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ABSTRACT

In this paper, we describe linear turbo equalizers (TEQ) and in-
vestigate their practical application to underwater acoustic commu-
nications. Owing to the ability to achieve a good performance-
complexity trade-off, linear TEQ is a good candidate for long
reverberant channels, which usually demand high computational
complexity. First, we reveal a relationship between two differ-
ent TEQ structures; channel estimate (CE)-based minimum mean
square error (MMSE) TEQ versus direct-adaptive linear TEQ. We
show that without inclusion of the second-order a priori statistics,
the coefficients of direct-adaptive TEQ converge to linear time-
invariant form, though an optimal MMSE solution derived from a
priori information is time-variant. Nevertheless, the direct-adaptive
TEQ yields performance comparable to the CE-based MMSE TEQ
while maintaining lower complexity. This was confirmed through
real experiments conducted off the coast of Martha’s Vinyard, MA
(“SPACE 08”). We also discuss a practical design of a multi-channel
least mean square (LMS) TEQ and experiments show that the LMS-
TEQ successfully decodes data achieving up to 19.53 kbit/s for 1000
meter distance.

Index Terms— turbo equalization, underwater acoustic com-
munication, LMS, MMSE, MIMO

1. INTRODUCTION

Bandwidth-efficient digital communications over underwater acous-
tic channels are challenged by channel characteristics of poor qual-
ity such as long reverberation due to slow sound propagation and
dynamic variation of the channel state in time. To overcome such
difficulties, it is crucial to develop effective equalization techniques
that can cope with long channel span at a feasible complexity.

Motivated by the “turbo principle”, a turbo equalizer (TEQ) ex-
changes soft information with a channel decoder in an iterative fash-
ion in efforts to approach bit error rate (BER) optimal performance.
An initial form of the linear TEQ was the direct-adaptive form [1],
where soft symbol estimates are fed back to the equalizer whose co-
efficients are adjusted such that mean squared error is minimized.
The structure of the linear TEQ was investigated in [2], where given
the known channel and a priori probabilities on the symbols, an op-
timal linear equalizer was derived in a minimum mean square er-
ror (MMSE) sense. Since channel state is not known in practice, it
has to be separately estimated and the estimate is used in the equal-
izer. In [3], in order to reduce the effects of channel estimation error,
second-order statistics of the channel estimation error were incorpo-
rated in the equalizer. The application of TEQ to underwater acoustic
communication was considered in [4] and an intensive experimental
study on TEQ is presented in [5]. Recently, the structure of TEQ was

extended to the case of a multiple transmitter system and space-time
coding [6].

Most of the above TEQ techniques can be categorized into
two structures; 1) channel estimate (CE)-based TEQ and 2) direct-
adaptive TEQ.1 Both TEQ approaches show performance loss due to
excessive mean square error (MSE) introduced in adaptive channel
estimation and equalization operations, respectively. In addition
to this, we show that the coefficients of the direct-adaptive TEQ
converge to a sub-optimal solution, due to the inability to capture
time-varying second-order statistics drawn from a priori informa-
tion on transmit symbols. The performance of these two types of
TEQs are compared in the experimental results. Next, we discuss
the practical design of a least mean square (LMS) TEQ (LMS-TEQ)
for underwater acoustic communications. We demonstrate through
long-term underwater experiments that the LMS-TEQ achieves sat-
isfactory performance while maintaining a reasonable complexity.

2. SYSTEM DESCRIPTION

In this section, we describe the structure of transmitter and receiver.
The information bits, {bk} are encoded by a rate 1/2 channel en-
coder, producing the coded bit sequence {ci}. The sequence {ci}
is permuted using a random interleaver and Q interleaved bits are
mapped to a finite alphabet symbol. The interleaved bit sequence
is divided into M parallel substreams using a serial to parallel con-
verter. If we let c̃t

m,q be the qth coded (and interleaved) bit in the
mth substream to be transmitted at the symbol time t, the succes-
sive sets of Q coded bits c̃t

m,1, · · · , c̃t
m,Q are individually modulated

(mapped) to the 2Q-ary transmitted signal xm
t . The symbol xm

t is
sent through the mth transducer. After demodulation and assuming
perfect synchronization, the L × 1 received vector rn is expressed
as

rn =

Kp∑

k=−Kf

Hn,kxn−k + wn, (1)

where wn is the L × 1 noise vector and xn is the M × 1 transmit
vector at the time index n. The L ×M matrix Hn,k is the channel
matrix whose (l, m)th element is the complex gain from the mth
transmit transducer to the lth receive hydrophone. In this model,
we assume that the channel response spans at most Kf + Kp + 1
symbols. Due to the interleaver, we assume that the interleaved bits
and corresponding symbols are mutually uncorrelated.

1We do not include joint channel estimation and equalization techniques
in this category due to relatively high computational complexity for long
channel responses.



3. TURBO EQUALIZATION WITH LINEAR STRUCTURE:
CE-BASED MMSE-TEQ VERSUS DIRECT ADAPTIVE TEQ

Based on the model (1), the complex-domain relationship between
the transmitted symbol and received data can be represented by

yn = Hnsn + nn (2)

where

yn =
[
rT

n+Nf
, · · · , rT

n−Np

]T
, nn =

[
wT

n+Nf
, · · · ,wT

n−Np

]T
,

sn =
[
xT

n+Kf +Nf
, · · · ,xT

n−Kp−Np

]T
,

Hn =





Hn+Nf ,l−Kf · · · Hn+Np,l+Kp 0 0

0
. . . · · ·

. . . 0
0 0 Hn−Np,l−Kf · · · Hn−Np,l+Kp



 .

For the sake of brevity, we let sn = [sn,1, · · · , sn,K ]T , yn =
[yn,1, · · · , yn,N ]T , and Hn = [hn,1, · · · ,hn,K ], where K =
M(Kp + Kf + Np + Nf + 1) and N = L(Np + Nf + 1). The
noise vector nn is assumed to be jointly Gaussian whose covariance
matrix is R.

3.1. CE-based MMSE Turbo Equalizer

Given yn, a channel matrix Hn and a priori probabilities on sn,
a linear MMSE estimate of sn,k for all k ∈ [M(Kf + Nf ) +
1, M(Kf + Nf ) + M ] is given by [2]

ŝMMSE
n,k = zH

n (yn −Hnsn + hn,ksn,k) , (3)

where

zn =
(
HnΣnHH

n +
(
1− σ2

n,k

)
hn,kh

H
n,k + R

)−1
hn,k, (4)

the vector sn = [sn,1, · · · , sn,K ]T is a priori estimate of sn, and
Σn = diag

(
σ2

n,1, · · · , σ2
n,K

)
is a covariance matrix of sn derived

from a priori probabilities. To prevent early limit cycle behavior,
the LMMSE estimate in (3) does not rely on a priori information
on sn,k. The CE-based MMSE-TEQ obtains the symbol estimate
ŝCE−MMSE

n,k by replacing Hn by the channel estimate H̃n in (3) and
(4). Based on Gaussian approximation of the MMSE estimation er-
ror, we can compute an extrinsic LLR for {c̃t

m,q} as

Lext

(
c̃t

m,q

)
= ln

P
(
ŝCE−MMSE

n,k

∣∣c̃t
m,q = 1

)

P
(
ŝCE−MMSE

n,k

∣∣c̃t
m,q = 0

) (5)

= ln

∑
θ∈Θ1

q
exp

(
−

∣∣∣ŝCE−MMSE
n,k −µkθ

∣∣∣
2

σ2
r,k

)

∑
θ∈Θ0

q
exp

(
−

∣∣∣ŝCE−MMSE
n,k −µkθ

∣∣∣
2

σ2
r,k

) , (6)

where Θ1
q and Θ0

q are the set of all constellation points such that
the qth bit is 0 and 1, respectively, and µk and σ2

r,k are zH
n hn,k

and zH
n hn,k(1 − zH

n hn,k) [2]. Since the MMSE TEQ was derived
under the assumption that a channel state is known, channel esti-
mation errors degrade the performance of the TEQ. Refer to [2] for
the detailed description on the iterative detection and equalization
procedure that follow.

3.2. Direct-Adaptive Turbo Equalizer

Without a channel estimate, the symbol sk can be directly estimated
by direct-adaptive TEQ. By inspecting the optimal MMSE estimate
in (3), we can choose the structure of the direct-adaptive TEQ as

ŝDA−TEQ
n,k = fHyn + gH

[
sn,1:k−1

sn,k+1:K

]
, (7)

where the M × 1 vector f and the (K − 1) × 1 vector g are the
feedforward and feedback coefficients of TEQ, respectively and we
let sn,i:j = [sn,i, · · · , sn,j ]. The soft symbol estimates except that
of sn,k are incorporated into the direct-adaptive TEQ through the
feedback filter. Note that M separate filters {f ,g} should be applied
to obtain ŝDA−TEQ

n,k for k ∈ [M(Kf +Nf )+1, M(Kf +Nf )+M ].
In order to analyze the equalizer, we consider sn,j as a random

signal, not an expectation. The coefficients f and g are adapted such
that the mean square error E

[
|sn,k − ŝn,k|2

]
is minimized. If we

consider the LMS algorithm, the weight update equation for f and g
is given by

[
f (n+1)

g(n+1)

]
=

[
f (n)

g(n)

]
+ µ (sn,k − ŝn,k)




yn

sn,1:k−1

sn,k+1:K



 , (8)

where µ is a step size and f (n) and g(n) are the coefficient vectors
after the nth update. For a training period, a training symbol can be
used in place of sn,k in (8) while for a detection period, tentative
decisions can be used for sn,k.

Assuming that the channel is locally time-invariant, i.e., Hn =
Hm = H for small |n − m|, the coefficients f and g approach a
steady-state,

f0 =
(
H (I−Φ)HH + E

[
|sn,k|2

]
hkh

H
k + R

)−1
hk (9)

g0 =−
[
H1:k−1 Hk+1:K

]H
f0, (10)

where Φ = diag
(
E

[
|sn,1|2

]
, · · · , E

[
|sn,K |2

])
and Hi:j =

[hi, · · · ,hj ]. This can be easily derived from the orthogonality
principle [7]. From (7), (9), and (10), the direct-adaptive TEQ
converges to ŝDA−TEQ,SS

k given

ŝDA−TEQ,SS
k = fH

0 (yn −Hsn + hksn,k) . (11)

Comparing (3), (4) and (11), we see that the structure of the optimal
MMSE TEQ and direct-adaptive TEQ are similar but the coefficients
z and f0 are different. Note that (4) is a function of the instantaneous
covariance estimate Σn obtained from a priori LLRs while (11) is
a function of the covariance matrix Φ of the signal s. Hence, the
coefficients of the LMS TEQ approach a locally time-invariant filter
f0 while the optimal MMSE filter z changes in time due to the time-
varying matrix Σn. Hence, the coefficients of LMS-TEQ do not
approach the optimal MMSE solution but to the sub-optimal one
which is obtained by replacing Σn by I−Φ in (4). However, this gap
will get smaller with more iterations as a priori information becomes
more reliable, i.e., Σn → 0 and Φ→ I.

4. LMS TURBO EQUALIZER

For symbol rates around to a few k sym/s and nominal distance
ranges (50-1500 m), the length of channel responses span up to 100
symbol periods for typical underwater channels. In addition, in or-
der to compensate large signal attenuation, we can combine up to 10



receive hydrophones. As the problem dimension of the system under
consideration in (2) is K(= M(Kp +Kf + Np + Nf +1)), the di-
mension grows rapidly, with nearly one thousand parameters. While
the CE-MMSE TEQ is not feasible for such scenarios, the LMS-
TEQ can be a practical candidate due to linearly growing complexity
with problem dimension.

We next show how the LMS-TEQ can be realized for underwa-
ter communications. First, to compensate the poor tracking property
of LMS algorithm under time-varying underwater channels, we par-
tition the processing block into sub-blocks and repeat the adaptation
of the equalizer over the sub-block until the filter weights converge
to the steady-state. At each repetition (called ‘pass’), the step size,
µ is decreased by the factor of ρ(< 1). Note that for each pass, the
equalizer coefficients are initialized by the last update in the previ-
ous pass. In the absence of a channel estimate, the LMS-TEQ cannot
compute µk and σ2

r,k using (5) directly. From (2) and (11), we have

ŝDA−TEQ,SS
n,k =fH

0 (H (sn − sn) + hksn,k + nn) (12)

=fH
0 hksn,k + ηn,k (13)

=µksn,k + ηn,k, (14)

where ηn,k is the term including the residual interference and noise.
From (14), µk and σ2

r,k can be estimated as

µ̂k =
T∑

n=1

ŝDA−TEQ
n,k

Q
(
ŝDA−TEQ

n,k

) (15)

σ̂2
r,k =

T∑

n=1

∣∣∣ŝDA−TEQ
n,k − µ̂kQ

(
ŝDA−TEQ

n,k

)∣∣∣
2
, (16)

where Q(·) is the slicer operation that maps the input to the nearest
constellation point and T is the length of the processing block.

5. EXPERIMENTS

In this section, we evaluate the performance of different linear TEQs
via experiments.

5.1. Experiment Description

The experiment is conducted off the coast of Martha’s Vinyard, MA
during Oct. 14th - Nov 2nd, 2008. For data generation, a recur-
sive systematic convolutional (RSC) code with a generator polyno-
mial (23, 35) and a random interleaver of the size 19200∼38400 are
used. For MIMO transmission, two data streams that are spatially
multiplexed are transmitted through two source transducers spaced
by 50cm. For the SIMO case, only one transducer is active. The car-
rier frequency is set to 13 kHz and there is no movement of the trans-
mitter and receiver. Each packet consists of a 400 training symbol
period and 1200 data symbol period. The turbo iteration runs over
6 packets. A square-root raised cosine filter with a roll-off factor
0.2 is used both in the transmitter and receiver. A total of 149 data
files each of which contains one minute data are transmitted every
two hours. Each transmission is indexed with “epoch 1∼149”. The
vertical hydrophone array contains 12 elements spaced apart by 12
cm and is deployed at ranges of 1000 meters away from the source.

For synchronization and channel length estimation, 1000 sym-
bols of preamble were inserted every 0.2 second. First, rough es-
timates of sampling time and data sync are computed based on the
magnitude of the correlation between the received data samples and
the preamble. Then, we estimate the channel length, i.e., Kf +

Kp + 1 by searching over range of hundreds of symbols around
the data sync. This can be done by comparing the magnitudes of
the correlation with the threshold, which is adjusted based on rela-
tive magnitude levels both in silent and data periods. Noise power is
also estimated during silent period. We choose Lp = Kf + 7 and
Lf = Kp + 7 for equalizer length.

5.2. Results

In Fig. 1, the channel estimates for the QPSK system is illustrated. A
colormap is used to represent the channel gains over the time-delay
domain. A recursive least square (RLS) channel estimator is em-
ployed over 20000 symbol periods. We observe that the main arrival
appears at around the 40th tap and channel gains change dynamically
over time. For most of cases, the actual channel length was between
60-100 taps.
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Fig. 1. The plot of channel estimates over 20000 symbol periods.

In Fig. 2, the performance of CE-MMSE-TEQ and LMS-TEQ
are compared for 16-QAM SIMO transmission during the epochs
8-18. The data is transmitted at 9.77k sym/s. The 10 receive hy-
drophones are combined and the performance is measured after
seven turbo iterations. For CE-MMSE-TEQ, an LMS channel esti-
mator is employed to estimate a channel during the training period
and then the channel is tracked using hard-decision symbol estimate
during the remaining period. For LMS-TEQ, a normalized LMS
algorithm is used with a step size µ = 0.1 which is decreased by
the factor of ρ = 0.8 for every pass. For every sub-block, we run
5 passes in total. As a base-line algorithm, we also include LMS
decision-feedback equalizer (LMS-DFE) [8] for comparison. The
two TEQs outperform the LMS-DFE for all cases considered. Dur-
ing the epochs 8-12, both CE-MMSE-TEQ and LMS-TEQ retrieve
the transmitted data without errors. For the epochs after 8, the BER
begins to increase for all equalizers. Both TEQs result in comparable
performance for most epochs.

We also take a look at the performance of the LMS-DFE for dif-
ferent symbol rates and modulation orders. The results for epochs
109-114 are provided in Table I. Only the SIMO case is considered.
After five iterations, the LMS-DFE can retrieve the data without er-
rors for all BPSK and QPSK cases. This implies that our system
can achieve 19.53k bit/s rate (corresponding to the case of QPSK,
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Fig. 2. BER versus epoch index for 16-QAM, SIMO data transmis-
sion.

19.53k sym/s) with low error probability. On the other hand, for
the 16-QAM case, we could achieve perfect data recovery only for
6.51k sym/s case. Note that the QPSK, 19.53k sym/s case and the
16-QAM, 9.77k sym/s case offer the same data rate. Based on this
observation, we see that to achieve good spectral efficiency, trans-
mission at higher symbol rates can be more effective than increasing
modulation order.

Table 1. The performance of the LMS-TEQ for different symbol
rates and modulations.

Mod. sym/s No Iter. Iter. 1 Iter. 2 Iter. 5

BPSK
6.51 k 0.0 0.0 0.0 0.0
9.77 k 0.0 0.0 0.0 0.0

19.53 k 0.0002 0.0 0.0 0.0

QPSK
6.51 k 0.0 0.0 0.0 0.0
9.77 k 0.0 0.0 0.0 0.0

19.53 k 0.310 0.004 0.002 0.0

16-QAM
6.51 k 0.01 0.0 0.0 0.0
9.77 k 0.0211 0.0138 0.0108 0.0098

19.53 k 0.48 0.49 0.51 0.55

Next, we show the performance of the LMS-TEQ for a 10 × 2
MIMO setup. We do not include that of the CE-MMSE-TEQ due
to its high complexity. The BER measured over the epochs 8-31 for
several iterations is shown in Fig. 3. In five iterations, the LMS-TEQ
could decode the data perfectly except the epochs 18-20. Clearly,
over the whole epoch region of interest, the LMS-TEQ outperforms
the LMS-DFE.

6. CONCLUSIONS

In this paper, we have investigated linear turbo equalizers for under-
water acoustic communications. Specifically, we focus on the appli-
cation of the direct-adaptive LMS-TEQ which has much lower com-
plexity than the channel estimate-based MMSE TEQ. We showed
that the direct-adaptive TEQ approaches a sub-optimal solution but
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Fig. 3. BER versus epoch index for QPSK, MIMO data transmis-
sion.

can be closer to the optimal MMSE solution as more iterations are
passed. Based on a comparative study on the CE-MMSE-TEQ and
LMS-TEQ, we observe that LMS-TEQ can achieve a performance
comparable to that of CE-MMSE-TEQ. In addition, the LMS-TEQ
can achieve 19.53k bit/s without errors over at least 20 minutes of
data transmission.
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