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Conditional vs Unconditional models
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� Random effect approach to modeling spatial extremes:
Conditional independence. Ease in inference.

� Modeling unconditional distributions by Max-stable
processes: correct asymptotic arguments, but difficulties in
inference.

� Should we model the conditional distributions or the
unconditional distributions by an extreme value family?

� Ideally both! Correct asymptotics and ease in inference.

� Such max-stable processes exist?
Fougéres-Nolan-Rootzén(2009): Stable mixtures of EV
distributions.

� Full conditional specification of Heffernan and Tawn for
areal models: Do full conditionals define a unique joint
distribution?



Models
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1. max-stable processes with Frechét margins

Y (s) = µ(s) + σ(s)
k(s)

[

Z
k(s)
1 (s) − 1

]

2. max-stable processes with Gumbel margins
Y (s) = σ(s)Z2(s) + µ(s)

3. Z1(s) and Z2(s) are respectively the unit Frechét and unit
Brown-Resnick max-stable processes. Many possible
variations in the canonical representations.

4. Areal Fougères-Nolan-Rootzén model:
X(i, j) = µ(i, j) + σ log(H(i, j)) + G(i, j),
H(i, j) latent MA-process composed of positive α-stable
r.v´s, G(i, j) iid Gumbel(0, σ)



Inference
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1. Semi-parametric methods: estimation of the exponent
measure of the limiting max-stable process.

2. Composite likelihood methods: Approximations based on
bivariate densities.

� Our objective: Devise fully Bayesian Hierarchical methods
in fitting max-stable processes.

� Will report inference for Brown-Resnick processes .

� Apply these inferential methods to a data set which needs
non-standard modeling strategies.



BHM
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� Data: Y (si, t), i = 1, ..., K, t = 1, ..., N . Y represents the
block maxima data (annual, monthly etc), observed at K
fixed sites.

� Assume that the data are N iid realization of the
max-stable process
Y (s) = σ(s)Z(s) + µ(s),

� Z(s) = ∨∞

i=1[(ui + Vi(s) − c1(s)/2],
{ui} is a realization of a point process on real line with
intensity e−ydy, Vi(s) are independent copies of a 0-mean,
intrinsic stationary Gaussian process with variogram γ(h)
and variance c1(s).



Latent process
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� We take Vi(s) to be a isotropic, Gaussian process with the
exponential decay covariance function

r(h) = c1e
−

(

|h|
c2

)υ

, c1 > 0, υ ∈ (0, 2], c2 > 0.

� and the corresponding variogram

γ(h) = 2c1(1 − e
−

(

|h|
c2

)υ

)

� Can use instead, intrinsic stationary Gaussian process with
γ(h) = (|h|/c)υ, c > 0, υ ∈ (0, 2).

� With such intrinsic process, we get asymptotical
independence of Z(s1), Z(s2), for |s1 − s2| → ∞. Pairwise
dependence measure:
ρ(h) = 2(1 − Φ(

√

γ(h)/2))



Bivariate
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� Bivariate distributions of Z(s) are given by Kabluchko et
al(2009):

�

P (Z(s1) ≤ z1, Z(s2) ≤ z2)

= exp

{

−e−z1Φ(
√

γ(h)/2 +
z2 − z1
√

γ(h)
)

}

× exp

{

−e−z2Φ(
√

γ(h)/2 +
z1 − z2
√

γ(h)
)

}

� fZ(s1),Z(s2)(z1, z2),the corresponding density.



Composite
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� Hierarchical model based on composite likelihood:

�

logL(y(si, t), i = 1, ..., K, t = 1, ..., N |Θ)

=

N
∑

t=1

logL(y(si, t), i = 1, ..., K|Θ)

∼

N
∑

t=1

∑

i<j

logL(y(si, t), y(sj , t)|Θ)

=

N
∑

t=1

∑

i<j

log fZ(s1),Z(s2)(g(y(si, t), g(y(sj , t))
1

σ(si)σ(sj)

� g(y(si, t) = 1
σ(si)

[y − µ(si)]

� Θ all model parameters.



Parameters
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� Parameters:

� σ(s) = σ, µ(s) = µ with vague priors

� Can introduce, if justified, extra temporal and/or extra
spatial structures through the parameters:

σ(s, t) = σ + η1(s) + ζ1(t),

µ(s, t) = µ + η2(s) + ζ2(t)



Priors
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� Priors for the dependence parameters of the Brown-Resnick
max-stable process:

� c1 ∼ U(a, b)

� φ = c−1
2 ∼ U(φmin, φmax)

� φmin, φmax are functions of the minimum and maximum
observed distances

� υ ∼? Difficult to specify priors. Convergence problems if
too few sites. We fixed it at υ = 1.

� Time consuming, even for moderately large number of
sites.

� Need alternative, less time consuming methods.



Convergence
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Figure 1: Traces



Posterior
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Figure 2: posterior densities



Alternative
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� Alternative, simulation based hierarchical model

� Basic trick: Replace the likelihood by

Y (s, t) = σ(s)Z(s, t) + µ(s) + ǫ(s, t)

� The error terms ǫ(s, t) are iid random variables 0 mean and
with very large precision τ ∼ 200, so that effectively, we
sample from the max-stable process.

� Simulate Z conditional on V and u from

� Zt(s)
∼

∨20
i=1[uit(s) + Vit(s) − c1/2]

� uit = − log(E1t + ... + Eit), Ejt iid replicates of exp(1).

� with the previous isotropic structure for V (s).



Tuning
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� Not very good results. Large precision ⇒ sampling in a
very narrow region of parameter space, small precision ⇒
not sampling from max-stable process.

� Model for ǫ? Need a model for ǫ which is compatible with
conditional and unconditional distributions of Y .

� Fougerés-Nolan-Rootzén results suggests taking ǫ ∼
Exponential-stable.



Predictions
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How to estimate P ((Y (s∗1), ..., Y (s∗k)) ∈ A|D)

1. Fit composite likelihood based hierarchical model to data D

2. Get samples Θi from the joint posterior distribution of the model
parameters Θ = (c1, c2, µ, σ)

3. For every i, Simulate the max stable process Y (s) locations
s∗1, ..., s

∗

k conditional on Θi. These samples are from the
predictive distribution of (Y (s∗1), ..., Y (s∗k)).

4. Can estimate P ((Y (s∗1), ..., Y (s∗k)) ∈ A|D) using empirical
methods,namely the number of times these simulated samples hit
A.

5. Credible intervals for these estimates? Possible for marginal
probabilities.

6. Spatial krigging of extremes: Composite likelihood arguments for
the conditional distributions.



Data
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� The data consist of 34.345 records of wildfires observed in
Portugal between 1975 and 2005.

1975 -1983 fires above 35 hectares, 1984-2005 fires above 5
hectares

� Fire perimeters were mapped from satellite imagery, About
170 satellite images, acquired annually after the end of the
summer fire season, were analyzed over the 31-year period.

� no covariate information is available for this study.

� Important factors that generate extreme fires: Synoptic
meteorological conditions acting on large spatial distances,
local conditions (land topology, vegetation etc) acting on
shorter distances.



Fires

17 / 31Figure 3: Locations of fires above 5 hectares (top) and locations
of fires above 250 hectares (bottom)



Dependence
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� Data is heavy tailed, consistent with fire size distributions
with infinite variance.

� Question: which conditions are more important in
generating large fires: meteorological conditions or local
conditions? How can one answer this without covariate
information?

� Model these two set of conditions by two latent random
factors, having short and long range dependence structures.

� Large fires are also time dependent. Need to put this
structure in the model too. Can the model capture the
growth cycle of fire prone vegetation? Is there any
temporal structure in the large fires?



Conditional Independence
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� Reasonable assumption: if one is able to eliminate the
effect of all meteorological and local variations, the
occurrence of large fires in space are independent.

� A hierarchical GPD model was devised. Local and global
spatial dependence structures are introduced as latent
random factors through the model parameters.

� long range spatial dependence is introduced as a CAR
model linking 18 administrative regions. Short term
dependence due to local topological conditions are
introduced as a local moving average term.

� How to fit a max stable process to this data when there are
no fixed observation sites? Use spatial block maxima
instead of time-block maxima as data.



Areal
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Max-stable model
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� We look at the log transformed data and fit a max stable process
with Gumbel margins.

� Y (si, t) = the (log) largest annual fire in each of the 18
administrative region, observed during year t. Fit a max-stable
process to the data Y (si, t), i = 1, ..., 18, t = 1, ..., 31

� Y (si, t) = σ(si, t)Zt(si,t) + µ(si, t)

� log(σ(s, t)) = σ0 + δ1(t)

� µ(s, t) = µ0 + δ2(t)

� Zt(si,t) are 31 independent,identical replicates of a
Brown-Resnick process, observed at different locations at each
year, δi(t) latent, temporal factors.



extremal coefficients
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extremal coefficients
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extremal coefficients
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extremal coefficients
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extremal coefficients
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Max-stable model
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� Simplest model possible, but not realistic.

� Extreme fires behave differently over the territory.

� Parameters change in space as well as in time.

� Dependence due to meteorological and local conditions
confound in this model.

� How to introduce separate long range and short range
dependence structures in the model?

� 18 Administrative regions are divided into 3 main
Geographical regions: North, Center and South.



Geographical regions
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3 models

29 / 31

� Data is re-organized: Y (sjk,t) = maximum (log) burned
area in year t = 1, .., 31, region jk = 1, ..., nk, belonging to
the geographical region k = 1, 2, 3, located at spatial point
sjk,t (centroid of fire scar).

� General strategy:Fit 3 max-stable processes for each
geographical regions and link these processes through the
model parameters.

� Dependence structure introduced through the parameters
will represent the meteorological conditions acting over
large distances, whereas the dependence structure of each
the Brown-Resnick processes will represent the local
dependence structures.



Hierarchy
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� Y (sjk,t) = σ(k, t)Zk(sjk,t) + µ(k, t),

� Zk(s) are 3 independent Brown- Resnick max-stable
processes fitted to each of the 3 Geographical regions

� Zk(sjk
, t) are N = 31 independent replicates of the

Brown-Resnick process Zk(s), observed at spatial locations
sjk,t (different locations at each year)

� log(σ(k, t)) = σk + η1(k) + ζ1k(t)

� µ(k, t) = µk + η2(k) + ζ2k(t)

� η1(k), η2(k) are co-regionalized CAR,

� ζ1(t),ζ2(t) are independent, first order autoregressive
processes to capture time dependence, specific for each
region.



Results
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� 3 max-stable processes have different behaviour. Extremes
in North region seem to be more dependent than other two
regions.

� Significant temporal effect capturing the expected cycle of
vegetation growth.

� Statistically insignificant spatial effect connecting the 3
regions

� How to compare conditionally independent model and this
max-stable model?

� Conditionally specified max-stable models of
Fougères-Nolan-Rootzén can give better results.
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