of message
delays.

On failure scenarios, however, OneAcceptor requires
to take a few more steps compared to Multi-Paxos to re-
cover from a failure, i.e., steps of PaxosUtility instance.
Nevertheless, the frequency of failures is usually low
enough that we can ignore the performance drawback of
the few additional steps in failure scenarios. Considering
the Amdahl’s law, the overall performance is still signif-
icantly higher. Section 5 covers the experimental results
for both error-free and failure scenarios.



4.8 Complexity Discussion

As you can see in Figure 11, the handlers implementing
the acceptor role are simpler compared to Multi-Paxos.
This is because there is only one acceptor in OneAccep-
tor and thus the complexity due to dealing with quorum
of nodes is eliminated. The handlers of the proposer role,
however, implement more logic for safe recovery from
failures. Overall, our implementation of OneAcceptor
service in Mace [9] framework is 460 LoC as opposed
to 539 LoC for implementation of Multi-Paxos service.
Note that the utility functionalities such as membership
management are implemented in separate services and
hence are not included in the reported LoC.

5 Evaluation

In this section, we report on the evaluation of OneAccep-
tor and Multi-Paxos. The main advantage of OneAccep-
tor is the reduced traffic between servers, which becomes
the dominant factor when the servers are geographically
distributed. This is the case for many practical deploy-
ments of Paxos such as the global cell replication in
Chubby [2]. Therefore, in this section we focus on ex-
perimental setups which emulate wide-area networks.

We basically explore the following:

1. The OneAcceptor side-effect on the latency of com-
mitting the proposals

2. The overhead of OneAcceptor in failure scenarios

3. The increase of the system throughput using
OneAcceptor?

5.1 Experimental Setup

Our experiments make use of three machines with 2.83
GHz Xeon X3360s and 8 GB of RAM. These machines
run GNU/Linux 2.6.26-1. All machines are intercon-
nected by a full-rate 1-Gbps Ethernet switch. We run
the distributed system on top of the ModelNet [18] net-
work emulator. The one-way emulated delay of each link
is 50 ms. Both Multi-Paxos and OneAcceptor are im-
plemented in Mace [9] framework. We use TCP as the
transport protocol. OneAcceptor also needs a PaxosUtil-
ity which can be any implementation of Paxos-like sys-
tems. For the sake of simplicity, we have implemented
Basic-Paxos to be used as PaxosUtility.

Each machine implements all three roles of Multi-
Paxos: proposer, acceptor, and learner. An application
on top of the consensus service issues application calls
for initialization and proposing values. We have imple-
mented a simple failure detector which is triggered by
receiving the TCP RST signal from the crashed node.

The workload is discussed in Section 5.2. The commit
latency of OneAcceptor is verified in Section 5.3. The
overhead of OneAcceptor in failure scenarios is illus-
trated in Section 5.4. Section 5.5 presents experimental
results of comparison between the throughput of OneAc-
ceptor and Multi-Paxos. The throughput under failure
scenarios is covered in Section 5.6.

5.2 Workload

The request payloads must be carried to the learners by
all fast-path protocol messages (i.e., acceptrequest and
learn request). Thus, the consumed bandwidth is still
proportional to the number of protocol messages. We
are not aware of any application that does not require the
received payload by the leader to be transferred to the
learners. Even so, a set of proxies that are located in
the same data center as the leader can receive the large
client requests and instead issue some small requests to
the leader, referring to the client requests. Inspired from
traffic size in Chubby [2], we do not consider large re-
quest sizes.

The Paxos protocol messages are issued as a result of
each client command, which is the type of traffic targeted
by OneAcceptor. The leader might also be involved in
other kind of traffics. For example, Chubby [2] reports
using some KeepAlive traffic related to the used lease
mechanism. As proposed by Chubby [2], these kind of
traffics can be proxied to reduce their load on the leader.

In general, the read requests do also cause issuing
Paxos protocol messages. This is because the read re-
quests often require the last updated data, which is not
necessarily updated in every learner, including the leader
node. Thus, the read traffic can be treated as normal
client command traffic. There are particular usecases that
can change the load on servers. For example, if the read
requests do not necessarily ask for the last updated data,
then they can be handled directly by each learner. Hence,
the read traffic will be balanced on all nodes. In this
case, if the proportion of the read traffics is much more
than client command traffic, then OneAcceptorś impact
on reducing the overall load will be less profound. The
other particular case is that the leader has the privilege
to directly respond the client read traffic without going
through the Paxos steps. For example, in Chubby [2]
thanks to the employed additional lease mechanism be-
side Paxos, the leader directly respond the read traffic as
long as the lease is not expired.

Not to lose the generality, we do not assume the
above particular cases for handling the read traffic in
the experimental results. Nevertheless, as suggested by
Chubby [2], the read traffic will be proxied in such cases
and will not consume tangible part of node’s bandwidth.
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5.3 Commit Latency

To measure the commit latency, the application layer
generates 100 proposal requests at rate of 0.5 requests per
second. We chose this low request rate to make sure that
the measured latency is affected only by the message de-
lays and not the competition between different requests
and queuing delays. After committing the last proposal,
we measure the average latency between the time a pro-
posal is made and the time it is learnt. Figure 5 depicts
the average latency experienced by each client request.
The average latency is almost the same in both Multi-
Paxos and OneAcceptor; 105 ms in Multi-Paxos and 104
ms in OneAcceptor. This shows that in error-free scenar-
ios, OneAcceptor does not impose any overhead in terms
of commit latency.

5.4 Recovery from Failure Scenarios

According to the OneAcceptor design, we expect more
overhead in failure scenarios. Nevertheless, because the
failure happens very rarely, a negligible amount of im-
posed overhead would be acceptable. In this section, we
measure the imposed overhead in different failure scenar-
ios. The results are depicted in Figure 6. OneAcceptor

requires further calls to PaxosUtility service, when either
the active acceptor or the leader fails. The first scenario
that we consider is the failure of the active acceptor in
OneAcceptor. We kill the process of active acceptor and
measure the delay between the time that the active accep-
tor crash is detected by the failure detector and the time
that the leader receives prepareresponse message from
the new active acceptor. This time is equal to 208 ms.

In the second failure scenario, we kill the leader pro-
cess in OneAcceptor and measure the delay between the
time that the leader crash is detected by the failure detec-
tor and the time that another proposer stands in the leader
position upon receipt of the prepareresponse message
from the active acceptor. The delay is equal to 261 ms.
We repeat the same failure scenario for Multi-Paxos as
well. The difference is that in Multi-Paxos a proposer
becomes the leader after receiving the prepareresponse
message from a majority of acceptors, i.e., two. The re-
covery delay in Multi-Paxos is equal to 156 ms.

As the results show, the recovery delay from the leader
failure in OneAcceptor is more than the delay in Multi-
Paxos. However, considering the fact that the failure
happens very rarely, the small overhead is acceptable.
OneAcceptor also takes some time to recover from fail-
ure of acceptor. This delay does not exist in Multi-Paxos
since Multi-Paxos uses replicated acceptors, and hence
does not need to recover from failure of one of them. Us-
ing the same argument as used for the leader failure, the
recovery delay is acceptable when the failure of servers
happens rarely. Furthermore, this delay is much less than
the failure detection delay in practical deployments of
Multi-Paxos. For example, Chubby [2] reports 4 to 6
seconds (and sometimes up to 30 s) delay for election of
a new leader. Therefore, some extra milliseconds does
not affect the performance of practical systems such as
Chubby [2].

For the sake of simplicity, we used Basic-Paxos
to serve OneAcceptor as PaxosUtility. Each commit
in Basic-Paxos requires 4 message transfers between
servers which partly contribute to the recovery overhead
of OneAcceptor. For production quality implementation
of OneAcceptor we can remedy the overhead by using
other more efficient versions of Paxos.

5.5 Throughput

To measure throughput, the application layer generates
200,000 proposal requests at full rate. The buffer size
for outstanding proposals is selected proportional to the
throughput which is 1000 and 500 requests in OneAccep-
tor and Multi-Paxos, respectively. Using larger buffers
for each of the protocols resulted in high fluctuation
in throughput. After committing the last proposal, we
measure the rate at which the client requests were ser-
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Figure 8: The changes in throughput achieved by
OneAcceptor when the leader fails.

viced. Figure 7 presents the achieved throughput by each
approach. Multi-Paxos managed to service 2816.9 re-
quests per second. This number increases up to 8120 in
OneAcceptor by a factor of 2.88. This increase was ex-
pected because of the reduction in the inter-server traf-
fic by OneAcceptor. The leader in OneAcceptor issues
acceptrequest commands to only one acceptor and re-
ceives replies from only one acceptor as well. The re-
duced outgoing and incoming traffic, allows the leader to
use the freed bandwidth to service more client requests.

5.6 Throughput in Failure Scenarios

In this section, we measure the changes in system
throughput in different failure scenarios. The setup is
the same as in Section 5.5 for measuring throughput.
Figure 8 plots the throughput of OneAcceptor when the
leader fails. There is a gap between the times that the last
leader fails and the new leader is elected. In this period,
the throughput drops to 0. The Multi-Paxos algorithm
behaves the same when the leader fails. As it is illus-
trated in Figure 9, the low-throughput period is less in
Multi-Paxos. This is because OneAcceptor needs some
extra steps to safely recover from the leader failure, and
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Figure 9: The changes in throughput achieved by Multi-
Paxos when the leader fails.
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Figure 10: The changes in throughput achieved by
OneAcceptor when the active acceptor fails.

in this period it cannot issue new proposals.
Figure 10 plots the throughput of OneAcceptor when

the active acceptor fails. Similar to leader failure,
OneAcceptor requires some extra steps to switch the ac-
tive acceptor, during which the throughput drops to 0.

Overall, Multi-Paxos performs better during failure
scenarios. Nevertheless, given that the failure happens
rarely, the significant increased throughput by OneAc-
ceptor justifies its longer recovery time in the case of
failures. In some practical implementations, the applica-
tion which uses Paxos is deliberately designed to be less
sensitive to unavailability. For example, Chubby [2] uses
coarse-grained locks as opposed to fine-grained locks to
be less sensitive to system availability. Therefore the
small unavailability in the failure scenarios is well jus-
tified in such a systems.

6 Related Works

Multi-Paxos is the optimized version of Paxos used in
practical deployed systems [4, 2]. Paxos provides both
reliability and availability of acceptors via replication. In
OneAcceptor, we propose to use a single acceptor in the
common deployment setup that involves three servers.



We provide the availability of the acceptor via some
backup acceptors. To guarantee the reliability of the data
kept by the active acceptor, OneAcceptor runs a sepa-
rate consensus algorithm to achieve consensus over the
replaced acceptor. The main insight underlying OneAc-
ceptor is not weaved to any particular version of Paxos
and can be applied to all of them to increase the system
throughput. In this paper, we applied OneAcceptor to
Multi-Paxos.

Mencius[17] is derived from Paxos to distribute the
load of client commands among multiple leaders [14].
Assuming a balanced load of client commands received
by the leaders, it splits the space of Paxos instance num-
bers among the leaders and each leader proposes the re-
ceived client commands only for its range of instance
numbers. By doing so, the leaders can in total service
more aggregate commands from clients. Note that each
leader still has to communicate with all the acceptors to
make a proposal. However, OneAcceptor is targeting the
load on each leader individually. It is not limited by as-
suming a balanced load on leaders. By reducing the num-
ber of messages exchanged between servers, each leader
in OneAcceptor can service more client commands. The
main insight of OneAcceptor can be applied to any proto-
col in the Paxos family. Mencius could also benefit from
the main insight of OneAcceptor and increase the system
throughput even more. By that, each leader in Mencius
would be assigned to a single separate acceptor, and the
overall throughput would increase even more.

A subset of protocols in Paxos family target the com-
mit latency of client commands [13, 5, 12]. In Basic-
Paxos, each client command takes four message delays
between the servers. Multi-Paxos is similar to Basic
Paxos for the first command but for the next commands
it requires only two message delays between servers.
This does not include the RTT delay between the client
and the leader. Fast Paxos [13] using more replicas,
3f + 1, saves the delay between the leader and the ac-
ceptors by allowing the client to optimistically send the
acceptrequest messages directly to the acceptors. If the
commands from different clients collide, it will be re-
solved by spending some more steps. The average la-
tency can be lower if the rate of collisions is low, as it is
stated by Lamport: ”If collisions are too frequent, then
classic Paxos might be better than Fast Paxos.”

In the scenarios that the throughput of the system is a
bottleneck, the number of client commands is very high,
and consequently the probability of collisions will in-
crease accordingly. OneAcceptor is designed for high-
throughput systems and reducing the commit latency of
the client commands is not targeted by the algorithm.
Fast Paxos cannot outperform the throughput of Multi-
Paxos, as the number of sent/received messages to/from
each acceptor does not change; although the leader-to-

acceptor messages of Multi-Paxos are eliminated in Fast
Paxos, the messages must be sent to more acceptors,
3f + 1. For f = 1, the message/node is equal to 6
per command, which is the same number as Multi-Paxos.
Moreover, recent studies have questioned the actual la-
tency of Fast Paxos under realistic deployment scenar-
ios [8].

The proposed BFT protocols [10, 3] target safety as-
suming not only crash-only but also byzantine faults.
BFT protocols are more expensive than Paxos family of
protocols as they provide stronger guarantees. Multi-
Paxos has been successfully integrated into a number of
practical deployed [4, 16, 2] systems. OneAcceptor also
focuses on Paxos family of protocols.

Zookeeper [1] is a centralized service for maintaining
configuration information and providing distributed syn-
chronization. It uses replication for scalability and relia-
bility which means it prefers applications that are heavily
read-based. Taking advantage of the assumptions regard-
ing existence of some capabilities such as atomic file cre-
ate and ephemeral files, Zookeeper’s design is much sim-
pler than Paxos. In contrast, OneAcceptor is designed for
general usage of Paxos and it is not confined with any as-
sumption about the availability of such capabilities. For
the similar reason, the workloads used in Zookeeper are
not good benchmarks for evaluation of OneAcceptor and
other Paxos-based systems.

7 Conclusions

In this paper, we proposed OneAcceptor which changes
Multi-Paxos to use only a single acceptor and to switch
it with another backup acceptor in the case of failure.
For the deployment setup which uses three servers, the
leader can safely handle the replacement of the accep-
tor. We have shown how to switch to more number of
nodes, when more than one failure is envisaged in near
future. Furthermore, in OneAcceptor the acceptor’s data
does not require to be stored persistently, which has been
a major challenge in efficient implementation of Multi-
Paxos. OneAcceptor addresses the problem of saturated
leaders which practical systems such as Chubby [2] have
been dealing with. The experimental results show a
factor of 2 increase in the system throughput by using
OneAcceptor.
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A APPENDIX: OneAcceptor

The pseudo code for our OneAcceptor algorithm, ex-
plained in Section 4, is presented in Figure 11. If the pro-

1 Upon AcceptorFailure
2 if (!IamLeader ) return;
3 (Pi,instance) = PaxosUtility.lastLeader();
4 if (Pi 6= me) //somebody thought I am dead
5 Aa = null; IamLeader = false;
6 return;
7 A′

a = selectAcceptor();
8 proposals = uncommitedProposals();
9 success = PaxosUtility.propose(instance,

10 AcceptorChange(A′

a,proposals));
11 if (!success) return;
12 Aa = A′

a;
13 IamLeader = false;
14

15 Upon LeaderFailure
16 propose();
17

18 proc propose()
19 if (IamLeader )
20 in = next uncommitedinstancenumber();
21 v = getAny(in);
22 sendtoAa acceptrequest(in, pn, v);
23 else
24 YouMustBeFresh = true;
25 pn = new pn();
26 if (Aa == null)
27 (Aa,instance,proposals) =
28 PaxosUtility.lastActiveAcceptor();
29 success = PaxosUtility.propose(instance,
30 LeaderChange(me, Aa));
31 if (!success)
32 Aa = null; return;
33 registerProposals(proposals);
34 YouMustBeFresh = true;
35 sendtoAa preparerequest(in, pn, YouMustBeFresh);
36

37 Upon Receive prepareresponse(Ai, pn, ap)
38 if (IamLeader || Ai 6= Aa) return;
39 IamLeader = true;
40 registerProposals(ap);
41 in = next uncommitedinstancenumber();
42 v = getAny(in);
43 sendtoAa acceptrequest(pn, v);
44

45 Upon Receive preparerequest(Pi, pn, YouMustBeFresh)
46 if (pn > hpn)
47 if (IamFresh != YouMustBeFresh)
48 return;
49 IamFresh = false;
50 hpn = pn;
51 sendtoPi prepareresponse(pn, ap);
52 else sendtoPi abandon(hpn);
53

54 Upon Receive acceptrequest(Pi, in, pn, v)
55 if (pn 6= hpn)
56 sendtoPi abandon();
57 else if (ap[in] 6= null)
58 multicastL learn(in, ap[in]);
59 else
60 ap[in] = (pn, v);
61 multicastL Learn(pn, accepted);

Figure 11: OneAcceptor Algorithm



poser recognizes itself as the leader of the active accep-
tor, VariableIamLeader is set. As in Multi-Paxos, the
leader does not need to send a preparerequest message
to the acceptor and starts directly with the acceptrequest
message using the last promised proposal number. Vari-
ableAa refers to the active acceptor Id;ap is the map
structure keeping the accepted proposals;IamFresh in-
dicates that the acceptor has adopted no leader yet. The
highest proposal number is stored in Variablehpn. Ini-
tially the highest proposal number is equal to -∞. Pro-
cedureinit, presented in Figure 12, initializes the men-
tioned variables. As for the rest of the variables,pn is
the proposal number,in is the Paxos instance number,v
is the value (proposed or accepted),P is the list of the
proposers,L is the list of learners,me is the node Id, and
YouMustBeFresh indicates that the proposer expects to
be the first proposer that contacts the acceptor.

Upon a failure of the active acceptor, the leader first
checks whether the others still believe him as the leader
or not. If not, one other proposer has taken its position
(probably because of a false leader failure alarm). In
this case, it relinquishes the leadership position and re-
turn. Otherwise, it callsselectAcceptorfunction to select
a new acceptor which is located on a separate machine
than the leader node. The leader then announces the
change of the active acceptor,AcceptorChange, through
PaxosUtility. It also attaches the uncommitted proposed
values to theAcceptorChangeentry. The failure of this
step indicates that another item is chosen for the current
instance of PaxosUtility. In this case, the leader returns
from this procedure to try again later. In case of success,
however, the leader resets VariableIamLeader because
it has to start from the first phase of Paxos with the new
active acceptor.

Upon failure of the current leader, a proposer tries to
take its position by calling Procedurepropose. The pro-
cedure then obtains the active acceptor Id and sends a
preparerequest message to it.

Procedureproposeproposes a value for the next un-
committed instance number. If the node is already the
leader, it directly sends an acceptrequest message to the
active acceptor. Otherwise, it sends a preparerequest
message to the active acceptor, in accordance with the
first phase of the Paxos algorithm. If the active acceptor
Id is unknown to the proposer, it must be obtained via
PaxosUtility. ThelastActiveAcceptormethod checks the
sequence of committed entries looking for the lastAc-
ceptorChangeentry; this entry contains the active accep-
tor Id. Next, the proposer adds aLeaderChangeentry
via PaxosUtility. The failure of this step indicates that
another item is chosen for the current instance of Paxo-
sUtility. In this case, the procedure resets the value ofAa

and returns. We assume that the implementation retries
the failed attempt via timers or some other mechanisms.

1 proc init()
2 IamLeader = false;Aa = null;
3 ap = emptyMap();hpn = −∞
4 IamFresh = true;
5

6 proc getAny(in, ap)
7 v = proposed[in];
8 if (v 6= null) return v;
9 v = nextClientRequest();

10 proposed[in] = v;
11 return v;
12

13 proc registerProposals(proposals)
14 foreach p in ap
15 proposed[p.in] = p.v;

Figure 12: The implementation of Procedures init,
getAny, and registerProposals, in OneAcceptor Algo-
rithm

In the case of success, before sending the preparerequest
message, it first registers the proposed values which have
been recorded with the last AcceptorChange entry. If the
acceptor is supposed to be a fresh backup acceptor, it
also sets VariableYouMustBeFresh which is sent by the
message.

Upon receipt of the preparerequest message from
ProposerPi, the acceptor verifies the highest proposal
numberhpn to be less than the requested proposal num-
ber, pn. Otherwise, it sends an abandon message back
to ProposerPi. If Variable IamFresh is set but Variable
YouMustBeFresh is not, it indicates that the proposer
expected the acceptor to be already adopted by the last
leader. However, due to the acceptor reset, the acceptor
has lost its data, includinghpn andap. This check avoids
the cases where the active acceptor silently reboots be-
fore the leader switch. In this case, the last leader should
switch the rebooted acceptor.

Upon receipt of the prepareresponse message from
the active acceptor, the proposer claims the leadership
position by setting VariableIamLeader. The getAny
method, presented in Figure 12, picks a value to be ac-
cepted for the instancein. The picked value can be any
given value, unless there is already a proposed but un-
committed value for the instancein. This case can occur
in change of the active acceptor, when some proposed
values are not committed yet by the previous active ac-
ceptor. If any proposal matches the instance numberin,
to avoid inconsistency, the proposer picks the same pre-
viously proposed value. It then sends an acceptrequest
message to the active acceptor.

Upon receipt of the acceptrequest message from the
leader, the acceptor first checks for the proposal number.
Also, it checks that there is no proposal accepted corre-
sponding to the instance number, i.e.,ap[in]. Otherwise,



it broadcasts the learn message of the accepted proposal
again to cover the cases that the lost learn message has
motivated the proposer to retry. It then stores the pro-
posal in the accepted proposal map,ap[in]. Afterwards,
the accepted proposal is broadcasted to all the learners
accordingly.

B APPENDIX: Proof of Correctness

Here, we prove the correctness of the algorithm pre-
sented in Appendix A. We first prove some properties for
the entries in PaxosUtility, which we then use to prove
that no two different values would be accepted for the
same instance number. The proof for the simple case
where there is no change in the active acceptor nor the
leader node, is trivial and similar to the proofs of Paxos.
Here, we focus on the complex cases where the algorithm
switches the leader and the active acceptor.

PaxosUtility contains entries for changing the active
acceptor, i.e. AcceptorChange, and entries for chang-
ing the leader, i.e. LeaderChange. We define theGlobal
leaderandGlobal acceptoras follows:

definition: In the sequence of PaxosUtility entries, the
node which has inserted the last LeaderChange entry is
the Global leader. Similarly, the active acceptor an-
nounced by the last AcceptorChange message, represents
the Global acceptor. We useGLi to represent theith
Global leader andGAi to represent theith Global accep-
tor.

Lemma 1: An AcceptorChange entry is inserted only
by the Global leader.

Lemma 1 is guaranteed by lines 3..13 of Figure 11. In
Line 4 the leader verifies that it is still the Global leader.
It also keeps the index of the last empty instance number,
instance. Later in Line 10, it proposes the Acceptor-
Change message for that instance number. The failure of
this phase implies that another node has inserted some-
thing in the meanwhile. In this case, the handler returns
to retry the procedure later from scratch. Therefore, the
AcceptorChange message is inserted only by the Global
leader.

According to Lemma 1, the Global acceptor represents
the active acceptor which the Global leader is working
with.

Now we prove by induction that the same value will
always be accepted for a particular instance number. The
first step is to show that a Global leader does not propose
two different values for the same instance number when
it switches between the acceptors. Hereafter, we use the
pair (v,i) to represent the valuev and instance numberi
of a given acceptrequest messages.

Lemma 2a: Suppose thatGLl has issued two ac-
cept request messages, (va,ia) and (va+1,ia+1), to two

consecutive Global acceptorsGAa andGAa+1, respec-
tively. If ia = ia+1, thenva = va+1.

Lemma 2a is directly followed by the implementa-
tion of the ProceduregetAnyin Figure 12. There, the
leader first checks the history of the proposed values. If
any value has already been proposed for the requested
instance number, then the procedure returns the same
value. Hence, as long as the Global leader is not changed,
the proposed value for a particular instance number will
be always the same.

The next step is to show that an acceptor accepts the
same proposals from two consecutive Global leaders.

Lemma 2b: Suppose that the active acceptor
GAa accepts two acceptrequest messages, (vl,il) and
(vl+1,il+1), from two consecutive Global leadersGLl

andGLl+1, respectively. Ifil = il+1, thenvl = vl+1.
Node GLl+1 becomes the Global leader only after

successfully inserting a LeaderChange entry via Paxo-
sUtility. In the algorithm presented in Figure 11, this
happens only at Line 30 inside the Procedurepropose.
It also implies that the value of VariableIamleader is
false (Line 25). GLl+1 will not start proposing val-
ues unless the value of VariableIamleader changes
to true (Line 21). Line 41 is the only location where
the value of this variable is changed to true upon re-
ceipt of a prepareresponse message. It indicates that
the active acceptor has received the preparerequest mes-
sage, approved the proposal number, and responded by
the prepareresponse message which is also piggybacked
by all the previous accepted proposals,ap. The re-
ceived accepted proposals are registered by the leader
(Line 42). The registered values will be later used for all
the next proposals in ProceduregetAny. In other words,
theGLl+1 will propose the same values which acceptor
GAa has already accepted.

Similar to Basic-Paxos,GAa will reject all the other
potential issued acceptrequest messages byGLl after
sending the prepareresponse message toGLl+1. On the
other hand, as we showed above, ifGAa has accepted
any value fromGLl for a particular instance number, it
will not receive any different value fromGLl+1 for that
sequence number. Consequently,GAa always accept the
same values from two consecutive Global leaders.

Having Lemma 2a and Lemma 2b, now we present the
correctness proof of the algorithm.

(*) Suppose that two acceptorsGAa andGAa′ accept
two acceptrequest messages, (va,ia) and (va′ ,ia′), re-
ceived from the Global leadersGLl andGLl′ , respec-
tively, where l′ ≥ l and a′ ≥ a. If ia = ia′ , then
va = va′ .

The proof is by induction on the size of sequence of
entries in the PaxosUtility utility. Assume that property
(*) holds when PaxosUtility hask entries. We prove that
it still holds when PaxosUtility hask + 1 entries.



Recall that the entries in the PaxosUtility utility are ei-
ther AcceptorChange or LeaderChange. If thek + 1th
entry is AcceptorChange, based on Lemma 1 it is in-
serted by the last Global leader. Thus, theGL is the same
and theGA changes. This is the case in Lemma 2a for
which we proved that no two values will be proposed for
the same instance number. If thek + 1th entry is Lead-
erChange, we can assume thatGA is the same during
this change. This is provided by the Lines 29..30 in Fig-
ure 11, where the new leader takes the same active accep-
tor as was taken by the last leader. This case is covered
by Lemma 2b for which we proved that no two values
will be accepted for the same instance number. Conse-
quently, if we assume that no two values are accepted for
the same instance number in the firstk entries of Paxo-
sUtility utility, this also holds for the firstk + 1 entries.

Now, to complete the proof, we need to show that the
theory holds fork = 2. We can make it hold by an ini-
tialization process. At the start up, the node with the
smallest Id can insert two entries for LeaderChange and
AcceptorChange to announce itself as the Global leader
and its active acceptor as the Global acceptor. Because,
no change in the roles happens in the initial case, neither
for the leader nor for the active acceptor, then the theory
directly holds for this case.


