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More than 500 million people worldwide are persistently

infected with hepatitis B virus or hepatitis C virus1. Although

both viruses are poorly cytopathic, persistence of either virus

carries a risk of chronic liver inflammation, potentially resulting

in liver steatosis, liver cirrhosis, end-stage liver failure or

hepatocellular carcinoma. Virus-specific T cells are a major

determinant of the outcome of hepatitis, as they contribute to

the early control of chronic hepatitis viruses, but they also

mediate immunopathology during persistent virus infection1–4.

We have analyzed the role of platelet-derived vasoactive

serotonin during virus-induced CD8+ T cell–dependent

immunopathological hepatitis in mice infected with the

noncytopathic lymphocytic choriomeningitis virus. After virus

infection, platelets were recruited to the liver, and their

activation correlated with severely reduced sinusoidal

microcirculation, delayed virus elimination and increased

immunopathological liver cell damage. Lack of platelet-derived

serotonin in serotonin-deficient mice normalized hepatic

microcirculatory dysfunction, accelerated virus clearance in the

liver and reduced CD8+ T cell–dependent liver cell damage. In

keeping with these observations, serotonin treatment of infected

mice delayed entry of activated CD8+ T cells into the liver,

delayed virus control and aggravated immunopathological

hepatitis. Thus, vasoactive serotonin supports virus persistence

in the liver and aggravates virus-induced immunopathology.

Infection of mice with the noncytopathic lymphocytic chorio-
meningitis virus (LCMV) caused hepatocyte damage, as revealed by
elevated serum alanin-aminotransferase (ALT) activities and serum
bilirubin concentrations5 (Fig. 1a). Virus-specific T cells are a major
determinant of the outcome of hepatitis—these cells contribute to the

early control of chronic hepatitis viruses and mediate immunopathol-
ogy during persistent virus infection1–4. In a model of LCMV-induced
hepatitis, complete depletion of CD8+ T cells enhanced virus replica-
tion, but strongly reduced hepatocyte damage (Fig. 1a), showing that
the activation of virus-specific CD8+ T cells by viral antigen and not
LCMV replication alone is responsible for liver cell damage, confirm-
ing earlier results5,6. To induce a delayed appearance of CD8+ T cells
within the liver, we treated C57BL/6 mice with a 1:10 dilution
of a CD8 cell–depleting antibody, which leads to a transient absence
of CD8+ T cells. After 8–12 days, CD8+ T cells re-emerged (Fig. 1b).
The delayed CD8+ T cell response within the liver was associated
with prolonged viral replication and enhanced ALT levels in the
serum when CD8+ T cells re-emerged (Fig. 1b).

Therefore, similarly to the situation in human hepatitis7–11, delayed
control of LCMV in the liver enhanced the overall immunopathology
in the liver.

Infection and virus-induced hepatitis have been linked to platelet
activation12–14. To study the role of platelet activation in LCMV-
triggered CD8+ T cell–dependent hepatitis, we histologically stained
liver infiltrates with antibodies specific for the platelet markers CD61
or von Willebrand factor (vWF). Periportal infiltrates of CD8+ T cells
contained platelets (Fig. 1c). Serum concentrations of soluble
P-selectin increased during infection (Fig. 1d), indicative of extensive
platelet–endothelial cell interactions15. CD8+ T cells were necessary for
virus-induced platelet activation and recruitment, as shown in Cd8a–/–

mice that had attenuated platelet infiltration into the liver together
with reduced serum P-selectin concentrations (Fig. 1d,e). Because
activated platelets physiologically reduce blood flow, we wanted to
determine whether LCMV-induced platelet activation influences hepa-
tic microcirculation16. For this purpose, we injected soluble sodium
fluorescein into the portal vein of LCMV-infected mice and monitored
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dye diffusion by intravital fluorescence microscopy. LCMV infection
resulted in a striking perfusion failure in nearly 50% of sinusoids (Fig.
1f,g), an effect that was dependent on activation of CD8+ T cells
(Fig. 1h). Consistent with these findings, the total length of all
perfused sinusoids per visual field (functional sinusoid density,
FSD) was strongly reduced in LCMV-infected animals (Fig. 1g). The
remaining functional sinusoids showed reduced microvascular flow
(Fig. 1g). Taken together, these data indicate a strong correlation
between CD8+ T cell–dependent platelet recruitment and reduction of
hepatic microcirculation.

Platelet activation results in the release of vasoactive serotonin17–20,
which can reduce sinusoidal microcirculation in the liver21,22. To
determine whether LCMV infection caused local release of platelet-
derived serotonin within the liver, we infected C57BL/6 mice with 2 �
106 plaque-forming units (PFU) of LCMV strain WE (LCMV-WE)
and then analyzed blood platelet number and serum serotonin
abundance. Circulating platelet numbers and half-life were reduced
by LCMV infection, which correlated with lowered serum serotonin
and enhanced release of serotonin within the liver (Supplementary
Fig. 1 online). To assess the role of serotonin in sinusoidal flow, we

infected mice lacking tryptophan hydroxy-
lase-1 (Tph1–/–), which is required for the
synthesis of peripheral serotonin23, with
LCMV. In contrast to wild-type (WT) mice,
intravital microscopy of Tph1–/– mice showed
normal red blood cell (RBC) velocity and
perfusion within liver sinusoids after LCMV
infection (Fig. 2a,b) despite similar platelet
activation (Supplementary Fig. 1). Notably,
naive Tph1–/– mice also showed a somewhat

enhanced sinusoidal perfusion, suggesting that serotonin has a role in
regulating liver microcirculation in the absence of infection. Decreased
microcirculation during LCMV infection correlated with reduced
tissue oxygen tension and enhanced levels of lactate, glycerol, serum
ALT and serum bilirubin in the livers of WT mice, indicating extensive
hepatocyte damage (Fig. 2c–d). For each of the markers examined,
LCMV infection resulted in less extensive immunopathological
hepatocyte injury in Tph1–/– mice (Fig. 2c–d). Consistent with the
reduced damage, livers of Tph1–/– mice showed less fibrosis after
LCMV infection, as measured by staining of a-smooth muscle actin
(a-SMA) and induction of collagen within the liver on day 12
(Fig. 2e,f). The influence of serotonin on hepatitis was further
demonstrated by treating WT mice with the serotonin reuptake
inhibitor fluoxetine. Fluoxetine inhibits the serotonin uptake of
platelets from enterochromaffin cells within the gut24, and, indeed,
it depleted serotonin storages in platelets and reduced liver cell
damage in our experiments (Supplementary Fig. 2 online). Consis-
tent with the serotonin-dependent liver pathology in adult mice, we
found a serotonin-dependent induction of steatosis after LCMV
infection of newborn mice (Supplementary Fig. 3 online). Thus,
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Figure 1 LCMV infection results in platelet

activation and reduced blood flow within the liver.

(a) Left, C57BL/6 mice were infected with 2 �
106 PFU of LCMV-WE and serum was analyzed

for ALT and bilirubin (n ¼ 5 or 6). Middle and

right, C57BL/6 mice were completely depleted of

CD8+ T cells and infected with 2 � 105 PFU

(middle) or 2 � 106 PFU (right) of LCMV-WE.

Viral titers (middle, n ¼ 2) and ALT abundance

(right, n ¼ 3) were determined. (b) C57BL/6

mice were partially depleted of CD8+ T cells and

infected with 2 � 104 PFU of LCMV-WE. CD8+

T cell counts (left), viral replication (middle,

n ¼ 2 or 3) and ALT abundance (right, n ¼ 5–8)

were determined. (c) C57BL/6 mice were infected
with 2 � 106 PFU of LCMV-WE. On day 8, the

presence of CD8+ T cells and platelets (vWF+

or CD61+, n ¼ 3) within livers was analyzed.

(d,e) Cd8a–/– and WT mice were infected with

2 � 106 PFU of LCMV-WE. Seven days later,

plasma soluble P-selectin (d, n ¼ 5 or 6) and

expression of vWF in the liver (e, n ¼ 3) were

analyzed. (f,g) On days 5 or 6 after LCMV

infection, liver microcirculation was analyzed.

(f) A representative picture of sinusoidal flow.

(g) Quantifications of parameters of micro-

circulation (n ¼ 6). (h) C57BL/6 mice were

completely depleted of CD8+ T cells and infected

with 2 � 106 PFU of LCMV-WE. On days 5 or 6,

liver microcirculation was analyzed. A

representative picture of sinusoidal flow is

shown. Scale bars, 60 mm. Data are expressed

as means ± s.e.m.
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serotonin resulted in reduced microcirculation and enhanced immu-
nopathological liver cell damage but also promoted aspects of chronic
hepatitis such as fibrosis and steatosis.

To examine whether serotonin influenced T cell responses, we
examined T cell activation and virus replication in WT and Tph1–/–

mice. We found no difference in viral replication until day 6 (Fig. 3a).
After day 6, however, Tph1–/– mice controlled viral antigen, whereas it
still persisted in WT mice (Fig. 3a). These findings were confirmed by
immunohistology, which showed virus antigen within hepatocytes on
day 8 in WT mice, whereas virus was hardly detectable at this time
point in Tph1–/– mice25 (Fig. 3b). We did not find differences in the
innate immune response between WT and Tph1–/– mice, as tested by
serum interferon-a (IFN-a), infiltration of granulocytes and activation
of Kupffer cells (Supplementary Fig. 4 online). In line with these
findings, we did not observe differences between WT and Tph1–/– mice
in the distribution and replication of mouse hepatitis virus, which is
efficiently controlled by the innate immune system (Supplementary
Fig. 5 online)26. Depletion of CD8+ T cells in WT and Tph1–/– mice
showed that the differential virus elimination in Tph1–/– mice was
dependent on functional CD8+ T cells (Fig. 3a,c). CD8+ T cell
phenotype (Fig. 3d) and function, as determined by IFN-g production
and cytotoxic activity, were normal in the Tph1–/– mice (Fig. 3e). No
obvious differences were observed for IFN-g production by virus-
specific CD4+ T cells between Tph1–/– and WT mice (Supplementary
Fig. 6 online). Frequencies of virus-specific CD8+ T cells expressing
specificity for the LCMV GP33-41 epitope were determined by
binding of major histocompatibility complex class I-gp33 tetramers
(tet-gp33) and were comparable between Tph1–/– and WT mice
(Fig. 3f). The total numbers of CD8+ T cells in the liver and spleen
were similar in WT and Tph1–/– mice on days 4, 6 and 8 (Fig. 3f).

Because a microcirculatory dysfunction might influence the distribu-
tion of CD8+ T cells within the liver, we determined the numbers of
periportal versus intralobular CD8+ T cells by histology. Using a
previously described method27, we found that a significantly higher
proportion of CD8+ T cells were located intralobularly in Tph1–/– mice
(P = 0.03, Fig. 3f). These findings have been correlated with
enhanced control of viral replication and subsequent reduction of
immunopathology in humans27. These findings could therefore
explain the enhanced viral control and reduction of pathology in
Tph1–/– mice.

To further document the importance of serotonin for virus-induced
hepatitis, we treated WT mice with exogenous serotonin. Because we
expected this treatment to enhance virally-induced liver immuno-
pathology, we lowered the dose of LCMV to a level that is below the
threshold for induction of hepatitis. Control mice, not receiving
additional serotonin, showed only a mild increase in serum ALT,
whereas serotonin-treated mice showed strongly increased serum ALT
(Fig. 4a). Early priming of antiviral CD8+ T cell responses was not
influenced by serotonin, but these cells did show some phenotypic
differences during later stages of the infection (Fig. 4b and Supple-
mentary Fig. 7 online). Six days after infection, the entry of activated
tet-gp33+ CD8+ T cells into the liver was delayed in mice treated with
serotonin (Fig. 4c), which is consistent with the differences found in
CD8+ T cell distribution in Tph1–/– mice (Fig. 3f). These results
suggest that the antiviral CD8+ T cell response was delayed by the
serotonin treatment. This was confirmed in two additional models in
which a viral antigen is constantly expressed in the liver (Supplemen-
tary Fig. 8 online). In line with the reduced CD8+ T cell response,
replication of LCMV was enhanced in serotonin-treated mice
(Fig. 4d). From these data, we concluded that serotonin delays the
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Figure 2 Platelet-derived serotonin mediates LCMV-induced reductions in liver blood flow. Tph1–/– or WT mice were

infected with 2 � 106 PFU LCMV. (a,b) Liver blood flow was analyzed by intravital microscopy on days 5 and 6 after

infection. (a) Image showing liver sinusoids during analysis of sinusoidal flow. (b) Evaluation of RBC velocity and

RBC perfusion within liver sinusoids in infected and noninfected (naive) mice (n ¼ 3–7). (c) Tissue oxygen tension

(TpO2) in liver (top left) and skin (top right, as control) and lactate (bottom left) and glycerol (bottom right)

concentrations in liver were determined by microdialysis (n ¼ 3–9). (d) Serum ALT (top, n ¼ 9) and bilirubin

concentrations (bottom, n ¼ 4) were analyzed at the indicated time points after LCMV infection. (e) Livers from the indicated mice were analyzed for the

fibrosis marker a-SMA (n ¼ 3) on day 12 by immunohistochemistry. (f) Expression of collagen mRNA was determined in livers of C57BL/6 and Tph1–/– mice

on day 12 after infection by quantitative RT-PCR (n ¼ 3). Scale bars, 60 mm. Data are expressed as means ± s.e.m.
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antiviral CD8+ T cell response within the liver, which results in
enhanced viral replication.

In view of the delay in the early CD8+ T cell response, we postulated
that the increased and persistent antigen load in the liver should
prolong local CD8+ T cell cytotoxicity. To address this possibility, we
treated mice with serotonin with or without depletion of CD8+ T cells.
Indeed, we found a complete reduction of hepatitis when CD8+ T cells
were depleted in serotonin-treated mice (Fig. 4e), suggesting that the
prolonged activation of CD8+ T cells by not-yet-controlled antigen is
the mechanism of serotonin-induced liver cell damage.

In conclusion, this study has demonstrated that during infection
with a noncytopathic virus, serotonin release is responsible for
sinusoidal microcirculatory failure. Serotonin-dependent alterations
in sinusoidal microcirculation account for viral-induced liver cell
damage by delaying the infiltration of activated virus-specific CD8+

T cells and thereby protracting viral control. In human hepatitis, a
delay in CD8+ T cell responses will favor virus replication to levels that
lead to persistence of virus. Our study suggests that serotonin
aggravates viral control and therefore favors onset of chronic hepatitis.

METHODS
Mice, viruses and serotonin treatment. We propagated LCMV strain WE in

L929 cells. We measured virus titers with a focus-forming assay as previously

described28. We treated mice with 150 mg serotonin per kg body weight per day

(dissolved in 200 ml water) by intraperitoneal injection. Control mice received

200 ml water. All mice were on a C57BL/6 background, were kept in single venti-

lated cages and were experimentally treated by authorization of the Veterinäramt

of the Kanton Zurich and according to Swiss laws for animal protection.

Depletion of CD8+ T cells and cytotoxicity assay. We depleted CD8+ T cells

by intraperitoneal or intravenous injection of rat monoclonal antibody specific

for mouse CD8 (clone YTS169.4) 2 d and 1 d before infection. For partial

depletion, we diluted antibody 1:10. We analyzed cytotoxicity against the

epitopes GP33 and NP396 in a 51Cr release assay as previously described28.

We analyzed supernatants after 8 h of culture.

Histology. Histological analyses were performed as previously described28 with

monoclonal antibodies to mouse CD8 (made in house), LCMV-NP (clone VL4

(made in house)), CD61 (BD Biosciences) and a-SMA (Dako) and polyclonal

rabbit antibodies to vWF (Dako). For quantitative analysis of CD8+ T cells in

the liver, we used the method described recently27.
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Figure 3 Serotonin has no impact on CD8+ T cell priming. Tph1–/– mice and the corresponding control

mice were infected with 2 � 106 PFU of LCMV-WE. (a) Virus titers were analyzed by plaque assay with

(left) or without (right) prior in vivo depletion of CD8+ T cells (n ¼ 4–7; n ¼ 2 for anti-CD8–treated

mice). (b) Virus distribution on days 4 and 8 after infection was analyzed by immunohistochemistry of

the livers from Tph1–/– and WT mice (n ¼ 3). (c) Tph1–/– and WT mice were depleted of CD8+ T cells,

and virus distribution was analyzed on days 4 and 8 (n ¼ 2). (d) CD8+ T cells in the liver were analyzed

for expression of the interleukin-7 receptor alpha chain (CD127), the lymph node homing receptor

CD62L, the receptor for vascular cell adhesion molecule-1 (CD49d) and the CTL effector molecule

granzyme B. One out of six representative histogram plots is shown. The percentages of cells expressing

an activated phenotype are shown. For naive CD8+ T cells (gray area) the percentages of cells that fell

into the indicated region for activation were 33% (CD127), 10% (CD62L), 6% (CD49d) and 1%

(Granzyme B). (e) Effector function of virus-specific CD8+ T cells isolated from the spleen at day 8 after

infection is shown as determined by intracellular IFN-g staining of cells subjected to in vitro restimulation with LCMV peptide (left) and direct ex vivo

cytotoxicity assays (right; n ¼ 3, one of two similar experiments is shown). (f) Total CD8+ T cell numbers (bottom left) and the frequency of tet-gp33+CD8+
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T cells. Scale bars, 60 mm. Data are expressed as means ± s.e.m.
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Bilirubin, alkaline phosphatase and alanine aminotransferase. We measured

bilirubin, alkaline phosphatase and ALT abundance with a serum multiple

biochemical analyzer (Ektachem DTSCII, Johnson & Johnson).

ELISAs. We performed IFN-a ELISAs (Research Diagnostics), P-selectin

ELISAs on plasma according to the manufacturer’s instructions (Quantikine,

R&D Systems) and serotonin ELISAs on plasma (GenWay) according to the

manufacturer’s instructions. For serotonin ELISAs, we calculated standard

curves using a half-logarithmic scale. We removed livers and immediately froze

them in liquid nitrogen, then weighed and homogenized them in perchloric

acid. Values were normalized for the liver weight and presented as ng/ml of

tissue homogenate.

FACS analysis. To stain for LCMV-specific CD8+ T cells, we used tetramers as

previously described28. We purchased monoclonal antibodies to mouse CD8,

IFN-g, CD127, CD62L, CD61 and CD49d from BD Biosciences. We purchased

monoclonal antibody to granzyme B from Caltag.

Hepatic microcirculation. We studied hepatic microcirculation by intravital

fluorescence microscopy (Leica DM/LM; Leica Microsystems) with a blue filter

(excitation 450–490 nm/4520 nm, excitation/emission wavelength). We visua-

lized sinusoidal perfusion under blue-filtered light after injection of soluble

sodium fluorescein (2 mmol/kg intra-arterially, Fluka Chemie)16. We recorded

ten randomly chosen nonoverlapping Rappaport acini for 30 s each. We

assessed hepatic microcirculatory parameters off-line by means of frame-to-

frame analysis of the videotaped images using a computer-assisted image

analysis system (CapImage; Zeintl). We determined sinusoidal perfusion ratios

by calculating the ratio of perfused sinusoids against the total number of visible

sinusoids and represent them as the percentage of nonperfused sinusoids. We

defined FSD as the total length of all perfused sinusoids per observation area

(cm/cm2)29. We measured sinusoidal diameters (mm) perpendicularly to the

vessel pad. We calculated sinusoidal RBC flow from diameter and RBC velocity.

We calculated hepatic RBC perfusion index by the product of FSD and

RBC velocity.

mRNA gene profiling by quantitative reverse transcription–PCR. We per-

formed RNA extraction and production of cDNA as previously described28. We

performed gene expression analysis of collagen and 18S ribosomal RNA with

kits from Applied Biosystems. For analysis, we normalized the expression levels

of all target genes against 18S rRNA (DCT). Gene expression values were then

calculated on the basis of the DDCT method, using the mean value from

three untreated mice as a calibrator to which all other samples were compared.

We determined relative quantities (RQ) using the following equation:

RQ ¼ 2–DDC
T .

Microdialysis. We measured parenchymal liver concentrations of glucose,

lactate and glycerol using microdialysis probes (CMA/20, CMA Microdialysis

AB) with a molecular weight cut-off of 20,000 Da and membrane length of

5 mm as previously described16.

Tissue oxygen tension. We assessed partial tissue oxygen tension with Clark-

type microprobes consisting of polarographic electrodes and an oxygen-

sensitive microcell (Revoxode CC1).

Statistical analyses. Data are expressed as mean ± s.e.m. and were analyzed

with Student’s t-test. Analyses including repeated measurements or comparison

of more than two groups were tested either with repeated two-way ANOVA or

one-way ANOVA followed by Bonferoni or Dunnett tests.

Note: Supplementary information is available on the Nature Medicine website.
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Figure 4 Exogenous serotonin aggravates viral hepatitis.

C57BL/6 mice were infected with 2 � 104 PFU of

LCMV-WE and were additionally treated with serotonin

(150 mg per kg body weight per day) or with water as a

control. (a) ALT activity in the serum of infected mice

was analyzed at the indicated time points (n ¼ 6–12).

(b) LCMV-specific T cells (tet-gp33+ and tet-np396+,
left) were analyzed in the blood on day 8 after infection

(n ¼ 6). Cytotoxic T cell activity (middle) was analyzed

in the spleen at day 6 after infection (n ¼ 3). Numbers

of IL-7Ra+ LCMV-specific (tet-gp33+) CD8+ T cells (right) were analyzed in the blood at days 8 and 21 after virus infection (n ¼ 3 or 4). Total lymphocytes

and expansion capacity of CD8+ T cells were also analyzed (Supplementary Fig. 7). (c) P14 T cell receptor–transgenic mice (specific for the LCMV gp33

epitope) were infected with LCMV, and activated splenocytes were harvested 6 d later. Splenocytes (3 � 106 cells) were injected into WT recipients infected

6 d previously with LCMV and additionally treated with serotonin or water as a control. Mice were killed at 1, 30 or 120 min after transfer, and the number

of transferred P14 CD8+ T cells in the liver was determined by flow cytometry (left, n ¼ 2 or 3 per time point). The total number of CD8+ T cells in the liver

(right, endogenous CD8+ T cell response) was determined in all mice (n ¼ 11 or 12). (d) At day 8 after infection, spleens (left), livers (middle) and kidneys

(right) were removed and analyzed for virus titers (n ¼ 5 or 6). (e) Before infection, one group of mice was depleted of CD8+ T cells. ALT was analyzed at

day 9 (n ¼ 3). Data are expressed as means ± s.e.m.
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