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Abstract

Video surveillance is currently undergoing a rapid growth. However, while

thousands of cameras are being installed in public places all over the world,

computer programs that could reliably detect and track people in order to

analyze their behavior are not yet operational.

Challenges are numerous, ranging from low image quality, suboptimal

scene lighting, changing appearances of pedestrians, occlusions with envi-

ronment and between people, complex interacting trajectories in crowds,

etc.

In this thesis, we propose a complete approach for detecting and tracking

an unknown number of interacting people from multiple cameras located

at eye level. Our system works reliably in spite of significant occlusions

and delivers metrically accurate trajectories for each tracked individual.

Furthermore, we develop a method for representing the most common

types of motion in a specific environment and learning them automatically

from image data.

We demonstrate that a generative model for detection can effectively han-

dle occlusions in each time frame independently, even when the only data

available comes from the output of a simple background subtraction algo-

rithm and when the number of individuals is unknown a priori.

We then advocate that multi-people tracking can be achieved by detect-

ing people in individual frames and then linking detections across frames.

We formulate the linking step as a problem of finding the most proba-

ble state of a hidden Markov process given the set of images and frame-

independent detections. We first propose to solve this problem by opti-

mizing trajectories independently with Dynamic Programming. In a sec-

ond step, we reformulate the problem as a constrained flow optimization



resulting in a convex problem that can be solved using standard Linear

Programming techniques and is far simpler formally and algorithmically

than existing techniques. We show that the particular structure of this

framework lets us solve it equivalently using the k-shortest paths algo-

rithm, which leads to a much faster optimization.

Finally, we introduce a novel behavioral model to describe pedestrians mo-

tions, which is able to capture sophisticated motion patterns resulting from

the mixture of different categories of random trajectories. Due to its sim-

plicity, this model can be learned from video sequences in a totally un-

supervised manner through an Expectation-Maximization procedure. We

show that this behavior model can be used to make tracking systems more

robust in ambiguous situations. Moreover, we demonstrate its ability to

characterize and detect atypical individual motions.

Keywords: Computer Vision, Multi-View, People Detection, People Track-

ing, Behavior Model



Résumé

La vidéo-surveillance est un domaine en pleine expansion. Cependant,

malgré la constante augmentation du nombre de caméras observant les

lieux publics à travers le monde, les programmes informatiques permet-

tant de détecter et de suivre des piétons afin d’analyser leur comportement

sont encore loin d’être opérationnels.

Les difficultés sont nombreuses, dont notamment la faible qualité d’image,

l’éclairage inadéquat, l’apparence hétérogène des piétons, les fréquentes

occultations de personnes par des obstacles ou encore la complexité des

trajectoires.

Dans cette thèse, nous proposons une méthode permettant de détecter et

de suivre un nombre inconnu de personnes à partir de plusieurs caméras

situées à hauteur de tête. Notre système est fiable, malgré de fréquentes

occultations, et fournit des trajectoires précises pour chacune des person-

nes suivies. De plus, nous développons une technique de représentation

des principales trajectoires de piétons dans un environnement spécifique,

pouvant être apprise automatiquement à partir de séquences vidéo.

Nous démontrons qu’un modèle génératif pour la détection peut gérer ef-

ficacement les occultations à partir d’images isolées dans le temps, même

si les seules données disponibles proviennent d’un algorithme de soustrac-

tion de fond et que le nombre de personnes à détecter est a priori inconnu.

Nous soutenons que le suivi de personnes peut être réalisé en détectant les

individus dans des images isolées et en connectant ensuite les détections

entre elles à travers le temps. Nous formulons l’étape de connexion des

détections comme la recherche de l’état le plus probable d’un processus

Markovien caché, en fonction de l’ensemble des images et détections. Dans

un premier temps, nous proposons de résoudre ce problème en optimisant



les trajectoires indépendamment à l’aide d’un algorithme de programma-

tion dynamique. Dans une deuxième étape, nous reformulons ce problème

comme une optimisation contrainte de flux, ce qui représente un problème

convexe pouvant être résolu par des techniques classiques de program-

mation linéaire, et qui est formellement et algorithmiquement bien plus

simple que les méthodes existantes. Qui plus est, nous montrons que,

de part sa structure particulière, le problème peut être résolu de manière

équivalente grâce à l’algorithme des k plus courts chemins. Ceci nous per-

met une optimisation extrêmement rapide.

Finalement, nous introduisons un nouveau modèle de comportement, afin

de décrire les mouvements de piétons. Ce modèle permet d’extraire des

motifs complexes à partir d’un mélange de différentes catégories de tra-

jectoires aléatoires. De par sa simplicité, ce modèle peut être appris de

manière automatique à partir de données vidéo, grâce à un algorithme

d’Espérance-Maximisation. Nous démontrons l’utilisation de ce modèle

de comportement afin de rendre les systèmes de suivi de personnes plus

robustes, ainsi que pour détecter des individus au comportement suspect.

Mots-clés : vision par ordinateur, multi-caméras, détection de personnes,

suivi de personnes, modèles de comportement
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Chapter 1

Introduction

Recent years have witnessed rapid advances in the field of Computer Vision. On the

one hand, the steady growth in available computational power has made possible the

real-time implementation of complex algorithms that were too resource-consuming to

be usable a decade ago. On the other hand, miniaturization and low production costs

of circuitry - and particularly vision sensors, such as CCD or CMOS - have contributed

to the widespread inclusion of cameras in electronic devices. Cameras have become so

ubiquitous today that there are very few cell phones, portable media players, PDA or

laptops that do not include at least one. Furthermore, we now notably find embedded

cameras in cars, elevators, airplanes or houses.

Following the same tendency, public security cameras have seen their number

dramatically increasing in urban environments. Besides owing to the technology ad-

vances, this phenomenon is also driven by a growing sense of insecurity among the

population along with some highly publicized tragic events. The trend started with

the usage of cameras for road monitoring - the number of cameras dedicated to traffic

law enforcement in the United Kingdom has increased from 300,000 in 1996 to over

2 million in 2004 [6] - and is now proceeding with general crime prevention inside

cities. According to [6], an estimated 4.2 million1 Closed-circuit television (CCTV)

cameras were active in 2006 in the UK, which amounts to almost one for every 14 peo-

ple. And this phenomenon concerns almost all major western cities: In 2002, between

7,000 and 12,000 cameras were installed in Berlin [122] in retail shops only, a total of

25,000 cameras were estimated in Oslo [129], around 60,000 were officially censused in

1Note that this number includes public and privately owned surveillance cameras.
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1. INTRODUCTION

France [69], and a huge 500,000 in London [84]. These cameras are primarily located

in potentially crowded areas, such as airports, stations, shopping malls, stadiums or

touristic attractions.

However, among all these cameras, only a small fraction is actively monitored. Al-

though some very specific monitoring tasks can be performed by an automated sys-

tem, such as traffic speeding reporting, the state-of-the-art is not yet advanced enough

for the highly complex task of anomaly detection in an urban environment. Therefore,

most of today’s surveillance systems are intrinsically passive devices, used mostly for

forensic crime investigation and for their potentially preventive effect, although the

incidence of surveillance cameras on the crime rate is still debated [128].

In this context, there is a huge research effort aimed at increasing the level of au-

tomation and making more effective use of all these cameras by reducing the work-

load of human operators. The ultimate goal is to have an intelligent system that can

monitor in real-time a typical urban center crowded with people and cars, detect and

identify any type of potential problems, accidents or threats, and report them auto-

matically to a competent authority. Implementing such a system is very difficult and

poses a number of challenges:

• Video sequences, especially outdoor ones, can be of very bad quality. Current

sensors have a limited dynamic range and lighting changes, weather effects, and

dust can corrupt the images and make them difficult to interpret.

• Identifying, segmenting and localizing pedestrians, cars, and other objects of in-

terest from images is a very complex task, which is still unsolved in its generic

form. Those targets can have a wide range of different appearances, are de-

formable, and often occlude each other. Urban environments are frequently

cluttered with obstacles that may occlude, reflect, have a similar appearance or

project shadows on the target objects.

• Tracking multiple targets, especially pedestrians, is difficult because they often

exhibit complex motions and interact with each other. People frequently move

in groups, which eventually split or re-merge with other groups.
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• Detecting abnormal situations is challenging, because the variety of different

behaviors that naturally occur in any given environment makes the distinction

between “normal” and unusual events difficult.

Many researchers have tackled the automated surveillance problem, although most

of them concentrate on one specific subtopic: some address only low-level detection

of objects, while others try to analyze people behavior by assuming access to per-

fect trajectory information. Historically, the first approaches have attempted to track

people from a single camera [23; 46; 47]. Among them, many rely on blobs from

background subtraction as an initial input [22; 48]. They typically combine shape

analysis and tracking to locate people, while maintaining appearance models in or-

der to follow them even in the presence of occlusions. More sophisticated approaches

also take color into account. A standard way is to combine multiple image cues with

MCMC [144] or particle filtering [44; 94; 111] for tracking.

Despite their effectiveness in sparse crowds, monocular approaches have limited

capabilities to deal with denser situations, because time consistency alone is not enough

to cope with a large number of occlusions. In this context, the use of multiple cam-

eras becomes necessary. Not only is this technique more effective at handling oc-

clusions, but it allows to compute precise 3-D localization of people and can enlarge

the monitored field of view. In multi-view, background subtraction is also often a

starting point [64; 68; 96]. Approaches fuse the blobs from different views using a

visual hull [136], 2-D visual angles [96], or homographic constraints [36; 65]. The re-

sulting ground detections are then typically tracked with particle filters [96], graph

cuts [64; 65], or dual-stage frameworks performing one-to-one correspondences fol-

lowed by a split and merge analysis [36].

Among both monocular and multi-view approaches, some address tracking as a

recursive detection problem using methods such as Kalman filtering [14; 85], particle

filtering [57; 111], or mean-shift [23]. To overcome their tendency to drift when dif-

ficult conditions arise, researchers have attempted to look at a longer time period by

incorporating Joint Probabilistic Data Association Filters [61] or Multiple Hypothesis

Tracking [46]. However, the search space of these methods grows exponentially with

the number of frames. A more recent research trend thus tries to address the prob-

lem by decoupling detection from tracking. A detector is applied at each time step
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independently and a data association method links the detections together, produc-

ing more robust results. Various methods have been tried for data association, such

as graph cuts [64], dynamic programming [10], linear programming [59], min-cost

flow [140], or variants of AdaBoost to automatically learn the best associations [76].

Approaches specifically targeted at learning behavior models from pedestrian data

often rely on trajectories clustering [3; 90; 98; 101] or vector quantization [60; 113].

Some build their behavior model directly in the image view [90; 113], while others

project the trajectories on the ground plane first [3; 101]. More complex approaches

include [9], which applies an E-M algorithm to cluster trajectories recorded with laser-

range finders. From this data, they derive an HMM to predict future position of the

people. Similarly, [2] characterizes crowd behavior by observing the crowd optical

flow and uses unsupervised feature extraction to encode normal crowd behavior. PCA

is applied to extract motion models, which are combined through an HMM.

In this thesis, we propose a bottom-up approach for pedestrian behavior analysis

from multiple cameras that avoids the pitfalls encountered by the methods presented

above. Notably, we separate our system into 3 modules that work almost indepen-

dently, allowing them to easily recover from errors.

Detection We first build a robust people detector from multiple views, which works

on a frame-by-frame basis and merges information from different cameras to

produce an accurate localization on the ground plane. The method uses a so-

phisticated generative model to naturally handle occlusions. Not requiring time-

consistency makes our method very robust to occasional failure, and avoids drift

problems commonly faced by methods that combine detection and tracking.

Tracking In a second step, we design a multi-object linking method to connect detec-

tions produced by our first module. It relies on global optimization to extract

complex trajectories of interacting people over a large number of frames, while

avoiding local minima caused by occasional miss-detections. The generality of

the approach makes it also well suited for other applications than pedestrian

tracking.

Behavior analysis Finally, we introduce a novel model to represent the most typi-

cal motion patterns that people follow in a specific environment. Our model

encodes different types of observed behavior, and is learnt by collecting data
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from our detector over an extended period of time. The method is made robust

by only requiring time independent detections as input instead of full trajecto-

ries. The resulting behavior model can be used in conjunction with our people

tracker, to classify the extracted trajectories as normal or abnormal. Furthermore,

this model can be incorporated into a tracker to improve the quality of trajecto-

ries.

Several potential applications exist for the system developed in this thesis. Surveil-

lance is the obvious one. Although capturing trajectories is not informative enough

to fully understand complex situations involving humans, it is sufficient to spot un-

usual events in environments where the main human motions are simple, such as a

passageway or corridor.

Furthermore, surveillance is not the only area that can benefit from a system such

as ours. Behavior analysis for customer market research in shops is growing in impor-

tance. The knowledge of how people navigate and how their paths correlate with sales

is of great value for shop owners, who are constantly trying to increase the attractivity

of their retail location. In this context, producing metrically accurate trajectories and

extracting significant motion patterns from them is extremely useful.

Another example comes from team sports, such as soccer or basketball. Players

intensively interact in very complex patterns over almost two hours. A precise analy-

sis of the their actions during the match is very important for coaches to evaluate the

performance of their team and of individual players. It could also be used to analyze

the opposing team’s tactics. Doing this by watching hours of video is tedious and

would greatly benefit from automation, especially if the system were accurate enough

to catch subtle behaviors.

To be readily applicable to the aforementioned activities, a tracking system must be

robust, that is follow people accurately with a minimum amount of identity switches,

miss-detections and false positives, even in suboptimal conditions. Precision is also an

essential characteristic for gathering significant statistical data about people motion.

Equally important, it needs to be capable of recovering from occasional tracking mis-

takes, in order to run over a long period of time. The realization of such a system is

the objective of this thesis, which we define more precisely in the rest of this chapter.
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1. INTRODUCTION

1.1 Thesis Goals

The goal of this work is first to detect and track an a priori unknown number of people

using multiple cameras. We then want to infer a behavior model for a given environ-

ment by passively monitoring the scene. More specifically, we aim at

• robustly detecting multiple people in spite of occlusions, which are inevitable

when the cameras are not looking strictly down;

• precisely locating these people in world coordinates;

• reliably linking detections into trajectories, despite potential miss-detections and

false positives;

• learning a behavior model in places where people do indeed tend to follow stan-

dard patterns, and using it to classify detected trajectories;

• relying on standard off-the-shelf video equipment only;

• designing fast algorithms - for detection and tracking - that could be run in real-

time on standard computers.

Combining these requirements results in a robust framework that can be applied to

typical surveillance environments, in which light is not controlled and camera posi-

tioning is constrained. In the following section, we outline our research efforts to-

wards attaining these specifications.

1.2 Overview of our Approach

As mentioned earlier, we advocate an approach in which detection and tracking are

decoupled. Detection is performed on a frame-by-frame basis, which makes it robust

to failures: Because we do not enforce temporal consistency, a failure at time t does not

influence the result at time t + 1. Moreover, this approach can handle streams of any

frame rate, including slow ones that imply large motions between frames. We briefly

outline the components of our system below.
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1.2 Overview of our Approach

1.2.1 People Detection

To detect people, we discretize the ground plane into a grid of cells. We start by per-

forming background subtraction independently on every available view. We then ap-

proximate the marginal conditional probabilities of occupancy of the ground plane

given the background subtraction images from all views acquired at the same time.

This approximation is obtained by minimizing the Kullback-Leibler divergence be-

tween a product law and the true posterior under a generative model. We show that

this is equivalent to computing marginal probabilities of occupancy so that, under the

product law, the images obtained by putting rectangles of human sizes at occupied

locations are likely to be similar to the images actually produced by the background

subtraction. By estimating occupancy directly in the ground plane, we produce prob-

abilistic occupancy maps that indicate precisely where people are most likely to be.

Moreover, this approach fuses multiple camera views in a manner that naturally takes

occlusions into account.

Figure 1.1: An overview of our approach for people detection: original images (a) are

processed individually by background subtraction yielding binary images (b). These are

merged using a generative model of the background subtraction, which estimates ground

occupancy (c). Finally, the detection in images is performed by projecting the bounding

boxes (d) corresponding to the occupied locations of the ground.

We also experiment with an alternate approach that replaces the background sub-

traction by a classifier trained at recognizing pedestrians in individual images. For
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each image, the classifier is applied to sub-images corresponding to every location of

the ground plane grid. This generates a map of classifier answers per camera view,

which are later merged using a generative model of the classifier response. By apply-

ing classifiers instead of background subtraction, this method is able to concentrate

on pedestrians, while ignoring other types of object motion. Despite its theoretical in-

terest, this alternate approach does not produce results that match the quality of those

from our first method, and is too resource-consuming to be applied in practice.

1.2.2 People Tracking

We experimented with two separate approaches to recovering trajectories from detec-

tions, both of which rely on global optimization applied to probabilistic occupancy

maps generated by our people detector. The global optimization scheme is gener-

ally more robust than the recursive update of estimates from frame to frame, which

may fail if difficult conditions persist over several consecutive frames. By contrast,

our algorithms handle such situations, since we compute the global optima of scores

summed over many frames.

We first propose a multiple-people tracking method based on Dynamic Program-

ming. Video sequences are processed by batches of 100 frames, and the most likely

trajectory is computed for each individual. To avoid the complexity of the joint op-

timization, we extract individual trajectories independently. In theory, this approach

could lead to undesirable local minima, for example, by connecting the trajectories of

two separate people. To reduce the chances of this, we process individual trajecto-

ries in an order that depends on a reliability score, so that the most reliable ones are

computed first, thereby reducing the potential for confusion when processing the re-

maining ones. The optimization is performed on the ground occupancy probabilities

provided by the people detector, combined with a color-histogram-based appearance

model and a simple isotropic motion model.

We then introduce a second approach to multiple people tracking that performs

joint trajectory optimization over a batch of frames using Linear Programming. We

formulate the linking step as a constrained flow optimization, which results in a con-

vex problem that can be solved using Linear Programming techniques. The complex-

ity of the resulting Linear Program is very high, but we show that, due to its particular
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1.2 Overview of our Approach

Figure 1.2: An example of tracking results based on Linear Programming on a relatively

crowded sequence. Each row shows a different camera view out of the 4 originally avail-

able. Each column shows a different time frame. Two consecutive columns are separated

by 20 frames. Note the large number of occlusions due to the camera placement.

structure, our problem can be solved very efficiently using the k-shortest paths algo-

rithm [117]. This optimized algorithm performs up to 1,000 times faster than a generic

Linear Programming solver, while producing the exact same result.

1.2.3 Behavior Analysis

In the last part of this document, we introduce models that can both describe how

people move on a location of interest’s ground plane, such as a cafeteria, a corridor,

or a train station, and be learned from ground occupancy maps provided by a people

detector. We represent specific behaviors by a set of behavioral maps that encode, for

each ground plane location, the probability of moving in a particular direction. We

then associate to people being tracked a probability of acting according to an individ-

ual map and to switch from one to the other based on their location. The maps and

model parameters are learned by Expectation-Maximization in a completely unsuper-

vised fashion. At run-time, they are used for efficient detection of abnormal behav-

ior by computing the probability of retrieved trajectories under the estimated model.

Also, we show that those maps are well suited to replace the simple isotropic motion

model used by our Dynamic Programming-based tracker, with a more sophisticated

one adapted to a specific environment.
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1.3 Outline

The remainder of this document is structured as follows: In Chapter 2, we introduce

the framework on which our system is built. We also briefly expose some of the meth-

ods used by our system, but that were not precisely the focus of this work, such as

camera calibration or background subtraction. In Chapter 3, we explain our main

method for people detection and introduce an alternate one based on classification. In

Chapter 4, we propose and evaluate two separate tracking methods relying on global

optimization. In Chapter 5, we develop an approach to automatically learn behav-

ioral maps by monitoring a scene with the detector of Chapter 3. Related work about

people detection, tracking and behavior analysis will be discussed separately at the

beginning of each corresponding chapter. Finally, after some perspectives for future

work, we conclude in Chapter 6.
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Chapter 2

Framework

Despite the tremendous progress of Computer Vision during the last four decades,

the general vision problem is far from being solved. As a consequence, current vision

applications need to be quite heavily constrained to produce meaningful results. Peo-

ple detection and tracking is no exception. In particular, it is still beyond the current

state-of-the-art to expect a very general tracker, which would be able to follow people

accurately in any situation, regardless of the environment, light, people density and

activity, etc.

This chapter introduces the framework on which we build our approach to pedes-

trian detection, tracking, and behavior analysis. We explain our motivations for the

design choices and trade-offs underlying our application. We also outline some of the

auxiliary methods used by our system, such as camera calibration or background sub-

traction. They do not constitute the focus of our work but are required to make the

system work. Finally, we present the test data and the metrics we use to evaluate the

performance of our algorithms.

2.1 Design Choices

The goal of this thesis is to build a vision-based pedestrian tracking system that is

both robust and precise enough to allow meaningful people behavior analysis based

on the retrieved trajectories. More precisely, we want to design our system with the

following characteristics:
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• it has to be able to follow an a priori unknown and potentially varying number

of people;

• it must supply accurate localization in world coordinates - as opposed to an

imprecise image detection - allowing behavior analysis based on trajectories;

• it only requires off-the-shelf video equipment, as opposed to cutting edge and

experimental technology like high resolution video, infrared images or stereo

cameras;

• it is adaptable to non-optimal camera placement and various number of cam-

eras, in order to be usable in the widest possible range of environments.

2.1.1 Multiple Cameras

To fulfill these requirements, we made a number of design choices, the most impor-

tant of which was the decision to rely on a multi-camera system. Multiple people

moving tend to occlude each other, which generates ambiguity when observed by a

single camera. When the number of people is small, researchers usually address this

issue by relying on time consistency. However, when the people density increases,

the large amount of occlusions produced renders any monocular tracking task very

difficult. These ambiguities may be eliminated by images taken from another view-

point. Although this issue can also be partly addressed by using a single top mounted

camera that may reduce the amount of occlusion, this solution is not without flaws.

An indoor top camera can be close to useless if the ceiling is not high enough. This

limitation can be overcome with the help of a Fisheye lens, however this type of lenses

also heavily distorts the resulting image and makes its treatment difficult. Addition-

ally, when placed outdoors, a top camera involves a significantly more complex setup

than a regular one.

Since the useful field of view of any type of camera is limited, using multiple cam-

eras is also a way to expand the surveillance area. Furthermore, it provides more

accurate localizations than a single camera setup.
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2.1.2 Camera Placement

In most indoor environments monitored by video, camera placement is heavily con-

strained due to the low ceiling height. This creates a challenge not only because cam-

eras looking obliquely are more prone to occlusions but also because the 3-D localiza-

tion is less precise when the camera is close to the ground.

Nevertheless, we decided to design our system specifically for this suboptimal

camera placement where cameras are located just slightly higher than a person’s head,

because that type of environment is one of the most commonly encountered in video

surveillance situations. That said, our approach is sufficiently flexible to adapt to other

types of camera placement.

Since we use the redundant information provided by several cameras at different

points of view, the fields of view overlap needs to be maximized, and the viewpoints

as diverse as possible for optimal results. Extensive studies [88] have been devoted to

camera placement in multi-camera systems, but in our case, the system performance

is not very sensitive to it.

Our system can handle any number of cameras. For best results though, more

than one camera are needed. As a rule of thumb, the higher the people density, the

more cameras are necessary to overcome the occlusion ambiguity. Note that our ap-

proach is totally scalable and can even work monocularly, when there are relatively

few occlusions

2.1.3 Constraints

To bound the complexity of our task, a certain number of assumptions have been

made. First of all, in this work, we assume that the ground plane on which people

evolve is flat. This assumption considerably simplifies our calibration procedure, as

will be shown in §2.4. This is however not to say that our system could not work on

uneven grounds. Provided with an elevation model of the ground, our framework

extends very well to non-flat ground surfaces. Nonetheless, acquiring an elevation

model of the ground is in itself a time consuming task on which we did not want to

focus this work.

Another implicit assumption is that pedestrians are the only moving objects in our

scenes. This constraint reduces the generality of the system in cases where people
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interact with other moving objects, such as cars. Therefore a city center cluttered with

cars or an airport apron would not be reliably monitored by our system in its current

state.

Finally, we also assume that the people we track are pedestrians, which is to say

that they are always in upright position, whether they stand, walk or run. Although

this constraint slightly limits the generality of our system, moving pedestrians are by

far the most interesting target for people tracking systems. Additionally, we will see in

Chapter 3.2.6 that our system is quite tolerant and robust to several human activities

that depart significantly from walking, such as basketball playing.

2.2 Occupancy Map

One of the challenges of multiple views is the necessary fusion of the information pro-

vided by individual sensors. This has been usually addressed by projecting detections

from individual views into a common 3-D reference, and using various geometry-

based heuristics to cluster the detections belonging to the same object. For example,

[30] uses a Bayesian network to fuse 2-D state vectors acquired from various image se-

quences to obtain a 3-D state vector. [120] relies on nearest neighbor Kalman filter for

fusing observations into a single estimate. [133] uses a two-level hierarchy of Kalman

filters for trajectory tracking and data fusion from multiple cameras. In this work,

we propose two different approaches to tackle data fusion from multiple views. Both

have in common the use of an occupancy grid to represent the ground plane. Instead

of relying on continuous geometric coordinates to locate the detected objects in a com-

mon reference plane, we discretize the ground plane into a finite number of cells, and

estimate their occupancy individually. An occupancy grid represents a powerful tool

for data fusion from multiple sensors [114], and it extends very well to tracking and

behavior analysis, without sacrificing the localization precision.

The concept of occupancy grid was first introduced by [32], and has been exten-

sively used since then in the robotic navigation literature [107; 121]. An occupancy

grid consists of a multi-dimensional random field that maintains stochastic estimate

of the occupancy state of the cells in a spatial lattice. Although mostly used as a two-

dimensional structure, it has been also extended to 3-D [40] and used for reconstruct-

ing 3-D models from different views.
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2.2 Occupancy Map

In our framework, a two dimensional probabilistic occupancy map with K cells

is used to represent the ground plane occupancy. The individual cells are typically

squares of 20 × 20 cm to 30 × 30 cm, which represents slightly less than the space

occupied by a standing pedestrian. The usual size of the grids we deal with is of

the order of K ≃ 1, 000 cells, and varies with respect to the tracking area dimension.

Concrete examples are given in §2.7.

Throughout this work, we always deal with plain rectangular grids, because they

are very convenient to derive from a camera calibration, and easy to deal with in a

computer program. However, nothing stops us from using arbitrary-shaped grids

as well as non-planar ones, if those fit better the tracking environment. Besides, our

approach is also compatible with non regular grids, such as the one proposed in [1].
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Figure 2.1: Determining optimal grid resolution. Detection accuracy (MODA) and pre-

cision (MODP) are plotted as a function of the cell size. We see that, although precision

decreases almost linearly with cell size, accuracy starts dropping for sizes larger than 35

cm.

The grid resolution cannot be chosen arbitrarily, because inappropriate values

might seriously affect the performance of the people detector. Obviously, coarse res-

olutions should be avoided, because we do not want more than one person to fit si-

multaneously into a single grid cell. If this was possible, our detector would lose

discrimination power when people are close to each other. Moreover, it is desirable
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that, wherever a person is standing, there is a grid cell that approximates its position

well enough. To quantify the importance of the grid resolution, we show in Fig. 2.1 the

performance variation of the people detector of Chapter 3.2 for different cell sizes. The

graph was obtained by running people detection on a video sequence and evaluating

the result against a manually labelled ground truth with standard detection metrics.

The exact metrics definition is given in §2.6, but for this example it is sufficient to know

that the precision metric (MODP) gauges the alignment of the detections with respect

to the reference, and the accuracy metric (MODA) roughly counts the false positives

and negatives. As expected, we see that the precision (MODP) decreases linearly as

the cell size grows larger. By contrast the accuracy (MODA) is stable up to 35 cm, and

then starts decreasing. Beyond this critical value, the discretization is no longer fine

enough to correctly approximate all possible positions of the ground plane. For this

reason, in our experiments, we always use cell sizes of 30 cm or less.

2.3 Modeling People

At the heart of the people detector of Chapter 3.2 is a generative model for background

subtraction images. We motivate here the choice of the simple rectangular shapes we

adopt for human silhouettes approximation in the model.

A human body is a challenging object to model, because it is both highly artic-

ulated and deformable. As suggested by the example set of silhouettes in Fig. 2.2,

pedestrian silhouettes can take very different shapes. They can be even more hetero-

geneous when people perform activities different from walking, such as running or

playing sports . Therefore, no particular fixed shape can faithfully capture the wide

range of potential silhouettes generated by pedestrians, and one has to rely on com-

plex articulated models.

Figure 2.2: Some examples of typical pedestrian silhouettes.
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Figure 2.3: This figure illustrates how the space occupied by pedestrians can reasonably

well be approximated with cylinders of 50 cm diameter and 1.75 meter high. The right

image shows that the cylinders projection in the image plane is close enough to vertical

rectangles, when the camera is located sufficiently low relatively to the ground.

Instead, we observe that usual pedestrian silhouettes share a common size and as-

pect ratio. More generally, pedestrians occupy a portion of space that can be roughly

approximated by a cylinder of 50 cm diameter and 175 cm height, as illustrated by

Fig. 2.3. Furthermore, when observed by a camera positioned around 2 m above

the ground, with a standard lens, the cylinders project into the camera images as

slightly rounded rectangles, which can be reasonably approximated by vertical rect-

angles aligned to the image coordinate system.

Based on this reasoning, we model the foreground blobs produced by a person on

a binary background subtraction image with a rectangle of aspect ratio 2:7. Examples

are illustrated by Fig. 2.4. The choice of a rectangle shape for foreground silhouette ap-

proximation is further motivated by efficiency constraints of the people detection algo-

rithm: In Chapter 3, we show that this shape allows us to significantly speed up some

computation by relying on integral images [126]. Other research work have proposed

the use of more sophisticated shape models for human foreground blobs. For exam-

ple, [57] uses the 2-D projection of a cylinder with varying diameter, while [1] suggests

the use of a semi-elliptical shape for the same purpose. Some approaches rely on 3-D

shapes, such as [96], which proposes cylinders with an elliptical base or [143], which

uses ellipsoids as a 3-D human shape model. A summary of the most common 2-D

representations for human silhouettes is depicted by Fig. 2.5.

Note that our model for silhouettes has been specifically conceived for the partic-

ular setup in which cameras are oriented horizontally and located at about the same

height as people heads. As one significantly departs from this original setup, for ex-

17



2. FRAMEWORK

(a) background subtraction (b) synthetic model

Figure 2.4: Background subtraction images with human silhouettes (a), with their corre-

sponding synthetic model (b). Note that the dots are not part of the synthetic model, but

are simply printed to show the extent of the ground plane grid.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.5: Different types of people representation found in the literature: (a) centroid,

(b) multiple points, (c) bounding box, (d) ellipse, (e) multiple ellipses, (f) skeleton, (g)

control points, (h) contour and (i) silhouette.
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ample by placing the cameras very high, the model becomes progressively no longer

adapted. However, by redefining the silhouette model, the generative model of Chap-

ter 3.2.2 can be easily adapted to a wide range of environments, such as, for example,

the tracking of table tennis balls that we illustrate in Chapter 4.3.7 or tracking pedes-

trians from a ceiling mounted Fisheye camera.

2.4 Camera Calibration

Multi-view-based tracking draws its main strength from the additional information

provided by different view points, which can overcome occlusion. But this extra

knowledge can only be fully exploited if the connection between image measurements

and scene measurements is known. In every multi-view approach, detections in indi-

vidual views eventually need to be related and merged.

This correspondence problem is usually dealt with by computing the cameras cal-

ibration, which consists, for every camera, in estimating its intrinsic parameters - focal

length, principal point and radial distortion, among others - and extrinsic parameters,

that is, its position and orientation in space. Over the years, several different camera

calibration methods [18; 124; 142] have been developed. Their computation typically

requires the definition of correspondences between scene and image measurements.

A technique called autocalibration [83; 103; 123] allows to trade extensive scene knowl-

edge for knowledge of camera motion. Once estimated, the camera calibration param-

eters give a precise understanding of the image formation mechanism. A complete

discussion of the camera calibration problem extends well beyond the scope of this

work, and we refer the interested reader to [49], which covers extensively the multiple

aspects of the subject.

In our case, camera calibration is specifically needed to relate people silhouettes in

the images to their corresponding position on the ground plane. Reciprocally, for ev-

ery position of the ground plane, we need to estimate the approximate bounding box

in the image view of a pedestrian standing there. This is a well constrained problem,

and although it can be solved using standard calibration, we will see that it is sufficient

to use a simpler homography-based method, which is more convenient to compute.

The simplified method is generally less precise though, and does not take radial dis-

tortion into account. Thus, we still use standard calibration methods in larger scenes,

20



2.4 Camera Calibration

for which precision is critical. In the remainder of this section, we first describe our

method using homographies, which we dub homography-based calibration although it

is not strictly speaking a calibration. We then give a brief overview of the Tsai [124]

calibration method, which we also used as part of this work.

2.4.1 Homography-Based Calibration

In order to establish the simple rectangular projections needed by our generative

model, a full camera calibration is not absolutely necessary. The homography-based

camera calibration is a simplified calibration procedure that is specifically tailored for

our pedestrian tracking model. Its main advantage stems from the simplicity of the

procedure, compared to standard calibration techniques that require numerous real-

world measurements.

At the origin of the method are two important assumptions:

1. People are walking on a perfectly flat ground plane;

2. Cameras do not present any type of distortion.

The first assumption is satisfied in many people tracking environments, especially in-

door ones, and is a good enough approximation in many others. The second assump-

tion is reasonable when using standard lens types - i.e. not Fisheye - with a moderate

focal length - i.e. not smaller than 35 mm on a 35 mm full-frame camera.

This model is based on the idea that people evolving on the ground plane are in

fact located between two parallel planes: the ground plane on which they walk and

the plane placed approximately 1.75 m above the ground plane, which we refer to as

head plane. Those two parallel planes are illustrated in Figure 2.6. Contrary to usual

calibration methods, the homography-based calibration does not need to estimate all

camera parameters. Instead, we just compute the two homographies per camera view

that map a top view of the ground plane into the ground plane and respectively the

head plane in the camera view.

The two necessary homographies per camera view can be easily computed using

the Direct Linear Transformation algorithm [49]. The procedure consists in specifying at

least 4 point correspondences between the top and the camera views. A degenerate

case occurs when the camera is placed at the exact same height as the head plane.
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(a) (b)

Figure 2.6: People evolving on a flat ground are located between two planes: the ground

plane and the head plane (a). When the camera is placed at the same height as the head

plane (b), the head plane appears as a single line in the camera view.

In this situation, all points from the head plane are projected into a single line in the

camera view, as shown by Fig. 2.6(b), and the homography is ill-defined. When this

happens, we do not attempt to compute the homography, but instead record the height

of the projected line in the image. This is enough to generate the synthetic views by

projecting the appropriate rectangles into the image.

At this point, the homography-based method still needs real-world measurements

to define correspondences with the image views. To address this limitation and make

the calibration procedure more convenient, we have implemented a method inspired

by [70]. This technique uses the motion segmentation of a person walking in front

of the cameras to estimate points in both the ground and the head planes. It then

uses these point correspondences to derive the two homographies. The method can

be made robust to background subtraction imprecision by using RANSAC [38]. The

method we developed [45] adapts this solution to our problem, for which we need not

only homographies between camera views but also homographies between top and

camera views.
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2.4.2 Tsai Calibration Model

When at least one of the assumptions of the homography-based calibration cannot

be fulfilled, we use the more complete Tsai calibration model, originally described by

Roger Tsai in [124]. This method fully estimates both intrinsic and extrinsic camera pa-

rameters, as well as the first order coefficient of radial distortion. To retrieve accurate

parameters, the method requires about 20-30 correspondences between 3-D points in

world coordinate and their image projection counterparts.

Since the Tsai model recovers the complete calibration parameters, one can project

any 3-D point in the camera images, making this method well suited for non-flat

ground. Also, its ability to retrieve radial distortion is helpful when dealing with

wide angle lenses. In our work, we rely on the Tsai model instead of the simpler

homography-based one when handling large areas. For locations far from the cam-

era, a small error due to radial distortion gets amplified and leads to misalignments

between views.

2.5 Background Subtraction

Background Subtraction [100], also commonly referred to as Change Detection or Mo-

tion Segmentation, is a simple yet powerful technique for detecting motion from a video

stream filmed by a static camera. In its most basic form, it simply consists in compar-

ing every new image from the stream to a reference model, and labeling as motion all

the pixels that depart significantly from the model. Background subtraction thus usu-

ally produces binary images, in which static parts are segmented from dynamic ones.

Probabilistic images, where every pixel is assigned a probability to belong to the back-

ground are also sometimes generated. Figure 2.7 displays an example of background

subtraction using mixtures of Gaussians.

An ideal background subtraction algorithm should react to moving objects only.

However, by only relying on pixel intensities to separate foreground from background,

most techniques are subject to potential confusion by a number of elements. First and

most obvious, if a moving object has the same appearance as the background, it might

go undetected. Moreover, light changes, such as reflections, shadows, variation in

light intensity, etc. might be wrongly interpreted as motion. Small background mo-

tion, such as tree foliage should be ignored altogether, and stationary objects - such
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(a) Reference frame (b) Input frame (c) Motion segmentation

Figure 2.7: Typical example of background subtraction: A reference frame (a) is used as

background model, and an input image (b) is compared to it, generating a correspond-

ing binary motion segmentation (c), in which moving parts are depicted in black. This

particular background subtraction example was made with mixtures of Gaussians.

as a car that was just parked - must at some point be integrated into the background

model. Typical background subtraction limitations are depicted by Fig. 2.8.

To cope with some of the challenges mentioned above and go beyond the lim-

itations of the original method, several improvements were devised. For instance,

[112] describes every pixel of the background with a mixture of Gaussians. In so do-

ing, this approach is able to model slightly moving backgrounds, such as trees or

waves. [33] bases its model on Kernel Density Estimation to achieve the same ef-

fect. [95; 104] develop a background subtraction method called eigenbackgrounds. As

opposed to the approaches mentioned above, which model single pixel locations in-

dependently, this technique is capable of learning spatial correlation from different

reference images of the background using eigenvalue decomposition. Such a model is

thus particularly suited to deal with global illumination changes that affect large parts

of the image.

More recently, [73] took advantage of the redundant information provided by a

multi-view system to identify and remove the shadows projected on the ground from

background subtraction images. Instead of the traditional statistical background model,

[102] uses a statistical illumination model, in order to handle sudden illumination

changes.

Even though some parts developed in this thesis rely on background subtraction,

this topic is not in itself our main focus. Therefore, we do not expand further on this

subject and refer the interested reader to the articles cited above.
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(a) shadows (b) illumination changes (c) similar appearance

Figure 2.8: Three typical background subtraction failure cases: (a) shadows, (b) rapid illu-

mination changes and (c) foreground objects with similar appearance to the background.

Throughout this work, we used different background subtraction implementa-

tions, the choice of which depended on their performance in various environments.

Most of the results presented in this work have been processed with our own imple-

mentation of the eigenbackground [95] algorithm. On some particular sequences, we

relied on the method developed in [102] or an in-house implementation using mix-

tures of Gaussians. In our system, the background subtraction is thus considered as a

black box, which produces binary foreground / background segmentation. Different

systems are therefore easily interchangeable. As will be explained in the next chapter,

we do not have any special requirements on background subtraction algorithms, but

instead expect rather poor performance from them, and make our system as robust as

possible to noisy and incomplete foreground masks.

2.6 Evaluation

The evaluation of a detection or tracking system is typically done by comparing the

results it yields on a test sequence to the manual annotation produced by a human on

the same sequence. Those results can be evaluated in terms of true and false positive
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rates, precision and other measures. In this work, we rely on the metrics defined by the

CLEAR [115] project. We made this choice because they are widely accepted metrics

for evaluating detection and tracking results. They are, among others, used by the

PETS evaluation1. We give more details on how these metrics are computed below.

2.6.1 Ground Truth

Annotating multi-view video sequences is a time consuming process, but nevertheless

an unavoidable step in any evaluation. For this work, we created two types of ground

truth. First, to quantize the precision of our algorithms, we picked 100 frames at ran-

dom among a complete sequence from the laboratory data set and marked by hand

a reference point located on the belly of every person present in every camera view.

Using the camera calibration, we then projected those points on the ground plane.

Since the 100 frames were taken from a sequence with four individuals entering the

room successively, we obtained in total 354 locations. This type of ground truth can

also be used to estimate the number of detection true and false positives. However,

it is not dense enough to correctly evaluate tracking algorithms, for which trajectory

consistency is important.

For this purpose we created a second type of ground truth labelling that records

the people position on the ground as well as their bounding boxes in camera views

and their identity at a regular frame interval. The ground localization of this type

of ground truth is not as precise as the previous one, but it is much faster to generate,

thanks to a helper program that we specifically implemented for this purpose. Overall,

we labelled the following sequences:

• a laboratory sequence of 3,000 frames, labeled once every 25 frames;

• a terrace sequence of 5,000 frames, labeled once every 25 frames;

• 4 video sequences from the passageway data set, measuring respectively 2,500,

800, 900 and 800 frames. These sequences were labeled once every 25 frames;

• the 800-frame long PETS 2009 sequence S2/L1, labeled once every 5 frames;

• the 11,000-frame long behavior test sequence, labelled once every 10 frames;

1IEEE International Workshop on Performance Evaluation of Tracking and Surveillance
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• 2 ball sequences, a 1,000-frame and a 1,200-frame, labelled once every 3 frames.

Note that the video data sets referred above are described in §2.7.

2.6.2 CLEAR Metrics

We give here a short overview of the CLEAR metrics used for detection and tracking

evaluation. We refer the interested reader to [13; 63; 115] for a detailed description and

motivations of the metrics.

2.6.2.1 Multiple Object Detection Accuracy (MODA)

MODA is a metric whose goal is to assess the accuracy of a detection system. It is a

function of the missed detection (mt) and false positive (fpt) counts. Let N
(t)
G denote

the number of ground truth objects for a frame t. For an entire sequence, the MODA

score is computed as follows:

MODA = 1−

∑Nframes

t=1 (cm (mt) + cf (fpt))
∑Nframes

t=1 N
(t)
G

, (2.1)

where cm and cf are two constant factors for weighting the importance of the missed

detections and false positives, depending on the focus of the application. In our case,

both were set to 1. Nframes is the total number of frames in the sequence.

2.6.2.2 Multiple Object Detection Precision (MODP)

The detection precision is evaluated using the spatial overlap between a detection

and its corresponding ground truth. For this purpose, the Mapped Overlap Ratio is

defined as follows:

Mapped Overlap Ratio =

N
(t)
mapped∑

i=1

∣
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(t)
i ∩D

(t)
i
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(t)
i

∣
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∣

, (2.2)

where G
(t)
i denotes the ith ground-truth object in the tth frame, D

(t)
i denotes the corre-

sponding detected object for G
(t)
i , and N

(t)
mapped is the number of mapped object pairs in

frame t. Note that in our multi-view case, the Mapped Overlap Ratio is also summed

over all visible camera views and normalized.
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The final MODP score for an entire sequence is given by the following formula:

MODP =

∑Nframes

t=1
(Mapped Overlap Ratio)

N
(t)
mapped

Nframes

. (2.3)

2.6.2.3 Multiple Object Tracking Accuracy (MOTA)

The MOTA metric is almost similar to its detection counterpart MODA. The only dif-

ference is the identity switch count per frame (iswt) that did not exist in MODA, be-

cause it is meaningless when gauging detections. The exact formula is

MOTA = 1−

∑Nframes

t=1 (cm(mt) + cf (fpt) + cs(iswt))
∑Nframes

t=1 N
(t)
G

, (2.4)

where cs is a weight function for the identity switch count. The values used for the

weights in our evaluations are cm = cf = 1 and cs = log10.

2.6.2.4 Multiple Object Tracking Precision (MOTP)

Finally, the MOTP metric gauges tracking precision. Here we chose the version pro-

posed in [13], which is defined by:

MOTP =

∑Nframes

t=1

∑N
(t)
mapped

i=1

[
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]

∑Nframes

t=1 N
(t)
mapped

, (2.5)

where N
(t)
mapped refers to the number of mapped object pairs in the tth frame.

2.6.2.5 True and False Positive Rates

In some of our evaluations, we also use the classical true and false positive rates. Their

definition is given here for reference. Let us denote by TP , TN , FP and FN the total

count of true positives, true negatives, false positives and false negatives respectively.

The true positive rate is then defined as

TPR =
TP

TP + FN
, (2.6)

and the false positive rate as

FPR =
FP

FP + TN
. (2.7)
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2.7 Test Data

Multi-view data sets are intrinsically difficult to acquire with temporary setups, mainly

due to the amount of necessary material and the problems inherent to the simultane-

ous manipulation of several recording devices. Besides, in most countries, filming

people in public places is subject to very strict privacy protection laws. As a result,

very few multi-view pedestrian data sets are currently publicly available. A notable

exception is the recent PETS 20091 data set, which is made of pedestrian sequences

filmed from 7 different angles.

The lack of standard evaluation data motivated us to acquire our own. During the

time frame of this thesis, we captured and collected multiple data sets, representing

various environments in which people detection and tracking is likely to be applied.

Every test environment was chosen with regard to constraints and requirements that

were slightly different, such as illumination, space, etc. We have made some of our

data sets publicly available online2 in the hope that they might be useful to other

researchers, and will add more in the near future.

Each set of videos, with its corresponding attributes and challenges, is briefly de-

scribed below and depicted by Figs. 2.9 and 2.10. The environments’ dimensions are

summarized in Table 2.1.

Environment width height grid

width

grid

height

locations #

cam.

frame

rate

image size

Laboratory 7m 7m 28 28 784 4 25 360× 288

Laboratory w/ kids 7m 6m 30 25 750 4 25 360× 288

Campus 12m 12m 48 48 2,304 3 25 360× 288

Terrace 7m 10m 30 45 1,350 4 25 360× 288

Basketball 17m 17m 64 64 4,096 5 25 720× 576

Passageway 12m 30m 40 100 4,000 4 25 360× 288

Behavior 10m 15m 30 44 1,320 3 25 360× 288

PETS 09 18.5m 20m 56 61 3,416 7 7 720× 576

Balls 80cm 52cm 60 40 2,400 1 25 600× 400

Table 2.1: Dimensions of the areas used for pedestrian detection.

1Eleventh IEEE International Workshop on Performance Evaluation of Tracking and Surveillance,

Miami, June 2009, http://pets2009.net
2Public multi-view pedestrian data set: http://cvlab.epfl.ch/data/pom
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2. FRAMEWORK

Laboratory sequences Those two sequences of about 2 minutes each were shot in a

room of our laboratory, measuring about 7×7 m. All 4 cameras were placed in a corner

of the room, at about 2 m above the ground. Four, respectively six, people enter one by

one and walk continuously around the room during approximately 2 minutes. Given

the relatively small size of the room, the scene appears crowded when filled with six

people.

Another sequence was filmed in the same room, with a slightly different setup.

This video features two adults, a 4-year-old boy and a toddler walking around in

the room. This sequence was specifically acquired to show the ability of our simple

pedestrian model to handle people of very different size.

Campus sequences This set of video sequences was acquired in front of the entrance

of a building on our campus. Only three cameras placed at 2 m high were used dur-

ing this capture. The sequences are rather sparse, but contain some of the challenges

commonly associated with outdoor environments, such as shadows, reflections and

moving objects in the background.

Cafeteria terrace sequences Several sequences of more than 3 minutes were filmed

on an outdoor cafeteria terrace in our campus. Four cameras were placed at the usual

2 m high, at every corner of the area. In some of the sequences, up to 9 people appear

simultaneously in front of the cameras. On other sequences, tables and chairs have

been placed in the center to simulate static obstacles. The session was shot early in the

morning and the sun, low on the horizon, produces very long and sharp shadows on

some videos.

Passageway sequences These sequences involve several people passing through a

public underground passageway. It was captured by 4 cameras placed at every corner

of the area, at 2 m above the ground. As illustrated on the first row in Fig. 2.10, this

data set is very challenging for several reasons. First, lighting conditions are very

poor, representative of what can be expected in a real-world surveillance situation.

Most images are under-exposed, except near the exits where they often are saturated.

Second, the area covered by the system is large, which means that people can get

very small when reaching the far end, making their precise localization challenging.
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(a) laboratory

(b) laboratory with kids

(c) campus

(d) terrace

(e) basketball

Figure 2.9: Illustrated here are the various environments used for test purposes: (a) lab-

oratory environment, (b) the second laboratory setup for the sequence with kids, (c) the

entrance of a building on our campus, (d) a cafeteria terrace on our campus and (e) a

basketball training match on half a court. The other environments are shown on Fig. 2.10.
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(a) passageway

(b) behavior

(c) PETS 09

(d) balls

Figure 2.10: Illustrated here are the various environments used for test purposes: (a) an

underground passageway on our campus, (b) an open space in front of a building, used

for behavior analysis, (c) a crossroad on the University of Reading campus, part of the

PETS 09 data set and (d) multiple ping-pong balls filmed by a single camera. The other

environments are shown on Fig. 2.9.
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Then, the ground is not perfectly flat, which makes the camera calibration suboptimal.

Finally, large parts of the area of interest, especially near its edges, are seen by only

two or even one camera.

Behavior sequences This data set was acquired specifically for testing the behavior

analysis algorithm introduced in Chapter 5. It was captured in front of a building

on our campus by three cameras placed about 2 m above the ground. The data set

is made of a test sequence and a training sequence. In the test sequence, that lasts

approximatively 15 minutes, 4 people were instructed to walk according to predefined

paths (see Fig. 5.6, page 154). In the 8-minute long test sequence, the same 4 people

follow the patterns from the training sequence for about 50 percent of the time and

take random trajectories for the rest. These random movements can include standing

still for a while, going in and out of the area through non standard entrance points,

taking one of the predefined trajectories backwards, etc.

Ball sequences The ball sequences is our only data set that is not about pedestrians.

It was acquired to show that our trackers can be used for completely different tasks

than people tracking. Also, as opposed to most pedestrian sequences, all moving

objects have exactly the same aspect and shape, making appearance models inefficient.

On the two videos of the data set, 24 table tennis balls were launched across the field

of view, with up to 10 appearing simultaneously on the screen. Those were filmed by

a single DV camera, placed facing down about 1.5 m above the ground. The original

videos were cropped to a resolution of 600×400 pixels.

PETS 2009 sequence We use the sequence S2/L1 of the PETS 2009 data set, which is

focused on multi-people tracking. The video was filmed at a road corner of the Uni-

versity or Reading. About 10 people are passing by. Important light changes between

the background model and the sequence, as well as precision issues in camera calibra-

tion make the sequence difficult. Moreover, the sequence has been acquired at a low

frame rate of 7 fps, which is an additional difficulty.
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2.7.1 Material

For the acquisition of most of our sequences, standard consumer-grade DV cameras

were used. Those cameras can typically record videos of 720×576 pixels at 25 frames

per second, during about one hour. This setup was chosen for its convenience and

versatility. DV cameras are usually small and light, and can be quickly installed al-

most anywhere with tripods. Using independent cameras sacrifices the possibility of

automatic stream synchronization. However, this was not an insolvable issue, and we

were able to rather easily synchronize the streams by hand during post processing.

Fortunately, we found the camera’s frame rate to be very stable, even across different

brands, and our sequences did not suffer from frame drift. For our applications the

DV resolution was unnecessarily high, and all our sequences shot with DV cameras

were downsampled by a factor of 2, to a resolution of 360×288. This also got rid of

annoying interlacing effects. Among our data sets, the following were filmed with

DV: laboratory with kids, campus, terrace, passageway, behavior and balls.

The basketball data set was filmed with semi-professional HDV cameras, with a

native resolution of 1,440×1,080 pixels and an aspect ratio of 16:9. It was later down-

sampled to DV resolution of 720×576, which gives it its stretched aspect ratio. The

stream’s frame rate is 25 fps, and synchronization was also realized manually.

The laboratory data set was filmed with a dedicated video surveillance setup, which

includes 4 analog CCTV cameras connected to a PC via a video acquisition board. The

cameras deliver a resolution of 360×288 pixels at 25 frames per second. This setup is

convenient because all streams are acquired synchronously and directly stored on a

hard-drive. Furthermore, it can be used for real time processing. Despite its obvious

advantages, this setup was only used for filming the indoor laboratory scene, because

it is too cumbersome to be installed anywhere else.

Finally, the PETS 2009 data set was acquired by a mixed network of cameras com-

prising 4 standard DV cameras and 3 Axis network cameras with a resolution of

768×576 pixels. While the DV frame rate is 25 fps, the network cameras had a lower

one of about 7 fps. The publicly available videos have all been downsampled to a

common 7 fps frame rate.
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Chapter 3

People Detection and Localization

In this chapter, we present two complementary approaches to tackle the multi-person

detection problem. The first one, dubbed POM for Probabilistic Occupancy Map, oper-

ates on background subtraction images, and uses a generative model to recursively

estimate the probabilities of a discrete occupancy grid. The second approach replaces

the background subtraction by an image-based pedestrian detector, in an attempt to

bypass limitations of the first method.

3.1 State-of-the-Art

State-of-the-art approaches to people detection can be roughly divided into monocular

and multi-view categories.

3.1.1 Monocular Approaches

Monocular approaches rely on the input of a single camera to perform detection.

These methods provide a simple and easy-to-deploy setup, but must compensate for

the lack of 3-D information of a single camera view. In general, monocular people

detection methods look at various locations of the input image and try to determine

whether the sub-window shall be assigned to the pedestrian or non-pedestrian class,

depending on the corresponding class posterior probability. They can be categorized

into generative or discriminative approaches, from the way the posterior probabilities

are estimated for each class.
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3.1.1.1 Generative Models

Generative approaches to pedestrian classification model the appearance of the pedes-

trian class in terms of its class-conditional density function. In combination with the

class priors, the posterior probability for the pedestrian class can be inferred using a

Bayesian approach [35].

Several approaches rely on background subtraction to obtain an initial guess about

the potential location of people and then use shape analysis to validate the correct hy-

potheses. Methods are diverse and include vertical and horizontal histogram projec-

tion of silhouettes [48], mean-shift algorithm for correct blob size selection [22], ellipse

fitting of background subtraction blobs [143], template matching based on the Cham-

fer distance transform [41] or Marked Point Process to explain background blobs with

a set of previously learned silhouettes [43].

Other approaches combine shape and texture models, in order to obtain a richer

representation. Examples are [57], which uses the CONDENSATION [56] algorithm

with human shape model and the constraints given by camera calibration to track

multiple people. [37] learns a statistical pedestrian image model from examples, us-

ing PCA. A model image can then be reconstructed as a linear combination of the

eigenvectors extracted from the training images. In [44], multi-cue 3-D object tracking

is addressed by combining particle-filter based Bayesian tracking and detection using

learnt spatio-temporal shapes. [46] merges cues from the original image, foreground

masks and a neural-network based pedestrian detector.

Some work that track in a single view prior to computing correspondences across

views extend this approach to multi camera setups. However, we view them as falling

into the same category because they do not simultaneously exploit the information

from multiple views. In [20], a background/foreground segmentation is performed on

calibrated images, followed by human shape distinction from segmented foreground

objects and feature point extraction from the selected blobs. Feature points are tracked

in a single view and the system switches to another view when the current camera no

longer has a good view of the person. In [66], the limits of the field of view of each

camera are computed in every other camera from motion information. When a person

becomes visible in one camera, the system automatically searches for him in other

views where he should be visible.
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3.1.1.2 Discriminative Models

In contrast to the generative models, discriminative models approximate the Bayesian

maximum-a-posteriori decision by learning the parameters of a discriminant function

between the pedestrian and non-pedestrian classes from training examples [35].

Approaches mainly differ by the image features they are using for classification.

Typical examples are non-adaptive Haar wavelet features [127], code-book feature

patches [75], edgelet features [132] or histogram of gradients [26; 145].

Various classifier architectures have also been tried, such as convolutional neural

network [118], Support Vector Machines [26] and AdaBoost using boosted detector

cascades [127; 132; 145].

Yet another class of monocular pedestrian detectors have tried to break down the

complex appearance of a human into easier smaller parts. Those approaches usually

rely on a mixture of experts and train specialized experts for each sub-part [91; 110;

141].

3.1.2 Multi-View Approaches

Despite the effectiveness of monocular methods, the use of multiple cameras soon be-

comes necessary when one wishes to accurately detect and track multiple people and

compute their precise 3-D locations in a complex environment. Occlusion handling is

facilitated by using two sets of stereo color cameras [71]. However, in most approaches

that only take a set of 2-D views as input, occlusion is mainly handled by imposing

temporal consistency on the detections, in terms of a motion model, be it Kalman fil-

tering or more general Markov models. As a result, these approaches may not always

be able to recover if the process starts diverging.

Compared to monocular approaches, multi-view ones have to deal with the ad-

ditional challenge of registering the different camera views. In pedestrian detection

and tracking, people are often assumed to walk on a flat ground plane, and it is there-

fore sufficient to compute homographies mapping the ground plane between different

camera views [28; 36; 64; 65; 68]. More complex world model sometimes necessitates

full camera calibration [86; 87; 96].

A majority of approaches start by performing background subtraction on individ-

ual camera views to locate the moving parts [1; 39; 64; 68; 96; 136]. The obtained
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background blobs from all cameras are then merged using various methods, often

relying on 3-D cues from camera calibration.

In [136], a ground occupancy map is computed with a standard visual hull proce-

dure from the motion segmentation images. One originality of the approach is to keep

for each resulting connected component an upper and lower bound on the number of

objects it can contain. Based on motion consistency, the bounds on the various com-

ponents are estimated at a certain time frame based on the bounds of the components

at the previous time frame that spatially intersect with it.

In [96] a recursive Bayesian estimation approach is used to deal with occlusions

while tracking multiple people in multi-view. The algorithm tracks objects located in

the intersections of 2-D visual angles, which are extracted from silhouettes obtained

from different fixed views. When occlusion ambiguities occur, multiple occlusion hy-

potheses are generated given predicted object states and previous hypotheses, and

tested using a branch-and-merge strategy. The proposed framework is implemented

using a customized particle filter to represent the distribution of object states.

[64; 65] projects the foreground blobs onto the ground plane using homographies.

The projections coming from all cameras are multiplied, which yields the position of

the pedestrian’s feet. [97] follows the same approach for people and vehicles detec-

tion. Foreground blobs are segmented in individual views prior to being projected

and intersected in the ground plane. [36] proceeds in a relatively similar manner, but

projects the silhouettes on the head plane instead, and thus retrieves people’s head

position. This modification can be useful in case of denser crowds. [28] extends the

methods by projecting the blobs to several planes parallel to the ground at various

heights, and propose a heuristic-based method to combine the multiple projections

thus generated.

[52; 68] first label individual background blobs using updated color models, and,

for each blob, compute its vertical axis. Axes from every view are projected on the

ground and expected to intersect at a single point.

[1] uses a generative model of the background subtraction based on semi-elliptical

silhouettes and searches for the ground occupancy map that maximizes the fit of the

generated images with the original foreground blobs, while respecting a sparsity con-

straint.
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Besides the various methods relying initially on background subtraction, some

have chosen to work directly on image features. [87] proposes a system that seg-

ments, detects and tracks multiple people in a scene using a wide-baseline setup of up

to 16 synchronized cameras. Intensity information is directly used to perform single-

view pixel classification and match similarly labeled regions across views to derive

3-D people locations. Occlusion analysis is performed in two ways. First, during pixel

classification, the computation of prior probabilities takes occlusion into account. Sec-

ond, evidence is gathered across cameras to compute a presence likelihood map on

the ground plane that accounts for the visibility of each ground plane point in each

view. [89] proposes a method based on dimensionality reduction to learn a correspon-

dence between appearance of pedestrians across several views. This approach is able

to cope with severe occlusion in one view by exploiting the appearance of the same

pedestrian on another view and the consistency across views.

3.2 People Detection with a Probabilistic Occupancy Map

In this section, we present a first multi-view people detection algorithm called POM1

for Probabilistic Occupancy Map. It estimates the probabilities of occupancy of the

ground plane given the binary images obtained from the input images via background

subtraction [39]. The algorithm only takes into account images acquired at the same

time by the multiple cameras. Its basic ingredient is a generative model, that represents

humans as simple rectangles, and is used to create synthetic ideal images we would

observe if people were at given locations. Under this model of the image given the

true occupancy, we approximate the probabilities of occupancy at every location as

the marginals of a product law minimizing the Kullback-Leibler divergence [72] from

the “true” conditional posterior distribution. This allows us to evaluate the probabili-

ties of occupancy at every location as the fixed point of a large system of equations.

This represents a departure from more classical approaches to estimating proba-

bilities of occupancy that rely on computing a visual hull [136]. Such approaches tend

to be pessimistic and do not exploit trade-offs between the presences of people at dif-

ferent locations. For instance, if due to noise in one camera, a person is not seen in a

1An open-source version of the POM people detection algorithm is available under GPL license at

http://cvlab.epfl.ch/software/pom/.
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Table 3.1: Notation (deterministic quantities)

W ×H image resolution.

C number of cameras.

K number of locations in the ground discretization (≃ 1000).

I ⊗ J intersection of images, ∀(x, y), (I ⊗ J)(x, y) = I(x, y)J(x, y).

I ⊕ J disjunction of images, ∀(x, y), (I⊕J)(x, y) = 1−(1−I(x, y))(1−J(x, y)).

Ψ a pseudo-distance between images.

Q the product law used to approximate, for a fixed t, the real posterior

distribution P ( · |Bt).

EQ Expectation under X∼Q.

qk the marginal probability of Q, that is Q(Xk = 1).

ǫk the prior probability of presence at location k, P (Xk = 1).

λk is log 1−ǫk

ǫk
, the log-ratio of the prior probability.

A
c
k the image composed of 1s inside a rectangle standing for the silhouette

of an individual at location k seen from camera c, and 0s elsewhere.

particular view, he would be discarded even if he were seen in all others. By contrast,

in our probabilistic framework, sufficient evidence might be present to detect him.

Similarly, the presence of someone at a specific location creates an occlusion that hides

the presence behind, which is not accounted for by the hull techniques but is by our

approach.

Recall that we partition the visible area of the ground plane into a regular grid of

K locations as shown in Figures 3.1(c) and 3.2. Let Xk
t be a Boolean random variable

standing for the presence of an individual at location k of the grid at time t, and Xt the

random vector (X1
t , . . . , XK

t ) standing for the occupancy of the whole grid at time t.

From the input images It, we use background subtraction to produce binary masks Bt,

such as those of Fig. 3.1(b). Tables 3.1 and 3.2 summarize the notation used throughout

this section.

To estimate accurately the probabilities of presence at every location, we need to

take into account both the information provided in each separate view and the cou-

plings between views produced by occlusions. Instead of combining heuristics related

to geometrical consistency or sensor noise, we encompass all the available prior infor-

mation we have about the task in a generative model of the result of the background
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Table 3.2: Notation (random quantities)

It images from all the cameras It = (I1
t , . . . , IC

t ).

Bt binary images generated by the background subtraction Bt =

(B1
t , . . . , BC

t ).

Ac
t ideal random image generated by putting rectangles A

c
k where Xk

t = 1,

thus a function of Xt.

A
c
k,ξ compact notation for the average synthetic image EQ(Ac |Xk = ξ), see

Figure 3.2.

Xt vectors of boolean random variable (X1
t , . . . , XK

t ) standing for the oc-

cupancy of location k on the ground plane.

subtraction, given the true state of occupancy (X1
t , . . . , XK

t ) we are trying to estimate.

Ideally, provided with such a model of P (Bt |Xt), that is of the result of the back-

ground subtraction given the true state of occupancy of the scene, estimating P (Xt |Bt)

becomes a Bayesian computation. However, due to the complexity of any non-trivial

model of P (Bt |Xt) and to the dimensionality of both Bt and Xt, this cannot be done

with a generic method.

To address this problem, we represent humans as simple rectangles and use them

to create synthetic ideal images we would observe if people were at given locations.

Under this model of the image given the true state, we approximate the occupancy

probabilities P (Xk
t = 1 |Bt) as the marginals qk = Q(Xt

k = 1) of a product law Q

minimizing the Kullback-Leibler divergence from the “true” conditional posterior dis-

tribution. This allows us to compute these probabilities as the fixed point of a large

system of equations.

More specifically, in Section §3.2.1 we introduce two independence assumptions,

under which we derive the analytical results of the other sections, and argue that they

are legitimate. In Section §3.2.2 we propose our generative model of P (B |X), which

involves measuring the distance between the actual images B and a crude synthetic

image that is a function of the X. From these assumptions and model, we derive

in Section §3.2.3 an analytical relation between estimates q1, . . . , qK of the marginal

probabilities of occupancy P (X1
t = 1 |Bt), . . . , P (XK

t = 1 |Bt) by minimizing the

Kullback-Leibler divergence between the corresponding product law and the true pos-

terior. This leads to a fast iterative algorithm that estimates them as the solution of a
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fixed point problem, as shown in Section §3.2.4.

Since we perform these steps at each time frame separately, we drop t from all

notations in the remainder of this section for clarity.

3.2.1 Independence Assumptions

We introduce here two assumptions of independence that will allow us to derive ana-

lytically the relation between the optimal qks.

Our first assumption is that individuals in the room do not take into account the

presence of other individuals in their vicinity when moving around, which is true as

long as avoidance strategies and other social norms are ignored. This can be formal-

ized as

P (X1, . . . , XK) =
∏

k

P (Xk). (3.1)

Our second assumption involves considering that all statistical dependencies between

views are due to the presence of individuals in the room. This is equivalent to treat-

ing the views as functions of the vector X = (X1, . . . , XK) plus some independent

noise. This implies that, as soon as the presence of all individuals is known, the views

become independent. This is true as long as we ignore other hidden variables such

as morphology or garments, that may simultaneously influence several views. This

assumption can be written down as

P (B1, . . . , BC |X) =
∏

c

P (Bc |X). (3.2)

3.2.2 Generative Image Model

To relate the values of the Xks to the images produced by background subtraction

B1, . . . , BC , we propose here a model of the latter given the former.

Following the silhouette model introduced in Chapter 2.3, human blobs are ap-

proximated by rectangles of ratio 2:7, and we denote by A
c
k the image composed of 1s

inside a rectangle standing for the silhouette of an individual at location k seen from

camera c, and 0s elsewhere. Let Ac be the synthetic image obtained by putting rect-

angles at locations where Xk = 1, thus Ac = ⊕kX
k
A

c
k, where ⊕ denotes the “union”

between two images. An example of synthetic image is shown in Fig. 3.2.a. Such an
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image is a function of X and thus a random quantity. We model the image Bc pro-

duced by the background subtraction as if it was this ideal image with some random

noise.

As it appears empirically that the noise increases with the area of the ideal image

Ac, we introduce a normalized pseudo-distance Ψ to account for this asymmetry. For

any gray-scale image A ∈ [0, 1]W×H we denote by |A| the sum of its pixels, and we

denote by ⊗ the product per-pixel of two images. We introduce Ψ defined by

∀B, A ∈ [0, 1]W×H , Ψ(B, A) =
1

σ

|B ⊗ (1−A) + (1−B)⊗A|

|A|
. (3.3)

and we model the conditional distribution P (Bc |X) of the background subtraction

images given the true hidden state as a density decreasing with the pseudo-distance

Ψ(Bc, Ac) between the image produced by the background subtraction and an image

Ac obtained by putting rectangular shapes where people are present according to X.

We end up with the following model

P (B |X) =
∏

c

P (Bc |X) (3.4)

=
∏

c

P (Bc |Ac) (3.5)

=
1

Z

∏

c

e−Ψ(Bc, Ac). (3.6)

The parameter σ accounts for the quality of the background subtraction. The

smaller σ the more Bc is picked around its ideal value Ac. The value of σ was fixed ar-

bitrarily to 0.01, but experiments demonstrated that the algorithm is not very sensitive

to that value.

3.2.3 Relation between the qks

Having introduced a generative model of P (B |X), we now look for an approximation

of P (Xk = 1 |B). Our strategy is to estimate it with a product law Q(X) =
∏

k Q(Xk),

by minimizing the Kullback-Leibler divergence [72] between the two probability dis-

tributions.
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Figure 3.1: Original images from three cameras (a), binary blobs produced by background

subtraction (b) and synthetic average images computed from them by the estimation of

the probabilistic occupancy map (POM) algorithm (c). The graph (d) represents the corre-

sponding occupancy probabilities qk on the grid.
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Recall that the Kullback-Leibler divergence between two distributions R and S is

defined as

KL(R, S) =
∑

y

R(y) log
R(y)

S(y)
= ER

(

log
R(Y )

S(Y )

)

, (3.7)

where ER represents the expectation under Y∼R. To minimize the Kullback-Leibler

divergence between the product law Q and the true conditional law on X given B, we

derive it with respect to the unknown qk

∂

∂qk

KL(Q, P ( · |B))

=
∂

∂qk

EQ

(

log
Q(X)

P (X|B)

)

(3.8)

=
∂

∂qk

EQ

(

log
Q(X)

P (X)

P (B)

P (B|X)

)

(3.9)

=
∂

∂qk

EQ

(
∑

l

log
Q(X l)

P (X l)
+ log P (B)− log P (B|X)

)

(3.10)

=
∂

∂qk

EQ

(

log
Q(Xk)

P (Xk)
− log P (B|X)

)

(3.11)

=
∂

∂qk

qk

(

log
qk

ǫk

− EQ

(

log P (B|X) |Xk = 1
))

+
∂

∂qk

(1−qk)

(

log
1−qk

1−ǫk

− EQ

(

log P (B|X) |Xk = 0
))

(3.12)

= log
qk

ǫk

+ 1− EQ

(

log P (B|X) |Xk = 1
)

− log
1−qk

1−ǫk

− 1 + EQ

(

log P (B|X) |Xk = 0
)

(3.13)

= log
qK (1− ǫk)

(1− qk) ǫk

− EQ

(

log P (B|X) |Xk = 1
)

+ EQ

(

log P (B|X) |Xk = 0
)

= log
qK (1− ǫk)

(1− qk) ǫk

− EQ

(

−
∑

c

Ψ(Bc, Ac)

∣
∣
∣
∣
∣
Xk = 1

)

+ EQ

(

−
∑

c

Ψ(Bc, Ac)

∣
∣
∣
∣
∣
Xk = 0

)

(3.14)

Equality (3.8) is the definition of the Kullback-Leibler divergence, (3.9) is obtained

by applying Bayes’s rule to P (X|B). Equality (3.10) is true under our assumption

of independence of the Xks and (3.11) by removing terms which are constant with

respect to qk. We develop the expectation by conditioning on Xk to get (3.12), do
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formal differentiation to obtain (3.13), and finally introduce our model of P (B|X) and

assumption of conditional independence of the Bc given X to get (3.14).

Hence, if we solve
∂

∂qk

KL(Q, P ( · |B)) = 0 (3.15)

we obtain

qk =

1

1 + exp (λk +
∑

c EQ(Ψ(Bc, Ac) |Xk = 1)− EQ(Ψ(Bc, Ac) |X) |Xk = 0))
, (3.16)

with λk = log 1−ǫk

ǫk
.

Unfortunately, the computation of EQ(Ψ(Bc, Ac) |Xk = ξ) is untractable. How-

ever, since under X∼ Q the image Ac is concentrated around Bc, we approximate,

∀ξ ∈ {0, 1}

EQ(Ψ(Bc, Ac) |Xk = ξ) ≃ Ψ(Bc, EQ(Ac |Xk = ξ)) (3.17)

leading to our main result

qk =
1

1 + exp (λk +
∑

c Ψ(Bc, EQ(Ac |Xk = 1))−Ψ(Bc, EQ(Ac |Xk = 0)))
. (3.18)

Note that the conditional synthetic images EQ(Ac |Xk = 0) and EQ(Ac |Xk = 1)

are equal to EQ(Ac) with qk forced to 0 or 1 respectively, as shown on Fig. 3.2. Since Q

is a product law, we have for any pixel (x, y)

EQ(Ac(x, y)) = Q(Ac(x, y) = 1) (3.19)

= 1−Q(∀k, Ac
k(x, y) Xk = 0) (3.20)

= 1−
∏

k:Ac
k
(x,y)=1

(1− qk) . (3.21)

Finally, EQ(Ac |Xk = ξ) are functions of the (ql)l 6=k and Equation (3.18) can be

seen as one equation of a large system whose unknowns are the qks. Fig. 3.5 shows the

evolution of both the marginals qk and the average images EQ(Ac) during the iterative

estimation of the solution.

Intuitively, if putting the rectangular shape for position k in the image improves

the fit with the actual images, the score Ψ(Bc, EQ(Ac |Xk = 1)) decreases, while

Ψ(Bc, EQ(Ac |Xk = 0)) increases, and the sum in the exponential in (3.18) becomes
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(a) (b) (c) (d)

Figure 3.2: Picture (a) shows a synthetic picture Ac with three Xks equal to 1. Picture (b)

shows the average image EQ(Ac) where all qk are null but four of them equal to 0.2. Pic-

tures (c) and (d) show A
c

k,0 = EQ(Ac |Xk = 0) and A
c

k,1 = EQ(Ac |Xk = 1) respectively,

where k is the location corresponding to the black rectangle in (d).

negative, leading to a larger qk. A concrete example is shown in Fig. 3.3: For simplic-

ity, only one camera view is considered. Images (b) and (c) represent two conditional

synthetic images used for the estimation of the occupancy probability qk of location

k. Obviously, A
c
k,1 is closer to the foreground image than A

c
k,0, and thus the distance

Ψ(Bc, A
c
k,1) is smaller than Ψ(Bc, A

c
k,0). This in turn implies that the exponential part

in Equation (3.18) is negative, leading to a value of qk close to 1.

Note that occlusion is taken into account naturally: If a rectangular shape at posi-

tion k is occluded by another one whose presence is very likely, the value of qk does

not influence the average image and all terms vanish but λk in the exponential. Thus

the resulting qk remains equal to the prior. This fact is illustrated in Fig. 3.4: since

location l is almost completely occluded, the two conditional synthetic images A
c
l,0

and A
c
l,1 are very similar. Logically, their respective distances to the foreground image

Ψ(Bc, A
c
l,0) and Ψ(Bc, A

c
l,1) are almost equal and cancel out in the exponential part of

Equation (3.18). Thus, the value ql becomes

ql ≃
1

1 + exp λl

= ǫl , (3.22)

which corresponds to the prior probability of occupancy. This result makes sense:

When a location is occluded on a camera view, the corresponding foreground image

provides no information about its occupancy. Therefore, the ql should be set to the

prior probability.
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(a) Bc

k

(b) A
c

k,0

k

(c) A
c

k,1

Figure 3.3: Illustration of POM’s generative model. For a given foreground image (a),

images (b) and (c) represent two possible average synthetic images in which the occu-

pancy probability of location k is respectively forced to 0 and 1. In this particular case, (c)

is obviously closer to the foreground image than (b) and thus Ψ(Bc, A
c

k,0) > Ψ(Bc, A
c

k,1).

According to Equation (3.18), qk will thus be estimated to a value close to 1.

(a) Bc

l

(b) A
c

l,0

l

(c) A
c

l,1

Figure 3.4: Illustration of POM’s handling of occlusions. Images (b) and (c) represent two

possible average synthetic images corresponding to the foreground image (a), where loca-

tion l is almost completely occluded. Since images (b) and (c) are very similar, Ψ(Bc, A
c

l,0)

≃Ψ(Bc, A
c

l,1). As a result, the estimate of ql from Equation (3.18) is close to the prior prob-

ability ǫl. This result makes sense: When provided with no information about a location’s

occupancy, it is estimated to the occupancy prior.
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3.2.4 Fast Estimation of the qks

We estimate the qk as follows: We first give them a uniform value and use them to

compute the average synthetic images A
c
k,ξ = EQ(Ac |Xk = ξ). We then re-estimate

every qk with Equation (3.18) and iterate the process until a stable solution is reached.

The main remaining issue is the computation of Ψ(Bc, A
c
k,ξ) which has to be done

K times per iteration for as many iterations as required to converge, which is usually

of the order of 100.

Fortunately, the images EQ(Ac) and A
c
k,ξ differ only in the rectangle Ak, where

the latter is multiplied by a constant factor. Hence, we can show that by using inte-

gral images [126] we can compute the distance from the true image produced by the

background subtraction to the average image obtained with one of the qk modified at

constant time and very rapidly.

We organize the computation to take advantage of that trick, and finally perform

the following steps at each iteration of our algorithm.

Let⊕ denote the pixel-wise disjunction operator between binary images (the “union”

image), ⊗ the pixel-wise product (the “intersection” image), |I| the sum of the pixels

of an image I and let 1 be the constant image whose pixels are all equal to 1.

A
c

= 1−⊗k (1− qkA
c
k) (3.23)

|A
c
k,ξ| = |A

c
|+

ξ − qk

1− qk

|(1−A
c
)⊗A

c
k| (3.24)

|Bc ⊗A
c
k,ξ| = |Bc ⊗A

c
|+

ξ − qk

1− qk

|Bc ⊗
(
1−A

c)
⊗A

c
k| (3.25)

Ψ(Bc, A
c
k,ξ) =

1

σ

|Bc| − 2 |Bc ⊗A
c
k,ξ|+ |A

c
k,ξ|

|A
c
k,ξ|

(3.26)

qk ←
1

1 + exp
(
λk +

∑

c Ψ(Bc, A
c
k,1)−Ψ(Bc, A

c
k,0)
) (3.27)

At each iteration and for every c, step (3.23) involves computing the average of

the synthetic image under Q with the current estimates of qks. Steps (3.24) and (3.25)

respectively sum the pixels of the conditional average images, given Xk, and of the

same image multiplied pixel-wise by the output of the background subtraction. This

is done at the same time for every k and uses pre-computed integral images of 1−A
c

and Bc ⊗
(
1−A

c)
) respectively. Finally, steps (3.26) and (3.27) return the distance be-

tween the result of the background subtraction and the conditional average synthetic
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iteration camera #1 camera #2 camera #3 camera #4 top view

#10

#20

#30

#50

Figure 3.5: Convergence process for the estimation of the probabilistic occupancy map.

Camera views show both background subtraction blobs (in green) and the synthetic av-

erage image corresponding to different iterations. On the right most column are the top

view probabilistic occupancy maps, with the camera fields of view.

image under Q, and the corresponding updated marginal probability. Except for the

exponential in the last step, which has to be repeated at every location, the computa-

tion only involves sums and products and is therefore fast.

3.2.5 Alternate Generative Model

As mentioned in Chapter 2.3, our silhouette model is specifically tailored for mod-

elling pedestrian silhouettes viewed from an angle that matches our camera setup.

However, the POM detector is a very generic algorithm and can be easily adapted

to completely different applications. We show here how we adapted the silhouette

model to the monocular detection of multiple table tennis balls.

As opposed to people, balls project a simple and constant circular shape in im-

ages. The balls from our sequences are bouncing on the ground and their size slightly
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(a) original (b) background subtraction (c) synthetic image

Figure 3.6: The silhouettes model adapted to the monocular table tennis balls environ-

ment. The rectangular human silhouettes whose size was determined by camera calibra-

tion are simply replaced by squares of fixed size.

changes as they move closer to the camera. This effect is minimal though, and we

can reasonably approximate their size as fixed. A disc would therefore be an obvious

model. However, we instead approximate the balls’ shape with squares, to be able to

use integral images in our computations. This simple silhouette model is illustrated

in Fig. 3.6. Because the camera is perpendicular to the ground plane, it is in fact film-

ing a top view, so no camera calibration is needed to relate the occupancy map to the

ground plane.

The adaptation of the silhouette model is the only required change to use POM

on the balls sequence. Going from multi-view to monocular is completely natural:

the number of cameras C is variable and can take any values, including 1. Thus, the

sum over the cameras in Equation (3.18) disappears and the marginal probabilities of

presence qk are simply updated as follows:

qk =
1

1 + exp (λk + Ψ(B, EQ(A |Xk = 1))−Ψ(B, EQ(A |Xk = 0)))
. (3.28)

The same procedure applies when treating monocular pedestrian sequences.

3.2.6 Results

In this section, we showcase the POM detector on various different environments. Its

performance is evaluated with standard metrics for object detection on our multi-view

pedestrian data set described in Chapter 2.7. We also study the influence of several

parameters on the detector’s accuracy.
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3.2.6.1 Evaluation

Figure 3.7 displays detection results on the labelled sequences, evaluated with the

CLEAR [115] metrics. POM’s performance varies between sequences, as a function of

the scene difficulty. Although relatively crowded, the laboratory and terrace sequences

have a precise calibration and reasonably good lighting, which yields excellent detec-

tion scores. With their very poor lighting, the passageway sequences obtain a lower

score. So does the PETS sequence, which suffers from uneven ground plane and non-

optimal calibration. POM’s results have been publicly evaluated on the PETS 09 data

set and compared to other state-of-the-art detection algorithms in [12; 34]. In this

ranking, our algorithm compares very favorably to other approaches, as illustrated

by Fig. 4.19, page 132. Example detection results are depicted by Figs. 3.8 (laboratory

sequence), 3.9 (campus sequence), 3.10 (terrace sequences), 3.11 (PETS 2009 sequence),

3.12 (passageway sequences) and 3.13 (basketball sequence). Note that the two last rows

of Fig. 3.10 demonstrate the ability of our algorithm to handle small obstacles as well

as strong shadows. A careful observation of the corresponding occupancy maps re-

veals that they are less clean than correctly lighted environments, potentially leading

to false positives.

MODA
MODP

 0

 0.2

 0.4

 0.6

 0.8

 1

laboratory

terrace

passageway #1

passageway #2

passageway #3

passageway #4

PETS 09

PETS 09
monocular

Figure 3.7: Detection results on various sequences, evaluated with the CLEAR [115] de-

tection metrics for accuracy (MODA) and precision (MODP).
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camera #1 camera #2 camera #3 camera #4 top view

Figure 3.8: Detection results on the laboratory sequence. Every row shows a different time

frame. The first 4 columns each displays another camera view, while the right column

depicts the occupancy map.

camera #1 camera #2 camera #3 top view

Figure 3.9: Detection results on the campus sequence. Every row shows a different time

frame. The first 3 columns each displays another camera view, while the right column

depicts the occupancy map.
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camera #1 camera #2 camera #3 camera #4 top view

Figure 3.10: Detection results on the terrace sequence. Every row shows a different time

frame. The first 4 columns each displays another camera view, while the right column

depicts the occupancy map. Note that, despite the strong shadows, POM still correctly

locates people in the two last rows. On the fourth row, a false positive is visible on camera

#1, due to a shadow projected on a wall.
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camera #1 camera #2 camera #3 camera #6 top view

Figure 3.11: Detection results on the PETS 2009 sequence. Every row shows a different

time frame. The first 4 columns display 4 of the 5 camera views used for detection, while

the right column depicts the occupancy map.

camera #1 camera #2 camera #3 camera #4 top view

Figure 3.12: Detection results on the passageway sequence. Every row shows a different

time frame. The first 4 columns each displays another camera view, while the right col-

umn depicts the occupancy map.
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camera #1 camera #2 camera #3 camera #4 top view

Figure 3.13: Detection results on the basketball sequence. Every row shows a different time

frame. The first 4 columns display 4 of the 5 camera views used for detection, while the

right column depicts the occupancy map. Note that the ball does not affect the detection

quality. A ball is a small object compared to a human silhouette. It thus only acts as noise

on background subtraction images and does not interfere with the detection algorithm.

Figure 3.14: Monocular detection results on the PETS 2009 sequence. The first row shows

camera view bounding boxes at different frames, while the second row displays the occu-

pancy maps.
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In the rest of this section, we shed light on the influence of some parameters on the

quality of detection results.

Rectangle Projection Size In our generative model, human silhouettes are approx-

imated by rectangles of size ratio 7:2 and height 175 cm. This number was chosen

because it roughly corresponds to the average people size in current western societies.

We checked the influence of the size of the rectangular shapes we use as models:

The results are almost unchanged for model sizes between 1.7 m and 2.2 m. The per-

formance tends to decrease for sizes noticeably smaller. This can be explained easily:

If the model is shorter than the person, the algorithm will be more sensitive to spuri-

ous binary blobs that it may explain by locating a person in the scene, which is less

likely to happen with taller models.

camera #1 camera #2 camera #3 camera #4 top view

Figure 3.15: Various results from the laboratory and terrace data sets, showing that despite

the fixed size and aspect ratio of the rectangle used for pedestrian approximation, our

detector is not affected by people of different size, or unusual body poses (such as people

jumping or bending in the last two rows of the figure).
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Additionally, the ability of our model to handle people of various sizes and pedes-

trians performing unusual actions, such as jumping or bending, are illustrated in

Fig. 3.15. Note that, on the first two rows of this figure, the 4-year-old boy, who mea-

sures approximately half of an adult height, is correctly detected. His sister, who is

smaller than 80 cm, does not appear on the detection maps.

Grid Resolution As discussed in Chapter 2.2, the grid resolution plays an important

role in POM’s performance. When fine, POM converges normally, because for every

possible foreground blob, there exists a corresponding grid location that reasonably

fits. However, a fine resolution also comes with a higher computational complexity,

as illustrated by Fig. 3.26. On the other hand, if the grid resolution is coarse, there are

real-world locations that are badly explained by grid positions, which results in bad

convergence from POM and eventually missed detections. The influence of the grid

resolution on POM general performance is illustrated by Fig. 3.16, which plots POM’s

detection precision and accuracy evaluated on the laboratory sequence, for different

grid sizes. Given that a pedestrian occupies a space roughly approximated by a cylin-

der of 50 cm diameter, those numbers make sense. The precision decreases linearly

when the location size increases, because the fit between the rectangle projection and

the real foreground blobs gets worse with rougher grid resolution. On the other hand,

the accuracy is stable for grid locations smaller than 35cm, then starts decreasing and

drops even faster when this size exceeds 45 cm. Beyond the critical location size of 35

cm, blobs located in the middle of adjacent locations do not fit any of them properly,

and missed detections start to appear.

Input Noise The quality of background subtraction also affects significantly the de-

tector’s performance. First, moving objects in the background, such as tree foliage or

cars passing by, act as noise on background subtraction and can disrupt the correct

detection process. To try to characterize this phenomenon, we randomly selected 100

frames in 5 sequences from the laboratory and terrace data set. For each of these frames,

we first performed normal detection, and the number of detections thus obtained was

used as reference. We then added an increasing amount of independent flip noise on

the background masks, at pixel level, and applied POM on the noisy images. Fig. 3.20

shows the effect of the noise on a background subtraction image. On Fig. 3.17, we plot
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Figure 3.16: Influence of the grid resolution on POM’s performance. Detection accuracy

(MODA) and precision (MODP) are plotted for different cell sizes. We see that, although

precision decreases almost linearly with cell size, accuracy starts dropping for sizes larger

than 35 cm.

the ratio of detections compared to the original noise-free image. Here we just look at

the number of detections, regardless of whether they are true or false positives. This

allows to run the test also on sequences for which we do not have a ground truth.

Interestingly, we notice that the performance is not affected by an amount of noise up

to 5%. Beyond this value, the noise clearly starts altering the results.

To quantify even more precisely the background noise influence, we added vari-

ous amounts of independent flip noise on the binary images of two video sequences

for which we have the ground truth, and evaluated their precision and accuracy re-

sults. The results are shown on Fig. 3.18 and confirm those of Fig. 3.17: the detector is

almost not affected by up to 5% of background noise, but performance drops rapidly

when this value is exceeded. Fig. 3.19 plots the same results in terms of true and false

positive rates, and shows that both rates are affected by an increase of background

noise.

Another important factor potentially altering the performance of the detector is

the quality of the binary blobs produced by background subtraction. Our generative

model makes a very rough approximation of the foreground blobs by a rectangle,

which implies that the detector is hardly affected by the general shapes of the blobs.

59



3. PEOPLE DETECTION AND LOCALIZATION

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25  30  35  40  45  50

de
te

ct
io

n 
ra

tio

amount of gaussian flip noise (in %)

 laboratory 1 
 laboratory 2 

 terrace 1 
 terrace 2 
 terrace 3 

Figure 3.17: Influence of noise on the number of detections. This figure plots the ratio

between the number of detections for noise-free frames and frames with independent flip

noise. The curves correspond to different sequences from both the laboratory and terrace

data sets.
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Figure 3.18: Influence of background noise on POM’s performance. Various amounts of

independent flip noise have been added to two video sequences from the laboratory data

set, and the terrace data set respectively. The detection precision (MODP) and accuracy

(MODA) metrics applied to the noisy results are plotted.
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Figure 3.19: Influence of background noise on POM’s performance. Various amounts of

independent flip noise have been added to two video sequences from the laboratory data

set, and the terrace data set respectively. POM results are evaluated in terms of true and

false positive rates.

(a) no noise (b) 5% noise (c) 10% noise (d) 20% noise

Figure 3.20: Illustration of the amounts of flip noise added to generate Figs. 3.17, 3.18 and

3.19.
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Figure 3.21: Influence of foreground blobs quality on POM’s performance. Various

amounts of Gaussian noise were subtracted from the foreground blobs of two video se-

quences from the laboratory and the terrace data sets. The detection precision (MODP) and

accuracy (MODA) metrics applied to the noisy results are plotted.

However, the ratio of detected pixels in a silhouette is important for the convergence

of our algorithm. To quantify this relation, we have again added noise to the same

two labelled sequences. This time, however, we added subtractive noise, instead of

flip noise, which slowly erased the foreground blobs without affecting the rest of the

image. The evaluation of this process with the MODP and MODA metrics is plotted

in Fig. 3.21. The difference with Fig. 3.18 is striking: POM is very resistant to uniform

alterations of the foreground blobs. Amounts of noise up to 60% only slightly affect

the overall performance, and detection quality only really decreases beyond 80%. The

same results are plotted in terms of true and false positives in Fig. 3.22. Logically,

only the true positive rate is affected by the foreground blobs deterioration. Again the

effects of the noise are shown on Fig. 3.23.

Determining σ The parameter σ introduced in Eq. 3.3, accounts for the quality of

the background subtraction, in the pseudo-distance function Ψ between a background

subtraction image Bc and an ideal image Ac. This is the only parameter that needs to

be tuned in the POM detector. Empirically, we have found that a value of 0.01 gives

the best results in almost all situations. Figure 3.24 illustrates this fact experimentally,
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Figure 3.22: Influence of foreground blobs quality on POM’s performance. Various

amounts of Gaussian noise were subtracted from the foreground blobs of two video se-

quences from the laboratory and the terrace data sets. POM results are evaluated in terms

of true and false positive rates.

(a) no noise (b) 5% noise (c) 50% noise (d) 80% noise

Figure 3.23: Illustration of the amounts of subtractive noise added to generate Figs. 3.21

and 3.22.
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Figure 3.24: Influence of the parameter σ on POM’s performance, measured on the PETS

sequence. The detection precision (MODP) and accuracy (MODA) metrics are used for

evaluation. A value of 10−2 gives the best performance empirically, and is used in almost

all our experiments.

by plotting detection precision and accuracy as a function of σ. As can be seen, the

optimal value is very close to 0.01.

Number of Cameras Finally, the last important variable in the detection process is

the number of cameras. Most of the sequences in our database have been acquired

by 4 cameras. The reason was essentially the availability of the video material, and

the fact that 4 cameras allow a decent and even coverage of a scene without any blind

spot. Of course, the number of necessary cameras for a good detection also strongly

depends on the expected density of the crowd monitored. While it never hurts, in

terms of detection performance, to have additional cameras, it also introduces a non

negligible computational cost. Therefore, for any given environment, there is an ideal

number of cameras, beyond which the detection performance no longer improves.

To generate a more quantitative picture of this phenomenon, we have run our de-

tection algorithm on three of our sequences with various numbers of cameras, from

the initial configuration down to the monocular case. Each of the detection results has

been evaluated using the usual CLEAR metrics and the result is plotted on Fig. 3.25. At

first glance, we see that the accuracy (MODA) is generally more affected than the pre-
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cision (MODP), which means that the diminution of camera views essentially trans-

lates into an increase of miss-detections and false positives. Interestingly, varying the

number of views does not affect equally all the sequences. In both the laboratory and

terrace, the performance is quite stable for 3 cameras and drops faster for 2 and 1 cam-

era. On the other hand, the PETS sequence is relatively unaltered by the reduction in

the number of cameras. The origin of this difference stems from the different camera

setups used in these environments. In both the laboratory and the terrace sequences,

the cameras are located quite low on the ground, at about the same height as people’s

heads, thus generating numerous occlusions. For occlusion handling, the use of sev-

eral cameras with different viewpoints is crucial, thus the strong relation between the

number of cameras and the algorithm’s performance. For the PETS sequence, half of

the cameras were located about two meters above the ground, while the other half

were fixed higher, around 6 meters above the ground. The amount of occlusions oc-

curring on those cameras is thus relatively low. Moreover, the camera #1 - i.e. the

one that is used in the monocular case - gives a very clear view on almost the whole

monitored area, as can be seen in Fig. 3.14. It is therefore not surprising that the perfor-

mance does not decrease much as we drop cameras. A careful look can even see that

performance improves when going from 6 to 5 cameras and from 2 to 1. The reason

is that some cameras were badly calibrated, and ignoring them can be beneficial for

the detection quality. Monocular detection results on the PETS sequence are shown in

Fig. 3.14.

3.2.6.2 Run Time

The last remaining aspect of the evaluation is the algorithm’s speed. To be useful in the

widest number of applications, a detection algorithm needs to run close to real-time.

Thanks to its design based on integral images, the POM algorithm is able to perform

people detection very quickly, as illustrated in Fig. 3.26. To generate the corresponding

graph, we have run POM on 100 consecutive frames of a video sequence part of the

laboratory data set. Plotted is the average run time for one detection, with various grid

and image sizes. Obviously, the complexity is linear with respect to grid size. Also,

downsampling the input image results in a significant speed gain, while barely affect-

ing the algorithms performance: hardly any information is lost while downsampling

binary blobs. Note that for images of 90×72 and grid sizes of up to 1,500 locations, the
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Figure 3.25: Influence of the number of cameras on POM’s performance. Three test se-

quences from the laboratory, terrace and PETS data sets have been processed using a de-

creasing number of camera views. The left graph plots the accuracy (MODA) results,

while the right one plots the precision (MODP) ones.

detection process is taking less than 40 ms, which means that it could run in real-time

on 25 fps video sequences. Of course, these numbers include the detection process

only, and the time for background subtraction and other image transmission should

be added to determine the speed of a complete detection system.

Sparse grids To reduce the algorithm complexity, one can use sparse grids [1]. The

idea is fairly simple: Instead of using the whole ground plane grid, one can eliminate

all grid locations whose rectangle projections in the camera views are not substantially

intersecting the foreground blobs. Only the retained locations are then used during

POM optimization. Of course, the sparse grid needs to be recomputed at every new

input image. By so doing, the actual grid size used for computation can be usually

reduced more than 10 times, without any decrease in detection quality. The benefit

is a lower complexity, and a weaker dependency on grid size. Fig. 3.27 compares the

runtime when using sparse grids with the one achieved on full grids. For the same

parameters, the speed gain is between 2 and 3 times. Additionally, one can notice that

the curves are flatter, characteristic of a weaker dependency on grid size.
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Figure 3.26: POM’s runtime for various grid sizes and input image dimensions. Note that

the y axis is in log scale. This runtime includes only POM’s iterative algorithm and not

the background subtraction procedure.
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Figure 3.27: Comparison of POM runtime using sparse grids versus full grids. For the

same parameters a speed gain between 2 and 3 times can be observed.
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3.2.7 Discussion

The quality of the occupancy map estimation can be affected by three sources of er-

rors: The poor quality of the output of the background subtraction, the presence of

people in an area covered by only one camera, and the excessive proximity of several

individuals.

In practice, the first two difficulties only result in actual errors when they occur

simultaneously, which is relatively rare and could be made even rarer by using a more

sophisticated approach to background subtraction: The main weakness of the meth-

ods we currently use is that they may produce blobs that are too large due to reflec-

tions on walls or glossy floors. This does not affect performance if an individual is

seen in multiple views but may make him appear to be closer than he truly is, if seen

in a single view. Similarly, shadows are segmented as moving parts and can either

make actual silhouettes appear larger or create ghosts.

The third difficulty is more serious and represents the true limitation of our ap-

proach. When there are too many people in the scene for any background subtraction

algorithm to resolve them as individual blobs in at least one view, the algorithm will

fail to correctly detect and locate all the individuals. The largest number of people

that we can currently handle is hard to quantify because it depends on the scene con-

figuration, the number of cameras, and their exact locations. However, some results

presented in this section are close to the upper limit our algorithm can tolerate with

the specific camera configurations we use. A potential solution to this problem would

be to replace background subtraction by part-based people detectors that could still

respond in a crowd.

Despite its effectiveness at pedestrian detection, the Probabilistic Occupancy Map

approach suffers from another limitation shared by many methods relying on back-

ground subtraction: It is not able to discriminate pedestrians from other moving ob-

jects. A restricting assumption needed for POM to work correctly is thus that only

pedestrians are moving in front of the cameras. Small objects, such as a ball, would

not be a problem, because they would be ignored due to their small size. However,

object of roughly the same size as people would be detected as pedestrians. Larger

objects might also be detected as a group of people.
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3.2 People Detection with a Probabilistic Occupancy Map

In the second part of this chapter, we therefore study a slightly different approach

to people detection from multiple views, which replaces the initial background sub-

traction stage by an independent monocular pedestrian detection, and then merges

the results on individual views by taking into account a learnt response model of the

pedestrian detector. The main benefit of this approach over POM is the ability to focus

only on pedestrians and ignore other moving objects.
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3.3 Detection by Classification

Here we propose a second approach to people detection from multiple views. Com-

pared to POM, this new approach replaces the initial background subtraction stage

by image-based detection with a classifier trained at recognizing pedestrians. Our

motivation is to be able to distinguish pedestrians from other object motions, which

background subtraction cannot do.

In this application, a classifier is repeatedly applied to every possible 3-D pose

in different camera views, which results in one map of classifier answers per camera

view. The several maps of classifier answers are then post-processed and combined

by our algorithm to yield the final detection.

At the heart of our approach is a sophisticated application of Bayes’ law. Using

a model of the responses of a classifier given the true occupancy, we infer a posterior

probability on the occupancy given the classifier responses. We will show that this lets

us combine the multiple and noisy classifier responses in separate camera views and

infer accurate world coordinates for our detections.

Few other approaches have attempted to combine the output of detectors across

views to overcome the problems created by occlusions in a principled way. In [64], the

algorithm classifies individual pixels as background or part of a moving object and

combines these results across views by assuming independence given the presence of

a pedestrian at a certain ground location. Hence, this scheme does not use a generic

pedestrian detector based on a high-level model of silhouettes and textures. Neither

does it explicitly model the fact that a detection in one view is influenced by the pres-

ence of distant pedestrians creating occlusions, which, as we will see, can trigger many

false alarms. By contrast, the M2Tracker [87] explicitly models the relation between

multiple pedestrians and the image at the pixel level, thus naturally taking occlusions

into account. However, this approach relies on temporal consistency, and since it is

based on a tight integration between the handling of occlusions and a color-based ap-

pearance model, it cannot be generalized to use a generic pedestrian vs. background

classifier.

In contrast to the approaches described above, our method relies on classifiers ap-

plied on separate views independently. We explicitly integrate occlusion effects be-

tween locations and quantitative knowledge about the classifier invariance to pose
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Figure 3.28: Overview of the detection process. Video sequences are acquired by widely

separated and calibrated cameras. The ground plane of the tracked area is discretized into

a finite number of locations, depicted by the black dots in the leftmost column. (a) We

first extract from each image the rectangular sub-images that correspond to the average

height of a person at each of these locations. (b) We apply a classifier trained to recognize

pedestrians to each sub-image to estimate probabilities of occupancy in the ground plane

from each view independently. (c) We use the algorithm that is at the core of this paper to

combine the individual classification score maps into a single detection score map. (d) We

re-project into the original images a person-sized rectangle located at local maxima of the

probability estimate.

change into a sound Bayesian framework to combine the multiple classifier answers

and yield the final detection.

3.3.1 Overview

We start by giving an overview of our algorithm, before going into more details in the

following subsections. We use notations summarized in Table 3.3.

We keep the occupancy grid formalism introduced in Chapter 2.2. In our setup, an

area of interest is filmed by C widely separated and calibrated cameras. We discretize

the ground plane into a regular grid of K locations separated by 25cm, and use rect-

angular shapes defined in Chapter 2.3 to link the top and camera views together. This

way, we can determine, for every camera view c and every location k, the sub-image

I
c
k = Ic ⊗ A

c
k, whose dimension roughly corresponds to the average size of a person

that would be standing at location k (see Fig. 3.2, page 47 for some examples). Our

algorithm involves two main steps:
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Table 3.3: Notation

C number of cameras.

K number of locations in the ground plane (≃ 1000).

Xk Boolean random variable standing for the occupancy of location k on

the ground plane.

Ic input image from camera c.

I
c
k rectangular human size sub-window cropped from camera view c at

ground location k.

δc(i, j) horizontal distance between the centers of I
c
i and I

c
j on camera view c.

nc
k neighborhood of k on camera c,

{

j 6= k, I
c
j ∩ I

c
k 6= ∅

}

.

T c
k sum of the responses of the binary decision trees at ground location k

in camera view c, thus an integer value in {0, ..., NT } where NT is the

number of decision trees.

T vector of all the T c
k .

R the product law with the same marginals as the real posterior distribu-

tion P ( · |T). R(X) =
∏K

k=1 R(Xk).

ER expectation under X∼R. ER(x) =
∫

xR(x)dx.

rk the marginal probability of R, i.e. R(Xk = 1).

‖.‖ area of a sub-image.

1. For each camera c and ground plane location k, the algorithm extracts sub-image

I
c
k. Classifiers based on decision trees are then applied to every sub-image I

c
k, as

shown on Fig. 3.29. These classifiers have been trained at recognizing pedestri-

ans, and their answer on sub-image I
c
k can be interpreted as a rough probability

of occupancy of ground plane location k, given the sub-image. This first step

thus produces as many classification score maps (see third column of Fig. 3.28) as

there are cameras and is described in §3.3.2.

2. The several classification score maps, generated during step 1, are now com-

bined into a final probability of occupancy map (called hereafter detection score

map), such as the one of the fourth column of Fig. 3.28. This represents an esti-

mate of P (Xk = 1 | I1, . . . , IC), the true marginal of the probabilities of presence

at every location, given the full signal.
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3.3 Detection by Classification

Figure 3.29: Generation of the classification score maps. Images (a), (b) and (c) show sub-

windows extracted from the camera view at 3 random locations of the ground plane.

Classifiers are applied to sub-images I
c
k corresponding to every ground plane location k.

Images depicting background (a) produce a low classification score for the corresponding

location. Images showing badly centered pedestrian (b) produce a slightly higher score

and images featuring a well centered pedestrian (c) receive high score.

We compare two approaches for the second step. Section §3.3.3 describes the one,

which is representative of what is usually performed by state-of-the-art methods. We

refer to it as the baseline because it combines the individual classification score maps

without taking into account the interactions between the presence of pedestrian due

to occlusion. By contrast, the second approach takes into account potential occlusions

and knowledge about the classifier behavior and yields a substantial increase in per-

formance. It is at the core of our contribution and is discussed in §3.3.4.

3.3.2 Classification Score Maps

We introduce the classifier we use for single-view pedestrian detection and to compute

our classification score maps.

3.3.2.1 Classifier as a Pedestrian Detector

During a learning step, we create a set of decision trees dedicated to the classifica-

tion of rectangular images into two classes: “person” or “background”. The binary

decision trees we use as classifiers are based on thresholded Haar wavelets operat-

ing on grayscale images [126], illustrated by Fig. 3.30. They are trained using a few
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thousands of images of different sizes, each of which represents either a pedestrian

correctly centered in the rectangular frame, or background, which could be anything

else.

1. 3. 4. 5.2.

Figure 3.30: The five types of rectangle features used by the decision trees.

More specifically, for every tree, several hundreds of features of different scales,

orientations and aspect ratios are generated randomly and applied to our training set.

The one that best separates the two populations according to Shanon’s entropy is kept

as the root node and the training set is split and then dropped into two similarly-

constructed sub-nodes [16]. This process is repeated until either the person and back-

ground sets are completely separated or it reaches the tree maximum depth d = 5.

Typical features picked by a decision tree are displayed on Fig. 3.31. Our classifier

consists of a forest [15] of NT = 31 decision trees built in this manner.

3.3.2.2 Computing Classification Score Maps

At runtime, the algorithm iterates through every camera and ground location, extracts

a sub-image corresponding to the rectangular shape of human size, and takes its score

to be the number of trees classifying the sub-image as “person” (Fig. 3.29).

If we see the individual tree responses as many i.i.d. samples of the response of

an ideal classifier, the classification score in location k is an estimate of the probability

for such a classifier to respond that k is actually occupied given the sub-image at that

location. Hence, it is a good indicator of the actual occupancy.

This stage produces, for each camera, a map such as the ones depicted by the third

column of Fig. 3.28 or by the three left pictures in Fig. 3.32, which assigns a voting score

to every ground location. As shown on those figures, detected pedestrians appear as

“cone shapes” in the axis of the camera, on the classification score maps. This is due to

the high invariance in scale and the limited invariance in translation of the classifiers,

and hinders precise people location. Hence the need of an extra step, which combines
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Figure 3.31: Example of features selected by one decision tree. Colors are used to separate

different feature types.

(a) (b) (c) (d)

Figure 3.32: Images (a), (b) and (c) show the classification score maps of a scene viewed

under three different angles. Image (d) represents the corresponding ground truth.
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classification score maps from different camera views into one accurate detection score

map. Sections §3.3.3 and §3.3.4 present two possible methods for this operation.

3.3.3 Baseline Approach

The baseline approach consists of multiplying the responses of the trees from different

viewpoints. This is essentially what the product rule used in [64] does. It is more so-

phisticated than a crude clustering and averaging in separated views, since it assumes

the conditional independence between the different views, given the true occupancy.

Recall that T c
k is an integer standing for the sum of the trees’ answers at location k on

camera view c, and T is the vector of all T c
k . Formally, we have

P (Xk =α |T) = P (Xk =α |T 1
k , . . . , TC

k ) (3.29)

=
P (Xk =α)

P (T 1
k , . . . , TC

k )
P (T 1

k , . . . , TC
k |X

k =α) (3.30)

=
P (Xk =α)

P (T 1
k , . . . , TC

k )

∏

c

P (T c
k |X

k =α). (3.31)

Equality (3.29) is true under the assumption that only the responses of the trees

at location k bring information about the occupancy at that location, equality (3.30)

is directly Bayes’ law, and equality (3.31) is true under the assumption that given the

occupancy of location k, the trees’ responses at that location from different camera

views are independent.

We then model the probability of the trees’ response at a certain point given that it

is occupied (α = 1) by a density proportional to the number of trees responding at that

point, and the probability of response when the location is empty (α = 0) by a constant

response. This leads to a final rule that multiplies the responses of the trees from the

different viewpoints to estimate a score increasing with the probability of occupancy

at that point.

3.3.4 Principled Approach

The baseline method of the previous section assumes that, given the true occupancy

at a certain location, the responses of the trees at that point for different viewpoints

are independent from each other, and are not influenced by occupancy at other loca-

tions. As shown in Section §3.3.5, it usually triggers many false alarms. By contrast,
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our principled approach relies on an assumption of conditional independence of the

tree responses at any location k, given the occupancy of the full grid (X1, . . . , XK),

and not anymore Xk alone. Such an assumption is far more realistic, and leads to an

algorithm which takes into account the long-range influence of both the occlusions be-

tween pedestrians and the presence of an individual on the classification score maps,

due to the invariance of the classifiers.

3.3.4.1 Conditional Marginals

We want to compute numerically, at every location k of the ground plane, P (Xk |T)

the conditional marginal probability of presence given the response of the classifiers

at all locations. We will show that computing this quantity requires P (T |X), the tree

response model given the ground occupancy. It is learnt by applying the classifier on

sequences for which we have a ground truth, and is described in §3.3.4.2. As explained

below, there is no possible analytical way to obtain P (Xk |T) given our underlying

assumptions, hence the need to evaluate it numerically through an iterative process.

At each new iteration, the marginal probabilities of presence P (Xk |T) for all ground

locations k are reevaluated using their previous estimate, until convergence.

Let X
j 6=k denote the vector (X1, . . . , Xk−1, Xk+1, . . . , XK), R the product law with

the same marginals as the posterior ∀k, R(Xk = 1) = P (Xk = 1 |T) and ER the

expectation under X∼R, as summarized in Table 3.3. To obtain a tractable form for

rα
k = P (Xk = α |T), we first marginalize X

j 6=k

rα
k =

∑

Xj 6=k

P (Xk = α |T,Xj 6=k)P (Xj 6=k|T)

= E[P (Xk =α |T, X
j 6=k) |T], (3.32)

where T is equal to the observed trees’ answers and the only random quantity in the

expectation is X. We then apply Bayes’ law to make the model of the trees’ answers

given the true occupancy state appear

rα
k = E

[
P (T |Xk =α, X

j 6=k) P (Xk =α,Xj 6=k)

P (Xj 6=k |T) P (T)
|T

]

. (3.33)

However, there is no analytical expression for (3.33), and we thus have to estimate

the expectation numerically by sampling the X
j 6=k and averaging the corresponding

probability. To this end, we substitute the expectation under the true posterior law by
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a re-weighted expectation under a product law R with the conditional marginals as

marginal

rα
k = ER

[
P (T |Xk =α, X

j 6=k) P (Xk =α,Xj 6=k)

P (Xj 6=k |T) P (T)

P (Xj 6=k |T)

R(Xj 6=k)

]

= ER

[
P (T |Xk =α,Xj 6=k)

P (T)

P (Xk =α,Xj 6=k)

R(Xj 6=k)

]

. (3.34)

Note that this represents a typical case of importance sampling. Such a formulation

ensures that, when we estimate the expectation numerically, the sampling of Xj 6=k will

accumulate on the occupancy configurations consistent with the tree responses, thus

leading to a far better estimate of the averaging with a reasonable number of samples.

Finally we simplify the expression by assuming that the prior distribution is a product

law (i.e. P (X) =
∏K

k=1 P (Xk))

rα
k =

P (Xk =α)

P (T)
ER



P (T |Xk =α,Xj 6=k)
∏

j 6=k

P (Xj)

R(Xj)



 . (3.35)

We end up with an expression of each marginal as a function of the other marginals,

thus a large system of equations to solve.

This result is intuitive: the conditional marginal probability of presence at location

k given the trees’ answers can be computed by fixing Xk, sampling all the other Xj

according to the current estimate of R, and averaging the corresponding probability

that the trees respond what they actually respond. The more the value associated to

Xk makes the actual tree responses likely, the highest its probability.

We get rid of the unknown P (T) quantity by computing

P (Xk =1 |T) =
P (T) P (Xk =1 |T)

P (T)P (Xk =0 |T) + P (T)P (Xk =1 |T)
. (3.36)

In the end, we obtain a large number of equations relating the P (Xk = 1 |T). We

can iterate these equations to estimate the conditional marginals. After initialization

of all rks to a prior value, each of these equations can be evaluated numerically by

sampling according to a product law R with the current estimates as marginals. Ex-

perimental results show that with such a choice, since the sampling accumulates on

the configurations consistent with the observations, a few tens of iterations are suf-

ficient to provide good numerical precision. Fig. 3.33 shows four iterations of the

detection score map convergence process.
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iteration #2 iteration #5 iteration #8 iteration #10

Figure 3.33: Example of convergence of a detection score map during the iterative estima-

tion.

3.3.4.2 Tree Response Model

At the core of Equation (3.35) above is P (T |X), the responses of the trees given the

true occupancy state, where X = (X1, . . . , XK). It must account for effects such as oc-

clusion and classifier invariance. Assuming that the trees’ responses are independent

given the true state, we write

P (T |X) =
∏

c,k

P (T c
k |X). (3.37)

As shown in Fig. 3.34, the trees’ response at position k can only be influenced by

ground location j, whose corresponding sub-image I
c
j intersects the I

c
k. We call such

locations the neighborhood nc
k of k on camera view c. Thus, Equation (3.37) becomes

P (T |X) =
∏

c,k

P (T c
k |X

k,Xnc
k), (3.38)

where we simply ignore positions outside nc
k. The classifier response at location k can

thus be interpreted as a function of the presence of individuals in the neighborhood of

k, as opposed to the whole scene.

In the rest of the section, we show how to express (3.38) numerically in some simple

particular cases, and we then extend it to the general case, thus deriving a model for

the classifier response.

Empty neighborhood If the neighborhood of k is empty (Fig. 3.36, (a) and (b)), the

trees’ answer in k depends only on the occupancy of k. Precisely ∀α ∈ {0, 1}:

P (T c
k = t |Xk = α,∀j ∈ nc

k, Xj = 0) = µα(t). (3.39)
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Figure 3.34: Left image shows the neighborhood nc
k in camera view and right image

shows it in top view.

The functionals µ0 and µ1 are modeled as histograms estimated on training samples,

and shown on Fig. 3.35(a).

One individual in the neighborhood We now consider the case where only one

person is present in the neighborhood of k, at location j. If location k is empty, sub-

image I
c
k will contain some body parts of the person present at location j, in addition

to background. This influences the classifier answer in k, in a way that depends on the

“distance” between I
c
k and I

c
j in the image.

To characterize this pseudo-distance between sub-images, we define functions

α(i, j) =

√

‖Ic
k‖

‖Ic
j‖

, and (3.40)

β(i, j) =
δc(i, j)
√
‖Ic

k‖
, (3.41)

where α(i, j) quantifies the size ratio between I
c
k and I

c
j , and β(i, j) their misalignment.

δc(i, j) is described in Table 3.3.

With this, we obtain the tree response model µ′
0(t, α(i, j), β(i, j)), which is com-

puted as histograms from the training samples. It is plotted on Fig. 3.35 (c).

We finally model the case where location k is occupied, with one person present

in its neighborhood at location j. For this purpose, we have to distinguish positions

from the neighborhood located “behind” k – that is, further from the camera than k –

and those located closer to it. We denote the former set by nc−
k and the latter by nc+

k

and illustrate them geometrically in Fig. 3.36.
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Figure 3.35: Tree response model. (a) shows the classifier answer distributions for a forest

of 31 trees, (b) plots the distribution of the classifier answer as a function of γ(i, j) and (c)

displays the average trees’ answer as a function of α(i, j) and β(i, j).
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(a) empty location & neighborhood (b) location occupied, empty visible neighbor-

hood

(c) empty location, occupied neighborhood (d) location & visible neighborhood occupied

Figure 3.36: The images above illustrate the four cases used by the tree response model

for the grid position k, colored in white. Grid positions highlighted in gray represent

the neighborhood nc
k of position k (see also Fig. 3.34 right, for a top view). The visible

neighborhood nc+
k is shown in light gray, whereas the neighborhood nc−

k located beyond

position k is painted in dark gray. In case (a), neither location k nor its neighborhood is

occupied. In case (b), location k is occupied, but its visible neighborhood nc+
k is empty.

Note that there might or might not be people in nc−
k . In case (c), location k is empty,

but there is at least one person in its neighborhood nc
k. Finally in case (d), location k is

occupied, as well as at least one of the locations in nc+
k . As in case (b), it does not matter

whether nc−
k is occupied.
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When k is occupied, positions from nc−
k do not influence the classifier answer on

I
c
k, but positions from nc+

k do. As for the previous case, we define a pseudo-distance

function

γ(i, j) =
‖Ic

k ∩ I
c
j‖

‖Ic
k‖

·

(

1−
‖Ic

k ∩ I
c
j‖

‖Ic
j‖

)

, (3.42)

with respect to the camera view, to characterize the relationship between the relative

position of k and j, and the trees’ answer.

We then derive the tree response model for this last case as function µ′
1(t, γ(i, j)),

which is depicted by Fig. 3.35 (b). It is also computed empirically as histograms from

the training samples.

Multiple individuals in the neighborhood It is not trivial to extend the simplified

model with at most one person in the neighborhood to the general case, because the

number of neighbor locations is of the order of 100, which implies a huge number of

occupancy configurations. We therefore simplify our model by assuming that only the

occupied location whose sub-window intersects the most I
c
k will influence the classi-

fier answer in k, on camera view c. We denote by Jc ∗
k the occupied location from the

neighborhood of k, whose corresponding sub-window covers the most I
c
k

Jc ∗
k = arg max

j∈nc
k
, Xj=1

‖Ic
k ∩ I

c
k‖. (3.43)

This assumption makes the model tractable and has been found to hold empirically.

Finally, we obtain as response model when the neighborhood is not empty, whether

there is a single individual or several of them:

P
(

T c
k = t |Xk = 0, ∃j ∈ nc

k, X
j = 1

)

= µ′
0 (t, α(i, Jc ∗

k ), β(i, Jc ∗
k )) (3.44)

P
(

T c
k = t |Xk = 1, ∃j ∈ nc+

k , Xj = 1
)

= µ′
1 (t, γ(i, Jc ∗

k )) . (3.45)
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3.3.5 Results

We tested our approach on the campus data set, described in §2.7, consisting of several

video sequences filmed by three outdoor cameras with overlapping fields of view. We

used a 2 minute sequence to train the system and learn the trees response model of

§ 3.3.4.2 and the remaining to test it. To demonstrate the generality of the model, we

also show results applied to the laboratory data set, that was not used for training pur-

poses. Finally, we show that our method yields meaningful results even from single

views.

Baseline vs. Principled Approaches To compare the approaches of § 3.3.3 and § 3.3.4,

we randomly selected 100 frames of the outdoor sequences, manually labeled the true

pedestrian locations, and compared them to both their outputs.

The result depicted by Fig. 3.37. shows that the principled approach yields much

better estimates of the number of people than the baseline approach, which triggers

many false positives. When setting the post-processing threshold so that both ap-

proaches have about 10% of false negatives, our approach outperforms the baseline

one, by producing only about 0.06% of false positives instead of 0.81%. This result is

depicted by the ROC curves of Fig. 3.37.b. Since our method relies on a strong model

and produces very peaked occupancy probabilities, detection failures cases produce

incorrect occupancy maps. This explains the crossing of the ROC curves at very high

detection rates.

Indoor and Outdoor Sequences Figs. 3.38 and 3.39 depict our results in the out-

door campus and indoor laboratory sequences respectively. In both cases, people are

correctly detected in spite of difficulties: In the outdoor images, there are strong shad-

ows, which could create problems for methods based on background subtraction but

do not affect our results. The occlusions in the indoor images are very significant but

are nevertheless handled correctly, especially when one recalls that we do not enforce

any form of temporal consistency and treat every time frame independently.

Thanks to the tree response model of Section 3.3.4.2, we can retrieve occupancy

maps from the noisy classifier answers, even when using single views as shown in

Fig. 3.40. The procedure used is the same as in the multi-view case, except that we do

no longer multiply tree’s answers from multiple cameras in Equation 3.37. Occlusions
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Figure 3.37: Comparing the performance of the baseline and principled approaches. (a)

Error distribution in the estimate of the number of people present in the scene. (b) ROC

curves for the two methods. These graphs demonstrate that the principled approach truly

provides a better estimate of the number of people present in the scene, and a better false

positives vs. false negatives ratio.

are no longer handled, as evidenced by the fact that a half-hidden person in the right

image is missed. Nevertheless, the results remain meaningful.

3.3.6 Discussion

The classifier approach to people detection presented above addresses the main is-

sues of the Probabilistic Occupancy Map detector of §3.2, that is its vulnerability to

light changes and non-human motion. These weaknesses stem from the background

subtraction, which cannot discriminate between different types of motion, and which

is inherently sensitive to effects such as light intensity variations, shadows or reflec-

tions. By relying on image features, the classifier approach manages to avoid those

problems.

However, these benefits comes at a substantial cost: First, the classifiers need train-

ing, which involves creating a labelled training set of thousands of pedestrian images.

Furthermore, the classifier response model also needs to be learnt, which requires a

reference video sequence along with a manually labelled ground truth.

Second, the expectation in Eq. 3.35 can only be estimated by sampling the occu-

pancies Xj according to the product law Q. A similar issue also occurred for the POM
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camera #1 camera #2 camera #3 top view

Figure 3.38: Results of our algorithm on the campus data set, for which it was trained.

Each row shows several views taken at the same time instant from different angles. Boxes

are located on local maxima of the estimated probabilities of occupancy. The last column

depicts the corresponding detection score map before thresholding.
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camera #1 camera #2 camera #3 camera #4 top view

Figure 3.39: Results of our algorithm on the laboratory data set, with classifiers trained on

the campus one. Each row shows several views taken at the same time instant from differ-

ent angles. Boxes are located on local maxima of the estimated probabilities of occupancy.

The last column depicts the corresponding detection score map before thresholding.

Figure 3.40: Example results on single-view images. Note that occlusions are obviously

no longer handled, as evidenced by the fact that a half-hidden person in the right image

is missed.
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Figure 3.41: Comparison of the two classification-based approaches (baseline and princi-

pled) with POM. Results on a campus sequence are evaluated with the detection precision

(MODP) metric.

detector in Eq. 3.16, but it was addressed by using the approximation of Eq. 3.17. The

consequence of this necessary sampling is a computationally intensive process and

slow detections. One can expect up to 10 seconds of processing per frame on a stan-

dard computer. This approach is therefore not suited for real-time processing.

Third, despite the large performance gain of our approach compared to a naive

method, it still does not perform as good as POM, due to the higher number of false

positives it produces. A performance comparison between the 3 approaches is shown

on Fig. 3.41. We do not plot the accuracy (MODA) metric, because both classification-

based methods generate too many false positives for this metric to be relevant.

In the remainder of this work, we thus rely on the Probabilistic Occupancy Map

algorithm to provide the frame-based detections needed by the trackers.

88



Chapter 4

People Tracking

In this chapter, we present two different approaches to linking individual detections

provided by a detector at independent time frames. Both approaches are based on

global optimization over several consecutive frames, which is more robust than doing

it recursively. The general framework used here is still the pedestrian detection using

multiple static cameras and an occupancy map, presented in Chapter 2. However, the

techniques introduced here are much more generic and can be applied to a wide range

of domains, as will be demonstrated. The first method, explained in §4.2, relies on Dy-

namic Programming [8] applied sequentially on batches of frames to track multiple

people. The approach uses the detection maps generated by POM (see §3.2) together

with a color model and a motion model. Trajectories are assumed independent and

optimized one after the other. In §4.3, we propose another approach to multiple people

tracking that formulates the problem as a standard Linear Programming optimization

framework. That way multiple trajectories can be jointly optimized. A naive imple-

mentation, however, yields a very large problem with many variables and constraints,

whose computational complexity is prohibitive. In §4.3.4, we thus introduce a more

carefully designed optimization scheme based on the k-shortest paths algorithm [117].

This algorithm takes into account the specificity of our problem and runs in real time.

4.1 State-of-the-Art

Multiple object tracking is an intensively studied area of research. Its primary goal

is to generate trajectories of objects by localizing them individually at each frame of
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a video sequence. This task is usually accomplished by either detecting objects in

every frame independently and later linking the detections across frames, or by jointly

estimating the objects region and correspondences. Among the methods falling in the

later category are those relying on Kernel Tracking [23; 24; 119; 131] or Silhouette

Tracking [61; 105]. Kernel Tracking is typically performed by computing the motion

of the object, which is represented by a primitive object region, from one frame to

the next. The motion is generally in the form of parametric motion or the dense flow

field computed in subsequent frames [137]. Silhouette Tracking provides an accurate

shape description for objects with complex shapes, such as pedestrians. The goal of

a silhouette-based object tracker is to find the object region in each frame by means

of an object model generated using the previous frames. This model can be in the

form of a color histogram, object edges or the object contour [137]. In this work, we

concentrate on the first category of trackers, that is, methods that perform detection

and tracking separately. They typically require an external mechanism to detect the

objects in every frame. These approaches have the advantage of being resistant to

divergence: The detection process can fail on successive frames and still recover at

any time because there is no temporal update. Besides, this scheme allows us to use

the detector described in the previous chapter. In the following, we thus review state-

of-the-art methods for generating tracks by linking detected objects.

Kalman Filter A large class of approaches relies on the recursive update of tracks

with the most recent detections. For instance, Kalman filtering is an efficient way to

address multi-target tracking when the number of objects remains small. It is also well

suited for real-time applications and has been extensively used in the vision commu-

nity [14; 58; 77; 87; 134]. However, when the number of objects increases, identity

switches become more frequent and are difficult to correct, due to the recursive nature

of the method. Moreover, Kalman filter assumes that the state variables are normally

distributed, and thus estimates those variables poorly, if the Gaussian assumption

does not hold.

Particle Filter Particle filtering represents the conditional state density by a set of

samples and can thus estimate non-Gaussian distributions, which addresses a lim-

itation of Kalman filter. It is often associated with JPDAF or MHT to follow several
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targets simultaneously [44; 67; 82; 111; 125; 135]. This technique has been used to great

effect to follow multiple hockey players [94] or to track multiple people in the ground

and image planes simultaneously [31]. In the same spirit, [138] relies on data-driven

MCMC to recover trajectories of targets using a batch of observations. [78] applies a

Probability Hypothesis Density filter to tracking multiple objects from noisy observa-

tions, and therefore falls into this family of algorithms. Despite their success, in our

experience, those sampling-based methods typically require careful tuning of several

meta-parameters, which reduces the generality of systems that rely on it. Besides, they

can only look at small time windows, because their state space grows exponentially

with the number of frames.

Hybrid Methods In an attempt to increase tracking robustness, some methods rely

on a dual-stage approach. Detections are first connected into short tracks, which are

then linked together using a higher-level method. For example, [99] relies on Kalman

filtering to obtain basic tracks, and then tries to merge and split the tracks using

the Hungarian algorithm. [54] explores the hierarchical version of the same concept,

while [76] uses a variant of AdaBoost to automatically learn the best criterion for link-

ing low-level tracks together. Similarly, [7] turns observations into trajectory segments

using local PCA, and then links those segments based on their spatial proximity and

smoothness constraints. [42] relies on mean-shift or particle filtering to generate track-

lets from detection results. In a second stage, they use MCMC data association to com-

bine the tracklets into full tracks, and to automatically estimate the best parameters for

the model. [36] uses a motion model and nearest neighbor to build tracks out of heads

detected from a top mounted calibrated camera. The tracks thus generated are then

merged and split into the final trajectories using heuristics based on overlap, direction

and speed. [17] proposes another method to tracklet generation in a crowded envi-

ronment, without however going all the way to combining them into complete tracks.

They detect multiple people and create tracklets by applying Bayesian clustering on

simple tracked image features. By contrast, [92] concentrates on the high level task.

The authors assume that a track graph has already been produced and focus on link-

ing identities in the provided track graph. They formulate the multi-object tracking

as a Bayesian network inference problem and apply this method to tracking multiple

soccer players.
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While effective, the approaches mentioned above generally concentrate on a small

time window and do not look for a joint global optimum among all trajectories. They

are therefore prone to mistakes such as identity switches. To improve robustness to

wrong identity assignment, research has recently focused on linking detections over

a larger time window using various optimization methods. For example, [65] ap-

plies graph cuts to extract trajectories from a batch of people detections obtained us-

ing homographic constraints on images from a multi-camera system. [74] simultane-

ously optimizes detections and tracks, coupled into a Quadratic Boolean Problem and

solved by an E-M algorithm.

Greedy Global Optimization Dynamic Programming [8] can be used to link multi-

ple detections over time, and therefore solve the multi-target tracking problem. More-

over, it can be extended to enable the optimization of several trajectories simultane-

ously [130]. Unfortunately, the computational complexity of such an approach can be

prohibitive. While efficient for very small state-space, it does not scale to the size of

problems we generally deal with. A different formulation is chosen by [109], where a

directed graph, with nodes standing for actual detections, represents the multi-frame

point correspondence problem. A greedy optimization algorithm is introduced to ef-

ficiently solve the problem, but without a guarantee to find a global optimum.

Linear Programming Linear Programming is another optimization method that has

been applied to find global optima and solve the data association problem on air radar

detections [116] or tackle multiple people tracking [59]. Starting from the output of

simple object detectors, this last approach builds a network graph in which every node

is an observation fully connected to future and past observations, in much the same

way as in [109]. Objects hiding each other are modeled by specifying spatial conflicts

within nodes. Occlusions are handled by introducing a special node type and arc costs

are chosen according to object appearances and a motion model. Additionally, another

soft constraint helps ensuring spatial layout consistency. A relatively similar graphical

model, with nodes representing detections, is built by [140] for multi-people tracking.

The global optimum is searched using a min-cost flow algorithm, which exploits the

specific structure of the graph to reach the optimum faster than Linear Programming.
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Due to their reduced state-space, these methods are computationally efficient. How-

ever, [59] requires a priori knowledge of the number of objects to be tracked, which

seriously limits its applicability in real life situations. Also, with a state-space only

consisting of observations, as opposed to all possible locations, they cannot smoothly

interpolate trajectories when there are false negatives. Moreover, the choice of arc

costs is ad-hoc and involves many parameters, which have to be tuned for each possi-

ble application, reducing the generality of the methods.

4.2 Tracking People using Sequential Dynamic Programming

Here we present a first approach at multi-people tracking from the frame-independent

output of a multi-camera people detector, such as those described in Chapter 3. Our

goal is to track an a priori unknown number of people from a few synchronized video

streams taken at head level. In this section, we formulate this problem as one of find-

ing the most probable state of a hidden Markov process given the set of images ac-

quired at each time step, which we will refer to as a temporal frame. We then briefly

outline the computation of the relevant probabilities using the notations summarized

by Tables 4.1 and 4.2.

4.2.1 Computing The Optimal Trajectories

We process the video sequences by batches of T = 100 frames, each of which includes

C images, and we compute the most likely trajectory for each individual. To achieve

consistency over successive batches, we only keep the result on the first ten frames

and slide our temporal window. This is illustrated on Fig. 4.1.

As described in Chapter 2, the ground plane is discretized into a finite number K

of regularly spaced 2–D locations. We introduce a virtual hidden location H that will

be used to model entrances and departures from and into the visible area. As opposed

to normal grid locations, H does not correspond to a physical location. It is however

connected to all the grid locations that can act as entrance or exit points. Those are

typically the door in a closed room, or the border of the grid in an open space.

For a given batch of frames, let Lt = (L1
t , . . . , L

N∗

t ) be the hidden stochastic pro-

cesses standing for the locations of individuals, whether visible or not. The number

N∗ stands for the maximum allowable number of individuals in our world. It is large
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Figure 4.1: Video sequences are processed by batch of 100 frames. Only the first 10% of

the optimization result is kept, and the rest is discarded. The temporal window is then

slid forward and the optimization repeated on the new window.

enough so that conditioning on the number of visible ones does not change the prob-

ability of a new individual entering the scene. The Ln
t variables therefore take values

in {1, . . . ,K, H}.

Given It = (I1
t , . . . , IC

t ), the images acquired at time t for 1 ≤ t ≤ T , our task is to

find the values of L1, . . . ,LT that maximize

P (L1, . . . ,LT | I1, . . . , IT ). (4.1)

As will be discussed in §4.2.3.1, we compute this maximum a posteriori in a greedy

way, processing one individual at a time, including the hidden ones who can move

into the visible scene or not. For each one, the algorithm performs the computation

under the constraint that no individual can be at a visible location occupied by an

individual already processed.

In theory, this approach could lead to undesirable local minima, for example by

connecting the trajectories of two separate people. However this does not happen

often because our batches are sufficiently long. To further reduce the chances of this,

we process individual trajectories in an order that depends on a reliability score so that

the most reliable ones are computed first, thereby reducing the potential for confusion

when processing the remaining ones. This order also ensures that if an individual

remains in the hidden location, all the other people present in the hidden location will

also stay there, and therefore do not need to be processed.

Our experimental results show that our method does not suffer from the usual

weaknesses of greedy algorithms, such as a tendency to get caught in bad local min-

ima. We therefore believe that it compares very favorably to stochastic optimization
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Table 4.1: Notation (deterministic quantities)

W ×H image resolution.

C number of cameras.

K number of locations in the ground discretization (≃ 1000).

T number of frames processed in one batch (= 100).

t frame index.

N∗ virtual number of people, including the non-visible ones.

µc
n color distribution of individual n from camera c.

techniques in general and more specifically particle filtering, which usually requires

careful tuning of meta-parameters.

4.2.2 Stochastic Modeling

We will show in §4.2.3.2 that since we process individual trajectories, the whole ap-

proach only requires us to define a valid motion model P (Ln
t+1 |L

n
t = k) and a sound

appearance model P (It |L
n
t = k).

The motion model P (Ln
t+1 |L

n
t = k), which will be introduced in Section §4.2.3.3,

is a distribution into a disc of limited radius and center k, which corresponds to a

loose bound on the maximum speed of a walking human. Entrance into the scene and

departure from it are naturally modeled thanks to the hidden location H, for which

we extend the motion model. The probabilities to enter and to leave are similar to the

transition probabilities between different ground plane locations.

In Section §4.2.3.4, we will show that the appearance model P (It |L
n
t = k) can be

decomposed into two terms. The first, described in Section §4.2.3.5, is a very generic

color-histogram based model for each individual. The second is the marginal condi-

tional probabilities of occupancy of the ground plane given the results of a background

subtraction algorithm, which is the output of the POM algorithm described in Chap-

ter 3.2.

Since these marginal probabilities are computed independently at each time step,

they say nothing about identity or correspondence with past frames. The appear-

ance similarity is entirely conveyed by the color histograms, which has experimentally

proved sufficient for our purposes.

95



4. PEOPLE TRACKING

Table 4.2: Notation (random quantities)

It images from all the cameras It = (I1
t , . . . , IC

t ).

Bt binary images generated by the background subtraction Bt =

(B1
t , . . . , BC

t ).

St texture information.

Lt vector of people locations on the ground plane or in the hidden location

Lt = (L1
t , . . . , L

N∗

t ). Each of these random variables takes values into

{1, . . . ,K,H}, where H is the hidden place.

L
n trajectory of individual n, Ln = (Ln

1 , . . . , Ln
T ).

Xt vectors of boolean random variable (X1
t , . . . , XK

t ) standing for the oc-

cupancy of location k on the ground plane
(
Xk

t = 1
)
⇔ (∃n, Ln

t = k).

4.2.3 Computation of the Trajectories

In Section §4.2.3.1, we break the global optimization of several people’s trajectories

into the estimation of optimal individual trajectories. In Section §4.2.3.2, we show how

this can be performed using the classical Viterbi’s algorithm based on dynamic pro-

gramming. This requires a motion model given in Section §4.2.3.3 and an appearance

model described in §4.2.3.4, which combines a color model given in Section §4.2.3.5

and the ground plane occupancy computed by the POM detector.

We use the discrete grid model of Chapter 2.2, in which the visible area is parti-

tioned into a regular grid of K locations as shown in Fig. 2.9, page 31.

4.2.3.1 Multiple Trajectories

Recall that we denote by L
n = (Ln

1 , . . . , Ln
T ) the trajectory of individual n. Given a

batch of T temporal frames I = (I1, . . . , IT ), we want to maximize the posterior con-

ditional probability

P (L1 = l
1, . . . , L

N∗

= l
N∗

| I)

= P (L1 = l
1 | I)

N∗
∏

n=2

P (Ln = l
n | I, L

1 = l
1, . . . , L

n−1 = l
n−1). (4.2)

Simultaneous optimization of all the Lis would be intractable. Instead, we opti-
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mize one trajectory after the other, which amounts to looking for

l̂
1 = arg max

l

P (L1 = l | I), (4.3)

l̂
2 = arg max

l

P (L2 = l | I, L
1 = l̂

1), (4.4)

...

l̂
N∗

= arg max
l

P (LN∗

= l | I, L
1 = l̂

1, L
2 = l̂

2, . . .). (4.5)

Note that under our model, conditioning one trajectory given other ones simply

means that it will go through no already occupied location. In other words,

P (Ln = l | I, L
1 = l̂

1, . . . , L
n−1 = l̂

n−1) = P (Ln = l | I, ∀k < n,∀t, Ln
t 6= l̂kt ), (4.6)

which is P (Ln = l | I) with a reduced set of the admissible grid locations.

Such a procedure is recursively correct: If all trajectories estimated up to step n

are correct, then the conditioning only improves the estimate of the optimal remain-

ing trajectories. This would suffice if the image-data were informative enough so that

locations could be unambiguously associated to individuals. In practice, this is obvi-

ously rarely the case. Therefore, this greedy approach to optimization has undesired

side effects. For example, due to partly missing localization information for a given

trajectory, the algorithm might mistakenly start following another person’s trajectory.

This is especially likely to happen if the tracked individuals are located close to each

other.

To avoid this kind of failure, we process the images by batches of T = 100 and first

extend the trajectories that have been found with high confidence – as defined below

– in the previous batches. We then process the lower confidence ones. As a result,

a trajectory which was problematic in the past and is likely to be problematic in the

current batch will be optimized last and thus prevented from “stealing” somebody

else’s location. Furthermore, this approach increases the spatial constraints on such a

trajectory when we finally get around to estimating it.

We use as a confidence score the concordance of the estimated trajectories in the

previous batches and the localization cue provided by the estimation of POM. More

precisely, the score is the number of time frames where the estimated trajectory passes

through a local maximum of the estimated probability of occupancy. When POM does
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not detect a person on a few frames, the score will naturally decrease, indicating a de-

terioration of the localization information. Since there is a high degree of overlapping

between successive batches, the challenging segment of a trajectory – due to failure

of the background subtraction or change in illumination for instance – is met in sev-

eral batches before it actually happens during the ten kept frames. Thus, the heuristic

would have ranked the corresponding individual in the last ones to be processed when

such problem occurs.

4.2.3.2 Single Trajectory

Let us now consider only the trajectory L
n = (Ln

1 , . . . , Ln
T ) of individual n over T tem-

poral frames. We are looking for the values (ln1 , . . . , lnT ) in the subset of free locations

of {1, . . . ,K,H}. The initial location ln1 is either a known visible location if the indi-

vidual is visible in the first frame of the batch, or H if he is not. We therefore seek to

maximize

P (Ln
1 = ln1 , . . . , Ln

T = lnt | I1, . . . , IT ) =
P (I1, L

n
1 = ln1 , . . . , IT , Ln

T = lnT )

P (I1, . . . , IT )
. (4.7)

Since the denominator is constant with respect to l
n, we simply maximize the nu-

merator, that is, the probability of both the trajectories and the images. Let us in-

troduce the maximum of the probability of both the observations and the trajectory

ending up at location k at time t

Φt(k) = max
ln1 ,...,lnt−1

P (I1, L
n
1 = ln1 , . . . , It, L

n
t = k). (4.8)

We model jointly the processes Ln
t and It with a hidden Markov model, that is

P (Ln
t+1 |L

n
t , Ln

t−1, . . . ) = P (Ln
t+1 |L

n
t ) (4.9)

and

P (It, It−1, . . . |Ln
t , Ln

t−1, . . . ) =
∏

t

P (It |L
n
t ) (4.10)

Under such a model, we have the classical recursive expression

Φt(k) = P (It |L
n
t = k)

︸ ︷︷ ︸

Appearance model

max
τ

P (Ln
t = k |Ln

t−1 = τ)
︸ ︷︷ ︸

Motion model

Φt−1(τ) (4.11)

to perform a global search with dynamic programming, which yields the classic Viterbi

algorithm. This is straightforward since the Ln
t are in a finite set of cardinality K + 1.
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4.2.3.3 Motion Model

We chose a very simple and unconstrained motion model

P (Ln
t = k |Ln

t−1 = τ) =

{
1/Z · e−ρ||k−τ || if ||k − τ || ≤ c
0 otherwise

(4.12)

where the constant ρ tunes the average human walking speed and c limits the maxi-

mum allowable speed. This probability is isotropic, decreases with the distance from

location k and is zero for ||k − τ || greater than a constant maximum distance. We

use a very loose maximum distance c of one square of the grid per frame, which cor-

responds to a speed of almost 12 mph. We also define explicitly the probabilities of

transition to the parts of the scene that are connected to the hidden location H. This

is a single door in the laboratory or terrace sequences and all the contours of the visible

area in the campus sequence. Thus, entrance and departure of individuals are taken

care of naturally by the estimation of the maximum a posteriori trajectories. If there are

enough evidence from the images that somebody enters or leaves the room, this pro-

cedure will estimate that the optimal trajectory does so, and a person will be added to

or removed from the visible area.

4.2.3.4 Appearance Model

Recall that our appearance model is given by

P (It |L
n
t = k), (4.13)

where It are the input images at time frame t and Ln
t is the random variable repre-

senting the location on the grid of individual n, also at time t. From the input images

It, we use background subtraction to produce binary masks Bt. We denote as St the

colors of the pixels inside the blobs and treat the rest of the images as background,

which is ignored.

Let Xt
k be a boolean random variable standing for the presence of an individual at

99



4. PEOPLE TRACKING

location k of the grid at time t. Then we have

Appearance model
︷ ︸︸ ︷

P (It |L
n
t = k) =

P (It)

P (Ln
t = k)

P (Ln
t = k | It) (4.14)

∝ P (Ln
t = k | It) (4.15)

= P (Ln
t = k |Bt, St) (4.16)

= P (Ln
t = k, Xk

t = 1 |Bt, St) (4.17)

= P (Ln
t = k |Xk

t = 1, Bt, St) P (Xk
t = 1 |Bt, St)

= P (Ln
t = k |Xk

t = 1, St)
︸ ︷︷ ︸

Color model

P (Xk
t = 1 |Bt)

︸ ︷︷ ︸

Ground plane occupancy

. (4.18)

Equality (4.14) follows directly from Bayes formula. Equality (4.15) is true since the

probability of the image – without conditioning – does not depend on the trajectory

and the prior on the trajectories is flat. Equality (4.16) is true under the assumption

that all information is carried by the product of the background subtraction and the

set of the blob pixel colors. Equality (4.17) is true since Ln
t = k ⇒ Xk

t = 1, and finally

equality (4.18) is true under the assumptions that the occupancy of a location Xk
t pro-

vides strictly more information about someone being at location k than the result of

the background subtraction, and that given the result of the background subtraction,

the color of the blobs does not provide information about the occupancy.

4.2.3.5 Color Model

We assume that if someone is present at a certain location k, his presence influences

the color of the pixels located at the intersection of the moving blobs and the rectangle

A
c
k corresponding to the location k. We model that dependency as if the pixels were

independent and identically distributed and followed a density in the RGB space asso-

ciated to the individual. This is far simpler than the color models used in either [87] or

[61], which split the body area in several sub-parts with dedicated color distributions,

but has proved sufficient in practice.

If an individual n was present in the frames preceding the current batch, we have

an estimation for any camera c of his color distribution µc
n, since we have previously

collected the pixels in all frames at the locations of his estimated trajectory. If he is at

the hidden location H, we consider that his color distribution µc
n is flat.
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Ic
t Bc

t A
c
k Sc

t (k)

Figure 4.2: The color model relies on a stochastic modeling of the color of the pixels Sc
t (k)

sampled in the intersection of the binary image Bc
t produced by the background subtrac-

tion and the rectangle A
c
k corresponding to the location k.

Let Sc
t (k) denote the pixels taken at the intersection of the binary image produced

by the background subtraction from the stream of camera c at time t and the rectangle

A
c
k corresponding to location k in that same field of view (see Fig. 4.2). Note that

even if an individual is actually at that location, this intersection can be empty if the

background subtraction fails.

Let µc
1, . . . , µ

c
N∗ be the color distributions of the N∗ individuals present in the scene

at the beginning of the batch of T frames we are processing, for camera c. The dis-

tribution may vary with the camera, due to difference in the camera technology or

illumination angle.

The ground occupancy term comes from the POM detector, and the color model

term is computed as follows.

We have

Color model
︷ ︸︸ ︷

P (Ln
t = k |Xk

t = 1, St) =
P (Ln

t = k, Xk
t = 1, St)

P (Xk
t = 1, St)

(4.19)

=
P (Ln

t = k, Xk
t = 1, St)

∑

m P (Lm
t = k, Xk

t = 1, St)
(4.20)

=
P (Ln

t = k, St)
∑

m P (Lm
t = k, St)

(4.21)

=
P (St |L

n
t = k)

∑

m P (St |Lm
t = k)

(4.22)

Equality (4.19) is directly Bayes law, equality (4.20) is true by complementarity of

the events Lm
t = k, equality (4.21) is true since Lm

t = k ⇒ Xk = 1, and finally equality

(4.22) is true by applying Bayes’ law again.
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Finally, we have

Color model
︷ ︸︸ ︷

P (Ln
t = k |Xk

t = 1, St) =
P (St |L

n
t = k)

∑

m P (St |Lm
t = k)

(4.23)

where

P (St |L
n
t = k) = P (S1

t (k), . . . , SC
t (k) |Ln

t = k) (4.24)

=
C∏

c=1

∏

r∈Sc
t (k)

µc
n(r). (4.25)

4.2.4 Results

In this section, we present different tracking results obtained with our Dynamic Pro-

gramming-based algorithm on multi-camera pedestrian videos. In our implementa-

tion, we first compute the probabilistic occupancy maps of Chapter §3.2 separately at

each time step and then use these results as input to our tracker. Since the observed

area consists of discrete positions, we improve the result accuracy by linearly interpo-

lating the trajectories on the output images. Figures 4.3, 4.5 and 4.4, illustrate typical

tracking results on our multi-camera pedestrian data set.

The performance of the tracker is analyzed in further detail in §4.3.7, page 120,

and compared to the Linear Programming-based tracking method of §4.3. Notably,

performance figures using the CLEAR metrics are provided there.

4.2.4.1 General Performance

On both indoor laboratory sequences, the algorithm performs very well and does not

lose a single one of the tracked persons. Results are illustrated by Fig. 4.3.

Despite disturbing influence of external elements such as shadows, a sliding door,

cars passing by, tables and chairs in the middle of the scene, and the fact that people

can enter and exit the tracked area from anywhere on some sequences, the algorithm

performs well and follows people accurately on the outdoor campus sequence illus-

trated by Fig. 4.4. In many cases, because the cameras are not located ideally, indi-

viduals appear on one stream alone. They are still correctly localized due the POM

detector’s robustness and the global optimization of the trajectories.
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camera #1 camera #2 camera #3 camera #4 top view

Figure 4.3: Tracking results on the laboratory sequence. Each row displays several views

of the same time frame coming from different cameras.

camera #1 camera #2 camera #3 top view

Figure 4.4: Results of the tracking algorithm on the campus sequence. Each row displays

several views of the same time frame coming from different cameras.
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camera #1 camera #2 camera #3 camera #4 top view

Figure 4.5: Tracking results on the terrace sequence. Each row displays several views of

the same time frame coming from different cameras.

On more challenging sequences from the terrace data set, which include at once

more than 5 people, illumination changes and similar color clothes, the algorithm

starts to make mistakes and mixes some identities or fails to detect people. The main

reason is that, as the number of people increases, some people are both occluded on

some camera views and out of the range of the other cameras. When this happens for

too many consecutive time frames, the dynamic programming is not able to cope with

it, and mistakes start to appear.

4.2.4.2 Precision

To further investigate the spatial accuracy of our approach, we compare the estimated

locations with the actual locations of the individuals present in the room as follows.

We picked 100 frames at random among a complete sequence and marked by hand

a reference point located on the belly of every person present in every camera view.

For each frame and each individual, from that reference point and the calibration of

the four cameras, we estimated a ground location. Since the 100 frames were taken

from a sequence with four individuals entering the room successively, we obtained

354 locations.
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Figure 4.6: Cumulative distributions of the position estimate error on a 3,800-frame se-

quence. See §4.2.4.2 for details.

We then computed the distance between this ground-truth and the locations esti-

mated by the algorithm. The results are depicted by the bold curve on Fig. 4.6. More

than 90% of those estimates are at a distance of less than 31cm and 80% of less than

25cm, which is satisfactory, given that the actual grid resolution is 25cm in these series

of experiments.

To test the robustness of our algorithm, for each camera individually, we randomly

blanked out a given fraction of the images acquired by that camera. As a result, frames,

which are made of all the images acquired at the same time, could contain one or more

blank images. This amounts to deliberately feeding the algorithm with erroneous

information: Blank images provide incorrect evidence that there was no moving object

in that frame, and consequently degrades the accuracy of the occupancy estimate.

Hence this constitutes stringent test of the effectiveness of optimizing the trajectories

with dynamic programming. The accuracy remains unchanged for an erasing rate as

high as 20%. The performance of the algorithm only starts to get noticeably worse

when we get rid of one third of the images, as shown in Fig. 4.6. The reason the

performance is almost unaltered for erasing rates up to 20% and then suddenly starts

to drop is easily understandable: For small erasing rates, POM occupancy maps are

slightly less precise and might include some seldom missed detections. The global
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optimization will still fix the sparse mistaken detections, with a small loss in precision.

When the erasing rate increases, so do the missed detection rate and the number of

misplaced detections. Above a given threshold, the tracker starts to mistakenly switch

identities. After an identity switch, the two switched trajectories will be compared to

the wrong ground truth for the rest of the sequence, hence the sudden precision drop.

4.2.5 Discussion

While the algorithm is usually very robust, we discuss here its limitations and poten-

tial ways to overcome them.

Entrances and exits As explained in §4.2.2, we deal with people entering and exiting

the grid with the help of the virtual location H. This location represents the outside

world and is supposed to contain a large number of people, all the people potentially

willing to enter our monitored area.

Between consecutive frames, there is a possible transition from the hidden location

H to itself at the next frame, to allow people to stay outside. There is also a possible

transition from H to the grid positions that may act as entrance points, to allow people

to enter. For every batch of frames, we first extract trajectories of the people inside the

grid. Then, we optimize the trajectory starting from H. If the Dynamic Programming

extracts a static trajectory staying in H, it indicates that no new person is entering the

grid during the current batch. If however, the trajectory ends up in the grid, the tracker

found detections moving from H to the grid, which is an evidence that someone is

entering.

This strategy works very well when the people detector provides accurate results.

In most environments, the entrance and exits points are located on the borders of the

monitored area and do usually have less good camera coverage than central locations.

For this reason, missed detections will more likely occur near an entrance point. Due

to the greedy Dynamic Programming optimization, the tracker might miss an entrance

if the parts of the trajectory close to H are not detected. Indeed, if several consecutive

miss-detections occur, the static trajectory staying in H might be less costly than a

trajectory that has to pass through several unoccupied locations.
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If an entrance is missed that way, the new person will not be tracked, but its detec-

tions will nevertheless interfere with the tracking of the other people inside the grid,

thus increasing the chances of an identity switch.

The reverse problem can happen for exits: The strategy for dealing with exits is that

if an individual’s trajectory ends in H during the current batch, the person is assumed

to exit the area, and will not be be tracked in the subsequent batches. Now suppose

that a person present in the grid is not detected for a number of consecutive frames.

Again due to the greedy nature of the optimizer, the trajectory that quickly joins a

hidden location H and stays there for the duration of the batch might be cheaper than

the correct trajectory that stays in the grid during the missed detections. In such a case,

we face the same problem as for the missed entrance: The individual that is believed

to have exited the grid will still produce future detections, and those might interfere

with other trajectories.

These potential problems can be interpreted as a consequence of the greedy strat-

egy of Dynamic Programming framework, and its assymetry between false positives

and false negatives treatment. Dynamic Programming carefully avoids false positives

- i.e. a trajectory that passes through unoccupied locations - as those are very costly.

However, there is no penalty to be paid if some detections remain unexplained by any

trajectory. As mentioned at the beginning of this paragraph, this is not a problem when

POM detections are accurate, but it makes the tracker less robust in the case they are

not. In the next section, we discuss a tracking approach relying on joint optimization

of the trajectories, that do not suffer from this issue.

Parameters Our tracking framework relies on several parameters. Most of them are

very generic and can be set once. Others might need to be adapted to different en-

vironments. The first parameter is the value ρ that determines the average speed of

pedestrians in Eq. 4.12. This value was constant for all our pedestrian tracking exper-

iments. However, we had to adapt it when processing the multiple ping-pong ball

sequences, whose results are described in §4.4, because the balls are moving signifi-

cantly faster than pedestrians.

A second parameter is the occupancy probability of the hidden locations H. Al-

though this value does not appear in the formalism of §4.2, a constant occupancy prob-

ability must be assigned to the hidden locations, to fully extend the grid model to
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them. This value must neither be too high, otherwise no person would ever enter or

stay in the grid, nor too low to prevent the tracker from creating wrong trajectories ev-

ery time a false detection appears. In our experience, a value of 0.5 is adequate. When

POM detections are noisy, this value may be slightly adapted to prevent the entrance

and exit issues discussed above.

The final set of parameters are the size of a batch and the amount of overlap be-

tween batches. In all our reported results, we used a batch size of 100 frames and an

overlap ratio of 90%. Both values can be substantially reduced when dealing with very

good quality detection. Setting those values higher makes the tracking more robust,

but increases the computational cost as well as the memory consumption.

Batch processing Processing the values by batches allows for near-real time pro-

cessing. It is not strictly necessary and one could imagine processing an entire video

sequence at once. Note that this way of doing would nevertheless raise some issues

about memory consumption and would require some details of the algorithm to be

changed, such as the way we handle entrances and exits.

Despite batch processing, the use of global optimization does not allow to process

data in real time, strictly speaking, but only in delayed real time. Whatever the speed of

the computer used for tracking, the algorithm first needs to fill a batch of frames before

it can proceed with trajectory extraction. If we process 25 fps videos and use 100-

frame batches, this results in a 4 second delay. This means that, at best, the tracking

information can be delivered only 4 seconds after the real events happened. This is a

limitation that we believe is still suitable for many applications.

In case of very good detections, the batch size can be reduced, but we believe a

minimum delay of 1 second - i.e. 25-frame batches - is reasonable and lower values

should not be used for best performance.

Independent trajectory optimization Global optimization of trajectories over a large

number of frames is a clear advantage over methods such as Kalman filtering that only

link detections between pairs of frames. It provides our method with extra robustness

to noisy detections. However, the assumption of independent trajectories is rather

strong, and the use of a greedy optimization method exposes our tracker to the dan-

ger of trajectories mixing. The use of a confidence score for sorting the individual
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trajectories optimization is an efficient way to reduce this effect as much as possible.

Note that it cannot be suppressed altogether, without considering the joint optimiza-

tion of all trajectories. In our current framework, the associated complexity would be

prohibitive. In the next section, however, we present a different multi-object tracking

approach that allows for joint trajectory optimization.

Motion model Due to the coarse discretization of the grid, we have to accept very

fast motions between two successive frames to allow for realistic individual speed

over several time frames. This could be overcome with a finer grid, at greater compu-

tational cost.

Also, we neither enforce motion consistency along the trajectories nor account for

the interactions between people. Greater robustness to potential errors in the occu-

pancy map estimates could therefore be achieved by representing richer state spaces

for the people we track and explicitly modeling their interactions. Of course, this

would come at the cost of an increased computational burden.

In Chapter 5, we show that the simple isotropic motion model used here can be

replaced with a more complex one, learnt from and adapted to a specific environment.
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4.3 Multiple People Tracking with Flow Linear Programming

In this section, we introduce a second approach to tackle the multi-people tracking

problem, using as input the detection maps of POM. We design a generic and math-

ematically sound multiple object tracking framework that relies on Linear Program-

ming. This allows us to perform a joint optimization of several trajectories, and thus

avoid some of the pitfalls faced by the Sequential Dynamic Programming approach

from the previous section. Our new method depends on very few parameters and

the algorithm handles unknown and potentially changing number of objects while

naturally filtering out false positives and bridging gaps due to false negatives.

4.3.1 Overview

We first formulate multi-target tracking as an Integer Programming (IP) problem. Al-

though such a problem is usually NP-complete, in our case a relaxation of it as a Linear

Program yields the optimal solution, and hence the problem is efficiently solvable. In

a second step, we illustrate how the k-shortest paths algorithm [117] can be used to

solve our specific framework much more efficiently than generic Linear Programming

solvers. We discuss these steps in more detail below and will use notation summa-

rized in Table 4.3.

4.3.2 Formalization

The physical area of interest is discretized into K locations, and the time interval into

T instants. For any location k, let N(k) ⊂ {1, . . . ,K} denote the neighborhood of k,

that is, the locations an object located at k at time t can reach at time t + 1.

To model occupancy over time, let us consider a labeled directed graph with K T

vertices, which represents every location at every instant. Its edges correspond to

admissible object motions, which means that there is one edge et
i,j from (t, i) to (t+1, j)

if, and only if, j ∈ N(i). To allow objects to remain static, there is always an edge from

a location at time t to itself at time t + 1.

Each vertex is labeled with a discrete variable mt
i standing for the number of ob-

jects located at i at time t. Each edge is labeled with a discrete variable f t
i,j standing

for the number of objects moving from location i at time t to location j at time t+1, as
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Table 4.3: Notation

K number of spatial locations;

T number of time steps;

I = (I1, . . . , IT ) captured images;

N(k) ⊂ {1, . . . ,K} neighborhood of location k;

et
i,j directed edge from location i at time t to location j at time t + 1;

f t
i,j estimated number of objects moving from location i at time t to location

j at time t + 1;

mt
i estimated number of objects at location i at time t;

M t
i random variable standing for the true number of objects at location i at

time t;

F set of occupancy maps physically possible;

H set of flows physically possible, i.e. satisfying the constraints of

Eqs. 4.26, 4.27, 4.28, and 4.35.

shown in Fig. 4.7(a). For instance, the fact that an object remains at location i between

times t and t + 1 is represented by f t
i,i = 1.

Given these definitions, for all t, the sum of flows arriving at any location j is

equal to mt
j , which also is the sum of outgoing flows from location j at time t. We

must therefore have

∀t, j,
∑

i:j∈N(i)

f t−1
i,j

︸ ︷︷ ︸

Arriving at j at t

= mt
j =

∑

k∈N(j)

f t
j,k

︸ ︷︷ ︸

Leaving from j at t

. (4.26)

Furthermore, since a location cannot be occupied by more than one object at a time,

we can set an upper-bound of 1 to the sum of all outgoing flows from a given location

and impose

∀k, t,
∑

j∈N(k)

f t
k,j ≤ 1 . (4.27)

A similar constraint applies to the incoming flows, but we do not need to explicitly

state it, since it is implicitly enforced by Eq. 4.26. Finally, the flows have to be positive

and we have

∀k, j, t, f t
k,j ≥ 0 . (4.28)
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Figure 4.7: (a) Simplified flow model, which does not use a virtual position. Positions are

arranged on one dimension and neighborhood is reduced to 3 positions. (b) Flow model

used for tracking objects moving on a 2-D grid, such as in pedestrian tracking. For the

sake of readability, only the flows to and from location k at time t are printed.
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Note that constraints (4.27) and (4.28) implicitly enforce that the flows f t
k,j are smaller

or equal to 1, which is consistent with our model.

Let M t
i denote a random variable standing for the true presence of an object at

location i at time t. The object detector used to process the sequence provides, for

every location i and every instant t, an estimate of the marginal posterior probability

of the presence of an object

ρt
i = P̂ (M t

i = 1 | It) , (4.29)

where It is the signal available at time t. For the multi-camera pedestrian-tracking

application, It denotes the series of pictures taken by all the cameras at time t.

Let m be an occupancy map, that is a set of occupancy variables mt
i, one for each

location and for each instant. We say that m is feasible if there exists a set of flows f t
k,j

that satisfies Eqs. 4.26, 4.27, and 4.28, and we define F the set of feasible maps. Our

goal then becomes solving

m
∗ = arg max

m∈F
P̂ (M = m | I) . (4.30)

Assuming conditional independence of the M t
i , given the It, the optimization prob-

lem of Eq. 4.30 can be re-written as

m
∗ = arg max

m∈F
log
∏

t,i

P̂ (M t
i = mt

i | It) (4.31)

= arg max
m∈F

∑

t,i

log P̂ (M t
i = mt

i | It)

= arg max
m∈F

∑

t,i

(1−mt
i) log P̂ (M t

i = 0 | It)

+ mt
i log P̂ (M t

i = 1 | It) (4.32)

= arg max
m∈F

∑

t,i

mt
i log

P̂ (M t
i = 1 | It)

P̂ (M t
i = 0 | It)

(4.33)

= arg max
m∈F

∑

t,i

(

log
ρt

i

1− ρt
i

)

mt
i , (4.34)

where Eq. 4.31 is true under the assumption of conditional independence of the M t
i

given It, Eq. 4.32 is true because mt
i is 0 or 1 according to Eq. 4.27, and Eq. 4.33 is ob-

tained by ignoring a term which does not depend on m. Hence, the objective function

of Eq. 4.34 is a linear expression of the mt
i. Note that since we use the POM detector

113



4. PEOPLE TRACKING

in our experiments, the assumption of conditional independence of the M t
i for (4.31)

is legitimate, since the ρt
i are specifically estimated by POM so that the corresponding

product law mimics the true joint posterior.

In general, the number of tracked objects may vary with time, meaning that objects

may appear inside the tracking area and others may leave. Thus, the total mass of the

system changes and we must allow flows to enter and exit the area.

We do this by introducing two additional nodes υsource and υsink into our graph,

which are linked to all the nodes representing positions through which objects can

respectively enter or exit the area, such as doors or borders of the camera field of view.

In addition, a flow goes from υsource to all the nodes of the first frame, and reciprocally

a flow goes from all the nodes of the last frame to υsink. We call υsource and υsink virtual

locations, because, as opposed to the other nodes of the graph, they do not represent

any physical location.

Finally, we introduce an additional constraint that ensures that all flows departing

from υsource eventually end up in υsink

∑

j∈N(υsource)

fυsource,j

︸ ︷︷ ︸

Leaving υsource

=
∑

k:υsink∈N(k)

fk,υsink

︸ ︷︷ ︸

Arriving at υsink

. (4.35)

4.3.3 Optimization

We optimize with respect to the flows f t
i,j rather than the occupancies mt

i, because

there is no natural way to express the flow continuity constraints in terms of the latter.

We therefore solve the following Integer Programming problem, that incorporates the

constraints of Eqs. 4.26, 4.27, 4.28, and 4.35:

Maximize
∑

t,i

log

(
ρt

i

1− ρt
i

)
∑

j∈N(i)

f t
i,j

subject to ∀t, i, j, f t
i,j ≥ 0

∀t, i,
∑

j∈N(i)

f t
i,j ≤ 1

∀t, j,
∑

i:j∈N(i)

f t−1
i,j =

∑

k∈N(j)

f t
j,k

∑

j∈N(υsource)

fυsource,j =
∑

k:υsink∈N(k)

fk,υsink
.

(4.36)
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Figure 4.8: A complete flow system for a simple graph consisting only of 3 positions and

3 time frames. Here, we assume that position 0 is connected to the virtual positions and

therefore a possible entrance and exit point. Flows to and from the virtual positions are

shown as dashed lines.

This is equivalent to maximizing the objective function of Eq. 4.34 because ∀t, j, mt
j =

∑

k∈N(j) f t
j,k. In other words, we simply replace all the mt

j in the original formulation

by the sum of the outgoing flows from j at time t, so that the unknowns are now the

flows.

We rewrite the system of Eq. 4.36 in canonical form with inequality constraints in-

stead of equalities:

Maximize
∑

t,i

log

(
ρt

i

1− ρt
i

)
∑

j∈N(i)

f t
i,j

subject to ∀t, i, j, f t
i,j ≥ 0

∀t, i,
∑

j∈N(i)

f t
i,j ≤ 1

∀t, i,
∑

j∈N(i)

f t
i,j −

∑

k:i∈N(k)

f t−1
k,i ≤ 0

∑

j∈N(υsource)

fυsource,j −
∑

k:υsink∈N(k)

fk,υsink
≤ 0 .

(4.37)

This new formulation is strictly equivalent to the one of Eq. 4.36 and no additional

constraint is needed. The inequalities are indeed sufficient to ensure that no flow

can ever appear or disappear within the graph. An example of a complete graph is

illustrated in Fig. 4.8.

Under this formulation, our Integer Program can be solved by any generic LP
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solver. However, due to the very large size of our problem, this solution would hardly

be practical, as IP solving is NP-complete. The usual workaround is to relax the integer

assumption and solve a continuous Linear Program instead, which has polynomial-

time average-case complexity. The drawback of this method is that the Linear Program

is unlikely to converge to the optimal solution of the original IP.

In our case, however, the relaxed Linear Program always converges towards an

integer solution, due to the very specific form of our constraints. The complete proof

can be found in [11]. As a consequence, we can use generic LP solver to optimize our

multi-target tracking framework. Nevertheless, although this approach is tractable for

moderately sized problems, it is still too slow for most practical applications. There-

fore, in the next section, we propose another method for performing the optimization,

which takes into account the specificity of our problem to tremendously reduce the

complexity.

4.3.4 K-Shortest Paths Formulation

The relaxation of the original integer problem yields a large scale LP problem, which

can be solved by several state-of-the-art LP solvers, such as CPLEX [55], GLPK [79]

and MATLAB [81], that, in general, rely on variants of the Simplex algorithm [27] or

interior point based methods [62]. However, these algorithms do not make use of the

specificity of our problem and have very high worst case time complexities. In the

following, we show that this complexity can be reduced considerably by reformulat-

ing the problem as a k shortest node-disjoint paths problem on a directed acyclic graph

(DAG).

Given a pair of nodes, namely the source υsource and the sink υsink, in a graph G,

the k-shortest paths problem is to find the k paths {p1, . . . , pk} between these nodes,

such that the total cost of the paths is minimum. The problem is well-studied in the

network optimization literature and the results have been widely applied in the field

of network connection routing and restoration. There exists many variants of the al-

gorithm, each targeted at a specific problem instance 1.

In our specific case, we are interested in the particular instance where the graph

is directed and paths are both node-disjoint - i.e. two separate paths cannot share the

1for a complete list of references, see the online bibliography at http://liinwww.ira.uka.de/

bibliography/Theory/k-path.html
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same node - and node-simple - i.e. a path visits every node in the graph at most once.

We use the graph structure with a single source and a single sink illustrated by Fig. 4.8.

Any path between υsource and υsink in this graph represents the flow of a single object

in the original problem along the edges of the path. The node-disjointness constraint

means that no location can be shared between two paths, hence two objects. This is

thus equivalent to the constraint of Eq. 4.27. Moreover, since we only look for paths

between the source and sink nodes, we ensure that no flow can ever be created nor

suppressed anywhere else in the graph than at the virtual locations, which enforces

the constraints of Eqs. 4.26 and 4.35. Finally, the node-simple characteristic of the

paths simply stems from the fact that our graph is a DAG, hence acyclic.

A directed edge et
i,j from location i at time t to location j at time t + 1 is assigned

the cost value

c(et
i,j) = − log

(
ρt

i

1− ρt
i

)

. (4.38)

The cost value of the edges emanating from the source node is set to zero to allow

objects to appear at any entrance position and at any time instant at no cost. We

formulate our problem as a minimization problem by negating the objective function

of Eq. 4.36.

Let H denote the set of feasible solutions of the original LP formulation of Eq. 4.36,

satisfying the constraints given in Eq. 4.26, 4.27, 4.28, and 4.35. Then, the optimal

solution f
∗ of the k-shortest path problem can be written as

f
∗ = arg min

f∈H

∑

t,i

c(et
i,j)

∑

j∈N(i)

f t
i,j , (4.39)

where c(et
i,j) represents the cost of the edge et

i,j as defined in Eq. 4.38. Note that any

node-disjoint k paths between υsource and υsink with arbitrary k is in the feasible set of

solutions H. In addition, any solution in H can be expressed as a set of k node-disjoint

paths.

Let p∗i be the shortest path computed at the ith iteration of the algorithm and Pl =

{p∗1, . . . , p
∗
l } be the set of all l shortest paths computed up to iteration l. We start by

finding the single shortest path in the graph p∗1 and compute its total cost

cost(p∗l ) =
∑

et
i,j∈p∗

l

c(et
i,j) . (4.40)
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We then compute iteratively the l-shortest paths for l = 2, 3, 4, . . ., and for each l, we

calculate the total cost of the shortest paths

cost(Pl) =
l∑

i=1

cost(p∗i ). (4.41)

At each new iteration l + 1, the total cost cost(Pl+1) is compared to the cost at the

previous iteration cost(Pl). The optimal number of paths k∗ is obtained when the cost

of iteration k∗ + 1 is higher than the one of iteration k∗. The procedure is summarized

by the pseudo-code of Algorithm 1, page 169.

To compute such k-shortest paths, we use the disjoint paths algorithm [117], which

is an efficient iterative method based on signed paths. For the sake of completeness,

we give a brief description of this algorithm in Appendix A.

The equivalence of the LP and the k-shortest paths formulations follows from the

exact procedure we use to select an optimal k such that the objective function is mini-

mized. Since path costs are monotonically increasing

cost(p∗i+1) ≥ cost(p∗i ) ∀i , (4.42)

the optimal number of objects k∗ is only discovered at iteration k∗ + 1. Therefore, the

cost function is convex with respect to the variable l and the global minimum satisfies

the condition

cost(Pk∗−1) ≥ cost(Pk∗) ≤ cost(Pk∗+1) , (4.43)

which is set as a stopping criterion in the algorithm, as shown in Algorithm 1. Finally,

among the set of all consecutive values that may satisfy the above condition, we select

the smallest one to avoid erroneous splitting of paths.

The total time complexity of the algorithm is O(k(m + n · log n)), where k is the

number of objects appearing in a given time interval, m is the number of edges and

n is the number of nodes in the final transformed graph (see Appendix A for details).

This is much faster than general LP solvers, and a gain in speed of up to a factor 1,000

can be expected, as illustrated by the run time comparison in §4.4.3.

4.3.5 Further Complexity Reduction

As discussed above, the number of variables of our optimization problem is high.

When needed, two simple techniques can be used to significantly reduce it.
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Pruning the Graph Most of the probabilities of presence estimated by the detector

are virtually equal to zero. We can use this sparsity to reduce the number of nodes to

consider in the optimization, thus reducing the computational cost. In other words,

given loose upper bounds on the speed of the objects to track and on the maximum

number of false negatives the detector can produce successively, we can build a crite-

rion to remove nodes of the graph which are very unlikely to ever be occupied.

Formally, for every position k and every frame t, we check the maximum detection

probability within a given spatio-temporal neighborhood

max
‖j−k‖<τ1

t−τ2<u<t+τ2

ρu
j . (4.44)

If it is found to be below a threshold, the location is considered as unused because no

object could reach it with any reasonable level of probability. All flows to and from

it are then removed from the model. Applying this method allows us to reduce the

number of variables and constraints up to an order of magnitude.

Batch Processing Instead of directly optimizing a whole video sequence, one can

separate it into several batches of frames and optimize over them individually. To

enforce temporal consistency across batches, we add the last frame of the previously

optimized batch to the current one. We then force the flows out of every location of

this frame to sum up to the location’s value in the previous batch

∀k ∈ {1, . . . ,K},
∑

j∈N(k)

f−1
k,j = µk, (4.45)

where µk is the score at location k of the last frame of the previous batch and f−1
k,j is

a flow from location k of the last frame of the previous batch to location j in the first

frame of the current batch. This is implemented as an additional constraint in our

framework.

4.3.6 Algorithm Output

Estimating the f t
i,j indirectly provides the mt

i values and the feasible occupancy map

m
∗ of maximum posterior probability. This data can be used as a cleaned up version

of the original occupancy map, in which most false positives and negatives have been

filtered out.
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However, the f t
i,j themselves provide, in addition to the instantaneous occupancy,

estimates of the actual motions of objects. From these estimated flows of objects, one

can follow the motion back in time by moving along the edges whose f t
i,j are not 0,

and build the corresponding long trajectories.

4.3.7 Results

In this section, we present results of our tracking algorithm in two very different con-

texts. First, we apply it on the standard multi-camera setup to track pedestrians. The

frequent occlusions between people produce noisy detections, which our algorithm

nevertheless links very reliably. As a result, our approach was shown to compare fa-

vorably against other state-of-the-art algorithms in the PETS 2009 evaluation [34]. Sec-

ond, to highlight the fact that this new algorithm does not use an appearance model,

we track sets of similar-looking bouncing balls seen from above. Throughout this

section, we compare the Linear Programming-based tracker to the Dynamic Program-

ming framework described in §4.2.

4.3.7.1 Test Data

We evaluate the two tracking methods on some of our multi-camera pedestrian data

sets for which we have labelled a ground truth. Those include various environments:

a 6-person laboratory sequence, a crowded outdoor sequence of the terrace data set as

well as 4 sequences from the very difficult passageway data set, which corresponds to

a realistic video-surveillance scenario, with all associated shortcomings. Additionally,

we also perform our own detailed evaluation on one of the sequences from the PETS

20091 data set. Furthermore, we make a second series of tests on a very different

environment: tracking sets of similar-looking bouncing balls filmed from above by a

single camera. This is an environment were the Dynamic Programming’s color model

does not help. All these test scenarios are depicted by Figs. 2.9 and 2.10, and described

in details in §2.7 on page 29 and followings.

Note that the characteristics of the passageway sequence - bad lighting, uneven cam-

era coverage - greatly affect the quality of the probabilistic occupancy maps we use as

1Eleventh IEEE International Workshop on Performance Evaluation of Tracking and Surveillance,

Miami, June 2009, http://pets2009.net
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Figure 4.9: Original probabilistic occupancy maps for 7 consecutive frames of a passage-

way sequence (upper row) compared to the output of the Linear Programming algorithm

(lower row). The darker the color, the higher the probability of presence. Note that the

POM maps are extremely noisy, as evidenced by the fact that the number of probability

peaks and their locations vary wildly. By contrast, only one peak remains in the LP out-

put, and it moves slowly, which is consistent with the motion of a person over 1/4th of a

second.

input. As illustrated by Fig. 4.9, the detection maps can be very noisy, with some peo-

ple wrongly located or simply ignored for significant numbers of consecutive frames.

On these noisy sequences, if we were to detect people by simply thresholding the

maps in individual frames, the true positive rate would drop to 70% to 80%, thus

making the linking task challenging.

In the rest of this section, we refer to the Linear Programming framework as ‘LP’,

to the LP solved using the k-shortest paths algorithm of §4.3.4 as ‘KSP’, and to the

sequential Dynamic Programming as ‘DP’.

4.3.7.2 Probabilistic Occupancy Map

We used the Probabilistic Occupancy Map algorithm to create the detection data needed

as input by our trackers. POM specifically estimates the the marginal posterior prob-

ability ρt
k of presence of a target at a location, such that the resulting product law

closely approximates the joint posterior distribution, which justifies the assumption

of conditional independence in Eq. 4.31.

To process the monocular sequence of bouncing balls, we modified slightly the

original POM silhouette model to represent the balls as squares and work directly in

the top view, without having to project from oblique images into it. This adaptation is

explained in details in Chapter 3.2.5.
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4.3.7.3 Pedestrian Tracking Results

For pedestrians tracking, we define the graph of Fig. 4.7(a) as follows: Every interior

location of the ground plane at time t is linked to its 9 direct neighbors at time t+1, as

illustrated by Fig. 4.7(b), which means that a pedestrian can only move from one loca-

tion to its immediate neighbors between consecutive frames. Border locations through

which access to the area is possible are connected to the virtual locations υsource and

υsink. This arrangement is consistent with our chosen grid quantization at 25 fps, and

even suits the 7 fps PETS 2009 sequence, since the pedestrians are not moving fast.

Should we deal with even lower frame rate, or objects moving faster, we could easily

modify this model to extend the neighborhood size, as explained below in §4.3.7.6. De-

tection results for all evaluated sequences are shown on Fig. 4.10, and tracking results

on Fig. 4.11. Both DP and KSP trackers are represented on those figures.

Detection and tracking precision metrics (MODP and MOTP) roughly gauge the

quality of the bounding box alignment, in the cases of correct detection. Since both

DP and KSP link POM detections together, their precision score rarely exceeds the

one of POM itself, although it may happen that the interpolation performed by the

trackers corrects some misalignment of POM, such as in the laboratory sequence of

Fig. 4.10(a). However, in both detection and tracking precision, KSP almost always

achieves significantly higher scores than DP.

The detection accuracy metrics (MODA) evaluates the relative number of false pos-

itives and missed detections. Note that DP is often lower than POM, because it tends

to ignore trajectories for which some detections were missed, and thus produces more

missed detections. By contrast, KSP generally outperforms POM and almost always

DP. By accurately linking detections together, while discarding isolated alarms, KSP

efficiently filters the detections results, effectively decreasing both the false positives

and missed detections counts.

Finally, the tracking accuracy measure (MOTA) is very similar to the detection one

(MODA), except for the fact that it also takes identity switches into account. Not sur-

prisingly, KSP again scores higher than DP. Examples of tracking results are illustrated

on Figs. 4.13 to 4.16.

Please recall that KSP uses only POM occupancy maps, whereas DP also looks

at the original images and maintains a color model per tracked individual. In other
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words, KSP produces better results, even though it requires less information. This

is valuable, because, in some situations such as the ball tracking presented below,

appearance models cannot be depended upon.

4.3.7.4 Precision

To quantify the precision of the generated tracks, we proceed as described in §4.2.4.2.

A precise ground truth was generated for 100 frames extracted at random from a labo-

ratory sequence with 4 people. The distance on the ground plane between the ground

truth and the tracker detections are then computed and their cumulative distribution

is plotted by the bold curve in Fig. 4.12.

The result is very similar to the one obtained by the Dynamic Programming method

and displayed in Fig. 4.6. This is not surprising: when the detection true positive rate

is high, the detection precision is mainly determined by POM. The trackers are merely

linking detections together.

When input frames are randomly blanked, however, we notice that the Linear Pro-

gramming results are less affected than the ones from the Dynamic Programming.

This is consistent with the tests from §4.4, in which LP is shown to be more resistant

than DP to miss-detections.

4.3.7.5 Monocular Pedestrian Results

To further emphasize the strength of our approach, we generated the detection maps

using only one of the 7 available views of the PETS data set. Although POM still works

on monocular sequences, the ground plane localization is intrinsically less precise.

Without several views from different angles, there is an inherent depth ambiguity

when estimating a pedestrian’s position, especially when the background subtraction

blobs are noisy or incomplete. Also, in the monocular case, occlusions often result in

missed detections.

Under these challenging conditions, the Linear Programming algorithm shows

its superiority over the sequential Dynamic Programming, even more clearly than

in the multi-camera case. This is illustrated by Figs. 4.10 and 4.11. In this context,

DP’s greedy strategy often prefers leaving people outside the grid rather than trying

to explain the very noisy detections. By contrast, KSP’s joint optimization pays off
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and interpolates trajectories nicely. These monocular tracking results are depicted by

Fig. 4.17.

4.3.7.6 Ball Tracking Results

Given the difference in grid scale, the balls move much faster than pedestrians, easily

travelling more than one grid location between consecutive frames. In this context,

keeping the same neighborhood model as for pedestrian tracking would lead both

DP and KSP trackers to miss most balls. Therefore, to deal with this environment,

we had to extend the location neighborhood to include the next closest 49 locations,

which limits the maximum distance travelled between consecutive frames to 3 grid

locations.

Detection and tracking results for the two ball sequences are also illustrated on

Figures 4.10 and 4.11. Detecting ping-pong balls does not represent a particularly dif-

ficult task, and the POM results are generally excellent, with very few false positives

and false negatives. Because all balls have exactly the same appearance, DP’s color

model is useless and the comparison between the two algorithms is fairer. As evi-

denced by Figs. 4.10 and 4.11, KSP outperforms DP on all of the 4 metrics. Here again,

DP’s greedy strategy is a disadvantage. Because it might be less costly to leave some

detections unexplained, DP tends to leave out too many of them. Example results are

shown on Fig. 4.18.
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Figure 4.10: Detection precision (MODP) and accuracy (MODA) measures applied to the

results of the original detection (POM), as well as the sequential Dynamic Programming

(DP) and the proposed Linear Programming based (KSP) trackers on various sequences.
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Figure 4.11: Tracking precision (MOTP) and accuracy (MOTA) measures applied to the

results of the sequential Dynamic Programming (DP) and the proposed Linear Program-

ming based (KSP) trackers on various sequences.
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Figure 4.12: Cumulative distributions of the position estimate error on a 3,800-frame

sequence. See §4.2.4.2, page 104 for details.

camera #1 camera #2 camera #3 camera #4 top view

Figure 4.13: Multi-camera pedestrian tracking results on two video sequences of the ter-

race data set. Each of the first four columns shows a different camera view. The fifth

column displays the top view.
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camera #1 camera #2 camera #3 camera #4 top view

Figure 4.14: Multi-camera pedestrian tracking results on the basket video sequence. Each

of the first four columns shows a different camera view. The fifth column displays the top

view.

camera #1 camera #2 camera #3 camera #4 top view

Figure 4.15: Multi-camera pedestrian tracking results on the passageway data set. Each of

the first four columns shows a different camera view. The fifth column displays the top

view.
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camera #1 camera #3 camera #4 camera #5 top view

Figure 4.16: Multi-camera pedestrian tracking results on the PETS 2009 data set. Each of

the first four columns shows a different camera view. The fifth column displays the top

view.

Figure 4.17: Some monocular pedestrian tracking results, from the PETS 2009 sequence.

The first row displays 4 screen shots of the camera view used for tracking and the second

row shows the corresponding top view detections.

129



4. PEOPLE TRACKING

Figure 4.18: Multiple ball tracking results. Successive screenshots are separated by 3 time

frames.
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4.4 Discussion

In this section, we further evaluate and compare our Dynamic Programming and Lin-

ear Programming-based tracking methods from §4.2 and §4.3 respectively. For read-

ability, we denote as DP the Dynamic approach, LP the Linear Programming one and

KSP the Linear Programming solved with the k-shortest paths algorithm. Note that LP

and KSP always produce exactly the same results. The difference is that KSP obtains

them much faster.

4.4.1 PETS 2009

The results of our two tracking approaches on the PETS 2009 S2/L1 multi-camera

tracking sequence have been submitted for evaluation to the Winter-PETS 2009 work-

shop. The results of this comparative evaluation are presented in [34] and illustrated

by Fig. 4.19. They show that, for the tracking task, our Linear Programming based ap-

proach outperforms the other submitted methods. Nevertheless, our Dynamic Program-

ming-based approach is also shown to perform well.

4.4.2 Detailed Evaluation

Here, we run a series of tests to quantify the robustness of the two tracking algorithms

developed in this chapter with respect to various elements.

4.4.2.1 False Detections

First, to test how the trackers react to false detections, we ran the following experi-

ment: We selected a 1500-frame excerpt from a laboratory sequence, in which 4 people

are successively entering the room. We specifically chose a passage in which the POM

detection accuracy is high - MODA score of more than 0.92 - which means that the

number of false positives and negatives is very low. We then artificially added false

detections into the POM score. The wrong detections were added uniformly over the

whole grid, and at every location and time frame independently, thus representing

white noise. The resulting occupancy maps are depicted by Fig. 4.20. The correct de-

tections were not affected by this process. Both tracking algorithms were applied to

the corrupted POM occupancy maps, for various amounts of false positives.
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Figure 4.19: Official Winter-PETS 2009 [34] results comparison chart. This graph shows

the performance of the different tracking methods submitted to the workshop on the

S2/L1 sequence. The results are evaluated with the CLEAR and VACE [63] metrics, briefly

described in Chapter 2.6. In the chart, POM is referred to as ‘Berclaz1’ to ‘Berclaz3’. For

those three labels, slightly different parameters were used. The Dynamic Programming

algorithm is referred to as ‘Berclazdp’ and the Linear Programming approach as ‘Bercla-

zlp’. Figure courtesy of James Ferryman and Ali Shahrokni from the Computational Vi-

sion Group, University of Reading.
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(a) original (b) 10% (c) 20% (d) 30%

Figure 4.20: Illustration of the amount of false detections added to the original POM oc-

cupancy maps to generate Fig. 4.21.

The result of the analysis is displayed on the left graph of Fig. 4.21(a), which plots

the MODA score for increasing false detection rates. Both algorithms have a stable

performance up to a certain noise value, beyond which the accuracy quickly drops.

DP is more robust than LP and is not affected by up to 22% of false detections, whereas

LP accuracy starts decreasing around 5% already.

The graph of Fig. 4.21(b) gives more insight on the behavior of the trackers when

fed with false detections. For both methods, the true positives are not affected by the

noise. The false positives, however increase suddenly. The reason is quite intuitive:

beyond a density of false positives, the tracking algorithms are able to link them into

(wrong) trajectories. The higher the density, the larger the number of false trajectories.

Below this threshold, false detections are simply discarded. Here, LP’s lack of a motion

model is a disadvantage over DP. Conversely, DP’s tendency to leave out incomplete

trajectories makes it more robust to this kind of noise.

4.4.2.2 Missed Detections

In a second test, we investigate the effect of missed detections on the general perfor-

mance of the trackers. The same clip of the laboratory sequence as for the previous

test was used. This time, however, we post-processed POM occupancy maps by ran-

domly canceling detections. Again, this is done independently at every frame and

every detection.

Figure 4.22(a) displays the MODA detection accuracy score for the corrupted POM

maps, as well as for the DP and LP tracker results. Not surprisingly, the probability

maps accuracy is linearly decreasing with the amount of cancelled detections. As for

133



4. PEOPLE TRACKING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

M
O

D
A

amount of additive gaussian noise (in %)

 DP 
 LP 

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

tr
ue

 p
os

iti
ve

 r
at

e

fa
ls

e 
po

si
tiv

e 
ra

te

amount of additive gaussian noise (in %)

 DP tpr 
 DP fpr 
 LP tpr 
 LP fpr 

(b)

Figure 4.21: Influence of false detections on tracking algorithms. A 1,500-frame sequence

from the laboratory data set with up to 4 people was processed by POM, yielding close to

perfect detections (MODA higher than 0.92). False detections were then added randomly

to the POM results, following a uniform independent distribution. On the left graph (a),

the detection accuracy of both the DP and LP methods applied to the noisy POM data is

plotted for various amounts of noise. The right graph (b) plots the true and false positive

rates for the same input.

the previous test about false positives, the two trackers react very differently. LP’s

performance is almost unaffected for as high a rate as 70% dropped detections. By

contrast, DP’s score already starts decreasing for 5% of missing detections and com-

pletely collapses at about 15%.

The graph of Fig. 4.22(b) shows that the treatment applied to POM detection maps

only affects the true positive rate, and does not concern the false positive one. Both

detectors react the same way to missed detections: beyond a threshold, the remaining

detections are no longer linked together and remain unexplained. LP shows neverthe-

less a much higher robustness to missed detections than DP does. This is consistent

with our observation on real data: on Figs. 4.10 and 4.11, one can generally notice

that the lower POM occupancy maps quality, the higher the gap between DP and LP

performance. Furthermore, it confirms the discussion of DP limitations with regard to

entrances and exits in §4.2.5.
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Figure 4.22: Influence of missed detections on the tracking algorithms. A 1,500-frame

sequence from the laboratory data set with up to 4 people was processed by POM, yielding

close to perfect detections (MODA higher than 0.92). Detections were then suppressed

randomly. The right graph (a) plots the detection accuracy of the noisy POM data as well

as DP and LP applied to it, for various amounts of noise. The right graph (b) plots the

true and false positive rates for the same noise values.

4.4.2.3 Image Quality

Next, we apply the two trackers on the occupancy maps obtained from the images

corrupted with noise, described in Chapter 3.2.6. The first set of noisy images was

generated by adding Gaussian flip noise to background subtraction images and the

second by altering the foreground blobs with Gaussian noise. The effects are illus-

trated by Figs. 3.18 and 3.20 on page 60.

Results for both tracking methods are shown by the graphs of Fig. 4.23 for the flip

noise and Fig. 4.24 for the noise on foreground blobs. On both tests, the two tracking

methods perform almost identically. In the two cases, the drop of performance is

mainly triggered by the quick fall of detection true positives that can be observed in

Figs. 3.19 and 3.22 on page 61.

4.4.2.4 Number of Cameras

The final robustness test concerns the number of cameras used for the occupancy map

generation. Two 4-camera sequences (laboratory and terrace) as well as a 6-camera one

(PETS 09) were processed by POM, with decreasing number of cameras. The detection

evaluation is presented in Chapter 3.2.6.
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Figure 4.23: DP and LP trackers were applied to POM results on the images corrupted

by background noise from Figs. 3.18 and 3.20. Not surprisingly both trackers are equally

affected.

Here we apply the two trackers introduced in this chapter to the detection maps

obtained with various numbers of cameras. The results evaluated with the MODA and

MOTA metrics are shown on Figs. 4.25 and 4.26 respectively. Note that the two metrics

yield almost similar results, indicating that identity switches are not a concern here.

The result shows that the Linear Programming approach is more robust than DP when

processing sequences filmed by a small number of cameras. For the laboratory and

terrace sequences, both methods yield almost the same performance with 4 cameras,

but the gap widens rapidly when the number of cameras decreases.

Note that the order at which cameras were removed might slightly influence the

result, as some camera views sometimes cover the scene better, or are more precisely

calibrated than others.

4.4.3 Run time

Finally, we evaluate the speed of our tracking algorithms. Solving the Linear Program

with standard LP libraries is slow, as shown in the graph of Fig. 4.27 under the label

LP, for which we used a standard LP package [79]. Using the complexity reduction

method of §4.3.5 helps reduce the computation time by a factor of 10, as shown by

the curve labeled LP w/ compl. red.. Here, we pruned the graph using a radius of

τ1 = τ2 = 3 (see Eq. 4.44).

By contrast, the solver based on the k-shortest paths algorithm is much faster. As
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Figure 4.24: DP and LP trackers were applied to POM results on the images whose fore-

ground blobs were corrupted by noise (see Figs. 3.21 and 3.23). The corresponding detec-

tion results for both trackers are plotted along with those from POM.

illustrated on Fig. 4.27 by the curve KSP, there is a considerable speed gain of a fac-

tor 100 to 1,000, compared to the generic LP solver [79]. And the gain is still very

significant even when complexity reduction methods are applied to the standard LP

solver.

Compared to the DP algorithm, KSP is about 10 times faster, as shown on Fig. 4.27.

Note that DP suffers from the fact that it has to load videos, in order to maintain its

appearance models. The batches overlap is an additional overhead that penalizes DP.

Interestingly, when dealing with 25 fps videos, KSP can in average process a batch of

frames in less than half the time it takes to record it. This means that, for a frame rate

of 25 fps or less, our tracker can easily run in real time.

All the above experiments have been performed on a recent Linux PC, equipped

with a 2.5 GHz Intel processor and 8 GB of memory. Tracking was applied to a part

of the laboratory sequence, in which 5 to 7 people are present. For the k-shortest path,

no particular optimization was performed, nor did we use any of the complexity re-

duction methods of §4.3.5. The results of DP and KSP on Fig. 4.27 are the average of

20 runs, plotted with 95% confidence interval. This is barely noticeable because the

values are very peaked around the average.
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Figure 4.25: Influence of the number of cameras on DP and LP’s performance. Three

test sequences have been processed by the POM detector using a decreasing number of

camera views (see Fig. 3.25). DP and LP tracking algorithm have been in turn applied to

this detection data.
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Figure 4.26: Influence of the number of cameras on DP and LP’s performance. Three

test sequences have been processed by the POM detector using a decreasing number of

camera views (see Fig. 3.25). DP and LP tracking algorithm have been in turn applied to

this detection data.
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Figure 4.27: Runtime comparison between LP solved with a generic package (LP), LP

with a pruned graph solved by a generic package (LP w/ comp. red.), DP and LP solved

with the k-shortest paths algorithm (KSP). For ’DP’ and ’KSP’, the respective algorithms

have been run 20 times on every tested batch, and the average is plotted in the above

graph, along with 95% confidence intervals (barely noticeable due to very peaked values

around the average). Note that the y axis represents run time and is plotted in log scale.
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Chapter 5

Behavior analysis

In recent years, there has been a rapid rise of the number of CCTV cameras installed in

public places. In the city of London alone, where the video-surveillance phenomenon

is particularly strong, the number of working cameras has been estimated to more than

500,000 already by 2006 [84; 93]. And this amount is certainly following a constant

growth.

Such a large number of cameras is generating a tremendous amount of data, whose

processing remains an open problem. Therefore, most of the cameras are currently be-

ing used as passive prevention devices: Whether active or not, visible cameras are

expected to discourage common misbehaving such as theft or violence, at least within

the limits of their field of view. Furthermore, those cameras can reveal very useful a

posteriori, for example by providing a recorded sequence for a criminal investigation.

However, the real time monitoring of the video data produced by the CCTV cameras

is such a complex task that it is currently only feasible by a human operator. This solu-

tion is far from optimal, because people can monitor efficiently only a small number of

video feeds simultaneously. Moreover the human attention span is limited over time

and it is difficult and exhausting for a person to focus for an extended period of time

on several screens.

For those reasons, automated analysis of surveillance data is receiving growing

attention recently. It is clear that the current state of research is not mature enough

to produce a complete video understanding solution, but a technology able to pre-

filter the video by drawing the attention of an operator to the potentially eventful

environments would already prove extremely useful. This may permit to relieve a
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human operator from the burden of low-level monitoring, and let him concentrate on

the more critical task of decision making, which, whatever the state of the technology,

we may not be ready to entrust to a computer.

The complete pedestrian detection and tracking framework from multiple views

that we have developed in Chapters 3 and 4 lends itself very well to the behavior

analysis task. The precise ground plane localization that it can provide represents the

perfect type of input data for a system whose task is to automatically learn the most

common motion patterns followed in a given environment, and potentially recognize

the trajectories departing too much from the standard model.

In this chapter we therefore propose an approach to automatically learning a num-

ber of so-called behavioral maps, using as only input the detection maps generated by

POM. Those behavioral maps represent a model for the main types of movement ob-

served in the monitored area. We show that this model can be learnt in an unsuper-

vised manner, and is powerful enough to automatically detect abnormal trajectories.

Furthermore, we demonstrate that the proposed behavioral maps integrate very well

with the Dynamic Programming-base tracking approach of Chapter 4.2, and can be

used to effectively replace the simple isotropic motion model by a more sophisticated

one, yielding better tracking results.

5.1 State-of-the-Art

With the advent of video surveillance and real-time people tracking algorithms, we

have recently seen an increasing amount of research focused on acquiring spatio-

temporal patterns by passive observation of video sequences [9; 53; 60; 80; 113], as well

as sociology-oriented studies about general pedestrian dynamics [50; 51; 106; 108].

Various techniques have been proposed for clustering pedestrian trajectories and

build a behavior model of an observed environment. The corresponding approaches

usually rely on a people tracker to provide with the basic trajectory observation, and

then group them into different possible motion patterns. For example, [101] performs

on-line clustering of trajectories and represents them with a hierarchical tree structure.

[90] first reduces the trajectories dimensionality using discrete Fourier transform and

clusters them with a Self Organizing Map algorithm. Similarly, [3] relies on PCA for

dimensionality reduction, followed by trajectories clustering using fuzzy mean-shift.
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In [21], trajectories are represented as a sequence of directions and modeled as a Von

Mises distribution. The authors employ a K-medoids clustering technique to build

a mixture of Von Mises distributions. Finally, [98] groups similar trajectories using a

hierarchical clustering algorithm. While efficient, all these approaches expect correct

trajectories to be readily available, which may not be straightforward to obtain. By

contrast, the method presented in this chapter just needs simple time-independent

detections as input.

Our approach shares similarities with [60], since we try to learn trajectory distribu-

tions from data as they do. However, while they model the trajectories in the camera

view, and handle the temporal consistency using an artificial neural network with a

short memory, we propose a more straightforward modeling under a classical Marko-

vian assumption with an additional behavioral hidden state. The metric homogeneity

of the top-view allows for simpler priors, and the resulting algorithm can be inte-

grated seamlessly in a standard HMM-based tracking system, such as our Dynamic

Programming-based tracker.

In a relatively close spirit, [113] uses an adaptive background subtraction algo-

rithm to collect patterns of motion in the camera view. With the help of vector quan-

tization, they build a codebook of representations out of this data, which they use to

detect unusual events. [139] also relies on initial background subtraction, and build

paths by linking foreground blobs. At a later stage, the paths are clustered and inter-

polated using splines. [80] proceeds in a similar fashion to gather statistics from an

online surveillance system. Using this data, they infer higher level semantics, such as

the locations of entrance points, stopping areas, etc.

More related to our approach is the work of [9], which applies an E-M algorithm

to cluster trajectories recorded with laser-range finders. From this data, they derive

an HMM to predict future position of the people. The use of laser-range scanners and

their trajectory cluster model makes this approach more adapted to an indoor envi-

ronment where people have a relatively low freedom of movement, whereas our pro-

posed behavioral maps are more generic and learned from standard video sequences

shot with off-the-shelf cameras. Similarly, [2] characterizes crowd behavior by observ-

ing the crowd optical flow and uses unsupervised feature extraction to encode nor-

mal crowd behavior. PCA is applied to extract motion models, which are combined

through an HMM.
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A quite different approach to behavior modeling has been chosen by [4; 5]. In-

stead of learning a scene-wide behavior model from image data, they focus on the in-

dividual level and hand-design a pedestrian behavior model based on Discrete Choice

Models, whose parameters are estimated from real tracking results. The model is then

introduced as prior knowledge inside a people tracking framework. As opposed to

our method, this approach focuses on the generic individual pedestrian behavior, and

does not adapt to the specificities of a particular environment.

Finally, our approach to handling human behaviors can be seen as a simplified

version of Artificial Intelligence techniques, such as Plan Recognition [19] where the

strategies followed by the agents are encoded by the behavioral maps. This simplifi-

cation is what lets us learn our models from real data without having to hand-design

them, which is a major step-forward with respect to traditional Artificial Intelligence

problems.

5.2 Atypical Motion Detection using Behavioral Maps

In this section, we introduce models that can both describe how people move on a

location of interest’s ground plane, such as a cafeteria, a corridor, or a train station,

and be learned from image data. To validate these models, we use the POM people

detector to learn them and our Dynamic Programming-based tracker to demonstrate

that they can help disambiguate difficult situations. We also show that, far from forc-

ing everyone to follow a scripted behavior, the resulting models can be used to detect

abnormal behaviors, which are defined as those that do not conform to our expecta-

tions. This is a crucial step in many surveillance applications whose main task is to

raise an alarm when people are having dangerous or prohibited behavior.

We represent specific behaviors by a set of behavioral maps that encode, for each

ground plane location, the probability of moving in a particular direction. We then

associate to people being tracked a probability of acting according to an individual

map and to switch from one to the other based on their location. The maps and model

parameters are learned by Expectation-Maximization in a completely unsupervised

fashion. At run-time, they are used for robust and near real-time recovery of trajec-

tories in ambiguous situations. Also, the same maps are used for efficient detection

of abnormal behavior by computing the probability of retrieved trajectories under the
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5.2 Atypical Motion Detection using Behavioral Maps

Figure 5.1: The approach presented in this section uses the output of the POM detector to

learn several behavioral maps encoding the most likely types of movements observed in an

environment.

estimated model. We show that the models we propose are both sophisticated enough

to capture higher-level behaviors that basic Markovian models cannot, and simple

enough to be learned automatically from training data.

In the remainder of this section, we present the core algorithm of our approach,

first by describing the formal underlying motion model, and second by explaining

both the E-M training procedure and the method through which the adequate training

data was collected.

5.2.1 Motion Model

As briefly described above, our motion model relies on the notion of behavioral map,

a finite hidden state associated to every individual present in the scene. The rational

behind that modeling is that an individual trajectory can be described with a deter-

ministic large scale trajectory both in space and time (i.e. “he is going from door A to

door B”, “he is walking towards the coffee machine”) combined with additional noise.

The noise itself, while limited in scale, is highly structured: motion can be very deter-

ministic in a part of a building where people do not collide, and become more random

in crowded area. Hence this randomness is both strongly anisotropic – people in a

certain map go in a certain direction – and strongly non-stationary – depending on

their location in the area of interest the fluctuations differ. With an adequate class of

models for individual maps, combining several of them allows for encoding such a
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structure.

Hence, re-using the formalism of Chapter 2, we associate to each individual a

random process (Lt, Mt) indexed by the time t and taking its values in {1, . . . ,K} ×

{1, . . . ,M}where K ≃ 1000 is the number of locations in the finite discretization of the

area of interest and M is the total number of behavioral maps we consider, typically

less than 5. We completely define this process by first making a standard Markovian

assumption, and then choosing models for both P (L0, M0) and

P (Lt+1, Mt+1 |Lt, Mt) . (5.1)

Note that the very idea of maps strongly changes the practical effect of the Marko-

vian assumption. For instance, by combining two maps that encode motions in op-

posite directions and a very small probability of switching from one map to the other,

the resulting motion model is a mixture of two flows of individuals, each strongly

deterministic. By making the probabilities of transition depend on the location, we

can encode behaviors such as people changing their destination and doing a U-turn

only at certain locations. Such a property can be very useful to avoid confusion of the

trajectories of two individuals walking in opposite directions.

To define precisely (5.1), we first make an assumption of conditional independence

between the map and the location at time t + 1 given the same at time t

P (Lt+1, Mt+1 |Lt, Mt) = P (Lt+1 |Lt, Mt)P (Mt+1 |Lt, Mt) . (5.2)

Due to the 25 cm spatial resolution of our discretization, we have to consider a

rather coarse time discretization to be able to model motion accurately. If we were

using directly the frame-rate of 25 time steps per second, the location at time t + 1

would be almost a Dirac mass on the location at the previous time step. Hence, we

use a time discretization of 0.5 s, which has the drawback of increasing the size of the

neighborhood to consider for P (Lt+1 |Lt, Mt). In practice an individual can move up

to 4 or 5 spatial locations away in one time step, which leads to a neighborhood of

more than 50 locations.

The issue to face when choosing these probability models is the lack of training

data. It would be impossible for instance to model these distributions exhaustively as

histograms, since the total number of bins for K ≃ 1, 000 and M = 2, if we consider
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transitions only to the 50 spatial neighbor locations and all possible maps, would be

≃ 1, 000 ∗ 2 ∗ 50 ∗ 10 = 106, hence requiring that order of number of observations. To

cope with that difficulty, we interpolate these mappings with a Gaussian kernel from

a limited number Q of control points, hence making a strong assumption of spatial

regularity.

Finally, our motion model is totally parameterized by fixing the locations l1, . . . , lQ ∈

{1, . . . ,K}Q of control points in the area of interest (where Q is a few tens), and for ev-

ery point lq and every map m by defining a distribution µq,m over the maps and a

distribution fq,m over the locations.

From these distributions, for every map m and every location l, we interpolate the

distributions at l from the distributions at the control points with a Gaussian kernel κ:

P (Lt+1 = l′, Mt+1 = m′ |Lt = l,Mt = m)

= P (Lt+1 = l′ |Lt = l,Mt = m)P (Mt+1 = m′ |Lt = l,Mt = m) (5.3)

=

{∑

q κ(l, lq) fq,m(l − l′)
∑

r κ(l, lr)

}{∑

q κ(l, lq) µq,m(m′)
∑

r κ(l, lr)

}

. (5.4)

Remains the precise definition of the motion distribution itself fq,m(δ), for which

we still have to face the scarcity of training data compared to the size of the neigh-

borhood. We decompose the motion δ into a direction and a distance and make an

assumption of independence between those two components:

fq,m(δ) = P (Lt+1 − Lt = δ |Lt = lq, Mt = m) (5.5)

= gq,m(‖δ‖) hq,m(θ(δ)) , (5.6)

where ‖.‖ denotes the standard Euclidean norm, g is a Gaussian density, θ is the an-

gle quantized in eight values and h is a look-up table, so that h(θ(.)) is an eight-bin

histogram.

Finally, the complete parameterization of our model requires, for every control

point and every map, M transition probabilities, the two parameters of g and the eight

parameters of h, for a total of Q ∗M ∗ (M + 2 + 8) parameters.
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5.2.2 Training

We present in this part the training procedure we use to estimate the parameters of

the model described in the previous section. We denote by α the parameter vector of

our model (of dimension Q ∗M ∗ (M + 2 + 8)) and index all probabilities with it.

Provided with images from the video cameras, the ultimate goal would be to opti-

mize the probability of the said sequence of images under a joint model of the image

and the hidden trajectories, which we can factorize into the product of an appearance

model (i.e. a posterior on the images, given the locations of individuals) with the mo-

tion model we are modeling here. However, such an optimization is intractable. In-

stead, we use an ad-hoc procedure to extract trajectory fragments from the probabilistic

occupancy maps of the POM detector, and to optimize the motion model parameters

to maximize the probability of those fragments.

5.2.2.1 Generating the Fragments.

To produce the list of trajectory fragments we will use for the training of the motion

model, we first apply the POM algorithm to every frame independently. We then

threshold the resulting probabilities with a fixed threshold to produce finally at every

time step t a small number Nt of locations (lt1, . . . , l
t
Nt

) ∈ {1, . . . ,K}Nt likely to be truly

occupied.

To build the fragments of trajectories we process pairs of consecutive frames and

pick the location pairing Ξ ⊂ {1, . . . , Nt}×{1, . . . , Nt+1}minimizing the total distance

between paired locations
∑

ξ∈Ξ ||l
t
ξ1
− lt+1

ξ2
||. If Nt > Nt+1, some points occupied at

time t cannot be paired with a point at time t + 1, which corresponds to the end of a

trajectory fragment. Reciprocally, if Nt < Nt+1, some points occupied at t + 1 are not

connected to any currently considered fragment, and a new fragment is started.

We end up with a family of U fragments of trajectories

fu ∈ {1, . . . ,K}Su , u = 1, . . . , U . (5.7)

148



5.3 Results

5.2.2.2 E-M Learning.

The overall strategy is an E-M procedure which maximizes alternatively the posterior

distribution on maps of every point of every fragment fu, and the parameters of our

motion distribution.

Specifically, let f
k
u denote the k-th point of fragment u in the list of fragments we

actually observed. Let F
k
u and Mk

u denote respectively the location and the hidden

map of the individual of fragment u at step k under our model.

Then, during the E step, we re-compute the posterior distribution of those vari-

ables under our model. For every first point of a fragment, we set it to the prior on

maps. For every other point we have:

νk
u(m)

= Pα(Mk
u =m |F1

u = f
1
u , . . . ,Fk

u = f
k
u ) (5.8)

=
∑

m′

Pα(Mk
u =m |Fk−1

u = f
k−1
u ,Fk

u = f
k
u , Mk−1

u =m′) νk−1
u (m′) (5.9)

∝
∑

m′

Pα(Fk
u = f

k
u |F

k−1
u = f

k−1
u , Mk−1

u =m′)
︸ ︷︷ ︸

motion model of map m′

· P (Mk
u =m |Fk−1

u = f
k−1
u , Mk−1

u =m′)
︸ ︷︷ ︸

transition probability from map m′ to m, at location f
k−1
u

νk−1
u (m′) (5.10)

=
∑

m′

{∑

q κ(fk−1
u , lq) fq,m′(fk−1

u − f
k
u )

∑

r κ(fk−1
u , lr)

}{∑

q κ(fk−1
u , lq) µq,m′(m)

∑

r κ(fk−1
u , lr)

}

νk−1
u (m′) .

(5.11)

From this estimate, during the M step, we recompute the parameters of µq,m and

fq,m for every control point lq and every map m in a closed-form manner, since there

are only histograms and Gaussian densities. Every sample f
k
u is weighted with the

product of the posterior on the maps and the distance kernel weight νk
u(m) κ(fk

u , lq).

5.3 Results

In this section, we describe the behavioral models we learned first from synthetic data,

and then from multi-camera pedestrian video sequences. We demonstrate how they

can be used both to improve the reconstruction of typical trajectories and to detect

atypical ones.
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5. BEHAVIOR ANALYSIS

5.3.1 Synthetic Data

The first step taken to validate the correct functioning of our algorithm was to test it

against synthetic data. We generated synthetic probabilistic occupancy maps of peo-

ple moving along predefined paths, an example of which is shown in Fig. 5.2. New

people were created at the beginning of paths according to a Poisson distribution.

Their speed followed a Gaussian distribution and their direction of movement was

randomized along the paths. When two or more paths were connected, we defined

transition probabilities between them, and people were switching paths accordingly.

Figure 5.2: A scenario used to generate synthetic occupancy maps for testing. People

move along the edges between entrance and exit points.

The results on the synthetic data have been fully satisfying, as the retrieved behav-

ioral maps correctly reflected the different paths we created. As an example, Fig. 5.3

illustrates the 4 motion maps obtained when applying our algorithm to the scenario

of Fig. 5.2, while Fig. 5.4 depicts the probabilities of transition between maps. A

careful observation of the motion maps reveals that they are sufficient to encode all

possible movements allowed by the initial scenario. Furthermore, when performing

cross-validation, we verify that 4 represents indeed the ideal number of maps for this

scenario, as illustrated by the graph of Fig. 5.5.
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Figure 5.3: The four motion maps retrieved when applying our algorithm to synthetic

occupancy data modeled according to the scenario of Fig. 5.2. We can see that those maps

are sufficient to encapsulate all the possible movements from the initial scenario.

5.3.2 Training Sequences

To test our algorithm, we used the multi-camera behavior data set described in Chap-

ter 2.7, which comprises two different sequences. The first video sequence, which

lasts about 15 minutes, is used for training purposes. It features four people walking

in front of the cameras, following the predefined patterns of Fig. 5.6 that involve going

from one entrance point to another.

In a second 8-minute-long test sequence, the same 4 people follow the patterns of

Fig. 5.6 for about 50 percent of the time and take randomly chosen trajectories for the

rest. These random movements can include standing still for a while, going in and

out of the area through non standard entrance points, taking one of the predefined

trajectory backwards, etc. Screen shots of the test sequence with anomaly detection

results are displayed on Fig. 5.12.

5.3.3 Behavior Model

As described in § 5.2.2, we first apply the POM people detector on the video streams,

which yields ground plane detections that are used by our E-M framework to con-

struct the behavior model.

The ground plane of the training sequence is discretized into a regular grid of

30×45 locations. Probability distribution maps are built using one control point every

3 locations. The behavioral model of the 15 minute long training sequence is generated

using 30 E-M iterations, which takes less than 10 minutes on a 3 GHz PC using no

particular optimization.
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1 2 3 4

1

2

3

4

Figure 5.4: Transition probabilities between the movement maps of Fig. 5.3. Dark color

indicates a high probability.

We use cross-validation to choose the number of maps that gives the most signif-

icant model. We apply our learning algorithm several times on 80% of the training

sequence with each time a different number of maps, as shown on Fig. 5.7. The rest

of the sequence is used to compute the likelihood of the trajectories under our model.

In the end, we choose the smallest number of maps, which accurately captures the

patterns of motion. On our testing sequence, it turns out that two maps are already

sufficient. Figure 5.8 displays the behavioral maps that are learned in the one-map

(left) and two-map (right) cases. By comparing them to Fig. 5.6, one can see that the

two-map case is able to model all trajectories of the scenario.

Figure 5.9 shows the probabilities of staying in the same behavioral map over the

next half second. These probabilities are relatively high, but not uniform over the

whole ground plan, which indicates that people are more likely to switch between

maps at some locations.
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Figure 5.5: Cross-validation on the synthetic example of Fig. 5.2. We see that the ideal

number of behavioral maps for this scenario is 4, which corresponds to the results

of Fig. 5.3.

5.3.4 Tracking Results

Here, we discuss the benefits of using behavioral maps learned with our algorithm

to improve the performance of a people tracker. To this purpose, we replace the uni-

form isotropic motion model of the Dynamic Programming-based people tracker of

Chapter 4.2 with our learned behavioral maps.

The behavioral maps had to be adapted to fit into the Dynamic Programming

framework. Specifically, from every behavioral map, we generated a motion map that

stores, for each position of the ground plane, the probability of moving into one of the

adjacent positions at the next time frame.

The main difference with the original Dynamic Programming tracker is that a hid-

den state in the HMM framework is now characterized by both a map and a position.

Also the transition between HMM states is now given by both a transition probability

between maps and between locations. The rest of the tracking framework, however,

has been untouched.

To quantify the benefits of the behavioral maps, we started by running the origi-

nal tracker on our training sequence. We then ran the modified version on the same

sequence, using in turn a one-map behavior model and a two-map one.

A ground truth used to evaluate the results was derived by manually marking
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Figure 5.6: Top view of the scenario used for algorithm training. People are going from

one entrance point to an exit point using one of the available trajectories.
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Figure 5.7: Cross-validation: to find the ideal number of maps to model a given scenario,

we run our learning algorithm with different number of maps on 80% of the training

sequence. We then use the other 20% to compute the likelihood of the data given our

model. In our training sequence, that is shown here, 2 maps are enough to model the

situation correctly.
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(a) One map (b) Two maps

Figure 5.8: Motion maps in the top view resulting from the learning procedure, with one

map (a) or two maps (b). The difficulty of modeling a mixture of trajectories under a strict

Markovian assumption without an hidden state appears clearly at the center-right and

lower-left of (a): Since the map has to account for motions in two directions, the resulting

average motion is null, while in the two-map case on (b) two flows appear clearly.

Figure 5.9: Probability to remain in the map 0 (left) and in the map 1 (right) in the two-

map case. Dark color indicates a high probability.
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Table 5.1: The false negative value corresponds to the number of trajectories out of a total

of 75, that were either not found or were not consistent with the ground truth. The false

positive value stands for the average number of false detections per time frame.

R = .5m R = 1m R = 2m

FN FP FN FP FN FP

Original DP 17 0.18 14 0.15 13 0.15

Behavior, one map 15 0.22 13 0.20 12 0.19

Behavior, two maps 10 0.21 10 0.18 10 0.17

the position and identity of each person present on the ground plane once every 10

frames. Scores for both algorithms were then computed by comparing their results to

the ground truth. For this purpose, we define a trajectory as being the path taken by

a person from the time it enters the area until it exits it. For every trajectory of the

ground truth, we search if there is a matching set of detections from the algorithm re-

sults. A true positive is declared when, for every position of a ground truth trajectory,

a detection is found within a given distance R, and all detections correspond to the

same identity. If there is a change in identity, it obviously means that there has been a

confusion between the identities of two people, which cannot be considered as a true

positive. The false positive value is the average number of false detections per time

frame. Results from Table 5.1 show both false positive and negative values for the

original and the modified algorithm using a one-map and a two-map behavior model.

Results are shown for 3 different values of the distance R.

It appears from Table 5.1 that for about the same number of false positives, using

1, respectively 2, behavioral maps helps reducing significantly the number of false

negatives. Moreover, one can notice that the paths are found with greater precision,

when using two behavioral maps, since the number of false negatives is no longer

influenced by the distance R.

The behavioral maps were only integrated with the Dynamic Programming-based

tracker, for which an obvious fit exists. In the scope of this work, we did not attempt

to adapt our Linear Programming-based tracker to make it compatible with a motion

model derived from behavioral maps. This is however a potential extension and an
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interesting direction for future work.

5.3.5 Anomaly Detection Results

Detecting unlikely motions is another possible usage of the behavioral maps com-

puted by our algorithm. We show the efficiency of this approach by applying it for

classifying trajectories from the test sequence into “normal” or “unexpected” category.

We start by creating a ground truth for the test sequence. We manually label each

trajectory depending on whether it follows the scenario of Fig. 5.6 or not.

For every trajectory, a likelihood score is computed using the behavioral maps. For

this we proceed using an HMM framework, in which our hidden state is the behav-

ioral map the person is following. The transition between states is given by the transi-

tion probabilities between maps and the observation probability is the probability of

a move, given the map the person is following. Having defined all this, the likelihood

of a trajectory is simply computed using the classical forward-backward algorithm.

The score is then compared to a threshold to classify the trajectory as “normal” or

“unexpected”.

We classified the 47 trajectories automatically retrieved from the test sequence us-

ing a one-map and a two-map behavior models. The results are displayed on Table. 5.2

and show the improvement when using several maps: the behavior model with only

one map produces 7 (respectively 29) false positives if missing only one (respectively

zero) abnormal trajectories, when the two-map models reduces this figure to 4 (respec-

tively 9).

Instead of computing a score for a complete trajectory, one can also generate a

score for a small part of it only, using the very same technique. This way of doing

is more appropriate for monitoring trajectories in real time, for instance embedded

in a tracking algorithm. This leads to a finer analysis of a trajectory, where only the

unexpected parts of it are marked as such.

This procedure can be used directly to “tag” individuals on short time interval

in the test video sequence. Figure 5.11 shows a selected set of atypical behavior, ac-

cording to our two-map model. The unlikely parts of the trajectories are drawn using

dotted-style lines. This should be compared to the two right maps of Fig. 5.8. On

the other hand, Fig. 5.10 shows some trajectories that follow the predefined scenario.
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Table 5.2: Error rate for atypical trajectory detection. The total number of retrieved tra-

jectories is 47, among which 16 are abnormal. With either one or two maps, the number

of false positives (i.e. trajectories flagged as abnormal while they are not) drops to 1 for

a number of false-negatives (i.e. non flagged abnormal trajectories) greater than 2. How-

ever, for very conservative thresholds (less than 2 false-negatives) the two-map model the

advantage of using two maps appears clearly.

FN
FP

One map Two maps

0 29 9

1 7 4

2 1 1

Finally, Fig. 5.12 illustrates the same anomaly detection results, projected on camera

views.
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Figure 5.10: Three example of retrieved “normal” trajectories, according to the scenario

illustrated on Fig. 5.6.

(a) (b) (c)

Figure 5.11: Three examples of retrieved atypical trajectories, according to the scenario

illustrated on Fig. 5.6. Unlikely parts are displayed with dotted-style lines. a) The person

is taking an unusual path; b) The person is stopping (middle of the trajectory); c) The

person is taking a predefined path backward.
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camera #1 camera #2 camera #3

Figure 5.12: Anomaly detection in camera views. Each row consists of views from three

different cameras at the same time frame. A red triangle above a person indicates that it

does not move according to the learned model.
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Chapter 6

Conclusion

In this thesis, we have presented a vision system capable of detecting multiple peo-

ple, tracking them and learning their most common movement patterns in a specific

environment. The approach was designed to work with multiple static off-the-shelf

cameras located at about 2 m above the ground.

We have shown that our mathematically sound detection framework deals natu-

rally with occlusions, heavy noise and monocular situations, yielding metrically ac-

curate detections at independent time frames, by just using binary images from back-

ground subtraction. Furthermore, we have sketched a classification-based detection

scheme to bypass a limitation of our first detection method and distinguish pedestri-

ans from other moving objects.

In a second step, we demonstrated that global optimization is well suited to link

detections produced by a people detector at individual time frames. A first attempt in-

volved using Dynamic Programming on occupancy maps along with color and motion

models to extract trajectories that were assumed independent. We then reformulated

the multi-object tracking problem as a constrained flow optimization, whose structure

is very simple and which can be solved using standard Linear Programming. We al-

leviated the usual burden of joint optimization by designing a technique based on the

k-shortest paths algorithm, that was specifically adapted to the sparse structure of our

problem and allowed us to solve it extremely fast.

In a last step, we created a new model for representing typical pedestrian motions

in a particular environment. This model consists of a set of behavioral maps, each of

which encodes a different type of observed behaviour. Relying on E-M, we showed
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that our model can be learnt from detection data in an unsupervised way. We demon-

strated different usages of this data: It represents a sophisticated motion model de-

signed for a specific environment and can be integrated into a people tracker to make

it more robust. Besides, it can be used to analyze trajectories and detect abnormal

ones.

6.1 Applications

Some parts of the system developed in this thesis have already been employed in var-

ious projects. For instance, the POM people detector has been integrated into the large

“Dynamic Visual Network” of the European project “DYVINE”1. Inside this consor-

tium, POM has been deployed for monitoring an area with multiple cameras. The

detector was connected to a larger framework gathering information coming from

various sensors and presenting an intuitive situation summary to be used by a hu-

man operator. Our system was generating alarms whenever people entered some

pre-defined restricted areas, and sending them to the central framework, along with

the coordinates of the detected people.

Our complete detection and tracking system was also integrated within the Swiss

National Research Foundation Project “Aerial Crowd”. It was used to track multiple

people inside a typical urban environment. The positions of people were then trans-

mitted to an Augmented Reality system that used them to customize the scene with

virtual actors.

The POM detector is currently integrated into the Idiap Showroom2, in Martigny,

Switzerland. This demonstration room combines speech processing and computer vi-

sion algorithms to build a live 3D representation of the room, representing each visitor

as an animated avatar. POM is used to provide with real-time people localization in

the room using four Firewire cameras.

In the near future, our tracking system will be displayed at the Olympic Museum 3

in Lausanne, Switzerland, as part of an exhibition about Athletes and Technology.

1European Commission FP6 project DYVINE http://www.dyvine.org
2Idiap Showroom http://www.idiap.ch/the-institute/showroom
3Olympic Museum, Lausanne http://www.olympic.org/content/Olympic-Museum/
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6.2 Future Work

Finally, the technology presented here might also be used as part of an industrial

partnership, whose goal is to study the feasibility of using vision-based people track-

ing for customer market research inside shopping environments.

6.2 Future Work

Several future research directions have spawned from the work presented in this the-

sis. Among the main ones is the modification of the POM algorithm to make it more

robust to non-human motion and lighting changes. POM’s only input are the simulta-

neous images from various cameras post-processed by background subtraction. Since

background subtraction detects any kind of image motion, the approach is not able to

distinguish humans from other types of moving objects. Furthermore, even sophis-

ticated background subtraction algorithms are quite sensitive to light changes in the

image. In Chapter 3.3, we have demonstrated the feasibility of a multi-view detector

working with image-based classifiers. This however came at a substantial computa-

tional cost. In its current form, our method also produced significantly more false

positives than POM. Hence the interest of a new multi-view people detection algo-

rithm that would not use - or at least not rely entirely on - background subtraction.

Possible ideas include processing binary images with, for example, shape analysis, in

order to remove blobs that obviously do not belong to pedestrians. The association

of a classifier-based pedestrian detector with background subtraction would similarly

allow to filter binary blobs from unwanted object motion. Yet another solution would

be to replace the motion segmentation step altogether by another method.

Along the same lines, the use of an image-based person detector might also help

in case of very crowded scenes, where people are so close to each other that the back-

ground subtraction produces a single large blob containing several people. In such

cases, people are severely occluded on all camera views. Therefore, a part-based

pedestrian detector, that does not look for a whole human body but searches for iso-

lated body parts would be recommended. Calibration information could be integrated

so that detectors from several camera views would combine their results in a Hough

transform voting procedure.

In its current version, the POM detection algorithm solves the system of equations

at its heart using a fixed point method. Despite the effectiveness of this solution and
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the fact that the algorithm is able to run in real-time, fixed point methods are known

to be among the least efficient optimization methods. Therefore, a significant speed

gain could be achieved by replacing the current optimization with a faster numerical

method, such as the Newton’s method.

Another potential extension of our work deals with the modification of our Linear-

Programming-based tracking framework to include appearance and motion models to

the optimization. Our method already produces very good results without those, but

degenerate cases sometimes happen, with more than one equivalent solutions to the

optimization. In these situations, several trajectories usually evolve very closely such

that it is impossible to guess the correct links based on the ground plane detections

alone. Those situations would benefit, for example, from an appearance model of the

tracked objects. Additionally, ensuring motion consistency of the tracks might help.

In the current model, a trajectory progressing in a random walk is considered as likely

as a straight one. In reality, it is clear that not all movements are equally probable.

Along those lines, it would be desirable to incorporate a sophisticated motion model

stemming from our behavioral maps into the Linear Programming-based tracker, in a

similar manner to what we did with the Dynamic Programming-based one.

The behavior model presented in Chapter 5 is a generic yet powerful method for

extracting and characterizing complex motion patterns of pedestrians. This model is

however not suited to any kind of statistical analysis from trajectories. For instance,

analysis for sport would rather focus more on individual players and players interac-

tion. Therefore, different types of statistical processing of people trajectories still need

to be studied. This would benefit from the good quality of trajectory data our system

is able to produce.
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Appendix A

K-Shortest Paths Algorithm

Description

In this appendix we give a short description of the K-shortest paths algorithm, used to

optimize efficiently our tracking framework. The interested reader can refer to [117]

for further details.

Given a directed graph G = (V,E), where V is the set of vertices and E is the set of

edges, the algorithm computes the k-shortest node-disjoint paths - hereafter referred

only as shortest paths - between υsource and υsink, iteratively for l = 1, . . . , k, where k is

fixed. Thus, at the lth iteration, the l-shortest paths are computed by using the l − 1

shortest paths from the previous iteration.

Let Pl be the optimal set of l paths at iteration l. The transition from Pl to Pl+1 is

based on the idea of shortest signed paths. A signed path is a sequence of nodes and

sign-labeled edges connecting them in order, with each edge assigned a positive label

(+) if it is in the direction of the path, that is from the source to the sink, or a negative

label (-) otherwise.

At iteration l + 1 of the algorithm, Pl+1 can be obtained from Pl by augmenting

it with a special kind of signed path p∗, called interlacing of Pl, which satisfies the

following two conditions [117]:

1. An edge is common to both p∗ and Pl if and only if it has a negative label;

2. A node is common to both p∗ and Pl if and only if it is incident to an edge with

negative label.
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υjυsource υsink

υn

υm
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+ +

+

υi -

Figure A.1: An example of interlacing and the process of augmentation (only ver-

tices that are in P2 is shown). The shortest path are P1 = {(υsource, υi, υj , υsink)}.

The shortest interlacing of P1 (bold lines with corresponding edge labels) is p∗ =

(υsource, υm, υj , υi, υn, υsink). Augmentation of P1 and p∗ gives the optimal pair of paths

P2 = {(υsource, υm, υj , υsink), (υsourceυi, υn, υsink)}.

Note that the first condition is required to obtain edge-disjoint paths in Pl+1, which

is necessary but not sufficient for node-disjoint paths. The second condition comple-

ments the first one for node-disjointness by excluding those signed paths having single

node overlap with Pl.

Given a shortest edge-simple interlacing p∗ of Pl, Pl+1 can be obtained by augmen-

tation of p∗ and Pl+1, which is defined as adding positive labelled edges of p∗ to Pl and

removing negative labelled edges of p∗ from Pl (See [117] for details). Fig. A.1 gives

an example of such an augmentation, where the shortest path is

P1 = {(υsource, υi, υj , υsink)}

and the shortest interlacing of P1 is

p∗ = (υsource, υm, υj , υi, υn, υsink)

with corresponding edges labeled respectively as (+, +,−, +, +). The optimal pair of

paths is obtained by augmenting P1 and p∗ as

P2 = {(υsource, υm, υj , υsink), (υsourceυi, υn, υsink)} .

Interlacings in the original graph G correspond one-to-one to node-simple directed

paths in an extended graph Gl = (Vl, El) at iteration l of the algorithm, which can be

obtained by a two-phase transformation from G, as specified in Table A.1. The first
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Table A.1: Graph Transformation Phases [117]

• Split every node υi in Pl, except υsource and υsink into two nodes, namely υ
′

i

and υ
′′

i . Assign all input, resp. output, edges of υi to υ
′

i, resp. υ
′′

i . Add a

directed auxiliary edge of zero cost from υ
′

i to υ
′′

i .

• Reverse the direction and algebraic sign of cost for each edge in Pl, including

auxiliary edges.

phase addresses the above-described two conditions for being an interlacing since the

node-disjointness criteria is relaxed to arc-disjointness. On the other hand, the sec-

ond phase represents a transformation from signed paths to directed unsigned paths.

Therefore, the shortest interlacings in G are equivalent to the shortest node-simple

directed paths in Gl. In addition, the cost of an interlacing in G is the same as the

cost of the corresponding directed path in Gl. Fig. A.2 illustrates an example of this

transformation for two nodes.

(a)

(b)

ci,j cj,lck,i
υjυi

υ
′

i υ
′′

i υ
′

j υ
′′

j −cj,l−ci,j 00−ck,i

Figure A.2: The two-phase graph transformation. (a) Two nodes υi and υj in the original

graph. Bold lines (with edge costs c.,.) represent the arc of a shortest path incident to these

two nodes. (b) The same part of the graph after the transformation.
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An additional edge cost transformation can be applied to Gl with possibly negative

edge costs to obtain a canonic equivalent graph Gc
l with non-negative edge costs. The

added benefit of this transformation is the reduction in the complexity of the shortest

path computation at each iteration. Let the cost value for an edge ei,j ∈ El between

nodes vi ∈ Vl and vj ∈ Vl be ci,j , then Gl is transformed using the following equa-

tion [117]

c′i,j = ci,j + si − sj ∀ei,j ∈ El , (A.1)

where sn represents the cost of the shortest path from the source node υsource to node

vn. In other words, at the lth iteration, Gl is cost transformed to Gc
l by using the short-

est path costs of nodes in Gc
l−1. Note that with this transformation, cost values for all

paths between the source and the sink nodes change by the same constant factor, and

hence, path ordering, in terms of the cost values, remains the same.

A summary of the complete algorithm is given in Algorithm 1 in pseudo-code. The

function efficient_shortest_path implements a shortest path algorithm that is

specifically designed for non-negative edge costs. In our implementation, we used

Dijkstra’s single source shortest paths algorithm [29] to compute the shortest path

trees at each iteration. However, since the initial graph is a DAG, the first tree is

computed in linear time by using a topological sort of its vertices [25]. The total time

complexity of the algorithm is O(k(m + n · log n)), where k is the number of objects

appearing in a given time interval, m is the number of edges and n is the number of

nodes in the final transformed graph
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Algorithm 1: K-Shortest Paths Algorithm for the Tracking Problem

input : a set of probabilistic occupancy maps

output: a set of k paths between υsource and υsink

Construct the initial graph G, with edge costs from Eq. 4.38

p∗1← generic shortest path (G, υsource, υsink)

P1 ← {p
∗
1}

for l← 1 to lmax do

if l 6= 1 then

if cost(Pl) ≥ cost(Pl−1) then
return Pl−1 = {p∗1, . . . , p∗l−1}

end

end

Gl ← extend graph ( G ) /* as in Table A.1 */

Gc
l ← transform edge cost (Gl) /* according to Eq. A.1 */

p∗l+1 ← efficient shortest path ( Gc
l , υsource , υsink )

p∗ ← interlacing ( Pl ) /* corresponding to p∗l+1 */

Pl+1 ← Pl ∪ p∗ /* i.e., augmentation of Pl and p∗ */

end
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Autocalibration for Surveillance. In International Conference on

Computer Vision, 2, pages 1858–1865, October 2005. 22

[71] JOHN KRUMM, STEVE HARRIS, BRIAN MEYERS, BARRY BRUMITT,

MICHAEL HALE, AND STEVE SHAFER. Multi-Camera Multi-

Person Tracking for EasyLiving. Visual Surveillance, IEEE Workshop

on, pages 3–10, 2000. 37

[72] SOLOMON KULLBACK AND RICHARD LEIBLER. On Information

and Sufficiency. The Annals of Mathematical Statistics, 22(1):79–86,

March 1951. 39, 43

[73] ALESSANDRO LANZA, LUIGI DI STEFANO, JÉRÔME BERCLAZ,
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