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Abstract—The estimation of doubly-selective channels is chal-
lenging since long channel impulse response should be estimated
with a fast tracking speed. Provided that a structure of the
channel response is sparse, i.e., only a few of channel gains are
nonzero, a tracking performance of the channel estimator can
be improved significantly by avoiding estimation of zero taps.
In this paper, we study estimation of fast time-varying and long
reverberant channels that have a sparse structure in multi-input
multi-output (MIMO) systems. In order to exploit the sparse
structure, we parameterize the locations of nonzero taps using a
binary vector and incorporate it into the state-space system built
upon auto-regressive (AR) modeling of the time-varying channel
gains. Then, we derive a joint estimate of the binary vector
and channel gains based on maximum likelihood (ML) criterion.
Expectation maximization (EM) algorithm is derived to find a
sparse structure and channel gains iteratively. According to the
simulation study performed over MIMO Rician fading channels,
the proposed sparse channel estimation technique outperforms
the previous estimation schemes, especially when Doppler rate is
high.

I. INTRODUCTION

In most of wireless communication systems, multi-path
channels can be modeled as linear time-variant system. Es-
timation of such a time-varying channel impulse response is
often required for various purposes, e.g., channel equalization
and synchronization. An adaptive filtering technique such as
recursive least square (RLS) algorithm [9] are a popular
method for estimating time-varying channels. However, a
tracking performance of such adaptive channel estimation
algorithms degrades for high Doppler and large delay spread
channels [1], [2]. Fortunately, some of such doubly-spread
channels exhibit the sparse structure, i.e., only a few taps of
channel are non-zero, due to large bandwidth transmission or
particular geometrical landscape. Intuitively, by exploiting the
sparse structure of channels, both tracking and error perfor-
mance of channel estimation can be improved by avoiding to
estimate zero taps [3].

So far, there have been several techniques that exploit the
sparse structure for channel estimation. In [4], a auxiliary
adaptive filter is employed to estimate a full-tap channel and
zero taps are identified via thresholding. Then, only non-
zero channel taps are estimated using the filter with shorter
length. In [3], the detection of active tap locations was
derived based on a mean square error (MSE) criterion under
the assumption of pre-whitened input signal. On the other
hand, various basis selection techniques for finding sparse
representation of signal have been applied to sparse channel

estimation. In [5], matching pursuit (MP) has been applied
to estimate taps that are maximally correlated with received
signal sequentially, and more elaborated sparse signal recovery
techniques, called compressed sensing, have been applied in
[6], [7]. Recently, sparse channel estimation was formulated as
a detection problem for on-off keying in [8]. These approaches
are based on the assumption that the channel is locally time-
invariant so that they often fail to cope with estimation of
rapidly-varying channels with high Doppler spread.

In this paper, we propose a new sparse channel estimation
technique, called iterative sparse (IS) channel estimator, which
detects a sparse channel structure as well as time-varying
channel gains in an iterative fashion. In order to model the
sparse channels, the nonzero tap locations are parameterized
by a binary vector. This parameter is incorporated in the
state-space representation which models a dynamic of time-
varying channel gains based on an auto regressive (AR) model.
The maximum likelihood (ML) estimate of the binary vector
is derived using expectation-maximization (EM) formulation.
The resulting sparse channel estimation algorithm consists of
Kalman smoothing [10] (E-step) which finds the a posteriori
channel estimate given the sparse structure and binary inte-
ger least square search (M-step) which estimates the sparse
structure. These two steps are performed iteratively. In the
derivation, we assume that the sparse structure is locally time-
invariant while channel gains constantly vary according to AR
model. As a result, the iteration is performed over a block of
data where a sparse structure does not change, and hence,
undesired noise and channel variations within the block are
averaged out, producing relatively reliable sparse structure
estimate.

II. ITERATIVE SPARSE (IS) CHANNEL ESTIMATION

A. Sparse Channel Model

In the discrete-time and base-band system model, the nth
signal sample transmitted through the time-variant channel can
be expressed as

yn =
Kp∑

k=−Kf

hn,kxn−k + wn, (1)

where xn and wn are the nth input and noise sample and
hn,k is the complex channel impulse response that includes
the effect of pulse-shaping, channel, and front-end processing.



This model can be extended to the multi-input multi-output
(MIMO) case with nt transmit and nr receive antennas, i.e.,
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where the superscript used in this notation represents antenna

index. Define hi,j
n =

[
hi,j

n,−Kf
· · · hi,j

n,Kp

]T
, that is, a channel

impulse response (CIR) from the jth transmit to the ith receive
antenna. In order to describe a sparse structure of the channel,
we represent a channel tap as a product of binary value ai,j

n,k

and complex channel gain gi,j
n,k, i.e., hi,j

n,k = ai,j
n,kgi,j

n,k. Note
that ai,j

n,k = 1 for non-zero taps and ai,j
n,k = 0 for zero taps.

Hence, the CIR from the jth transmit to the ith receive antenna
is expressed as

hi,j
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(
ai,j

n

)
gi,j

n , (3)

where ai,j
n =

[
ai,j

n,−Kf
· · · ai,j

n,Kp

]T
and gi,j

n =
[
gi,j

n,−Kf
· · · gi,j

n,Kp

]T
. We assume that the number of

non-zero taps for hi,j
n is less than Ki,j , i.e., ‖ai,j

n ‖2 ≤ Ki,j .
The sparsity vector ai,j

n are assumed to be locally time-
invariant so that during the period of T symbols, n = Tt +
1, · · · Tt+T , it holds that ai,j

T t+1 = · · · = ai,j
T t+T = ai,j

t , where
t denotes the index of block. From (2) and (3), the received
signal is expressed in vector form as

yn = Atdiag (xn)gn + wn, (4)

where
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and 1nr is the nr × nr matrix whose elements are one. We
assume that wn is uncorrelated Gaussian, i.e., E

[
wnwH

n

]
=

N0Inr . For convenience, we let N = nrnt(Kf +Kp +1) and
Nt = nt(Kf +Kp +1). For the tth block, the nr-by-N matrix
At is written
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From now on, we will use the notation At(θt) by introducing
the parameter
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The channel gain vector gn is modeled by a p-th order auto-
regressive (AR) process, i.e.,

gn =
p∑

i=1

Fign−i + vn. (8)

Then, from (4) and (8), we can provide the state-space model
for the tth block as

zn = Fzn−1 +
[
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]
(9)

yn = C (θt) zn + wn, (10)
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and vn is zero-mean Gaussian process with E
[
vnvH

n

]
= Vn

and E
[
vnvH

m

]
= 0 for n %= m. Notice that the system

matrices F1, · · · ,Fp for the p-th order AR model account for
correlations in time and over different transmit and receive
antennas.

B. Algorithm Derivation

In this section, we aim to derive an ML estimate of the
parameter θt given the sequence of the tth block data, i.e.,
ytT+1, · · · ,ytT+T . The ML estimate θML

t is given by

θML
t = arg max

θt∈Ω
lnPr (y1:T ; θt) (13)

where the subscript 1 : T denotes the set of symbol in-
dices within the tth block and the set Ω is defined as{

θt : ‖ai,j
t ‖2 ≤ Ki,j

}
. By considering (y1:T ,g1:T ) as a com-

plete data, we can formulate the EM algorithm for finding the
solution to (13) as

• Expectation step

Q
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• Maximization step

θ(k+1)
t = arg max

θt∈Ω
Q

(
θt; θ

(k)
t

)
, (15)

where θ(k)
t is the value of θt after the kth iteration. The steps

in (14) and (15) are repeated until the estimate θ(k)
t reaches a

stationary point.



1) Expectation Step: By invoking Bayes formula, the prob-
ability Pr
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where Xn = diag (xn). Since the second and third terms in
(18) do not relate to θt, we have
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and Σn can be obtained by fixed-interval Kalman smooth-
ing algorithm. The forward and backward recursion rules
of Rauch-Tung-Streibel (RTS) Kalman smoother [10] are
summarized as follows;

• Forward recursion rule
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• Backward recursion rule

mn = m̂n + Sn (mn+1 − Fm̂n) (26)

Σn = Σ̂n + Sn (Σn+1 −Qn+1)
H SH , (27)

where Sn = Σ̂nFQ−1
n+1.

We first compute m̂n and Σ̂n from n = tT + 1 to tT + T
recursively and then obtain mn and Σn using them in a reverse

order. Notice that the initial value of m̂n and Σ̂n can be taken
from the last value in the previous block.

2) Maximization step: In the maximization step, We max-
imize Q
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Assume that the conditional covariance matrix Σn is positive-
definite. Then, B is also positive-definite. Since B = BH , we
can obtain the square root of B, or L, i.e., B = LLH . Then,
we have
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where L† is the Pseudo-inverse of L. Let dH
i be the ith row

vector of D and θt,i be
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where Li is the sub-matrix of L with the Nti + 1-th to
Nti + Nt-th columns. Since the parameters in θt,1, · · · , θt,nr

are not overlapped, we can maximize Q
(
θt; θ
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over each

of θt,1, · · · , θt,nr , separately. Therefore, θt,1, · · · , θt,nr that
minimize (32) become
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where

θ(k+1)
t,i = arg min

θt,i∈Θ
‖p− Liθt,i‖2 , (35)

where p = L†di. In order to obtain θ(k+1)
t , the squared norm

of (35) should be minimized over all combination of binary
vectors. This kind of optimization problem is referred to as
an integer least square (ILS) problem that has been actively
studied in recent years. To solve this problem efficiently, we
apply a tree search algorithm, called M algorithm [11] which
finds best M candidates for each element of θt,i successively.
Notice that the M algorithm finds the sub-optimal solution to
(35) due to its greedy nature, but it provides significant reduc-
tion in computational complexity compared to an exhaustive
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Fig. 1. Block diagram of the IS channel estimator.

search. In addition, by exploiting the constraint θt,i ∈ Θ, we
can reduce the search candidates further.

The block diagram of the IS channel estimator is provided
in Fig. 1. The Kalman smoother and M -algorithm produce the
quantities B and D, and the sparse structure estimate θ(k+1)

t

and exchange them in an iterative manner. The iterations repeat
until there is no change in the sparse structure estimate further.

III. SIMULATIONS

In this section, we provide the simulation results for Rician
fading MIMO channels.

A. Simulation Setup
A total of 105 symbols are generated. The modulation order

is set to QPSK and the number of training symbols and data
symbols are set to 200 and 1200, respectively. The 2 × 2
MIMO system is considered. The number of non-zero taps
is set to 6 out of a total of 20 taps for each channel link. The
parameters Ki,j for the sparse constraints are equally set to
8. The sparse structure of channels does not change during
the block but randomly generated across the blocks. The 3rd-
order AR model is used to generate a fading channel gain.
The AR parameters are chosen such that an autocorrelation of
fading process derived from the Jake’s model [14] is closely
approximated by an AR process (see [13] for details) and the
parameters for the Kalman smoother are chosen accordingly.
We generate channel gains based on wide sense stationary and
uncorrelated scattering (WSSUS) assumption [12] and set the
power of main tap to 0dB and those of the next taps to −6dB,
−4dB, −2dB, −7dB, −10dB, −6dB, · · · in the ascending
order of distance from the main tap. In addition, the κ value
of each tap for Rician fading is set to 20, 10, 6, 4, 1, 1 · · ·
in the same order. We measure the normalized mean square
error between the real channel and its estimate and symbol
error rate (SER) when the IS channel estimator is combined
with MMSE decision-feedback equalizer. We compare our
IS channel estimator with the RLS channel estimator [9],
orthogonal matching pursuit (OMP) method [5], and Kalman
channel estimator which has perfect knowledge on sparse
structure. Hence, the performance of this genie-aided Kalman
channel estimator provides the performance bound that the
proposed sparse channel estimator can achieve.

B. Simulation Results
Fig. 2 shows the plot of normalized MSE versus SNR

when Doppler rate is 0.002. The MSE of our sparse channel
estimator is close to that of genie-aided Kalman estimator.
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Fig. 2. (a) MSE versus SNR and (b) BER versus SNR of several channel
estimators.

This implies that the IS channel estimator is able to detect the
sparse structure with reasonably good accuracy. In addition,
the proposed IS channel estimator shows lower normalized
MSE compared to the RLS and OMP channel estimators. In
Fig. 2 (b), the BER performance is compared when combined
with the minimum mean square error decision-feedback equal-
izer (MMSE-DFE). We also include the performance of the
MMSE-DFE when the channel is perfectly known. As shown
in the figure, the MMSE-DFE with the IS channel estimator
outperforms the MMSE-DFE with the RLS and OMP channel
estimation schemes and the performance gap is large in the
SNR range higher than 10 dB.
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