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The life cycle of several sessile or highly sedentary aquatic species is characterized by a pelagic stage,
during which propagules are dispersed by the water flow. As a consequence, hydrodynamics plays a
crucial role in redistributing offspring. In this work, we describe an integrated modeling framework that
couples a minimal – yet biologically well founded – ecological model for the population dynamics at
the local scale to an efficient numerical model of three dimensional free surface flows in a thermally
forced basin. The computed hydrodynamical fields are employed in a Lagrangian description of larval
arval dispersal
iffusion patterns
onnectivity matrix
ydrodynamics
hermally forced flows
imnology

transport at the basin scale. The developed modeling framework has been applied to a realistic case
study, namely the spread of an idealized aquatic sedentary population in Lake Garda, Italy. The analysis of
this case study shows that the long-term interplay between demography and hydrodynamics can produce
complex spatiotemporal dynamics. Our results also evidence that larvae can travel over relatively long
distances even in a closed basin. A sensitivity analysis of the model outcomes shows that both biological
traits and external forcings may remarkably influence the evolution of diffusion patterns in space and
agrangian modeling
umerical methods

time.

. Introduction

One of the most important and challenging problems in pop-
lation ecology is the understanding of the spatial dynamics of
nimal populations. This represents indeed a very complex task,
ince it requires the study of processes occurring at different spatial
cales, ranging from local ones, such as birth and death processes, to
on-local ones, such as dispersal processes (Levin, 1992). A case of
articular interest is represented by those aquatic species that are
essile or highly sedentary as adults, but have a pelagic stage at the
eginning of their life cycle (e.g., mussels, corals, etc.; see Guichard
t al., 2004; Cowen and Sponaugle, 2009). For these species, the

edistribution of organisms between subsequent generations is
lmost exclusively operated by the water flow. The resulting pat-
erns of larval dispersal can thus be extremely complex, since they
eflect the effects of the underlying hydrodynamics (Becker et al.,
007; Cowen and Sponaugle, 2009; Siegel et al., 2008), and play
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a key role in determining long-term spatiotemporal population
dynamics.

Both numerical simulations and measurements of dispersal abil-
ities have contributed to better understanding of some features of
larval transport in marine and freshwater ecosystems (Sammarco
and Andrews, 1988; Cowen et al., 2000). The outcomes of numer-
ical models have been sometimes profitably compared to those of
genetic models (Galindo et al., 2006), elemental fingerprinting tech-
niques (Shank and Halanych, 2007) or in situ larval culturing (Becker
et al., 2007). Nevertheless, coupled ecological–hydrodynamic mod-
els are still needed in order to understand and forecast spatial
population dynamics in a comprehensive way, as first clearly stated
by Roughgarden et al. (1988). Such models may in fact contribute
to answering the basic questions concerning larval dispersal, i.e.,
where do larvae go and where do larvae come from (Levin, 2006).
Although questions of this kind could seem even too naive, they
correspond de facto to some of the most debated topics in the liter-
ature on larval dispersal, such as the estimation of the spatial scale
over which larval transport occurs (Cowen et al., 2006) and the rel-
evance of self-recruitment (that is, the retention of larvae in their
native site) on population dynamics at the basin scale (Cowen et

al., 2000, 2006; Becker et al., 2007). A comprehensive understand-
ing of spatiotemporal recruitment patterns is also required to face
important applied issues, such as population management and the
design of protected areas (Guichard et al., 2004; Werner et al., 2007;
Cowen and Sponaugle, 2009).
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In this work, we propose an integrated modeling framework that
ombines a minimal (yet ecologically well-founded) population
odel for the local demographic dynamics of a spatially structured

essile population with a rigorous description of transport effects. In
articular, we aim to describe long-term population dynamics. This
ctually represents a necessary condition to understand the inter-
lay between hydrodynamic and demographic processes and the
esulting spatiotemporal patterns of population abundance at the
asin scale. Remarkably, very few works have reported the results
f long-term analyses in the context of larval dispersal. In point of
act, a recent literature survey (Miller, 2007) has reported that just
on the 69 reviewed papers on fish recruitment in marine ecosys-

ems were multigenerational (e.g., Rose et al., 2003; see also Bode
t al., 2006). Moreover, most works devoted to the analysis of larval
ispersal refer to marine ecosystems, while we specifically address
he study of closed water bodies. Larval dispersal is described here
y a Lagrangian approach. The velocity fields used to evaluate lar-
al trajectories are computed using the volume-conservative finite
lement model described in Miglio et al. (1999) and Causin and
iglio (2002), subsequently extended in Biotto (2007) to include

aroclinic effects due to thermal forcing induced by solar radiation.
he resulting coupled model is applied to a case study concern-
ng the spread of an ideal sessile organism in Lake Garda, Italy. Our
nalysis demonstrates that demography and hydrodynamics work
ogether to produce complex spatiotemporal dynamics. We also
how that the presented results are quite robust to changes in the
odeling assumptions, while biological parameters and environ-
ental forcing terms may sensibly affect the long-term evolution

f spatiotemporal diffusion patterns.
The paper is organized as follows. In Section 2 we describe the

ydrodynamic model and the numerical approach to its solution.
he solar radiation model is described in Section 3, while the eco-
ogical model and its coupling to hydrodynamics are presented in
ection 4. The main features of the case study are introduced in
ection 5. The model is first validated with respect to its capability
f reproducing realistic temperature fields. The results of several
imulations of larval spread in Lake Garda are then presented and
iscussed. In Section 6 some conclusions are drawn on the applica-
ility of the present approach to other similar problems and further
evelopments of the present model are discussed.

. The hydrodynamic model and its numerical
iscretization

The hydrodynamical model used in this work is based on the
eynolds averaged equations for 3D free-surface baroclinic flows,
erived under hydrostatic and Boussinesq assumptions. Baroclinic
erms allow the model to account for pressure variations due to
uid density variations, while a realistic definition of thermody-
amic forcings enables the correct estimation of the heat budget
f the water basin. The variations of fluid density responsible for
he baroclinic component of fluid pressure are here assumed to be
ependent on temperature only. Other factors (such as water salin-

ty) have been disregarded, thus limiting the applicability of the
odel to freshwater ecosystems.
The equations of the hydrodynamic model read as follows:

Du

Dt
= −g

∂�

∂x
− g

∂

∂x

∫ �

z

�� dz + ∂

∂z

(
�Vv

∂u

∂z

)
+ fCv, (1)

Dv ∂� ∂
∫ �

∂
(

∂v
)

Dt
= −g

∂y
− g

∂y
z

�� dz +
∂z

�Vv ∂z
− fCu, (2)

∂�

∂t
= − ∂

∂x

∫ �

−h

u dz − ∂

∂y

∫ �

−h

v dz, (3)
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DT

Dt
= ∂

∂z

(
�Tv

∂T

∂z

)
+ q, (4)

∂w

∂z
= −

(
∂u

∂x
+ ∂v

∂y

)
. (5)

Flow velocities along x, y and z directions are denoted by u, v and
w, respectively. Water temperature and free surface elevations are
denoted by T and �, while h, fC and q denote the bottom depth,
Coriolis parameter and the sum of all heat sources and sinks (to be
described later in greater detail). In the present formulation, density
is computed by the state equation

� = �0[1 − ˛T (T − TR)2],

where T is the temperature expressed in ◦C, TR = 4 ◦C, ˛T = 6.8 ×
10−6 K−2 and �0 = 1000 kg m−3 is a reference density value, while
the relative density variations are denoted by �� = (� − �0)/�0.
Atmospheric pressure gradients have been neglected, since only
applications to relatively small basins will be considered. It is to
be remarked that the horizontal viscosity terms in the momen-
tum and temperature equations have been omitted, since in the
applications considered in this paper we have employed only rel-
atively coarse meshes, for which the intrinsic numerical diffusion
of the horizontal advection scheme is significant. In a more com-
plete implementation, higher order interpolation methods should
be used in the semi-Lagrangian scheme (see, e.g., Baudisch et al.,
2006), along with an appropriate horizontal viscosity model. On the
other hand, the algebraic eddy viscosity model derived in Colombini
and Stocchino (2005) has been employed for the vertical viscosity
terms.

From a technical perspective, the system of hydrodynamic
equations (1)–(4) has been discretized by an extension of the
semi-implicit and semi-Lagrangian numerical method proposed in
Miglio et al. (1999), as described in Biotto (2007) in full details.
A Crank–Nicolson time discretization has been chosen for the
semi-implicit scheme. This method has in fact been proven to be
linearly unconditionally stable with respect to the celerity of exter-
nal gravity waves (Casulli and Cattani, 1994). The Coriolis terms
have been discretized explicitly, since they do not imply severe sta-
bility restrictions on the computational meshes used in the present
application. As for the spatial discretization, the (x, y) plane has
been covered with an unstructured triangular mesh, while the z
direction has been discretized in a suitable number of horizontal
layers. Along the lines of Miglio et al. (1999), Raviart–Thomas ele-
ments of order 0 are used for the momentum equations, while P0
finite elements have been employed for the free surface and the
temperature equations.

The temperature equation (4) is solved first, uncoupled from the
momentum and free surface equations. As shown in (4), tempera-
ture advection is treated in a semi-Lagrangian fashion, employing
respectively cubic and linear interpolations in the vertical and hori-
zontal directions for the reconstruction step. The vertical turbulent
viscosity term is discretized by a finite volume approach in space
and by the Crank–Nicolson method in time. The computation of
the heat fluxes due to solar radiation is described in detail in Sec-
tion 3. The solution of the temperature equation yields an updated
density value that is used to compute baroclinic gradients. After this
step, the algorithm follows exactly Miglio et al. (1999). The updated
value of �n+1 is computed by solving a Helmholtz equation obtained
by substitution of (1) and (2) into (3). Finally, the velocity field is
updated and the vertical velocity is recovered from the incompress-

ibility constraint (5). It is to be remarked that, due to the lack of full
coupling between baroclinic gradients and the momentum equa-
tion, the resulting time discretization is only conditionally stable
with respect to internal gravity waves. On the other hand, uncondi-
tional stability with respect to external gravity waves is guaranteed
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y the semi-implicit discretization of the free surface equation. No-
ow boundary conditions are imposed at the lateral boundaries of
he spatial domain, while bottom friction and wind drag formulae
re used at the bottom and free surface, respectively (Rodi, 1984).

. Solar radiation forcing on the water basin

Modeling the heat fluxes at the surface of an enclosed water
asin is essential to correctly reproduce the dynamics and the ther-
al budget of the basin itself. Furthermore, a correct estimation of
ater temperature is mandatory for the simulation of most biologi-

al processes. We will start by defining the various contributions to
he heat flux at the surface of the water basin, while the modeling
pproach to the description of total heat sources within the basin
ill be discussed later on in this section. The total heat flux at the

urface can be decomposed into shortwave radiation QOc , longwave
adiation QOl , sensible heat exchange Ql and evaporation heat flux
e. Each of these terms will now be discussed in detail.

The total incoming shortwave radiation flux at the surface is
efined according to Martin and McCutcheon (1999) as

Oc = I0(1 − 0.65C2
n )(1 − Rs)at,

here I0 is the intensity of the radiation that would reach the
arth’s surface in absence of the atmosphere, Cn is a cloudiness
imensionless coefficient varying from 0 (clear sky) to 1 (com-
letely cloudy sky), at = 0.6–0.7 is the atmospheric attenuation
erm, which depends on soil reflectivity and on the content of water
apor in the atmosphere, and Rs is the albedo coefficient. Both I0
nd Rs are functions of the relative position with respect to the sun.
hus, they are time-dependent and have to be updated at each time
tep of the numerical simulation.

The albedo coefficient can be defined as Rs = a(˛)−b

Henderson-Sellers, 1986), where ˛ is the angle (measured in
egrees) of the sun position with respect to the ground, while a
nd b are two cloudiness-dependent coefficients defined as

The incoming solar radiation at the surface is computed by tak-
ng into account the possible presence of mountains surrounding
he lake, which implies that sun rays reach the water surface only
hen the sun inclination ˛ is larger than a critical value ˛cr . Thus,

ne can define

0 =
{

0 ˛ < ˛cr,
ISCE0 sin ˛ ˛ > ˛cr.

ere, ISC = 1367 W m−2 is the value of the solar constant given
n Fröhlich and Brusa (1981), while E0 is a correction term that
ccounts for the eccentricity of the Earth’s elliptic orbit. In Iqbal
1983), the approximate formula

0 = 1.00011 + 0.034221 cos � + 0.00128 sin �

+ 0.000719 cos 2� + 0.000077 sin 2�,

s proposed, where � = 2�(dn − 1)/365 and dn denotes the pro-

ressive number corresponding to the current simulation day (dn =
corresponding to January 1 and dn = 365 to December 31). Finally,

he solar angle ˛ is defined by the formula

in ˛ = sin ı sin 	 + cos ı cos 	 cos ω,
ng 220 (2009) 2310–2324

where ı is the solar declination angle, defined as

ı = 0.006918 − 0.399912 cos � + 0.070257 sin �

− 0.006758 cos 2� + 0.000907 sin 2�

− 0.002697 cos 3� + 0.00148 sin 3�,

	 is the geographic latitude and ω is an angular width varying lin-
early between ωa = arcos(− tan 	 tan ı) and −ωa in such a way that
it is zero at noon.

As discussed in Imberger and Patterson (1981), the total long-
wave radiation QOl is the difference between two contributions
representing the incoming longwave radiation Q i

Ol
from the atmo-

sphere to the water body and the outgoing longwave radiation Q o
Ol

,

so that QOl = Q i
Ol

− Q o
Ol

. These terms can be modeled as

Q o
Ol = ε�T4

s

and

Q i
Ol = εair�(1 + 0.17C2

n )T4
air(1 − Rt),

respectively. Here, ε = 0.972 and εair are water and air emissivities,
respectively, � = 5.669 × 10−8 W m−2 K−4 is Stefan–Boltzmann
constant, Ts and Tair are water surface and air temperatures, and
Rt = 0.03 is the value of the longwave reflection coefficient pro-
posed in Henderson-Sellers (1986). Air emissivity can be computed
by the formula εair = CεT2

air (Swinbank, 1963), where Cε = 0.937 ×
10−5 K−2.

The radiative flux Qe due to evaporation is defined by the formula

Qe = �Lw(aw + bw|W|)(es(Tr) − es(Ts))

proposed in Henderson-Sellers (1986), where aw = 4.18 ×
10−11 m s−1 Pa−1, bw = 0.95 × 10−11 Pa−1, Lw is the latent evapora-
tion heat, es is the saturated vapor pressure and Tr the dewpoint
temperature. For the latent evaporation heat and the saturated
vapor pressure we use the formulae given in Henderson-Sellers
(1986), i.e.,

Lw = 1000(2499 − 2.36 T◦
s ),

es(T◦
s ) = 2.171 × 1010 e((−4157)/(T◦

s +239.09)),

where T◦
s is the water temperature at the surface expressed in Cel-

sius.
The sensible heat flux Ql is modeled as proposed in Imberger

and Patterson (1981):

Ql = CHcp air�air|W|(Tair − Ts),

where CH = 1.4 × 10−3 is the heat transfer coefficient at the height
of 10 m above the surface, W is the wind velocity at the same height
and cp air is the constant pressure specific heat of air.

Following Henderson-Sellers (1986), we assume that longwave
radiation, sensible heat and evaporation fluxes at the surface have
an impact on the superficial water layer only. Therefore, their val-
ues – along with surface shortwave flux – are used to impose a
Neumann boundary condition at the surface for the temperature
equation. Shortwave radiation, instead, can be assumed to pene-
trate to a larger extent into the water column, depending on the
water turbidity. This effect is modeled in Henderson-Sellers (1986)
as
QOc(z) = QOc(0)
e−
(�−z), z < �

where 
 = 1.1z−0.73
DS and zDS is the Secchi distance parameter, i.e.,

the smallest water depth at which a reference area disk is not visible
from the surface. Thus, the total forcing term in the temperature
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quation for the interior of the water body (Eq. (4)) can be defined
s

= 1
�cp

∂ QOc

∂z
,

here cp is the constant pressure specific heat.

. The ecological model and its coupling to hydrodynamics

In this section we firstly discuss the features of the idealized
pecies life cycle and derive a simple demographic model. Then,
e introduce the procedures employed to evaluate larval transport.

inally, we describe the larval connectivity matrix, a tool that helps
o analyze the core features of larval dispersal in a synthetic way.

.1. The species life cycle

For the sake of simplicity, we limit our analysis to the case of
emelparous species, i.e., to species whose individuals reproduce
nce in their lifetime and then die. We also assume that the repro-
uctive season is as short as to be reasonably considered impulsive
nd that the sex ratio at birth and in the population is balanced.
lthough these hypotheses could seem too restrictive, they apply

o a wide spectrum of populations and ecosystems, ranging from
nsects to mussels and from fish to plants (see, for instance, Pielou,
977; Ricklefs and Miller, 1999). Finally, we consider species in
hich adults are sessile or highly sedentary (e.g., because they live

nchored to the bottom) while propagules (either eggs or larvae)
re benthonic (i.e., they can be transported by the waterflow). Note
hat this is the typical case of several mussel, coral and reef fish
pecies (Guichard et al., 2004; Cowen and Sponaugle, 2009).

Our reference life cycle can thus be outlined as follows. Let At

e the density of adults at year t in each location of the spatial
omain. The density of adult females is Ft = At/2, since we assume
balanced sex ratio. In each year t adult females reproduce, gen-

rating eggs, then die. The abundance of female eggs is given by
t = fFt , where f is the per capita net fertility (half of the total egg
utput). After a spawning event, the density of female larvae can
e computed as Lt = �EEt , where �E represents the probability of
urvival from the egg to the larval stage. Then, larvae grow and are
ispersed by the water flow. Let Lt be the density of larvae in each

ocation of the spatial domain that are ready to settle after disper-
al. The density of adult females in the next generation can thus be
omputed as Ft+1 = �L(Lt)Lt , where �L(L) is a density-dependent
robability of survival from the larval to the adult stage. Density
ependence has in fact important implications also in the context
f larval recruitment (see, e.g., Cowen and Sponaugle, 2009 and
ore references therein). Finally, total population density can be

omputed from female density as At+1 = 2Ft+1. Note that some of
he steps just summarized describe yearly processes taking place at
he local scale (i.e., adult reproduction and larval settlement), while
thers refer to phenomena that occur on a short time scale but on
large (basin) spatial scale (i.e., larval transport).

A number of models accounting for density dependence can
e found in the literature (see, for instance, May, 1974; Hassell,
975). Here we consider one of the simplest and most used, the
everton–Holt model (Beverton and Holt, 1957), slightly modi-
ed as proposed in Hassell (1975) to account for demographic
uctuations. This model was originally formalized to describe the
ynamics of fish stocks and has already been used to link larval dis-

ersal to recruitment dynamics in sessile aquatic population with
benthonic life stage (e.g., James et al., 2002; Armsworth, 2002;
ode et al., 2006). In the modified Beverton–Holt model, larval sur-
ival is supposed to decrease with the abundance of settling larvae
tself due to competition for limited resources (either nutrients or
ng 220 (2009) 2310–2324 2313

space, or both). From a mathematical perspective, we have

�L(L) = �0

(1 + ˇL)�
, (6)

where �0 is larval survival when the abundance of settling larvae is
low, while ˇ and � are two positive parameters describing the inten-
sity of density dependence. For � ≤ 2, the only nontrivial solution
admitted by the model is a stationary equilibrium corresponding to
the carrying capacity of the habitat. For � > 2, the model can also
display more complex dynamics, including periodic and chaotic
fluctuations of population densities (Hassell, 1975).

4.2. The larval transport model

The local abundance of settling larvae after transport must be
estimated on the basis of the velocity fields produced by the pre-
viously described hydrodynamic model. Larval transport by the
water flow is modeled by a Lagrangian approach, which represents
a common choice in the literature (e.g., Siegel et al., 2003; see also
Werner et al., 2007; Cowen and Sponaugle, 2009 and more refer-
ences therein), since it provides a natural and accurate framework
to describe larval movement. In our simple approach, we consider
that dispersing larvae are passively transported by currents, i.e.,
that they are unable to swim, orient themselves or perform vertical
migrations, apart from the capability to settle at the bottom of the
water body in the location where they reach maturity (e.g., Bode
et al., 2006). Although the assumption of passive transport is quite
common in the description of larval dispersal (e.g., James et al.,
2002; Aiken et al., 2007), it should be noted that active movements
can also play a remarkable role in determining the mean distance
traveled by larvae (Steneck, 2006; Cowen et al., 2006; Paris et al.,
2007; Werner et al., 2007; Cowen and Sponaugle, 2009).

The Lagrangian approach requires the computation of the trajec-
tories followed by single larvae (individual based model). A system
of three ordinary differential equations is integrated numerically to
determine the position of each propagule. While in the horizontal
directions the propagule velocity is identical to the velocity of the
flow, the vertical velocity component wp is assumed to be given by
the sum wp = wflow + wbuoy, where wflow is the flow velocity in the
vertical direction and wbuoy is the velocity induced by the buoyancy
effect

g
� − �L

�L
,

where g is the gravity constant, � is water density and �L is the
density of larvae. Other effects could be included in the evalua-
tion of larval trajectories (see Miller, 2007, for a critical survey of
the issues that do typically emerge in this context), but we do not
explore this possibility here. In particular, we neglect the fluctu-
ating components of larval velocity due to turbulence. This rather
crude assumption is certainly not justified in general. However, in
the applications considered in this paper, relatively coarse meshes
have been used, for which the numerical diffusion of the horizontal
advection scheme can be significant. We have verified the robust-
ness of the results with respect to this hypothesis (see Section 5.3
below).

The computation of Lagrangian steps is accomplished by inte-
grating the equations of motion for the propagules between 0 and a
final time tL, which represents the mean duration of the larval stage
(assumed here to be constant; see, e.g., Bode et al., 2006; Aiken et
al., 2007). Technically, numerical integration has been carried out

by means of a standard explicit Euler method. To preserve accu-
racy we use a much smaller time step (generally 60 s) than that
used to solve the hydrodynamic model. As in Bode et al. (2006),
it is assumed that at the end of the larval period propagules settle
instantaneously in the element corresponding to their current posi-
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ig. 1. Conceptual diagram of the integrated ecological–hydrodynamic model. Pane
nduced by the assumption of a reference year and the introduction of the larval co

ion. Notice that not all the elements in the computational domain
epresent viable locations for the survival and growth of the pop-
lation. Adverse conditions of illumination, temperature, pressure,
ux velocity and/or substrate composition may prevent establish-
ent (see, e.g., Cowen and Sponaugle, 2009). In the present work,
e use depth and temperature as proxies for habitat viability.

herefore, we define a patch as viable if its mean depth is not greater
han a threshold value dmax and its temperature during the spawn-
ng season is above Tmin. Larvae that settle in unviable patches are
ssumed to die instantaneously. Patches have been identified with
he elements of the computational mesh used to solve numerically
he equations of the hydrodynamic model. The problems that may
rise if too coarse patches are used are discussed in Section 5.3.

.3. Simulation of long-term population dynamics

Long-term spatiotemporal dynamics of population spread are
btained by suitably coupling the four components described so far,
amely the thermal, hydrodynamic, ecological and larval transport
odels (Fig. 1(a)). First of all, the thermal and hydrodynamic mod-

les have to be initialized. This could be done with the application
f suitable data assimilation techniques. However, since this study
s mainly aimed at demonstrating the feasibility of our integrated
pproach, and considering the small amount of available data for
he case study analyzed in Section 5, we have simply initialized the
ydrodynamic model with a constant free surface value and zero
elocity and run it for a sufficiently long start-up period (in the
ase considered in Section 5, one month) under realistic wind and
olar forcing, so as to generate realistic hydrodynamical conditions.
hermal parameters are assumed to correspond to early summer,
hich represents the beginning of the spawning season in several

reshwater species. Once a realistic circulation is established, the
agrangian particles are released.

In the first year of simulation the ecological model is initialized
y picking the point in the spatial domain where larvae (or adult
ndividuals, which would additionally requires the evaluation of egg
roduction through the ecological model) are first injected, while in

he subsequent years the initialization is carried out reading stored
ata for adult abundance and computing the larval output due to a
eproductive event. Then, for each active element (i.e., for each ele-
ent with positive larval abundance) np Lagrangian particles are

eleased. The value of np should be proportional to the total larval
isplays the general structure of the model, while panel (b) shows the modifications
vity matrix.

output in each element, but this could make model simulations very
time-consuming. In fact, species with very high fecundities would
require the tracking of huge numbers of particles. To avoid this
unpleasant effect, the number np of Lagrangian particles released in
each active element is kept constant (we typically use np = 100; see
the relevant discussion in Section 5.3). As such, Lagrangian particles
ultimately represent blobs of larvae whose abundance can be eas-
ily computed as the ratio between the total larval abundance of the
native element and the number of released particles np. The initial
position of each blob within an active elements is assigned assum-
ing a uniform random distribution within the element in the two
horizontal directions and within a 1 m layer at the bottom of the
water column (to mimic spawning). Larval dispersal is then evalu-
ated by means of the Lagrangian transport larval, while settlement
and survival are finally evaluated with model (6) introduced above
(see Fig. 1(a)).

This complex set of operations constitutes a year in the life
cycle of the aquatic species. Therefore, it has to be repeated sev-
eral times to study long-term spatiotemporal population dynamics.
Since solar and wind forcing terms, although realistic, are indeed
periodic and completely deterministic, a single run of the hydrody-
namic component is sufficient to fully describe dispersal processes
during a given year. If hydrodynamic and thermodynamic parame-
ters are chosen with reference to a standard year and inter-annual
variations of the environmental conditions are considered negligi-
ble, the results obtained for the reference year can then be extended
to the years to come. In this work we assume that this simplified
setting is acceptable for our case study. Indeed, the robustness anal-
ysis with respect to inter-annual variations described in Section 5.3
seems to justify our approach. This allows a significant reduction of
the computational cost for a simulation that spans several species
life cycles. For a given simulation scenario we thus perform a single
numerical experiment, covering one spawning season, and derive
the so-called larval connectivity matrix, which represents a pow-
erful tool to understand the spatial relationships existing among
patches (e.g., Armsworth, 2002; see also Cowen et al., 2006; Siegel
et al., 2008).
Connectivity matrices are a standard tool in graph theory
(Chartrand, 1985) and are widely used also in the ecological con-
text to describe dispersal in fragmented habitats (Urban and Keitt,
2001). In particular, a connectivity matrix states which patches in
the landscape are connected each other and what is the intensity
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Monthly time averages of this quantity have been compared to
the corresponding climatological maximum and minimum aver-
age temperatures. Results are reported in Fig. 3, showing that the
computed values are generally consistent with the climatologi-
L. Mari et al. / Ecological M

f the connection. As such, the larval connectivity matrix C has the
ollowing structure:

=

⎡
⎢⎢⎣

c11 c12 · · · c1nel

c21 · · · · · · · · ·
...

...
...

...
cnel1 · · · · · · cnelnel

⎤
⎥⎥⎦ ,

n which the element cji represents the fraction of larvae that are
enerated in patch i and settle in patch j during one life cycle, while
el is the number of patches used to cover the spatial domain on
he (x − y) plain. Larval transport can thus be evaluated in a given
ear t as

t = �LCLt, (7)

here Lt andLt represent larval abundance in each discrete location
efore and after transport, respectively. Once the larval connectivity
atrix has been estimated, the simulation of long-term population

s greatly simplified (Fig. 1(b)), just basically requiring the initial-
zation of the ecological model, the computation of larval transport
y means of the connectivity matrix and the evaluation of larval
urvival through the generalized Beverton–Holt model (6).

. A case study: the spread of a sedentary species in Lake
arda (Italy)

In this section we present some results obtained applying
he previously described model to a realistic case study, namely
he spread of an ideal sedentary species in Lake Garda (Italy).

e first introduce the domain of the case study and report
ome details about the validation of the hydrodynamic model
ith respect to its ability of reproducing realistic temperature
elds. Then, we describe model simulations and analyze the

mpact of hydrodynamics on the spatial dynamics of the popu-
ation. Finally, we investigate the robustness of the results and
resent a sensitivity analysis of the model outcomes with respect
o variations of some important ecological and environmental
arameters.

.1. Introduction to the case study area and model validation

Lake Garda is the largest Italian lake. It lies at 45 degree of
atitude, with an extension of about 368 km2and a mean and maxi-

um depth of 70 m and 350 m, respectively (Fig. 2). To simulate the
ydrodynamic model, we discretize the spatial domain with rela-
ively coarse unstructured meshes with an approximate mesh size
f 20 m. As for the vertical discretization, we use layers with differ-
nt thicknesses, ranging between 5 m (close to the water surface)
nd 50 m (at the bottom of the water body). However, this rather
oarse spatial discretization is introduced only to reduce the com-
utational cost in this first assessment of the performances of the

ntegrated model, thus not representing an intrinsic limitation of
ur approach. In Biotto (2007), simulations with finer meshes were
arried out for the hydrodynamic model only, along with a number
f idealized baroclinic tests.

Here, we only present results with realistic environmental forc-
ngs. In particular, the effect of wind stress is incorporated into the

odel in a simple but realistic way, namely by considering a peri-
dic wind forcing corresponding to the main two wind currents
cting on the lake, the ‘Peler’ and ‘Ora’ winds. Peler wind blows
outhward on the upper portion of the lake from the early night-

ime to late morning, approximately. It can reach a maximum speed
f 15 m s−1. Ora wind blows in the opposite direction in the early
fternoon, reaching a speed of approximately 12 m s−1.

The validation of the solar radiation model, together with its
oupling to the hydrodynamic model, has been carried out by
Fig. 2. Bathymetry of Lake Garda.

simulating one year of lake dynamics with typical solar radiation
conditions. A simulation time step �t = 900 s has been used, while
the time averaging parameter is set to ϑ = 0.6. The computed water
temperature at the surface has been then averaged over the lake.
Fig. 3. Monthly averaged temperature obtained in a one-year-long simulation com-
pared to climatological maximum and minimum temperatures.
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Table 1
Biological parameter values

Parameter Value Parameter Value
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most patches seem to be poorly connected. Also, it turns out that
1000 dmax 50 (m)
0.0001 Tmin 0 (C)
1

al ones, although a slight overestimation occurs during summer
onths.
A comparison with measured data has also been carried out for

he temperature field at a single time instant. More specifically, in
ig. 4 the surface temperature on a typical September day is com-
ared to the corresponding temperature field as recovered by NOAA
atellite measurements (data available on the website of the Uni-
ersity of Bern, Switzerland). Although it should be noted that the
olor maps used in the two plots are not exactly the same, the gen-
ral pattern of the computed temperature field is in good agreement
ith the measured values.

.2. Simulation of species spread

The computed velocity fields can be used to evaluate the
ffects of hydrodynamics on the spatial redistribution of larvae
nd generate the spatiotemporal patterns of species spread into
he lake, namely by repeated application of the connectivity matrix
s described by formula (7). To start a model simulation all the
arameters have to be specified. In particular, hydrodynamic and
hermodynamic parameters have been set to fit the case of Lake
arda as described above, while demographic parameters have
een set to the values reported in Table 1. Notice that T has been
min
hosen so that temperature does not play a role in habitat viability,
hich is in this setting only dependent on depth. Furthermore, in

his reference simulation the density of the larvae is taken to be
qual to that of water.

Fig. 4. Water temperature at the surface in a typical September day: (a) remote sensi
ng 220 (2009) 2310–2324

Fig. 5 shows a typical example of model simulation. We assume
that the species begins its spread close to Peschiera sul Garda
(approximately marked by a black arrow in panel (a) of Fig. 5). In
a few years it reaches the whole south basin of Lake Garda. For the
parameter setting of Fig. 5, population density in each patch settles
on a stationary value. This is obviously due to the introduction of
a compensatory density dependence (� = 1). However, we observe
that the population is not homogeneously distributed among all
the viable patches of the lake. Specifically, the carrying capacity of
some site cannot be completely exploited due to recruitment lim-
itations, i.e., because there are less settling larvae than larvae that
are potentially allowed to settle. As already noticed by Armsworth
(2002), both density dependence and recruitment limitation can in
fact play a role in determining population dynamics. Our analysis
shows in fact that demographic processes and transport phenom-
ena due to hydrodynamics are interlinked and work together to
determine the evolution of spatiotemporal population patterns. As
such, they should always be analyzed together in long-term stud-
ies.

Experiments like that described in Fig. 5 can help answering
some of the basic questions set in Section 1, namely where do
larvae go, or where do they come from (Levin, 2006). Key to the
understanding of such questions is the larval connectivity matrix C
(Fig. 6(a)). In fact, by definition, the ith column of C determines
what is the fraction of larvae starting from patch i and arriving
in patch j. In the same way, it is also possible to estimate where
do larvae come from by just reading the rows of C. It may help
to display the connectivity matrix in a spatially explicit setting.
Fig. 6(b) shows the strongest connections among patches defined
by matrix C (cij > 0.05, corresponding to the black dots in the
sparsity plot reported in panel (a)). Interestingly, relatively few
patches are characterized by several of such connections, while
the strongest links between patches occur among rather distant
locations.

The larval connectivity matrix can be also used to evaluate the
so-called dispersal kernel (Turchin, 1998), which states what is

ng measurement from NOAA satellite; (b) numerically simulated temperature.
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ig. 5. Model simulation results: the abundance of adult individuals is displayed 5
f the diffusion of the species is marked by the black arrow (Peschiera sul Garda). W
atches. Model parameters are as in Table 1.

he fraction of propagules that is expected to travel a given dis-
ance from the release point as a function of the distance from
he native patch itself. Although dispersal kernels are usually rig-
rously defined for isotropic environments (in which dispersal is
ot affected by spatial dishomogeneity), they are often estimated
lso in cases in which the hypothesis of spatial homogeneity is
iolated, as in the case of larval transport (Siegel et al., 2003;
teneck, 2006). Fig. 6(c) displays the mean dispersal kernel (i.e.,
he average of the dispersal kernels estimated with reference to
ach viable site in Lake Garda) for the scenario depicted in Fig. 5.
he inset shows the dispersal kernel obtained by excluding the
ffects of self-recruitment, i.e., by excluding larvae that settle in
he same patch in which they have been released. As such, the ker-
el in the inset describes the probability that a propagule travels
given distance, provided that it leaves the native patch. Three

egions can be identified in the dispersal kernel, respectively cor-

esponding to short-, medium- and long-distance dispersal. Quite
nterestingly, more than 40% of the larvae do not move beyond 1 km
10% excluding self-recruitment) from the native element (short-
istance dispersal), while more than 9% (13% if self-recruitment is
isregarded) are dispersed for more than 10 km (long-distance dis-
0 (b), 15 (c) and 20 years (d) after the beginning of the spread. The starting point
it the plot to the south basin of Lake Garda because it contains most of the viable

persal), approximately three times the distance traveled by larvae
on average (about 3629 m). Note that such long-distance dispersal
events may be very important in the maintenance of the popula-
tion at the basin scale (Cowen et al., 2000, 2003, 2006; Kraft et al.,
2002).

The larval dispersal kernel is a very useful tool, since it helps
summarizing the core characteristics of larval dispersal in the
basin. However, some features of larval dispersal are highly site-
dependent. In particular, both self-recruitment (i.e., the local
retention of larvae in their native patch, corresponding to the
main diagonal of C; Fig. 6, panel (d)) and the mean distance
traveled by larvae (e) vary remarkably among patches (as found
in empirical observations; e.g., Cowen et al., 2006; Cowen and
Sponaugle, 2009). The importance of self-recruitment represents
another highly debated topic in the literature on larval dispersal
(Cowen et al., 2000, 2006; Levin, 2006; Becker et al., 2007). Simple

statistical analyses show that in the scenario of Fig. 5 the mean frac-
tion of larvae being locally retained in each viable element is about
31.27% (variance 12.06%). We remark that estimating local larval
retention can give important cues on the planning of management
policies (e.g., in the case of invasive alien species or marine pro-
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Fig. 6. Structure of larval connectivity patterns for the simulation reported in Fig. 5. Panel (a) displays the connectivity matrix C. The strongest connections (cij > 0.05) are
displayed as black dots and are also reported as links between nodes in the geographic layout shown in panel (b). Panel (c) reports the mean dispersal kernel (inset: dispersal
kernel obtained by excluding the effects of self-recruitment). Panels (d) and (e) show self-recruitment and the mean distance traveled by single larvae departing from each
v ity m
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iable patch, respectively. Finally, the singular value decomposition of the connectiv

ected areas; e.g., Guichard et al., 2004; Werner et al., 2007; Cowen
nd Sponaugle, 2009), specifically suggesting an a priori estima-
ion of the potential effectiveness of control actions planned at the
ocal/basin scale. A visual inspection of Fig. 6(d) and (e) shows that
atches with low self-recruitment are typically characterized by
hort mean dispersal distances, and viceversa, with some notable
xceptions close to the south-eastern coasts of Lake Garda. We also
emark that contrasting panels (d) and (e) of Fig. 6 to panel (b)
ields a better understanding of the structure of larval connectivity
atterns, specifically defining larval sources and sinks (Bode et al.,
006).

We finally note that sometimes the visual inspection of the spa-
iotemporal patterns is not sufficient for a precise assessment of
arval connectivity patterns. Various methods based on the analy-
is of the connectivity matrix have been proposed (e.g., Cowen and
ponaugle, 2009; Siegel et al., 2008). In this work, we consider the
ingular values of the connectivity matrix (see, e.g., Golub and Van
oan, 1989) as a synthetic indicator of its characteristics. In case of
he reference simulation described above, the singular values are
isplayed in Fig. 6(f). This tool is also used in Section 5.4 to estimate
he impact of different simulation scenarios on the spatiotemporal
volution of species spread. A general result is that singular values of
he connectivity matrix decay quite slowly, as displayed in Fig. 6(f),
o that connectivity patterns cannot be explained on the basis of
ew principal components of the matrix. As a consequence, as it

ill be discussed in greater detail in the next section, it is unlikely

hat simplified box models could be successfully applied to analyze
he problem at hand. This finding seems to support the view that
ufficiently high resolution models are required to fully understand
patiotemporal population dynamics in basins like Lake Garda.
atrix is shown in panel (f).

5.3. Robustness of results with respect to modeling assumptions

It should be always kept in mind that modeling assumptions
can remarkably impact the outcomes of model simulations. There-
fore, before presenting a sensitivity analysis regarding the role of
ecological and thermodynamical parameters, it is worth assessing
the influence of some crucial modeling hypotheses on the results
presented so far.

As a first example, the spatial resolution at which the model
analysis is carried out can have a significant impact on model out-
comes. In our analyses, we have used a grid of 1593 elements and
about 20 vertical layers with thickness varying between 5 m (close
to the surface) and 50 m (close to the bottom). This vertical dis-
cretization turned out to be an acceptable trade-off between the
accuracy of the results and the efficiency of the computational
scheme. Simulations with a coarser vertical discretization lead in
fact to inaccuracies in the computation of velocity fields. Parame-
ter values such as the number np of Lagrangian particles released
from each active element can also be very important for the accu-
racy of the results. With this respect, we have repeated model
runs using np = 50, 150, 200. Very similar results were observed
for np = 100, 150, 200, while the use of np = 50 seemed to result in
significant underestimation of the species spread with respect to
the simulations employing more particles.

Another characteristic feature of our approach is that the patches

used to build the connectivity matrix correspond to the triangular
elements resulting from the spatial discretization of the domain.
In contrast, in most real applications, the number of patches used
to analyze connectivity is rather small (e.g., Galindo et al., 2006;
Becker et al., 2007; Planes et al., 2009). Therefore, in order to
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nderstand the sensitivity of the presented results with respect to
ifferent patch sizes, we rearranged the information used to build
he reference adjacency matrix so as to describe the connectivity
tructure of a (smaller) pre-defined number of rectangular patches,

btained by regularly partitioning the spatial domain of the case
tudy. The resulting population patterns seem to show that a coarse
artitioning induces a severe misrepresentation of the spread pro-
ess (Fig. 7(a) and (b)). This is consistent with the slow decay of the

ig. 7. Robustness of the results with respect to patch size (a and b), the introduction of a si
f connectivity patterns (e and f). In top panels the larval connectivity matrix of the refer
00 (b) regularly spaced rectangular patches. In middle panels larval trajectories are eval
eference environmental conditions are randomly altered to obtain different (10) perturb
anel (f) the perturbed matrices are periodically applied and the resulting pattern of popul
istribution 20 years after the beginning of the spread in the basin, while panel (f) displ
oint of the spread of the species is marked by the black arrows (Peschiera sul Garda). Sim
ng 220 (2009) 2310–2324 2319

singular values of the connectivity matrix that is observed when
small patches are used (Fig. 6(f)).

While describing the Lagrangian approach followed to model
propagule dispersal, we have completely neglected the turbulent

component of the velocity field experienced by larvae. To explicitly
test the robustness of our results with respect to this assumption we
have performed some additional numerical experiments in which
we have introduced a simple stochastic model for turbulent larval

mple model for turbulent larval dispersion (c and d) and the inter-annual variability
ence case of Figs. 5 and 6 is rearranged to describe connectivity among 25 (a) and
uated by a Markov-1 model with (c) or without memory (d). In bottom panels the
ed connectivity matrices; in panel (e) a time-averaged matrix is applied, while in
ation spread is averaged over time. Panels (a–e) represent the stationary population
ays the time-averaged population density in the interval 20 ≤ t ≤ 30. The starting
ulation parameters as in Table 1. See text for technical details on the simulations.
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ispersion. Specifically, we have used a Markov-1 model (Berloff
nd McWilliams, 2002), which represents one of the most com-
on choices in the analysis of larval dispersal patterns in marine

cosystems (e.g., Siegel et al., 2003; Paris et al., 2007) and consid-
red two distinct cases: in the first one we assumed that the random
rocess has no memory (Fig. 7(c)), while in the second case the
emporal evolution of the turbulent component of larval velocity
s characterized by some degree of temporal correlation (Fig. 7(d)).
n both cases we parameterized the model as suggested by Dewey
nd Stegen (1995) and fixed the ratio between the turbulent and the
ean kinetic energy to 0.05, which is a typical value for ocean flows

see again Dewey and Stegen, 1995), thus probably representing a
light overestimation for our case study. The simulations displayed
n the middle panels of Fig. 7 confirm that our choice of neglecting
he fluctuating components of the turbulent flow has indeed little
mpact on long-term spatiotemporal patterns of population spread,
iven the numerical diffusion introduced by the applied numerical
cheme.

In the reference simulation displayed in Fig. 5 we have assumed
hat our ideal species begins its spread close to Peschiera sul Garda,
hich is one of the most important towns located on the shores of

ake Garda. If we consider the diffusion of a newly introduced alien
pecies, it seems completely reasonable to assume that the spread
ould start from a city like Peschiera. However, this is just a working

ypothesis. We have thus performed several model simulations in
hich we altered the starting point of the spread process and found

hat this feature has a remarkable impact on the spatiotemporal
opulation dynamics only in the short run. In fact, simulations start-

ng from different initial conditions seem to converge in the long

ig. 8. Sensitivity analysis: the role of demographic parameters on local population dyna
nd Bardolino, respectively (see Fig. 1). (a) �0 = 0.01, � = 1 (as in Fig. 5); (b) �0 = 0.1, � =
ng 220 (2009) 2310–2324

run to the same stationary spatial pattern of population density, at
least for � ≤ 2.

Concerning the description of the physical forcings acting on the
water body, a key aspect of our modeling approach is the assump-
tion of reference environmental conditions. In order to understand
the extent to which this assumption is correct, we have run the
hydrodynamic model for 10 different spawing periods with envi-
ronmental conditions differing from those of the reference year.
Such conditions have been obtained adding stochastic perturba-
tions of the baseline temperature, cloudiness and wind fields, and
by randomly altering the starting day of the larval period. The eco-
logical model has then been run for a 20 years period in which two
cyles of 10 years employing the previously obtained velocity fields
were repeated. The resulting analysis (Fig. 7(e) and (f)) shows that
using either the perturbed matrices or an averaged connectivity
matrix does not produce remarkable impacts on the spatiotemporal
density patterns at the basin scale, although altering connectiv-
ity can ease recruitment limitation in the southern shores of the
basin. Therefore, we conclude that our simplifying assumption of a
reference year is indeed acceptable for our purposes.

5.4. Sensitivity analysis

The results of model simulations do obviously depend upon the

specific parameter setting considered. Therefore, it is important to
perform a sensitivity analysis of the model outcomes with respect
to changes in the parameter values.

Concerning the ecological model, we have investigated the role
of the demographic parameters �0, which quantifies survival from

mics. Black dots and diamonds correspond to adult density in Desenzano sul Garda
1; (c) �0 = 0.1, � = 30; (d) �0 = 0.5, � = 30. Unspecified parameters as in Table 1.
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he larval stage to the adult phase (i.e., survival during transport and
fter settlement), and �, which describes the intensity of density
ependence. Demographic parameters can have a strong impact
n the densities reached by local colonies. For instance, higher
alues of �0 obviously lead to more abundant local populations
panels (a) and (b) of Fig. 8). As already remarked above, the den-
ities reached by local colonies are highly site-dependent. As an
xample, population densities in Desenzano sul Garda (dots) are
uch lower than those recorded in Bardolino (diamonds). How-

ver, different values of the biological parameters �0 and � cannot
lter the structure of the larval connectivity matrix C. Therefore,
he long-term spatial pattern of species spreading remains qualita-
ively unaltered. On the other hand, increasing values of either �0 or
(or both) lead to interesting outcomes at the local scale. Local pop-
lations may in fact display wide demographic fluctuations. Such
uctuations can be either regular (periodic dynamics, Fig. 8(c)) or
ighly irregular (chaotic dynamics, Fig. 8(d)) and result from the

ntroduction of a strong overcompensatory density dependence.
herefore, this typical feature of the modified Beverton–Holt model
6) is still preserved when ecology and hydrodynamics are coupled.
uite interestingly, we observe that different spatial locations are
n general characterized by different population densities averaged
ver time. Specifically, mean population densities in Desenzano sul
arda are higher than those in Bardolino in case of periodic dynam-

cs (Fig. 8(c)). Also, notice that demographic fluctuations under
eriodic regime can be characterized by very different oscillation

ig. 9. Sensitivity analysis: the role of larval density on the spatiotemporal patterns of p
dult individuals is displayed 10 (a) and 20 years (b) after the beginning of the spread. Bo
s displayed 5 (c), and 10 years (d) after the beginning of the spread. The starting point o
ther simulation parameters as in Table 1.
ng 220 (2009) 2310–2324 2321

amplitudes and can be desynchronized (Earn et al., 2000; Earn and
Levin, 2006). Years with high population densities in Desenzano sul
Garda correspond in fact to years with low densities in Bardolino.

On the other hand, some other biological parameters may influ-
ence the structure of the connectivity matrix C. This is the case,
for instance, of larval density �L . This result should be obviously
expected: in fact, if �L is greater than water density, then the ver-
tical acceleration due to gravity becomes active and forces larvae
towards the floor of the lake. As a result, propagules travel shorter
distances than in the case in which �L = �. However, this does not
necessarily imply negative impacts on the spread of the species. Top
panels of Fig. 9 show what is expected to happen for small positive
variations of larval density (on the order of 0.1% of water density).
Although the mean distance traveled by dispersing larvae turns out
to be shorter than in the previously analyzed scenario (2902 m), the
spread of the species can be even promoted. Notice in fact that in
this simulation scenario the species is expected to establish with
high population densities also along the southern coasts of Lake
Garda. This apparent paradox can be explained by noting that, due
to spatial correlation, the closer a larva is dispersed from a viable
patch, the higher the probability it can settle in a viable patch. Small

positive variations of larval densities may thus mitigate recruitment
limitations in otherwise poorly connected viable sites. However,
larger values of �L do obviously reduce the spread of the species in
a remarkable way. As an example, bottom panels of Fig. 9 report the
results of a simulation obtained with a larger positive variations of

opulation abundance. Top panels: as in Fig. 5, with �L = 1.001�. The abundance of
ttom panels: as in top panels, with �L = 1.01�. The abundance of adult individuals
f the diffusion of the species is marked by the black arrows (Peschiera sul Garda).
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ig. 10. Sensitivity analysis: the role of temperature on the spatiotemporal pattern
ndividuals is displayed 15 (a) and 20 years (b) after the beginning of the spread. B
orcing terms increased by 2 C. The abundance of adult individuals is displayed 15 (c
he species is marked by the black arrows (Peschiera sul Garda). Other parameters a

arval density with respect to water density (on the order of 1%).
n this case, larvae travel remarkably shorter distances (995 m) and
he spread of the species is limited to the south-western part of the
ake, close to the starting point of the species diffusion.

Environmental parameters can have a sensible impact on long-
erm population dynamics. For instance, water temperature plays
n important role in the spread of aquatic species in several ways
see, e.g., Cowen and Sponaugle, 2009 and references therein). For
nstance, spawning is often regulated by temperature, meaning that
he release of propagules cannot happen below a given tempera-
ure threshold. Also the duration of the larval phase may depend
n temperature, as well as other demographic parameters such as
arval survival or adult fertility. Top panels of Fig. 10 show a model
imulation in which the aquatic species is supposed to be sensi-
ive to temperature. Specifically, we assume that a patch is viable
or the population only if the mean temperature during the spawn-
ng season exceeds a minimum value Tmin = 10 ◦ C and the mean
epth does not exceed dmax = 50 m, as in previous model runs.

his assumption does obviously produce a change in larval con-
ectivity patterns. A comparison between the top panels of Fig. 10
nd the bottom panels of Fig. 5 shows that, although the station-
ry population distribution turns out to be quite similar in the
wo simulation scenarios, transient spatiotemporal dynamics can
pulation density. Top panels: as in Fig. 5, with Tmin = 10 C. The abundance of adult
panels: as in top panels, with mean and maximum temperatures used in thermal
20 years (d) after the beginning of the spread. The starting point of the diffusion of
able 1.

be different, mainly due to density dependence. A decrease in the
number of viable patches leads in fact to a smaller abundance of
both released and settling larvae, which then experience higher
survival rates, thus promoting a faster population growth. Temper-
ature has also a direct influence on water flows and currents. As
such, variations of mean and maximum temperature values used
in thermal forcing terms can modify water circulation in the water
body, thus altering larval redistribution patterns. As an example,
bottom panels of Fig. 10 show what happens in a scenario in which
mean and maximum temperatures used in thermal forcing terms
are 2 ◦ C higher. As already recorded in the previous simulations, the
interplay between density-dependent demographic dynamics and
hydrodynamics may produce nontrivial effects on the spatiotempo-
ral evolution of the spread. This suggests that climate change may
have a remarkable influence on spatiotemporal invasion patterns
(Fields et al., 1993; Roy et al., 2001; Cowen and Sponaugle, 2009).
We have also found that other environmental forcings may have less
noticeable effects on long-term population patterns. For instance,

deviations of wind speed intensities in the order of 25% from the
reference mean values do not produce remarkable differences in
the structure of larval connectivity.

Finally, the singular values of the connectivity matrices obtained
for some of the parametric scenarios introduced in this section are
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Fig. 11. First 150 singular values of the connectivity matrices computed in the cases
of �L = 1.001� (Fig. 9(a) and (b), dash-dotted line), Tmin = 10 ◦ C (Fig. 10(a) and (b),
black solid line), Tmin = 10 ◦ C with mean and maximum temperature used in thermal
forcings increased by 2 C (Fig. 10(c) and (d), dotted line), mean wind intensity in the
o
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rder of 75% of the reference value (dashed line). The first 150 singular values of the
onnectivity matrix of the reference case are also reported (gray solid line). See text
or details.

isplayed in Fig. 11. We note that both larval density (dash-dotted
ine) and sensitivity to temperature (black solid line) have a remark-
ble impact on the structure of larval connectivity (the gray solid
ine represents the singular values of the baseline case, as already
eported in Fig. 6(f)), even if they do not change water flows in Lake
arda. On the contrary, small variations of thermal (dotted line)
r wind forcings (dashed line) produce less notable effects on the
tructure of the connectivity matrix.

. Conclusions

In this work we have shown how a simple ecological model for
he local demographic dynamics of a sedentary aquatic species can
e coupled to a realistic description of the transport effects at the
asin scale, in order to study the long-term dynamics of the popula-
ion in a closed, thermally forced water body. Studying the evolution
f these spatiotemporal patterns is a very complex task, which
equires an integrated and highly interdisciplinary approach. How-
ver, understanding the patterns of species spread is mandatory in
oth conservation and management problems.

We have described local demographic dynamics by means of
modified Beverton–Holt model. The underlying hydrodynamic
odel implements a semi-implicit and semi-Lagrangian method,

hus ensuring efficiency and accuracy. Moreover, the introduction
f realistic thermal and environmental forcings (solar radiation,
ind stress, etc.) has allowed to link the hydrodynamics to a range of

ey biological processes. A Lagrangian approach has been used for
valuating larval trajectories. In addition, under some reasonable
implifying hypotheses, less costly long-term model simulations
ave been performed by estimating a so-called larval connectiv-

ty matrix, which allowed off-line computation of hydrodynamical
ffects on larval circulation. While analyzing a realistic case study

the spread of an ideal sedentary aquatic species in Lake Garda,
taly) we have found that, although transport and retention effects
re extremely site-dependent, larvae can generally travel over rel-
tively long distances. Long-distance dispersal accounts in fact for
bout 10% of total dispersal, thus possibly representing a key feature
ng 220 (2009) 2310–2324 2323

for the definition of the population dynamics at the basin scale. A
sensitivity analysis of the model has shown that both biological
parameters and thermal forcing can play a major role in deter-
mining long-term demographic dynamics, as well as the spatial
distribution of the population.

Future developments of this work will concern an improve-
ment of the accuracy of the numerical and turbulence models
employed, the use of more realistic ecological models, a more thor-
ough validation of the hydrodynamic component and the use of
higher spatial resolutions. Also, the description of larval trans-
port can be made more accurate by introducing some realistic
details such as the possibility of swimming or performing oriented
vertical migrations. All these improvements should be then val-
idated against field data with the aim of producing an accurate
(yet agile) model for analyzing complex spread problems in aquatic
ecosystems.
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