Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes

Previous studies have demonstrated that activation of glutamate transporters promotes glycolysis in astrocytes. Current evidence indicates that compounds such as threo-beta-hydroxyaspartate (THA) are both competitive inhibitors and substrates for glutamate transporters. In this study, we have analyzed the effect of THA on excitatory amino acid (EAA) transport and on EAA-induced glycolysis in mouse primary astrocyte cultures. In agreement with previous studies in rat astrocytes, THA competitively inhibited 3H-D-aspartate (3H-D-Asp) uptake with an IC50 of 319 microM (Ki = 36.6 microM). In contrast, it did not prevent D-aspartate-induced 3H-2-deoxyglucose (2DG) uptake in these conditions. Preexposure of cells to THA for at least 15 min revealed another form of glutamate transport inhibition. This effect was concentration-dependent with an apparent IC50 of 47.7 microM and showed kinetic characteristics consistent with a mechanism of trans-inhibition. Preincubation with THA also inhibited D-aspartate-induced 3H-2DG uptake in a concentration-dependent manner with an apparent IC50 of 59.8 microM. Comparison with other transportable analogues reveals that they share with THA the ability to cause trans-inhibition of glutamate transport and to prevent glutamate-stimulated glycolysis; THA, however, is unique in that it has no effect alone on glucose utilization after preexposure. These data indicate that trans-inhibition of glutamate transport may be a mechanism by which certain glutamate transport inhibitors can prevent the stimulation of aerobic glycolysis by glutamate in astrocytes.

Published in:
Brain research, 850, 1-2, 39-46
Other identifiers:

 Record created 2010-01-08, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)