Abstract

Macrophage migration inhibitory factor (MIF) is a major mediator of innate immunity and inflammation and presents a potential therapeutic target for various inflammatory, infectious, and autoimmune diseases, including cancer. Although a number of inhibitors have been identified and designed based on the modification of known nonphysiological substrates, the lack of a suitable high-throughput assay has hindered the screening of chemical libraries and the discovery of more diverse inhibitors. Herein the authors report the development and optimization of a robust high-throughput kinetic-based activity assay for the identification of new MIF inhibitors. Using this assay, they screened 80,000 small molecules and identified and validated 13 novel inhibitors of MIF catalytic activity. These small molecules demonstrated inhibition constant (K(i,app)) values ranging from 0.5 to 13 microM.

Details

Actions