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Abstract

Video surveillance is currently undergoing a rapid growth. However, while

thousands of cameras are being installed in public places all over the world,

computer programs that could reliably detect and track people in order to

analyze their behavior are not yet operational.

Challenges are numerous, ranging from low image quality, suboptimal

scene lighting, changing appearances of pedestrians, occlusions with envi-

ronment and between people, complex interacting trajectories in crowds,

etc.

In this thesis, we propose a complete approach for detecting and tracking

an unknown number of interacting people from multiple cameras located

at eye level. Our system works reliably in spite of significant occlusions

and delivers metrically accurate trajectories for each tracked individual.

Furthermore, we develop a method for representing the most common

types of motion in a specific environment and learning them automatically

from image data.

We demonstrate that a generative model for detection can effectively han-

dle occlusions in each time frame independently, even when the only data

available comes from the output of a simple background subtraction algo-

rithm and when the number of individuals is unknown a priori.

We then advocate that multi-people tracking can be achieved by detect-

ing people in individual frames and then linking detections across frames.

We formulate the linking step as a problem of finding the most proba-

ble state of a hidden Markov process given the set of images and frame-

independent detections. We first propose to solve this problem by opti-

mizing trajectories independently with Dynamic Programming. In a sec-

ond step, we reformulate the problem as a constrained flow optimization



resulting in a convex problem that can be solved using standard Linear

Programming techniques and is far simpler formally and algorithmically

than existing techniques. We show that the particular structure of this

framework lets us solve it equivalently using the k-shortest paths algo-

rithm, which leads to a much faster optimization.

Finally, we introduce a novel behavioral model to describe pedestrians mo-

tions, which is able to capture sophisticated motion patterns resulting from

the mixture of different categories of random trajectories. Due to its sim-

plicity, this model can be learned from video sequences in a totally un-

supervised manner through an Expectation-Maximization procedure. We

show that this behavior model can be used to make tracking systems more

robust in ambiguous situations. Moreover, we demonstrate its ability to

characterize and detect atypical individual motions.

Keywords: Computer Vision, Multi-View, People Detection, People Track-

ing, Behavior Model



Résumé

La vidéo-surveillance est un domaine en pleine expansion. Cependant,

malgré la constante augmentation du nombre de caméras observant les

lieux publics à travers le monde, les programmes informatiques permet-

tant de détecter et de suivre des piétons afin d’analyser leur comportement

sont encore loin d’être opérationnels.

Les difficultés sont nombreuses, dont notamment la faible qualité d’image,

l’éclairage inadéquat, l’apparence hétérogène des piétons, les fréquentes

occultations de personnes par des obstacles ou encore la complexité des

trajectoires.

Dans cette thèse, nous proposons une méthode permettant de détecter et

de suivre un nombre inconnu de personnes à partir de plusieurs caméras

situées à hauteur de tête. Notre système est fiable, malgré de fréquentes

occultations, et fournit des trajectoires précises pour chacune des person-

nes suivies. De plus, nous développons une technique de représentation

des principales trajectoires de piétons dans un environnement spécifique,

pouvant être apprise automatiquement à partir de séquences vidéo.

Nous démontrons qu’un modèle génératif pour la détection peut gérer ef-

ficacement les occultations à partir d’images isolées dans le temps, même

si les seules données disponibles proviennent d’un algorithme de soustrac-

tion de fond et que le nombre de personnes à détecter est a priori inconnu.

Nous soutenons que le suivi de personnes peut être réalisé en détectant les

individus dans des images isolées et en connectant ensuite les détections

entre elles à travers le temps. Nous formulons l’étape de connexion des

détections comme la recherche de l’état le plus probable d’un processus

Markovien caché, en fonction de l’ensemble des images et détections. Dans

un premier temps, nous proposons de résoudre ce problème en optimisant

























































































































































































































































































































































5.3 Results

(a) One map (b) Two maps

Figure 5.8: Motion maps in the top view resulting from the learning procedure, with one

map (a) or two maps (b). The difficulty of modeling a mixture of trajectories under a strict

Markovian assumption without an hidden state appears clearly at the center-right and

lower-left of (a): Since the map has to account for motions in two directions, the resulting

average motion is null, while in the two-map case on (b) two flows appear clearly.

Figure 5.9: Probability to remain in the map 0 (left) and in the map 1 (right) in the two-

map case. Dark color indicates a high probability.
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5. BEHAVIOR ANALYSIS

Table 5.1: The false negative value corresponds to the number of trajectories out of a total

of 75, that were either not found or were not consistent with the ground truth. The false

positive value stands for the average number of false detections per time frame.

R = .5m R = 1m R = 2m

FN FP FN FP FN FP

Original DP 17 0.18 14 0.15 13 0.15

Behavior, one map 15 0.22 13 0.20 12 0.19

Behavior, two maps 10 0.21 10 0.18 10 0.17

the position and identity of each person present on the ground plane once every 10

frames. Scores for both algorithms were then computed by comparing their results to

the ground truth. For this purpose, we define a trajectory as being the path taken by

a person from the time it enters the area until it exits it. For every trajectory of the

ground truth, we search if there is a matching set of detections from the algorithm re-

sults. A true positive is declared when, for every position of a ground truth trajectory,

a detection is found within a given distance R, and all detections correspond to the

same identity. If there is a change in identity, it obviously means that there has been a

confusion between the identities of two people, which cannot be considered as a true

positive. The false positive value is the average number of false detections per time

frame. Results from Table 5.1 show both false positive and negative values for the

original and the modified algorithm using a one-map and a two-map behavior model.

Results are shown for 3 different values of the distance R.

It appears from Table 5.1 that for about the same number of false positives, using

1, respectively 2, behavioral maps helps reducing significantly the number of false

negatives. Moreover, one can notice that the paths are found with greater precision,

when using two behavioral maps, since the number of false negatives is no longer

influenced by the distance R.

The behavioral maps were only integrated with the Dynamic Programming-based

tracker, for which an obvious fit exists. In the scope of this work, we did not attempt

to adapt our Linear Programming-based tracker to make it compatible with a motion

model derived from behavioral maps. This is however a potential extension and an
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5.3 Results

interesting direction for future work.

5.3.5 Anomaly Detection Results

Detecting unlikely motions is another possible usage of the behavioral maps com-

puted by our algorithm. We show the efficiency of this approach by applying it for

classifying trajectories from the test sequence into “normal” or “unexpected” category.

We start by creating a ground truth for the test sequence. We manually label each

trajectory depending on whether it follows the scenario of Fig. 5.6 or not.

For every trajectory, a likelihood score is computed using the behavioral maps. For

this we proceed using an HMM framework, in which our hidden state is the behav-

ioral map the person is following. The transition between states is given by the transi-

tion probabilities between maps and the observation probability is the probability of

a move, given the map the person is following. Having defined all this, the likelihood

of a trajectory is simply computed using the classical forward-backward algorithm.

The score is then compared to a threshold to classify the trajectory as “normal” or

“unexpected”.

We classified the 47 trajectories automatically retrieved from the test sequence us-

ing a one-map and a two-map behavior models. The results are displayed on Table. 5.2

and show the improvement when using several maps: the behavior model with only

one map produces 7 (respectively 29) false positives if missing only one (respectively

zero) abnormal trajectories, when the two-map models reduces this figure to 4 (respec-

tively 9).

Instead of computing a score for a complete trajectory, one can also generate a

score for a small part of it only, using the very same technique. This way of doing

is more appropriate for monitoring trajectories in real time, for instance embedded

in a tracking algorithm. This leads to a finer analysis of a trajectory, where only the

unexpected parts of it are marked as such.

This procedure can be used directly to “tag” individuals on short time interval

in the test video sequence. Figure 5.11 shows a selected set of atypical behavior, ac-

cording to our two-map model. The unlikely parts of the trajectories are drawn using

dotted-style lines. This should be compared to the two right maps of Fig. 5.8. On

the other hand, Fig. 5.10 shows some trajectories that follow the predefined scenario.

157



5. BEHAVIOR ANALYSIS

Table 5.2: Error rate for atypical trajectory detection. The total number of retrieved tra-

jectories is 47, among which 16 are abnormal. With either one or two maps, the number

of false positives (i.e. trajectories flagged as abnormal while they are not) drops to 1 for

a number of false-negatives (i.e. non flagged abnormal trajectories) greater than 2. How-

ever, for very conservative thresholds (less than 2 false-negatives) the two-map model the

advantage of using two maps appears clearly.

FN
FP

One map Two maps

0 29 9

1 7 4

2 1 1

Finally, Fig. 5.12 illustrates the same anomaly detection results, projected on camera

views.
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5.3 Results

Figure 5.10: Three example of retrieved “normal” trajectories, according to the scenario

illustrated on Fig. 5.6.

(a) (b) (c)

Figure 5.11: Three examples of retrieved atypical trajectories, according to the scenario

illustrated on Fig. 5.6. Unlikely parts are displayed with dotted-style lines. a) The person

is taking an unusual path; b) The person is stopping (middle of the trajectory); c) The

person is taking a predefined path backward.
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5. BEHAVIOR ANALYSIS

camera #1 camera #2 camera #3

Figure 5.12: Anomaly detection in camera views. Each row consists of views from three

different cameras at the same time frame. A red triangle above a person indicates that it

does not move according to the learned model.
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Chapter 6

Conclusion

In this thesis, we have presented a vision system capable of detecting multiple peo-

ple, tracking them and learning their most common movement patterns in a specific

environment. The approach was designed to work with multiple static off-the-shelf

cameras located at about 2 m above the ground.

We have shown that our mathematically sound detection framework deals natu-

rally with occlusions, heavy noise and monocular situations, yielding metrically ac-

curate detections at independent time frames, by just using binary images from back-

ground subtraction. Furthermore, we have sketched a classification-based detection

scheme to bypass a limitation of our first detection method and distinguish pedestri-

ans from other moving objects.

In a second step, we demonstrated that global optimization is well suited to link

detections produced by a people detector at individual time frames. A first attempt in-

volved using Dynamic Programming on occupancy maps along with color and motion

models to extract trajectories that were assumed independent. We then reformulated

the multi-object tracking problem as a constrained flow optimization, whose structure

is very simple and which can be solved using standard Linear Programming. We al-

leviated the usual burden of joint optimization by designing a technique based on the

k-shortest paths algorithm, that was specifically adapted to the sparse structure of our

problem and allowed us to solve it extremely fast.

In a last step, we created a new model for representing typical pedestrian motions

in a particular environment. This model consists of a set of behavioral maps, each of

which encodes a different type of observed behaviour. Relying on E-M, we showed

161



6. CONCLUSION

that our model can be learnt from detection data in an unsupervised way. We demon-

strated different usages of this data: It represents a sophisticated motion model de-

signed for a specific environment and can be integrated into a people tracker to make

it more robust. Besides, it can be used to analyze trajectories and detect abnormal

ones.

6.1 Applications

Some parts of the system developed in this thesis have already been employed in var-

ious projects. For instance, the POM people detector has been integrated into the large

“Dynamic Visual Network” of the European project “DYVINE”1. Inside this consor-

tium, POM has been deployed for monitoring an area with multiple cameras. The

detector was connected to a larger framework gathering information coming from

various sensors and presenting an intuitive situation summary to be used by a hu-

man operator. Our system was generating alarms whenever people entered some

pre-defined restricted areas, and sending them to the central framework, along with

the coordinates of the detected people.

Our complete detection and tracking system was also integrated within the Swiss

National Research Foundation Project “Aerial Crowd”. It was used to track multiple

people inside a typical urban environment. The positions of people were then trans-

mitted to an Augmented Reality system that used them to customize the scene with

virtual actors.

The POM detector is currently integrated into the Idiap Showroom2, in Martigny,

Switzerland. This demonstration room combines speech processing and computer vi-

sion algorithms to build a live 3D representation of the room, representing each visitor

as an animated avatar. POM is used to provide with real-time people localization in

the room using four Firewire cameras.

In the near future, our tracking system will be displayed at the Olympic Museum 3

in Lausanne, Switzerland, as part of an exhibition about Athletes and Technology.

1European Commission FP6 project DYVINE http://www.dyvine.org
2Idiap Showroom http://www.idiap.ch/the-institute/showroom
3Olympic Museum, Lausanne http://www.olympic.org/content/Olympic-Museum/

162

http://www.dyvine.org
http://www.idiap.ch/the-institute/showroom
http://www.olympic.org/content/Olympic-Museum/


6.2 Future Work

Finally, the technology presented here might also be used as part of an industrial

partnership, whose goal is to study the feasibility of using vision-based people track-

ing for customer market research inside shopping environments.

6.2 Future Work

Several future research directions have spawned from the work presented in this the-

sis. Among the main ones is the modification of the POM algorithm to make it more

robust to non-human motion and lighting changes. POM’s only input are the simulta-

neous images from various cameras post-processed by background subtraction. Since

background subtraction detects any kind of image motion, the approach is not able to

distinguish humans from other types of moving objects. Furthermore, even sophis-

ticated background subtraction algorithms are quite sensitive to light changes in the

image. In Chapter 3.3, we have demonstrated the feasibility of a multi-view detector

working with image-based classifiers. This however came at a substantial computa-

tional cost. In its current form, our method also produced significantly more false

positives than POM. Hence the interest of a new multi-view people detection algo-

rithm that would not use - or at least not rely entirely on - background subtraction.

Possible ideas include processing binary images with, for example, shape analysis, in

order to remove blobs that obviously do not belong to pedestrians. The association

of a classifier-based pedestrian detector with background subtraction would similarly

allow to filter binary blobs from unwanted object motion. Yet another solution would

be to replace the motion segmentation step altogether by another method.

Along the same lines, the use of an image-based person detector might also help

in case of very crowded scenes, where people are so close to each other that the back-

ground subtraction produces a single large blob containing several people. In such

cases, people are severely occluded on all camera views. Therefore, a part-based

pedestrian detector, that does not look for a whole human body but searches for iso-

lated body parts would be recommended. Calibration information could be integrated

so that detectors from several camera views would combine their results in a Hough

transform voting procedure.

In its current version, the POM detection algorithm solves the system of equations

at its heart using a fixed point method. Despite the effectiveness of this solution and
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6. CONCLUSION

the fact that the algorithm is able to run in real-time, fixed point methods are known

to be among the least efficient optimization methods. Therefore, a significant speed

gain could be achieved by replacing the current optimization with a faster numerical

method, such as the Newton’s method.

Another potential extension of our work deals with the modification of our Linear-

Programming-based tracking framework to include appearance and motion models to

the optimization. Our method already produces very good results without those, but

degenerate cases sometimes happen, with more than one equivalent solutions to the

optimization. In these situations, several trajectories usually evolve very closely such

that it is impossible to guess the correct links based on the ground plane detections

alone. Those situations would benefit, for example, from an appearance model of the

tracked objects. Additionally, ensuring motion consistency of the tracks might help.

In the current model, a trajectory progressing in a random walk is considered as likely

as a straight one. In reality, it is clear that not all movements are equally probable.

Along those lines, it would be desirable to incorporate a sophisticated motion model

stemming from our behavioral maps into the Linear Programming-based tracker, in a

similar manner to what we did with the Dynamic Programming-based one.

The behavior model presented in Chapter 5 is a generic yet powerful method for

extracting and characterizing complex motion patterns of pedestrians. This model is

however not suited to any kind of statistical analysis from trajectories. For instance,

analysis for sport would rather focus more on individual players and players interac-

tion. Therefore, different types of statistical processing of people trajectories still need

to be studied. This would benefit from the good quality of trajectory data our system

is able to produce.

164



Appendix A

K-Shortest Paths Algorithm

Description

In this appendix we give a short description of the K-shortest paths algorithm, used to

optimize efficiently our tracking framework. The interested reader can refer to [117]

for further details.

Given a directed graph G = (V,E), where V is the set of vertices and E is the set of

edges, the algorithm computes the k-shortest node-disjoint paths - hereafter referred

only as shortest paths - between υsource and υsink, iteratively for l = 1, . . . , k, where k is

fixed. Thus, at the lth iteration, the l-shortest paths are computed by using the l − 1

shortest paths from the previous iteration.

Let Pl be the optimal set of l paths at iteration l. The transition from Pl to Pl+1 is

based on the idea of shortest signed paths. A signed path is a sequence of nodes and

sign-labeled edges connecting them in order, with each edge assigned a positive label

(+) if it is in the direction of the path, that is from the source to the sink, or a negative

label (-) otherwise.

At iteration l + 1 of the algorithm, Pl+1 can be obtained from Pl by augmenting

it with a special kind of signed path p∗, called interlacing of Pl, which satisfies the

following two conditions [117]:

1. An edge is common to both p∗ and Pl if and only if it has a negative label;

2. A node is common to both p∗ and Pl if and only if it is incident to an edge with

negative label.
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A. K-SHORTEST PATHS ALGORITHM DESCRIPTION

υjυsource υsink

υn

υm

+

+ +

+

υi -

Figure A.1: An example of interlacing and the process of augmentation (only ver-

tices that are in P2 is shown). The shortest path are P1 = {(υsource, υi, υj , υsink)}.

The shortest interlacing of P1 (bold lines with corresponding edge labels) is p∗ =

(υsource, υm, υj , υi, υn, υsink). Augmentation of P1 and p∗ gives the optimal pair of paths

P2 = {(υsource, υm, υj , υsink), (υsourceυi, υn, υsink)}.

Note that the first condition is required to obtain edge-disjoint paths in Pl+1, which

is necessary but not sufficient for node-disjoint paths. The second condition comple-

ments the first one for node-disjointness by excluding those signed paths having single

node overlap with Pl.

Given a shortest edge-simple interlacing p∗ of Pl, Pl+1 can be obtained by augmen-

tation of p∗ and Pl+1, which is defined as adding positive labelled edges of p∗ to Pl and

removing negative labelled edges of p∗ from Pl (See [117] for details). Fig. A.1 gives

an example of such an augmentation, where the shortest path is

P1 = {(υsource, υi, υj , υsink)}

and the shortest interlacing of P1 is

p∗ = (υsource, υm, υj , υi, υn, υsink)

with corresponding edges labeled respectively as (+, +,−, +, +). The optimal pair of

paths is obtained by augmenting P1 and p∗ as

P2 = {(υsource, υm, υj , υsink), (υsourceυi, υn, υsink)} .

Interlacings in the original graph G correspond one-to-one to node-simple directed

paths in an extended graph Gl = (Vl, El) at iteration l of the algorithm, which can be

obtained by a two-phase transformation from G, as specified in Table A.1. The first
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Table A.1: Graph Transformation Phases [117]

• Split every node υi in Pl, except υsource and υsink into two nodes, namely υ
′

i

and υ
′′

i . Assign all input, resp. output, edges of υi to υ
′

i, resp. υ
′′

i . Add a

directed auxiliary edge of zero cost from υ
′

i to υ
′′

i .

• Reverse the direction and algebraic sign of cost for each edge in Pl, including

auxiliary edges.

phase addresses the above-described two conditions for being an interlacing since the

node-disjointness criteria is relaxed to arc-disjointness. On the other hand, the sec-

ond phase represents a transformation from signed paths to directed unsigned paths.

Therefore, the shortest interlacings in G are equivalent to the shortest node-simple

directed paths in Gl. In addition, the cost of an interlacing in G is the same as the

cost of the corresponding directed path in Gl. Fig. A.2 illustrates an example of this

transformation for two nodes.

(a)

(b)

ci,j cj,lck,i
υjυi

υ
′

i υ
′′

i υ
′

j υ
′′

j −cj,l−ci,j 00−ck,i

Figure A.2: The two-phase graph transformation. (a) Two nodes υi and υj in the original

graph. Bold lines (with edge costs c.,.) represent the arc of a shortest path incident to these

two nodes. (b) The same part of the graph after the transformation.
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A. K-SHORTEST PATHS ALGORITHM DESCRIPTION

An additional edge cost transformation can be applied to Gl with possibly negative

edge costs to obtain a canonic equivalent graph Gc
l with non-negative edge costs. The

added benefit of this transformation is the reduction in the complexity of the shortest

path computation at each iteration. Let the cost value for an edge ei,j ∈ El between

nodes vi ∈ Vl and vj ∈ Vl be ci,j , then Gl is transformed using the following equa-

tion [117]

c′i,j = ci,j + si − sj ∀ei,j ∈ El , (A.1)

where sn represents the cost of the shortest path from the source node υsource to node

vn. In other words, at the lth iteration, Gl is cost transformed to Gc
l by using the short-

est path costs of nodes in Gc
l−1. Note that with this transformation, cost values for all

paths between the source and the sink nodes change by the same constant factor, and

hence, path ordering, in terms of the cost values, remains the same.

A summary of the complete algorithm is given in Algorithm 1 in pseudo-code. The

function efficient_shortest_path implements a shortest path algorithm that is

specifically designed for non-negative edge costs. In our implementation, we used

Dijkstra’s single source shortest paths algorithm [29] to compute the shortest path

trees at each iteration. However, since the initial graph is a DAG, the first tree is

computed in linear time by using a topological sort of its vertices [25]. The total time

complexity of the algorithm is O(k(m + n · log n)), where k is the number of objects

appearing in a given time interval, m is the number of edges and n is the number of

nodes in the final transformed graph
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Algorithm 1: K-Shortest Paths Algorithm for the Tracking Problem

input : a set of probabilistic occupancy maps

output: a set of k paths between υsource and υsink

Construct the initial graph G, with edge costs from Eq. 4.38

p∗1← generic shortest path (G, υsource, υsink)

P1 ← {p
∗
1}

for l← 1 to lmax do

if l 6= 1 then

if cost(Pl) ≥ cost(Pl−1) then
return Pl−1 = {p∗1, . . . , p∗l−1}

end

end

Gl ← extend graph ( G ) /* as in Table A.1 */

Gc
l ← transform edge cost (Gl) /* according to Eq. A.1 */

p∗l+1 ← efficient shortest path ( Gc
l , υsource , υsink )

p∗ ← interlacing ( Pl ) /* corresponding to p∗l+1 */

Pl+1 ← Pl ∪ p∗ /* i.e., augmentation of Pl and p∗ */

end
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[12] JÉRÔME BERCLAZ, ALI SHAHROKNI, FRANÇOIS FLEURET, JAMES
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