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1. Abstract 

In Drosophila, the Toll pathway plays an important role in the immune defense against Gram-

positive bacteria and fungi. Molecular determinants coming from those pathogens are directly 

detected by pattern recognition receptors (PPRs) circulating in the hemolymph. It has been 

proposed that several serine protease cascades are activated by PRRs, leading to the activation of a 

cleaved form of the cytokine-like molecule Spätzle, the ligand of the Toll receptor. The results 

obtained during my master project demonstrate an essential role for ModSP, a modular serine 

protease acting in the activation of the Toll pathway upon Gram-positive and fungal infections. We 

demonstrate that ModSP integrates signals coming from GNBP3 and PGRP-SA recognition 

molecules and that ModSP sends this signal to Grass, a serine protease already known to activate 

SPE and thereby Spätzle. Further biochemical experiments show the interaction between ModSP 

and GNBP1 demonstrating an apical role of this serine protease in the proteolytic cascades leading 

to Toll pathway activation. We also find that ModSP is expressed in specific vesicles released from 

the fat bodies into the hemolymph. Also, preliminary studies suggest that ModSP does not 

participate in the melanization reaction, a secondary but important insect immune mechanism. 

Biochemical analysis done by some collaborators indicates that ModSP does not cleave Grass and 

that ModSP exhibits a high level of auto-proteolysis when this molecule is expressed. Our data 

reveal a conserved role of modular serine protease in the regulation of immune proteolytic cascade 

in insects.
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2. Introduction 

Research on the Drosophila immune response has constantly increased since the important 

discovery of the role of the Toll pathway in 1996 by the group of Jules Hoffmann. Toll was found 

to have a role in the regulation of antifungal peptides such as Drosomycin in response to fungal 

infection. Today, we know that the immune response of the fruit fly Drosophila melanogaster relies 

on different mechanisms to fight microbial infection that involve epithelia, specialized haemocytes 

and the fat body (reviewed in Lemaitre, 2007). Firstly, the epithelia just beneath the cuticle can 

produce local defenses against pathogens by producing antimicrobial peptides and Reactive Oxygen 

Species (ROS). Secondly, the haemocytes are more specialized in phagocytosis and encapsulation 

of invaders entering the body cavity. Last but not least, the fat body is the main organ responsible 

for the humoral response by producing antimicrobial peptides that are released into the hemolymph. 

The Drosophila immune response is adapted to the nature of the invading micro-organism 

(Lemaitre et al, 1997). The analysis of the humoral immune response with the help of a septic injury 

model led to the distinction of two different intracellular pathways, immune deficiency (IMD) and 

Toll pathways, that regulate the transcription of many genes by controlling the nuclear uptake of the 

NF-kB transcription factors (reviewed in Hoffman, 2003). The activation of the Toll pathway is 

done by Gram-positive bacteria as well as fungi and virulence factors (proteases), whereas the IMD 

pathway is triggered by Gram-negative bacteria (De Gregorio et al, 2002). The high number of 

pathogens indicates the existence of several specific mechanisms of microbial recognition.  

Unlike mammalian Toll-Like Receptors, whose function is mainly the direct recognition of 

pathogens, the Drosophila Toll receptor is activated by a cleaved form of the secreted cytokine-like 

molecule Spätzle (Spz). During the immune response, Spz is thought to be processed by secreted 

serine proteases (SPs) present in the hemolymph which are activated by the recognition of gram-

positive bacteria or fungi. The recent identification by an in vivo RNAi approach of five new serine 

proteases regulating Spz activation (Kambris et al, 2006) has revealed the complexity of the cascade 

acting upstream of Toll. In Drosophila melanogaster, the high number of genes encoded serine 

proteases (211) and their serpins inhibitor (29 compared to the 34 of the human genome) remain a 

great mystery because a good understanding of their functions is still missing. Nevertheless, it is 

now clear that serine proteases have an important role in the Drosophila immune response 

(reviewed by Reichhart, 2007). 

It is well documented that the immune-induced cleavage of Spz is triggered by proteolytic cascades 

that are similar to vertebrate blood coagulation or to complement activation cascades and that these 
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proteolytic cascades consist of several serine proteases undergoing zymogen activation. These 

events are followed by the cleavage of a terminal substrate induced by the downstream protease. It 

can be seen as a complex mechanism consisting of the amplification of an extra-cellular signals in 

which lot of reactions of amplification and inhibition happen respectively between the serine 

proteases and their serpins (serine protease inhibitors). SPE (Spätzle Processing Enzyme) has been 

identified as the terminal SP that maturates Spätzle into its active substrate (Jang et al, 2006). 

Three separate pathways leading to the cleavage of Spz have been identified:  

1. Recognition of Gram-positive bacteria  

Pattern-recognition receptors (PRRs) are thought to be present in the hemolymph where 

they sense microbial-derived molecules. Members of the peptidoglycan recognition protein 
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(PGRP) family have been shown to be required for the recognition of Gram-positive 

bacteria (Michel et al, 2001). PGRP-SA, a secreted PGRP is known to activate the Toll 

pathway upon detection of lysine-type peptidoglycan, a major component of Gram-positive 

bacteria. The complex formed with Gram-negative binding protein 1 (GNBP1) and PGRP-

SA is sufficient to activate the Toll pathway upon Gram-positive infection (Gobert et al, 

2003). The PGRP-SA/GNBP1/Peptidoglycan complex activates a proteolytic cascade that 

involves Grass (El Chamy et al, 2008) that functions upstream of SPE and Spz (figure 1). 

2. Recognition of fungi 

GNBP3, another member of the Gram-negative binding protein family, is required for the 

detection of fungal cell components (Gottar et al, 2006) such as ß-glucan (Lee et al, 2006). 

A null mutation of this gene induces a high rate of death when injection of fungi such as 

Candida albicans was performed in mutant flies. This pathway also converges to Grass 

(figure 1). 

3. Recognition of proteases and virulence factors  

The Persephone (Psh) pathway is the third branch responsible for pathogen recognition in 

the Toll pathway. It has been proposed that proteases such as PR1 produced by 

entomopathogenic fungi cleave the Psh serine protease. The latter would then activate SPE, 

the activator of Spätzle thereby activating the Toll pathway (Gottar et al, 2006) (Figure 1). 

 

The serine proteases cascades acting on the melanization pathway have already been linked to the 

serine proteases cascade acting on the Toll pathway (Gottar et al, 2007). The principal goal of the 

melanization reaction is the rapid synthesis of melanin at the site of injury to fight against a 

microbial pathogen or to facilitate wound healing. Two SPs, MP1 and MP2, and two serpins, Spn 

27A and 28D, have been identified for their role in the Drosophila melanization process, however 

their interconnection and position in the pathway are not well defined yet. It is known that these 

proteolytic cascades take place in the hemolymph and lead to the cleavage of the phenoloxidase 

(PO) a key enzyme in melanin biosynthesis. 

Although the function of the Toll pathway and the recognition molecules serving for pathogens 

recognition have been clearly defined, a lot of problems remain unsolved. What are the serine 

protease cascades acting on the Toll pathway? For instance, the apical SP linking PRR recognition 

to the cleavage of Spz is not known resulting in an important gap in our knowledge of the Toll 

pathway activation. Are the fungi and the Psh pathway interconnected by a specific serine protease? 
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Is serine protease cascade regulating Toll pathway activation also responsible for the melanization 

reaction, thereby connecting the two pathways? 

In order to shed some light on these questions, we have studied a specific serine protease. An in 

vitro study in Tenebrio molitor, has suggested an important role for a modular serine protease (Tm-

MSP) in the activation of Toll by PRRs (Kim et al, 2008). In Tenebrio molitor, GNBP1 and PGRP-

SA complexes induce the activation of the TM-Modular serine protease that will in turn activate 

another serine protease (Tm-SAE) resulting in Spz and melanization activation (Figure 2). This 

result motivated us to study the Drosophila homolog of the Tm-MSP that is encoded by the 

CG31217 gene. In this study, we have demonstrated the essential role of CG31217 in the activation 

of the Toll pathway by PRRs. 



 Page 9/34 

3. Materials and methods 

3.1 Genetic tools 

Some powerful genetic tools available in Drosophila melanogaster has been used for characterizing 

and ordering the components in the Drosophila Toll pathway.  

Firstly, the balancer chromosomes present the advantage to maintain a mutation in a fly stock along 

generation. They prevent genetic recombination during meiosis between homologous 

chromosomes. Many balancer chromosomes, for the X, second or third chromosomes exist for 

genetic studies of Drosophila melanogaster. Balancer chromosomes contain both a lethal recessive 

mutation and a dominant marker (such as genes responsible for the wings or the hairs).  Therefore, 

it is possible using balancers to determine visually which flies in the stock carry a homozygous or a 

heterozygous mutation. 

Secondly, UAS-Gal4 system in the Drosophila melanogaster model, allows us to study the over-

expression of some genes and their effect on the immune response of the flies. That system uses 

two components: a yeast transcription activator protein Gal4 and a region UAS (Upstream 

Activation Sequence) responsible for the binding of the Gal4 to enhance gene transcription. In 

details, the Gal4 is used with a driver region gene where an over-expression of our proteins is 

desired. Haemocytes, fat body and the whole organism are the most common drivers for the Gal4 

system in Drosophila genetics. On the other hand, the UAS portion controls the target gene, that is 

the gene to over-express in the given driver region.  

Finally, crosses between flies are performed to create double mutants lines as well as lines 

expressing specific proteins in a certain driver using the UAS-Gal4 system. Recombinant double 

mutant flies are also obtained with genes located on the same chromosomes. The number of crosses 

depends on the frequency of recombination and thereby on the distance between the two loci. 

Another way to use crosses in fly genetics is the use of virgin flies containing four distinct balancer 

chromosomes to map mutations. It helps us to determine on which chromosomes the mutation is 

carried. 

 

3.2 Creation of pathogens (bacteria, fungi) 

Bacteria and yeasts (Enteroccocus Faecalis, Candida Albicans, Microccocus Luteus, E. 

Carotovora, Staphylococcus Aureus, Lysteria Monocytogenes) were precolonized in Petri dishes. A 

centrifugation pellet was carried out after leading over night the bacteria/yeasts at different 
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temperatures according to the type of bacteria/yeasts (37°C for E. faecalis, 30°C for the others). All 

pathogens were enhanced in LB or YPGA before centrifugation.  

Beauvaria Bassiana spores were colonized in separated Petri dishes. Sleeping flies were shaken on 

the B. Beauvaria spores in order to fully cover the cuticles of the flies. Aspergilus Fumigatus pellet 

was already done and could be obtained upon request. 

  

3.3 Bacterial and fungal infections for survival experiments 

Bacterial and fungi infections were performed by pricking adults in the thorax with a thin needle 

previously dipped into a concentrated pellet of a microbial culture (OD = 200 for all the pathogens 

and OD = 20 especially for E. Faecalis). A total of approximately 80 flies were infected for each 

genotype. At different time points, flies were counted to monitor survivals. Injection of 

Peptidoglycans and proteases (concentration 1:1500) were performed with a Nanoinject apparatus 

(World Precision Instruments Corporation).  

  

3.4 RNA extraction, RT-PCR, qPCR 

For RNA extraction, flies were crushed in tubes containing Trizol and crushing balls. Chloroform 

was then added to bind to the RNA. After centrifugation, supernatant containing only RNA was 

collected. After multiple washings with ethanol and isopropanol, the optical density of RNA present 

in our samples was measured on a nanoject device (Roche Diagnostics) in order to obtain the same 

concentration for all samples (0.5 ug/ul). 

Reverse Transcriptase-PCR (RT-PCR) was done to produce double stranded DNA from our single 

stranded RNA samples (Eppendorf AG device). It consists of a two-steps process: the RT reaction 

and PCR amplification. SuperScript III reverse transcriptase (Invitrogen) was used for the RT 

reaction process. Random primers (Eurogentec) were used according to manufacturers' instructions.  

Quantitative PCR was performed using LightCycler system (Roche Diagnostics). Different primers 

from Eurogentec (ModSP, Drs, Grass, Rp49) were used in a concentration and a temperature given 

by the manufacturers. Ratio of Rp49_Ct and Target_Ct according also to their efficacies were used 

to determine mRNA relative levels. 
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3.5 Microscopy devices 

For image viewing, the flies were dissected in PBS and directly mounted in an antifading solution 

(Citifluor). The samples were observed with an Axioplot (Zeiss) and photos taken using the 

deconvolution properties of an apotome grid (Zeiss). The staining of lipid vesicles were done with a 

hemolymph extraction from 20 flies expressing UAS-ModSP-GFP under the control of the c564-

Gal4 driver. The hemolymph was fixed on slides containing PBS and rinsed with a solution of oil 

red O within 5 minutes.  

  

3.6 Western Blotting 

After standard protein extraction from 30 flies in Lysis Buffer containing some protease inhibitors 

(Complete lysis kit), the samples were placed in a Laemly Buffer containing 20% glycerol for a 

perfect migration. In case of co-immunoprecipitation, the samples were stored in balls containing 

HA-beads over night. After some rinsing, the samples were heated at 95°C during 5 minutes to 

denaturate properly the proteins. Migration of proteins (HA-beads with linked proteins in case of 

co-immunoprecipitation) was done with a constant voltage of 120 V in Transfert Buffer during 

approximatively 2 hours. The migration device was a power supply named EPS 2A/200 (Amersham 

Biosciences). Tris-glycine gels with an agarose concentration of 4 to 20% (Invitrogen) were chosen 

to migrate the samples. After migration, transfert on a nitrocellulose membrane was done during 15 

minutes with the help of a regular iBlot Gel transfer stacks (Invitrogen). The membrane was 

deposited in milk during 15 minutes before the addition of the first antibody and an over night stay. 

After the addition of the secondary antibody and some washes with PBT 0.5 %, the membrane was 

processed during 5 minutes with a SuperSignal West Dura Kit (Thermo scientific). Proteins were 

then revealed in a black chamber on a specific film (Invitrogen). 
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4. Results 

4.1 Generation of a CG31217 mutation by homologous recombination 

The CG31217 protein named ModSP for Modular Serine Protease contains four Low Density 

Lipoprotein-receptor class A (LDLa) domains and one Complement Control Protein (CCP) module 

at its N-terminus (Figure 3). In contrast to many SP involved in the immune response, the modSP 

gene is not inducible transcriptionnaly upon infection and encodes an SP devoided of any CLIP 

domain.  

 

 

To determine ModSP function, a mutation by homologous recombination was generated, consisting 

of a replacement of the modSP locus by the white gene (Figure 4). Two independent mutations were 

obtained named modSP1 and modSP2. To confirm the absence of the CG31217 transcription, a RT-

qPCR was performed on homozygous mutant with primers of the CG31217 locus. Results are 

shown in Figure 5. The expression of modSP in the two modSP mutants was 0% in comparison to 

that of wild-type flies which expressed the normal quantity of this gene (set to 100%). In this figure, 

the expression of modSP in two different RNAi lines targeting the modSP gene is also shown. The 

reduction of modSP expression in RNAi flies was significantly lower compared to that of modSP 

mutant. Moreover, we also checked that the recombination event in modSP mutants did not affect 
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the expression of flanking genes by the same methods (RT-qPCR). The two mutants were 

completely viable with no morphological defects. In the presentation of the results below, we will 

only describe the results obtained with the modSP1 flies, because we observed that the two mutant 

lines responded in the same way. 

 

4.2 Role of ModSP in the response to Gram-positive bacteria infection 

Injection of Gram-positive bacteria with a needle under a septic injury (SI) model, was performed 

with a panel of species (Enteroccocus Faecalis, Staphylococcus Aureus, Lysteria Monocytogenes). 
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Figure 6 summarizes all survival experiments done with the modSP mutant flies (Gram-positive and 

Gram-negative bacteria). It was evident from the survival curves that modSP deficient flies died 

rapidly after infection with Gram-positive bacteria. Compared to the spzrm7 mutant, the phenotype of 

modSP1 was similar albeit weaker. More interestingly, modSP mutant flies did not exhibit a general 

immune deficiency as observed on the Erwinia carotovora survival curve. This Gram-negative 

bacterium was known to activate strongly the IMD pathway but not the Toll pathway. As a 

consequence, Relish mutant flies (relE20) rapidly die after infection with this bacterium. Also, since 

modSP1 did not show any susceptibility to this kind of infection, we can deduce that ModSP did not 

participate in the immune response against Gram-negative bacteria. 

 

To test whether this immune susceptibility was due to an improper function of the Toll pathway, we 

monitored by RT-qPCR the expression of the antifungal peptide gene Drosomycin (Drs), a target of 

the Toll pathway. As shown in Figure 7, modSP1 exhibited a weak level of Drs expression 

compared to wild-type flies (Oregon) after infection with Micrococcus Luteus or Enteroccocus 

Faecalis. It is also visible that spzrm7 showed a great susceptibility to this kind of infection (Ratio of 

Drs/rp49 was two times less than that observed with modSP1). Another experiment was done with 

peptidoglycan deriving from Gram-positive bacteria. Those lysine-type peptidoglycans are strong 

inducers of the Toll pathway when injected in the flies through a Nanoinject device. Figure 8 shows 

a strong reduction of the Drs expression in modSP1 flies as observed for the spzrm7 flies. We 

conclude that ModSP functions at a place downstream of PRRs induced by peptidoglycan from the 

Gram-positive bacteria in the activation of the Toll pathway. 
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The last Gram-positive bacterium that was tested was L. Monocytogenes. This bacterium, unlike all 

other previously described Gram-positive, contains Diaminopimelic (DAP) –type peptidoglycan. L. 

Monocytogenes activates both IMD and Toll immune pathways of the flies . As shown in Figure 9, 

modSP1 blocked the expression of Drs but did not block the expression of Diptericin (Dpt), a 

readout of the IMD pathway. relE20 flies were used as negative controls and did not show any Dpt 

expression upon L. Monocytogenes infection. Moreover, the expression of Dpt was not blocked in 

modSP mutants upon infection with E. Carotovora, confirming the absence of role of ModSP in the 

IMD pathway (Figure 10).  
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In conclusion, this study demonstrates an essential role of ModSP in the activation of the Toll 

pathway against Gram-positive bacteria challenge.  

  

4.3 ModSP overexpression is sufficient to activate the Toll pathway 

Other experiments were carried out to confirm that modSP mutation was indeed responsible for the 

observed phenotype. First of all, we did the same experiments (survival assay and Drs expression) 

with flies carrying modSP1 over a deficiency (Df(3R)P10, Df(3R)Spf) removing the modSP locus. 

We observed the same immune deficient phenotype indicating that no added mutation was 

responsible for the phenotype that we observed before. This also indicated that modSP1 behaves as 
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an amorphic mutation.  

Then, we generated some fly stocks over-expressing ModSP under the control of an UAS element. 

We over-expressed ModSP in the whole organism using a daughterless driver (da-gal4), but we 

saw straight away that it led to larval lethality (Only balanced flies were observed in the vials). 

Another driver c564-Gal4 expressing Gal4 in the fat bodies and haemocytes (genotype: C564-gal4, 

UAS-modSP) was therefore used. Figure 11 shows that Drs expression was expressed at a level of 

60% compared to that of wild-type flies collected 16 hours after infection with M. Luteus. 

Moreover, expression of the modSP gene was clearly seen in over-expressing flies. The ratio of 

modSP/rp49 was two to three times greater than that of wild-type unchallenged flies (as reminder: 

ModSP is not inducible upon infection). 

 

Last of all, we used two modSP-RNAi fly lines from the Vienna Drosophila RNAi Center to 

knockdown the expression of the gene in vivo. We built some fly lines expressing modSP-IR in the 

whole organism with the daughterless driver and saw, as mentioned earlier, a depletion of the 

modSP level of expression (Figure 5). modSP gene expression was 30 to 40 % compared to wild-

type flies. Moreover, modSP-RNAi fly were more susceptible to E. faecalis infection even if 
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modSP1 flies were showing a greater susceptibility (Figure 12). Pelle-RNAi flies were also used as 

a control of the RNAi and showed a high susceptibility to E. faecalis infection. A last experiment of 

RT-qPCR was performed with the RNAi lines. The two modSP-IR exhibited a reduced level of Drs 

after M. Luteus infection as expected (Figure 12). The results were not as clear as that observed 

with the modSP mutation or the Pelle-IR, whose two expression levels came almost to 0%.  

All these results demonstrate that ModSP is essential for Toll activation by Gram-positive bacteria 

and that over-expression of full-length ModSP is sufficient to activate the Toll pathway. 

  

4.4 Epistasis analysis of ModSP 

Then, we performed a series of epistasis experiments to analyse where ModSP acts exactly in the 

cascade of the Toll pathway activation. We already knew that over-expression of both GNBP1 and 

PGRP-SA activates the Toll pathway, thereby inducing a constitutive amount of Drs even without 

the presence of an immune challenge (Gobert et al, 2003). In figure 13, we saw that Drs expression 

after an over-expression of GNBP1 / PGPSA arrived at a level of 17% compared to WT flies 

challenged by M. Luteus. Moreover, the modSP1 mutation fully suppressed Drs expression in 

GNBP1/PGRP-SA over-expressing flies. The level of expression was similar to that of 

unchallenged flies. In the same figure, we can see the results of an experiment showing that Drs 

expression upon over-expression of ModSP was not affected by the presence of a PGRP-SA 

mutation, (PGRP-SAseml). Together these experiments indicate that ModSP functions downstream 

of PGRP-SA. 

We then performed a series of experiments shown in figure 14, in which genes encoding different 
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components of the Toll pathway were over-expressed in a normal context and a modSP mutant 

context. The over-expressed gene were a gain-of-function allele of Toll (UAS-Toll10b), a matured 

and constitutively active form of Spz (UAS-spz*) and an active form of SPE (UAS-SPE*). As 

expected, we could see that modSP1 did not block under those three different conditions the 

expression of Drs, in agreement with an upper role of ModSP in the cascade. 

 

Figure 15 shows the results obtained from another important epistasis experiment in which Drs 

expression was monitored in flies for which ModSP was over-expressed in wild-type or grass 

mutation context (GrassHerrade). Interestingly, Drs expression under ModSP over-expression alone 

reaches a level of 70% of wild-type flies that have been challenged with M. Luteus. Figure 15 

shows that the GrassHerrade mutation strongly reduced the level of Drs expression induced by 

ModSP. This important result shows that ModSP is active upstream of Grass. 

 

Altogether, this epistatic analysis indicates that ModSP functions downstream of PGRP-SA and 

GNBP1 and upstream of Grass in the branch that links Gram-positive bacterial recognition to the 
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Toll pathway activation.  

  

4.5 Role of ModSP in the response to fungal infection 

As already said, yeasts are recognized by GNBP3 via the recognition of β-glucans. GNBP3hades, a 

mutation in the GNBP3 gene induces a phenotype of reduced survival when challenged by C. 

albicans (Gottar et al, 2007). It was also shown that in absence of an immune challenge, over-

expression of GNBP3 activates by itself the Toll pathway. We next investigated whether ModSP 

also operates downstream of GNBP3 in the recognition of yeasts.  

 

 

To test this hypothesis, we first performed a survival experiment with modSP mutants to yeast 

infection. Figure 16 shows that modSP deficient flies die rapidly after C. albicans infection. The 

spzrm7 phenotype appeared to be more significant, but a great amount of modSP mutant flies already 

died after 40 hours with the same kinetics compared to GNBP3hades flies. Furthermore, RT-qPCR 

experiments (Figure 17) shows that modSP mutation reduces the amount of induced Drs to a 

threshold of 20% compared to wild-type flies after 12 hours. This phenotype was again a little 

weaker than the spzrm7 phenotype whose peak of induction arrived at 12% after the same period of 

time. Those results suggest that ModSP functions downstream of GNBP3, in parallel to the Psh 

pathway, explaining the differences between spzrm7 and modSP1 phenotypes. The relevance of 

GNBP3 to Toll activation is particularly important when flies were injected with dead C. albicans, a 

condition limiting the activation of the Toll pathway through Psh (El chamy et al, 2008). Thus, 
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another experiment with dead C. albicans injection was performed. Figure 18 shows that the same 

reduction of around 20% of Drs expression compared to wild-type is visible in modSP mutant flies. 

The only difference was the amount of Drs induced in spz deficient flies, with a value around 18% 

higher than before. This fact already suggests an important role of the Psh pathway for the detection 

of yeast. The latter is studied in more details in the next section. 

 

The interaction between GNBP3 and ModSP was then investigated with the help of epistasis 

experiments. Unfortunately, we have not been able to induce Drs by over-expression of GNBP3 in 

the same manner done with GNBP1 and PGRP-SA over-expression. Nevertheless, one experiment 

has turned out to be successful, in which Drs was induced upon GNBP3 over-expression to a level 

of 10% compared to wild-type flies collected 16 hours after infection with M. luteus (Figure 19). In 

this unique, unreproducible experiment, we observed a reduction of the Drs induction by modSP1 

flies that can be compared to the amount of Drs produced with unchallenged flies. 
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These experiments demonstrate that not only a requirement of ModSP in the Gram-positive 

recognition pathway is necessary to activate the Toll pathway, but also that this protein is also 

required in the yeast recognition pathway.  

  

4.6 Role of ModSP in the sensing of proteases activity 

The Psh pathway is activated by proteases from fungal or bacterial origins. Virulence factors such 

as the PR1 protease derived from fungi are known to activate this specific branch (El chamy et al, 

2008). The absence of a role for ModSP in this branch was suggested by our preliminary results 

showing that dead C. albicans injection does not change the quantity of Drs obtained compared to 

normal C. albicans injection. The latter contains virulence factors and is in this way able to activate 

the Psh branch. If no changes are observed, we can already determine that ModSP does not play any 

role in the Psh branch. Additional experiments were performed to confirm that ModSP was absent 

of the Psh branch. 

 

RT-qPCR analysis was performed to monitor the level of Drs after injection of proteases in various 

mutant flies affected in different branches of the Toll pathway. For this, we use protease extracts 

derived from Bacillus subtilis or Aspergillus oryzae. The results of these experiments are 

represented in figure 20. We observed that expression of Drs was different between mutants: the 

modSP1 mutation did not impair Toll pathway activation by proteases, because the same level of 

Drs was observed in modSP flies compared to the wild-type infected flies. Similar results were 
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obtained with GNBP3Hades and GrassHerrade flies as previously demonstrated. In contrast, psh1 

mutant flies expressed a low level of Drs expression upon protease injection, confirming the 

important immune role of Psh in the defense against proteases.  

Another experiment was done with a new fly stock containing both the psh1 and modSP1 mutations. 

We monitored the resistance of this double mutant against the injection of spores of A. fumigatus, a 

filamentous fungus known to produce proteases. The survival curve from this experiment is shown 

in figure 21. Both modSP1 and psh1 flies were shown to have a moderate susceptibility against this 

pathogen as compared to the curve of the wild-type flies. More interesting was the double mutant 

phenotype whose curve was greatly depressed with similar kinetics as found in the spzrm7 curve. 

The RT-qPCR experiment shown in figure 22 gave no surprising results. The level of Toll activity 

in modSP1 flies and to a lesser extent in psh1 flies was reduced, although remaining generally 

higher than the levels observed in spzrm7 mutants. In double mutant flies, the Toll pathway 

activation by A. fumigatus was reduced to a level comparable to the spzrm7 mutant.  
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These results suggest a synergistic action of the Psh branch and the GNBP3 branch to fight against 

A. fumigatus spores. ModSP and the Psh branches of the Toll pathway contribute independently to 

the resistance to this fungus. ModSP, like Grass (El chamy et al, 2008) does not participate in the 

psh-dependant branch of the Toll pathway.  

  

4.7 Interaction between ModSP and other components of the Toll pathway 

We next investigated the interaction between ModSP and other components of the Toll pathway 

using a biochemical approach. We first obtained some fly lines containing an UAS-ModSP with a 

HA-TAG. After the successful chromosomal mapping of the insertions, we crossed those fly lines 

with other flies containing a daugtherless driver to express the tagged protein everywhere in the 

flies. Surprisingly, this over-expression did not induce a larval mortality like the UAS-ModSP 

(without the HA-tag) did. The goal of those biochemical experiments was to check by co-

imunoprecipitation whether ModSP interacts with other components of the Toll pathway especially 

GNBP1. 

 

The results obtained from two experiments are shown in figure 23. The use of an antibody directed 

against GNBP1 revealed that a band for GNBP1 at the expected weight of 55 kDa was detected by 

Western Blot analysis. In the first picture, it can be observed that this band was not observed with 

extracts from GNBP1osiris mutant flies. Furthermore, an increased amount of GNBP1 was observed 
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with extracts from flies over-expressing GNBP1 (Genotype: da-gal4; UAS-GNBP1). Those results 

demonstrated that the anti-GNBP1 antibodies were specific of GNBP1 and could be used in co-

immunoprecipitation experiments with GNBP1 and the HA-tagged ModSP.  

Figure 23 B shows the results obtained from this experiment. Here, flies containing the HA-tagged 

ModSP were infected at different points with M. Luteus. The times of infection were respectively 

unchallenged (UC), 2 hours and 6 hours. Three bands at the expected weight of 55 kDa can be 

clearly observed on all samples that were co-immunoprecipiated using the anti-HA antibody. These 

results suggest that ModSP and GNBP1 are part of a complex, but it was impossible to know if the 

reaction between those two proteins was direct or the result of other reagents.  

 

We next used the UAS-ModSP-HA fly lines to analyse the cleavage of ModSP in response to 

bacterial infection, we performed a western blot analysis with proteins extracted from total flies 

over-expressing the HA-tagged ModSP (using the daughterless driver). The membrane was 

incubated in a solution containing first antibodies against HA-tagged ModSP. The results are 

represented in figure 24 which shows three samples collected at different time point (UC, 2 hours, 6 

hours as before). Two bands at 70 kDa and 30 kDa can be distinguished. The cleaved form of 

ModSP (30kDa) appeared to decrease upon the infection, while the normal form (70 kDa) appeared 

to increase. Thereby, These results can be explained by an auto-cleavage of this protein without 

infection. Then we believe that upon infection, GNBP1 interacted with ModSP and impaired its 
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auto-cleavage function to enable them to react at its full normal form. Additional experiments are 

nevertheless required to confirm this theory, because those suppositions are only based on western 

blots showing different intensities in the bands, with no ideas on the quantities of proteins that were 

present in the samples (despite that the same quantity of flies was placed in vials before crushing 

them). 

Altogether, these results suggest a direct link between GNBP1 and ModSP in agreement with the 

idea that ModSP was an apical SP reacting with the PRRs during infection with Gram-positive 

bacteria. Moreover, ModSP performs an auto-cleavage on itself without any pathogen challenge, 

but when it occurs, normal form of ModSP seems to increase along the infection. 

 

4.8 Analysis of ModSP localization using a ModSP-GFP reporter gene 

 

We generated some flies over-expressing a ModSP-GFP fusion protein using the fat body Gal4 

driver (c564-Gal4) to analyze the localization of the ModSP protein in the hemolymph and the fat 

bodies (genotype: c564-Gal4;UAS-ModSP-GFP). The figure 25 (A1 and A2) shows that ModSP-

GFP protein was produced by the fat bodies in the form of small lipid vesicles. More interesting 

was the discovery that ModSP-GFP was found in lipid vesicles in the hemolymph. Collectively, this 

indicated that ModSP was most probably secreted from the fat body into the hemolymph at the 
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surface of small lipid vesicles of 0.2-5 µm. Such transport was not observed with other SPs, but it 

could be consistent with the presence of LDLa repeats that could anchor ModSP to lipoproteins 

specially found in lipid vesicles. Another experiment was performed to show that the fat body of 

c564-Gal4; UAS-ModSP-GFP flies was not apoptotic using a staining against Caspase-3 activity. 

This indicated that the observed vesicles were not due to cell death linked to the over-expression of 

ModSP-GFP.  

This important result allows us to speculate about the fact that the association of ModSP to vesicles 

can be important to nucleate the activation of downstream SP in the hemolymph. 

  

4.9 A role for ModSP in the melanization pathway? 

We next investigated whether ModSP plays a role in the melanization reaction resulting in the 

activation of phenoloxidase (PO). A melanin deposition can be observed at the injury site to control 

wound healing and pathogen growth. A proteolytic cascade containing many SPs is involved in the 

activation of PO. Two clip-domain SPs, MP1 and MP2 and two serpins Spn27A and Spn28D have 

already been discovered to regulate the PO cascade, but their localization in the melanization 

pathway is not well defined. It has also been shown that the melanization cascade is regulated at the 

transcriptional level by the Toll pathway in adults (Ligoxygakis et al, 2002). From the above 

results, we know that ModSP plays an important role in the Toll pathway activation and we propose 

the idea that this SP could also play a role in melanization reaction as observed for T. Molitor 

ModSP (Kim et al, 2008). 

We first observed the diminution of the melanin deposition on the injury site of modSP1 flies 

compared to wild-type Oregon flies (Figure 26). Black cells (Bc) flies are mutant flies that can not 

induce any melanization reaction because of the absence of the PO enzyme. Those flies were used 

as negative controls. On the other hand, spn27A mutant flies served as positive controls, because the 

absence of this serpin enhanced the melanization reaction. We can see a reduction of melanin 

deposition in modSP1 flies compared with wild-type flies and spn27A deficient flies. The reduction 

was less marked than that of Bc flies. A speculate pathway can be visible in figure 27, in which 

ModSP was localized in both Toll pathway and melanization reaction. 
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Those speculations prompted us to do a specific experiment to measure PO activity in hemolymph 

of modSP1 flies compared to wild-type, spzrm7 and GrassHerrade flies. Figure 28 shows the PO 

activity of hemolymph extract collected 5 hours after infection with M. Luteus. This experiment 

reveals that modSP1 flies blocked the melanization pathway to the same extent that the spzrm7 or the 

GrassHerrade mutation.  

 

Those results suggest that ModSP does not participate in the melanization pathway, but it indirectly 

controls the melanization cascade as observed for other components of the Toll pathway. 
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5. Discussion 

In this thesis, we demonstrated that a null mutation in the modSP gene blocks the activation of the 

Toll Pathway. We show that ModSP is a serine protease acting in the proteolytic cascade necessary 

for the maturation of Spz the ligand of the Toll receptor. We also demonstrated its importance to 

activate the Toll pathway in response to both Gram-positive bacteria and fungi. This notion was 

supported by both survival and RT-qPCR analysis of flies infected with those pathogens. Epistatic 

analyses also demonstrated that ModSP acts downstream of PGRP-SA and GNBP3, but upstream 

of Grass. Moreover, we showed that ModSP did not participate in the Psh-dependant branch of the 

activation of Toll, as shown with the infection of proteases from bacterial and fungal origins. Also, 

the analysis of a double mutant psh1;modSP1 suggested a synergistic action of the ModSP and Psh 

pathways in the response against filamentous fungi. Those fungi can be directly detected by PRRs 

from GNBP3 branch or through their virulence factors for the activation of the Psh-dependant 

branch. Another experiment with Beauvaria Bassiana (Figure 29) showed similar results to that 

obtained with A. Fumigatus, although we saw that the Psh-dependant branch plays a more 

significant role for the defense against this entomopathogenic fungi. 

 

We also showed that Grass and ModSP function in a common SP cascade and that ModSP is the 

apical SP of the proteolytic cascade. Those results are supported by biochemical experiments that 

suggested a direct interaction between ModSP and GNBP1. Moreover, biochemical analyses in T. 
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molitor indicated that Tm-MSP directly interacts with the PRR complexes involved in the sensing 

of peptidoglycan (Kim et al, 2008) like Dm-MSP. The participation of ModSP and SPE in an 

extracellular pathway linking PRRs recognition to Spz activation in both T. molitor (Coleoptera) 

and D. melanogaster (Diptera), which diverged about 250 million years ago, demonstrated the 

conservation of this extracellular signalling module in two different insects. Moreover, in the 

lepidopteran Manduca sexta, a modular SP hemolymph protein 14 (Ms-HP14) similar to ModSP, 

regulates the melanization cascade in response to microbial infection (Wang et al, 2006). This 

indicates the existence of similar mechanism regulating the immune SP cascades in various insects. 

Interestingly, a similar organization was also observed in the proteolytic cascade that regulated Toll 

during dorso-ventral patterning of the embryo in which the apical SP is Gastrulation Defective. 

Thus, we have been able to reveal a similar level of organization for various proteolytic cascades in 

different insects (Figure 29). Nevertheless, data obtained from our Korean collaborators suggests 

that ModSP does not cleave Grass (BL Lee, personal communication). This suggests that the 

cascade regulating Toll pathway activation in Drosophila is more complex and may involve more 

than 3 Sps. 

 

 

Another important result coming from B-L Lee laboratory was the fact that ModSP exhibited a high 

level of auto-proteolysis (BL Lee, personal communication). Those results support a model in 

which recruitment of ModSP by PRRs, when challenged by pathogens, can increase its local 



 Page 31/34 

concentration, a situation sufficient for its auto-proteolysis. The fact that ModSP over-expression 

was sufficient to activate the Toll pathway also support this idea. In fact, we showed that over-

expression of a full length version of ModSP was sufficient to reach a high level of Toll activation, 

in contrast to other SPs that generally required the over-expression of a pre-activated form to fully 

induce the cascade. This demonstrates again that ModSP can be auto-activated, in case of over-

expression of a non-reactive ModSP. Moreover, it had also been proved that a recombinant form of 

ModSP produced in Baculovirus appeared to be unstable as a zymogen. This was certainly due to a 

high level of auto-proteolysis. This high level of auto-proteolysis did not permit in vitro 

reconstitution experiments using ModSP, GNBP1 and PGRP-SA, but we had already provided 

biochemical experiments suggesting that ModSP interacts with GNBP1. 

We are far away from a total understanding of the Toll pathway activation. The high number of SPs 

encoded in the Drosophila genome (Ross et al, 2003) complicates the analysis of this question, 

since a lot of them have not been already linked to a specific function yet. We have nevertheless 

evidence that an additional SP functions between ModSP and Grass in the proteolytic cascade 

leading to the Toll pathway activation. Further work has to be done to identify this SP and to fill the 

gap between the ModSP active form and Grass activation. Furthermore, no serpin responsible for 

the regulation of this proteolytic cascade has been discovered yet despite the critical role of this 

family in the negative control of such process. Further experiments combining genetics, 

biochemistry and cell biology are required to identify additional components of this cascade and to 

clarify in vivo how and where proteolytic cascades downstream of PGRP-SA or GNBP3 are 

activated in the hemolymph compartment.  
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