Computation and Visualization of Ideal Knot Shapes

THESE N° 4621 (2010)

PRESENTEE LE 26 FEVRIER 2010

A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
CHAIRE D'ANALYSE APPLIQUEE
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Mathias CARLEN

acceptée sur proposition du jury:

Prof. M. A. Shokrollahi, président du jury
Prof. J. Maddocks, directeur de thése
Prof. G. Abou Jaoudé, rapporteur
Prof. F. Cazals, rapporteur
Prof. E. Rawdon, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Suisse
2010

ii

Abstract

We investigate numerical simulations and visualizations of the problem of tying a knot
in a piece of rope. The goal is to use the least possible rope of a fixed, prescribed radius
to tie a particular knot, e.g. a trefoil, a figure eight, and so on. The ropelength of
the knot, the ratio to be minimized, is its length divided by its radius. An overview
of existing algorithms to minimize the ropelength is given. They are based on different
discretizations. Our work builds on the biarc discretization, for which we have developed
an entire C++ library libbiarc. The library contains a variety of tools to manipulate
curves, knots or links. The biarc discretization is particularly well suited to evaluation
of thickness.

To compute ideal knot shapes we use simulated annealing software, which is also
included in libbiarc, on a biarc discretization. Simulated annealing is a stochastic
optimization algorithm that randomly changes the point or tangent data. In the quest
to find appropriate moves for this process we arrived upon a Fourier representation for
knots, which allows global changes to the curve in the annealing process. Moreover, with
the Fourier representation we can enforce symmetries that a given knot might have. To
identify these symmetries we use visualization of simulations where symmetry was not
enforced.

Visualization of knot shapes and their properties is another important aspect in this
work. It ranges from simple graphs of the curvature of a knot, through 2-dimensional
plots of certain distance, circle or sphere functions, to 3-dimensional images of contact
properties. Specially designed color gradients have been developed to emphasize crucial
regions of the plots.

We show that the contact set of ideal torus knots is a curve that is ambient isotopic
to the knot itself, which is a result first suggested by visualization. A combination of
numerics and visualization made us aware of a closed trajectory within the trefoil knot,
a 9-billiard. Consequently the symmetries and the billiard make it possible to represent
the trefoil with only two curve sub segments.

We also anneal and visualize knot shapes in the unit 3-sphere or S?. In particular we
present the contact set of a candidate for optimality, whose curved contact chords form
Villarceau circles, which in turn span a Clifford torus embedded in the unit 3-sphere.

Finally some knots and contact surfaces are constructed as physical 3D models using
3D printers.

Keywords: Ideal knots, simulated annealing, Fourier knots, curve symmetries, sci-

iii

iv

entific visualization.

Résumé

Dans cette these nous étudions comment nouer une corde, au travers de calculs numé-
riques et de la visualisation. L’objectif est d’utiliser le moins de corde possible d’un
rayon fixé pour nouer un nceud de trefle, un nceud en huit, etc. La “longueur de corde”
d’un nceud, grandeur que nous cherchons a minimiser, est définie comme le rapport
entre la longueur et le rayon de la corde. Nous présentons un vue d’ensemble des
algorithmes existants pouvant servir & minimiser la longueur de corde. Ces algorithmes
utilisent différentes discrétisations pour représenter un nceud. Notre travail est basé sur
la discrétisation des biarcs, pour laquelle nous avons développé une bibliotheque C+-+
libbiarc. Cette bibliothéque contient une multitude d’utilitaires servant a manipuler
et analyser des courbes ou des noeuds. La discrétisation des biarcs est particulierement
adaptée a I’évaluation de I’épaisseur.

Pour calculer des noeuds idéaux, qui minimisent la longueur de corde, nous utilisons
un algorithme appelé “recuit simulé”, qui est aussi contenu dans libbiarc. Le recuit
simulé est une méthode stochastique pour résoudre des problemes d’optimisation. Dans
notre cas, il modifie aléatoirement les points ou les tangentes de la courbe. En cherchant
une manieére appropriée de modifier un neceud lors du recuit simulé, nous avons trouvé
que la représentation d’un nceud en séries de Fourier se préte bien au processus, car elle
permet d’appliquer des changements globaux a la courbe. En outre, cette représenta-
tion permet d’imposer & un nceud les symétries qu’il est susceptible de présenter. Afin
de déterminer ces symétries, nous utilisons des techniques de visualisation des nceuds
auxquels on n’a pas imposé de symétrie.

La visualisation de nceuds et de leurs propriétés est un aspect important de ce travail.
Cela couvre de simple graphes de la courbure d’un nceud, en passant par des graphes en
deux dimensions de fonctions de distance, cercles ou spheres, jusqu’a des images en trois
dimensions des propriétés de contact. Nous avons développé des gradients de couleurs
spécifiques afin d’accentuer la structure fine des graphes en deux dimensions.

Nous montrons que ’ensemble de contact des noeuds de tore idéaux est une courbe
qui est une isotopie ambiante du nceud lui-méme. Ce résultat a d’abord été suggéré par
la visualisation. En effet, une combinaison de résultats numériques et de visualisation
nous a fait découvrir une trajectoire fermée a 'intérieur du nceud de trefle, le 9-billiard.
Ceci implique qu’on peut décrire le trefle avec seulement deux sous-segments du nceud
intégral.

Des simulations et la visualisation ont aussi été appliquées a des noeuds dans la

vi

sphére unité S3. En particulier, nous présentons l’ensemble de contact d’un candidat
optimal, pour lequel cet ensemble forme des cercles de Villarceau qui génerent le tore
de Clifford plongé dans S3.

Finalement, nous avons fait imprimer en 3D quelque nceuds et des surfaces de con-
tact.

Mots clés: Neeuds idéaux, recuit simulé, noeuds de Fourier, symétries de courbes,
visualisation scientifique.

Acknowledgements

Credits and thanks

Supervisor

Thesis committee member
Thesis committee member
Thesis committee member
Thesis commitee president
Coding mentor

IT & science

Secretary

Team mate

Photographer

Roommate

Roommate

IM and bike buddy

Love and support

My ©

Prof. John H. Maddocks
Prof. Eric Rawdon

Prof. Frédéric Cazals
Prof. Georges Abou-Jaoudé
Prof. Amin Shokrollahi
Ben Laurie

Philippe Caussignac
Carine Tschanz

Henryk Gerlach

Bruno Favre

Benoit Crouzy

Francois Roy

Gillian Coudray

Parents & sister
Maroussia Favre

vii

viii

Contents

2 Theoretical background|

[3.2 Symmetry of curves|

3.3 Symmetry of Fourier Knots| 000000

I Visualization

4.1 Color gradients|
B2 curviewl v o
4.3 pp.ptandttplots|.
.4 Visualization of curves in S°1.

[6 Computations of ideal knot shapes and the libbiarc|
H.1 SONOI e e e

5.2 Gradient flows and RidgeRunner|
.3 Metropolis Monte-Carlo|
[5.4 Simulated annealing in R3|
.o Ideal Fourier knot results] oo oo
[5.6 Simulated annealing in S| L.
[5.7 Thickness computation|. L.
5.8 Parallelizing the thickness algorithm|

6 Contact sets and contact surfaces|
6.1 Contacts and the pt tunction|
6.2 A classic : the R® trefoill o o

6.3 Surgery on a space invader|

6.6 Homotopy|

ix

ot

15
15
16
18

25
25
28
30
34

39
39
42
44
45
49
55
58
60

X CONTENTS

[6.7 On the angle condition for ideal knots| 91

[7 Printing a contact surface in 3D)| 97
[7.1 Closing the surfacel 97
[7.2 Printing the surfacein 3D| 99

8 _Conclusion| 101
[A_1ibbiard 105
[A.1 Command line options| 105
[A.2 Key bindings| 106
[A.3 Annealing] 107
[A.3.1 Implementation|., 107

|A.3.2 Toy problems| 108

(B Blender Python plugins| 111
IC_Two theorems| 115

(Bibliography| 117

Chapter 1

Introduction

In this thesis we elucidate how scientific visualization and computation can aid in the
understanding of properties of thick curves and knots embedded in R? and S3. In the
absence of thickness these objects are well known and have been extensively studied in
the rather abstract world of topology and differential geometry. Problems of thickened
curves and tubes have also been studied. There are however still numerous points where
clarification is needed. For example ideal knot shapes are a specific class of curves where
one tries to tie a knot of given topological category with the least rope possible, subject
to a width being prescribed. At first glance this seems like a very natural and easily
solved problem. In practice, however, only a few simple cases are known exactly, e.g.
the circle or unknot, and the Hopf link. The latter is formed by two circles running one
through the other. Our concern in this text is dedicated to knots. The circle is not non-
trivially knotted, and already for the first non trivial knot, namely the trefoil, no analytic
expression for its ideal configuration is known. Visualization was key to understanding
properties of numerically computed ideal configurations of knot shapes. In particular
contact characteristics of ideal knot shapes have been investigated based on graphical
representations of some form. Standard differential geometry describes quantities like
curvature and torsion of a space curve that can easily be visualized on the curve in 3D to
see where the curve is highly curved or wound. During this work graphical applications
have been developed to do such tasks. A special type of 2-dimensional plots of curves
related to line segments, circles and spheres running through, or tangent at, points on
the curve are studied and visualized. The connection between a given knot in space
and its 2-dimensional plots permitted conclusions to be drawn, eventually leading to
hypotheses and formal proofs of conjectures motivated by visualization.

The structure of the thesis is as follows. A review of the mathematical concepts
of space curves is given in Chapter Further the notion of a thick curve and knot
classes are discussed. The special class of ideal knot shapes is also introduced in that
chapter. An ideal knot minimizes the ropelength, i.e. the length of the knot divided
by the maximum tube radius, also called thickness of the curve. The second section of

2 Introduction

this chapter describes the biarc discretization where a curve discretized by point-tangent
data is interpolated by joining neighboring data points with two circular arcs in a C':!
fashion.

The third chapter, which is joint work with H. Gerlach, introduces another numerical
approximation for curves based on a Fourier representation. A knot can be written as a
Fourier series and the main reason for this parameterization is that symmetry can easily
be enforced. The main result is the conjectured symmetry groups for the trefoil, the
figure eight knot and the 5; knot, where the symmetries are reflected in the dependency
of the Fourier coefficients of the knot.

Chapter [4] deals with the C++ library libbiarc developed during this thesis which
contains tools to manipulate, analyze and visualize open or closed curves and links based
on the biarc discretizationﬂ For our purposes the main feature of the biarc discretization
is that thickness can be efficiently evaluated. In addition to the numerical tools included
in the libbiarc, there are graphical applications to visualize different aspects of curves
and knots. The viewer program curview has been used to inspect knot shapes and
their properties and eventually grew to a visual scientific tool box. The investigation of
an example curve in this chapter takes the reader through the different steps involved,
when doing a “standard” analysis, in our sense, of a knot, or ideal knot. This includes
the analysis of 2D plots and their visualization in 3D in the viewer. It is possible to
generate most of the graphs and 2D plots presented throughout this thesis with curview
or libbiarc. Further, the viewer interface allows the user to edit and create curves and
export the final result as a Povray or renderman RIB file, so that they can be rendered
in a photorealistic renderer. Data formats can cause severe headaches, which is why
libbiarc includes conversion tools for a few of the standard 3D formats, such as STL,
OBJ and PLY. To be able to use the curves we study in other software packages that
are better suited for a specific task, we always had the data format problem in mind.
Near the end of this work we used Blender to render most of the images and 1libbiarc
contains a set of Python scripts that can import specific information related to ideal
knots into Blender.

Chapter [5] gives an overview of existing or extended algorithms to minimize the
ropelength of a knot. In particular we implemented the Fourier representation from
Chapter [3]in a simulated annealing program where we enforce the symmetries suggested
by other numerical computations and visualizations of the knots. Simulated annealing
is a stochastic algorithm for optimization. This algorithm has been extended to knots
in S®. Results are presented along with the algorithms used. The two last sections
in this chapter detail the algorithm to compute the thickness of a biarc approximated
curve and a parallelization thereof. Most of the simulations in this thesis use the biarc
discretization to evaluate the thickness of a knot.

!The starting point was knotlib from B. Laurie who helped a lot during the different stages of the
development of the code and the author would like to thank him for his interesting comments and helpful
criticisms.

In Chapter [6] the notion of a contact set and contact surface of an ideal knot is
introduced. The major part of the contact set discussion is dedicated to the trefoil
in R3. A surprising discovery when analysing the trefoil was the existence of a closed
trajectory in the trefoil’s contact set. If we follow its contact chords from a specific
location on the trefoil, then after 9 iterations we end up at the point we started. This
and the knots’ symmetries aid in understanding the contact connectivity of the trefoil,
whose description can be reduced to only two sub segments. The contact sets of the
figure-eight and the class of torus knots in R? are treated after the trefoil. The torus
knots contact properties lay the foundation for the homotopy argument in Section [6.6]
which is a proof that, under some assumptions, the contact points of a torus knot are
again a curve, which has the same knot type as the base curve. The homotopy proof
is again joint work with H. Gerlach. The remaining part of the chapter is dedicated to
an angle condition for ideal knot shapes where a compatibility condition on the angles
between the normal of the knot and its contact chords is derived.

The final Chapter [7]is intended to be more artistic in nature and describes how to
print a contact surface of a given knot shape on a 3D printer with a few images of the
resulting models?}

2We would like to thank G. Abou-Jaoudé for printing the first set of trefoil contact sets on his 3D
printers. The photos of the models are by courtesy of B. Favre.

Introduction

Chapter 2

Theoretical background

2.1 Curves, thick curves and ideal knots

In this section we introduce standard concepts related to space curves. Space curves
are well studied for example in differential geometry [12]. We will also describe the less
widely studied thick curves [34] [43], and ideal knot shapes.

A curve 7 is the image of a continuous 3-dimensional vector function v(s) € C°(I,R3),
where s € [is a parameterization variable. The interval I is a closed subset of the real
line R. A curve v is a C*-curve when v(s) € C*(I,R?). We call a curve v smooth, if it is
differentiable to any order and has a non-vanishing tangent field 7/(s) # 0 for all s € I.
A smooth curve can be reparametrized such that |y/(s)| = 1. This is called a unit speed
or arc-length parameterization. If a curve ~ is parameterized by arc-length, then the
interval I is [0, L], where L is the length of the curve. A curve is closed if y(L) = ~(0),
in which case we interpret the parameter s modulo L. The curve is smoothly closed if
the derivatives agree up to any order at s = 0. And finally, a curve is simple if there
is no self intersection, meaning that ~y(s) is an injective map where v(s) = ~(t) only if
s=1.

For an arc-length parameterized curve v € C3(I,R?) the unit tangent field is ¢(s) =
7' (s). We define the curvature k as t'(s) = k(s)n(s), where n is called the principal
normal with |n(s)| =1 and k(s) > 0. Therefore we have k(s) = |y”(s)|. The curvature
k is the scalar rate of change of the tangent field #(s). The radius of curvature p at s is
p(s) = 1/k(s). If we consider the binormal b(s) = t(s) x n(s), then the negative of the
rate of change of the binormal is the standard torsion 7, that is ¥'(s) = —7(s)n(s).

The definition of a curve as a one dimensional object embedded in space naturally
generalizes to curves in RV, N > 3. In particular we will be interested in curves lying
in S?, which is the unit sphere embedded in R*. Later in this text we will be interested
in objects that physically have a certain volume, so we extend the definition of a curve

5

6 Theoretical background

to a thick curve.

Definition 2.1. Let v(s),s € I be a closed, smooth curve. A thick curve with radius
r > 0 is the tubular neighborhood

T,={peR’|3Isel|lp—(s) <r}

It will be clear from the context whether we write + for a one dimensional curve or a
thick curve. If we consider the cross section of a thickened curve v at s, where the cross
section lies in the normal plane to 7/(s) at s, then we can identify r as the radius of a
tube around the curve . A thick curve can be seen as a physical piece of rope with a
certain radius r. When we deform the rope its shape will always be constrained by the
radius r. This is due to contact of the curve with itself. There are two different cases
preventing the rope to intersect with itself, cf. Figure[2.1] The first case is a local effect.
We can not bend the curve more than the radius of the rope itself. This means, if the
local curvature k gets larger than 1/r, then we have self-intersection. The second case
is a global contact and prevents the rope from passing through itself.

@ O

Figure 2.1: (a) local, or (b) global self contact of a curve

Consider a thick curve v and increase the tube radius r until we hit one of the two
discussed barriers. Whether this is local curvature x or a global contact depends on the
shape of the curve. This maximal radius r is called the thickness A[y] of the curve [24]
and will be defined mathematically in what follows.

A chord c¢(s,0) on the curve 7 is given by the oriented linear segment between two
points on the curve

c(s,0) =v(s) — (o), s,o € 1. (2.1)

We call a chord ¢(s,0), s # o, on the curve v double critical if
c(s,0)-t(s) =c(s,0)-t(o) =0. (2.2)

The points v(s) and (o) where the chord is double critical are also called double critical
points. Further we define the half-distance or pp function (point-point) [66] by

Pp(s,0) = Lle(s,0), (2.3)

5l

which is a symmetric function whose smoothness depends on the curve ~.

Curves, thick curves and ideal knots 7

The authors in [37] have shown that for a C? curve, the thickness of a curve is the
smaller of the minimal radius of curvature and the minimal half-distance between double
critical points. Therefore the thickness A of a curve gamma - is

Ay = min { mi i 2.4
[7] = min {min p(s), (s{g)lgdcpp(s,a)}, (2.4)

where dc is the set of double critical points on v with s # ¢. The half-distance function
is zero along the diagonal s = o. A double critical chord ¢ of norm 2A will also be called
a contact or contact chord.

We now introduce two other functions pt (point-tangent) and ¢t (tangent-tangent)
that can be used to define the thickness in another way. Three points v(s),v(c),v(7) €
R3 define a unique circle with radius r. If we take the limit 7 — o, then we obtain
a circle tangent at v(o) and passing through ~(s). The radius of this circle is the pt

function
_ pp(s,0)

= 2.
|sinf] ’ (2.5)

pt(s,0)

where 6 is the angle between the tangent at (o) and the chord ¢(s, o). The pt function
is not symmetric. So there is also the function tp, where the tangency is in the first
point. However in this thesis we will only consider pt explicitly, since the other function
is equivalent in the sense that the needed results remain the same.

In [24] the thickness of a curve was defined for C? curves via the global radius of
curvature function pg(s), where

pa(s) = ppi(s) = inf pi(s, o). (2.6)
oel
The thickness A given as follows is then equivalent [24] to (2.4).

Agh] = inf pa(s) (2.7)

The function pt(s,o) does not vanish along the diagonal. If the curve is C?, then
in the limit 0 — s the circle converges to the osculating circle at s, whose radius is the
radius of curvature p(s). The curvature profile of a smooth enough curve ~ is therefore
given by the diagonal of the function pt. At a global contact the function pt(s, o) is
exactly half the distance of the corresponding contact chord ¢(s,o). The infimum in
Equation picks out the smallest of these local and global contacts yielding the
thickness of the curve.

For the third function ¢t we consider spheres on a curve 7 [26, 11, [66]. This time
we start with four points v(s),v(t),y(c) and v(7) on a curve. Four non-coplanar points
in space uniquely define a sphere with radius r. By taking the limits t - s and 7 — ¢
we obtain a sphere tangent to the curve at the points v(s) and (o). The radius of this
sphere is the function tt given by

| sin ¢
t(s) x t(o) - e(s,o)]

tt(s,0) = pp(s, J)’ (2.8)

8 Theoretical background

where e is the normalized chord e(s, o) = ¢(s,0)/|c(s,)| and the angle « is that between
the unit vectors t(o) and R(e)t(s), where R(e) is the reflection matrix

R(e) =2e® e — idgs. (2.9)

Note that e®e is the standard outer product and idps the identity matrix. For a curve y
in S* we have to adapt Equation . In particular the mixed product t(s) xt(o)-e(s, o)
is not defined. This product is the volume of a parallelepiped spanned by the vectors
t(s),t(o) and e(s,o). The volume of this parallelepiped squared is also given by the
Gramian [17, 4]

G(x1,...,1,) = det(MT M), (2.10)

where M is the matrix whose columns are the vectors z1,...,z, € RY. In S® we can
write the norm of the mixed product in (2.8) as \/G(t(s),t(c), e(s,o)). The tt function
for a curve in v € C'(I,S?) is then

| sin o
G(t(s),t(0), e(s,0))’

where the angle « is the same as in (2.8)). Consider a critical chord ¢(s,t) of a curve 7
for some s,t € I. If we draw a circle centered at (y(s) 4+ v(t))/2 with radius pp(s,t),

(2.11)

tt(s,0) = pp(s, o) 7

the circle is tangent at y(s) and 7(t). Changing the tangent on one side yields a larger
circle since we lose orthogonality there. Thus pp(s,t) < pt(s,t) as is already obvious
from (2.5). A similar argument gives pt(s,t) < tt(s,t). However, an interesting relation
between the functions pp, pt and ¢t is at double critical points or contacts [26], [66]

pp(s,t) = pt(s,t) = tp(s,t) = tt(s,t). (2.12)

In theory we are now able to compute the thickness A of a given closed curve. Knot
theory deals with closed curves, namely knots and links. We will briefly explain what a
knot or link is and how they are classified. More details can be found in standard knot
theory references such as [I}, 59].

Definition 2.2. 1. A knot or knot shape K C R? is the image of a closed, injective
(non-self-intersecting), continuous curve ~y in R3.

2. A link L C R? is the union of a finite number of pairwise disjoint knots, L =
KiU---UK,,. A knot is a special case of a link.

3. An ambient isotopy is a continuous map h : R x [0,1] — R with h(-,0) = idgs
and h(-,t) a homeomorphism for all t € [0, 1].

4. Two knots K1 and Ko are ambient isotopic (notation: Ky ~ Ks) if an ambient

isotopy h : R3 x [0,1] — R3 exists with h(K;,1) = Ka.

An ambient isotopy between two knot shapes exists if it is possible to transform a
real knotted rope into the other without having to cut it. The definition of an ambient

Biarcs 9

isotopy also excludes the pull tight phenomenon, where one can remove a knot by pulling
at both ends until the knot converges to a single point. The isotopy class of a knot K
is written [K]. Previously we discussed that the radius of the tubular neighborhood of
a curve K is determined either by local curvature or a global contact, this radius is the
thickness A[K]. If we now try to deform the knot K in isotopy class [K] with the goal to
make the thickness as large as possible by keeping its length L[K] fixed, then we obtain
a sub-category of knot shapes, namely ideal knots.

Definition 2.3. An ideal shape K* [7, 29, [67]] of the isotopy class [K] is a knot shape
that minimizes the functional length/thickness within its isotopy class, i.e. an ideal knot
shape is a solution of

M — min

AlK]
subject to K ~ K*. The positive number L|K]/A[K] is called the ropelength of the knot
K.

The notation S for the parameter interval I will often be used during this thesis
and means that a closed curve can be parameterized with constant speed such that
I =S =R/Z. Another point is the function space in which ideal shapes live, which has
been proved to be CL1(S,) for curves in R? [8 22 25], and S? [19].

We remark that ropelength is a special form of a knot energy [14}, 47, 46, 57]. A knot
energy is a functional E[-] on a knot K which can usually be minimized by strategically
deforming K. Different knot energies will not necessarily lead to the same minimizing
shapes. In this thesis we consider only the thickness and ropelength energy.

2.2 Biarcs

This thesis is heavily based on numerical computations of knot shapes. At this point we
introduce several approximations for curves. This section gives a high-level overview of
the concept of a biarc, following the definitions and conventions set in [6], [64], [T}, 66) [71].
First we start off by introducing the data we want to interpolate with biarcs.

Definition 2.4. Point-tangent data is of the form (q,t) € J := P x7T. A point-tangent
data pair is of the form ((po,to), (p1,t1)) € T X J with pg # p1.

For curves in R? the point space P is R? and the normalized tangent space 7 is S?.
For S? we have P = 7 = S?. What follows applies as well to point-tangent data in
RN x S¥=1 or data constrained to lie on a unit sphere SV x SV for N > 2 (cf. [71]).

Definition 2.5. A biarc (a,a@) is a pair of circular arcs, joined continuously and with
continuous tangents, that interpolate a point-tangent data pair. The common end point
m of the two arcs a and @ is the matching point of the biarc.

10 Theoretical background

121

Figure 2.2: A biarc is a pair of circular arcs, assembled with a common tangent t,, at a
matching point m, that interpolates a given pair of point-tangent data ((po, to), (p1,%1))-
The biarc lies entirely on a unique sphere defined by the two tangent pairs.

The construction of Definition 2.5 is illustrated in Figure 2.2 A matching point m
is not unique for a given point-tangent data pair. In order to state where the matching
points m can lie, it is necessary to define a few more objects. The data (po, to) and (p1, t1)
define a unique sphere (neglecting pathological cases). This double tangent sphere has
radius

_ldyt-

2 /Gl te)
where d = p1 — pg is the chord between the data points and e the normalized chord
e = d/|d|. The vector t] is a reflection of t; along e (see Figure . Using the
definition of the reflection matrix (2.9) we can write t; = R(e)t;. In R3, the center of
the sphere is given by

(2.13)

|d| tTXtO
c=pg+ ————.
Po 2t0><t1~6

t*

Figure 2.3: Action of the reflection matrix R on ¢ along p; — po.

As illustrated in Figure [2.4] there is now a unique circle Cy, tangent to ¢ at py and
running through p1. A similar circle C exists with a tangency in ¢1. The circle bisecting
the angle between Cp and C; on the tangent sphere is denoted C (i.e. the circle with

Biarcs 11

tangent to + t7 at pp and passing through p;). We are actually only interested in the
matching points m lying on the smaller arc of C'y between pg and p1, denoted C7}. This
description of the circles Cy, C7 and C. is what the next proposition states.

Figure 2.4: Biarc construction for point-tangent data pairs (pg,to) and (p1,¢1). The
tangents define the circles Cy and C;. The bisector circle C is at half the angle between
the circles Cy and Cp. The matching points m for the biarc lie on C, in particular we
only consider m on the smaller arc of circle between py and p; noted C7.

Proposition 2.1 (Sharrock). For a point-tangent data pair ((po,to), (p1,t1)) € T x J
that is non-cocircular (Cy # C4), there is a nonempty set of possible matching points
m corresponding to compatibly oriented arcs. For each matching point m the biarc is
unique. Moreover

1. The set Cy of all possible matching points is a circle (punctured at po and py).
2. All biarcs lie on the double tangent sphere generated by ((po,to), (p1,t1)).

3. There is a unique biarc through every point on the double tangent sphere punctured
at po and py (i.e. the set of all possible biarcs is a simple covering of the double
tangent sphere).

Since biarcs will be used to approximate a smooth curve, we have to impose condi-
tions on the data itself.

Definition 2.6. The point-tangent data pair ((po,to), (p1,t1)) € J X J will be called

proper if
(p1 —po) -to > 0, and (p1 — po) - t1 > 0. (2.14)

12 Theoretical background

b1

bo bo

Figure 2.5: The isosceles Bézier control triangle of an arc a(7), 7 € [0, 1].

Then the biarc interpolating this point-tangent data pair is also called proper, given that
the matching point m lies on C7 .

Proper biarcs (given proper data pairs) interpolating the data imply a biarc curve
with a continuous tangent field.

Proposition 2.2 (Smutny [66]). For a proper point-tangent data pair ((po,to), (p1,t1)) €
I xT,

e The angle spanned by C* on the tangent sphere is smaller than .

e For any biarc with matching point m € C7, the angle spanned by both sub-arcs a
and @ is smaller than .

The biarc approximation of a sufficiently smooth curve is now given by a set of proper
biarcs. The next step is the parameterization of the sub arcs of each biarc. There are
many ways to parameterize an arc of a circle. The approach taken here is with an
isosceles triangle of Bézier control points [52]. For the control points by, b1, be € RN as
illustrated in we have

(1 —7)2by + 2wT(1 — 7)b1 + 72b2

(1 —T)2+2w7-(1 _7-) + 72 ’ T E [07 1]7 (215)

a(r) =

where w is the cosine of the base angle § of the isosceles control triangle, that is,

(b1 —bo) - (b2 — bo)
w= > 0.
b1 — bo| |b2 — bo

Note that the parameter 7 is not an arc-length parameterization of the Bézier curve.
Given a pair of point-tangent data, all the necessary parameters involved in constructing
two Bézier control triangles are summarized in the following lemma.

Lemma 2.1 (Smutny). Given a proper point-tangent data pair ((po,to), (p1,t1)) € I XT
and a proper biarc (a,a), then:

Biarcs 13

e The Bézier control points of the arc C% are given by

(to - d)po + (t1 - d)p1 |d|?(to — t1)

bo =po, b1 = bo=p1. (2.16)

to-d+t1-d Q(to'd—{—tl'd)’
o The Bézier control points of the arc a are

b b +A df* t b (2.17)
= = =m .

0 = Do, 1=7Po 2y - d 05 2)

and the Bézier control points of the arc a are

b b A il t1, b (2.18)
= m = — = .

0) 1 b1 2t1 d 1, 2 b1,

where m € C7 is the matching point given by the formula

_ Alto-djpo+ At -d)pr AAJd(to — t1) (2.19)
Aty -d+ Atg - d 2(Aty - d+ Atg - d)’ '

and A and A € (0,1) are two parameters that are roots of the equation
0=AA1—ty-t1)+(A+A—-1)2tg-et; e (2.20)

If A is regarded as the independent variable, A is given by

L 2N (o) (o)
A = AL —tg-t1)+2(tg - €) (t1 - €) (2.21)
2(1—4) (to-d) (- d)

AL —to - t1)|d]* +2(t0 - d) (t1-d)

Alternatively if a matching point m on C7 is given, the biarc parameters A and A
are

to - d |m — pol? _ ty-d|p —m|?
0 - d|m—po and A= lp1 —m|

A= ,
to - (m —po) |d[? t1- (pr —m) |d|?

(2.22)

with d as defined in Equation |2.15.

The matching point m can be chosen freely on C7 for every biarc approximating a
curve. One possibility is to choose m such that it has the same Euclidean distance from
po and p1. The matching points m lie on €} whose Bézier control points by, b1 and bs
are given by . The arc of circle is given by and the midpoint m satisfying
the equal distance condition is

bo + 2wby + by
m=a(1/2) 2w+ 1)

for a pair of point-tangent data (po,to), (p1,t1). Let b,b be the sub-arcs of circles of

biarc a(7),7 € [0,1] and 7(b),r(b) their radii. The symmetry of the triangle po,m, p1

implies that r(b) = r(b).

These are all the tools necessary to construct a biarc approximation of a smooth
curve v in RY or RY by interpolation of M point-tangent data pairs.

14

Theoretical background

Chapter 3

Fourier representation of closed
curves

3.1 Fourier knots

A periodic function f(t) can be written as a Fourier series [68, [13] where the linearly
independent base functions are sin(kt) and cos(kt) for ¢ € [0,27). For a closed curve
7(t),t € S embedded in R? we can therefore define 3 Fourier series, one for each coordi-
nate function of ~.

Definition 3.1. Let C be a finite sequence of pairs of R3-vectors:
C ={(ai,bi) izt ai,b; € R

We can use such a sequence as Fourier coefficients and define

k
~y(t) = Z (a; cos(fit) + b;sin(f;t)), te€0,1] (3.1)
i=1
as a curve in C*(S,R3) with frequencies f; = 2mi. If the curve is injective, we call v a

Fourier knot.

Remark 3.1. Note that the sum in the above definition starts at i = 1 and the con-
stant ag s neglected. This term is independent of the parameter t and therefore just a
translation of the Fourier knot.

The Fourier representation of knots has been used in for example [30, [69], where the
emphasis is on finding simple Fourier shapes of given knot types. Ideal knot shapes are
known to live in CL1(S,R?) [8], 19} 22} 25] and Fourier series are functions in C'.

A Fourier representation has several advantages over the biarc representation intro-
duced in Section

15

16 Fourier representation of closed curves

1. They make it easy to inherently model symmetry (see Section [3.2) and by that
improve computation speed.

2. Any sequence of coefficients yields a valid Fourier curve while point biarc data
needs to be “proper” (Definition [2.6)), which is sometimes difficult to ensure.

3. It is trivial to improve the approximation [3.I] by adding more coefficients.

4. If an ideal knot is given by its Fourier representation, which is a C*° approximation,
then higher derivatives involved in curvature and torsion can be computed (even
though the ideal shape might not itself be smooth enough to be differentiable).

At this point we have to ask the reader to trust that the thickness of a biarc curve
can numerically be computed very precisely (the details will follow in Section . The
main disadvantage for Fourier knots is, that no efficient computer-code exists to evaluate
the said thickness. So we work around this problem by interpolating the Fourier knot
with a sufficiently fine biarc curve and evaluate thickness on the latter. Further, unlike
with biarcs, the Fourier representation is non-local.

3.2 Symmetry of curves

The definitions we give hereafter stress that a curve has a symmetry if and only if the
resulting shape is identical to the original with respect to their parameterization. In
other words, let v be the original curve and ~s,,, the shape after a symmetry has been
applied. It is in fact only a symmetry if v(s) = vyoym(s) for all s.

Definition 3.2 (G-Symmetry). Lety : S — RY be some curve and G C Aut(C°(S,RV))
a group acting on CO(S,RY). We call v G-symmetric iff

gy=~v VgeQqG.

Here Aut is the automorphism group, which is the set of bijective mappings from
a mathematical object to itself. Whenever g.y = v,Vg € G (G maximal in some re-
spect), we call G a symmetry-group of 7. Note that taking the maximal subgroup G
of Aut(C°(S,R")) is not what we want since it is too large. Now we can state how to
actually symmetrize a given closed curve.

Definition 3.3 (Symmetrized curve). Let v € C°(S,R3) be some curve and G C
Aut(CO(S,R?)) a finite group. Then

~ 296G9~’Y
G= 1~
G|

is the G-symmetrization of .

Symmetry of curves 17

Figure 3.1: The symmetry-group of a curve must not only take the shape into account,
but also the parameterization: The above egg-shaped curve is mirror symmetric to
the dashed line as a point-set, but applying the reflection m does not yield the same
parameterization.

As mentioned before, the parameterization of a knot plays an important role when
dealing with symmetries. The tools needed to ensure that a curve and its symmetry
image are identical are given now.

Definition 3.4 (Group of parameter shifts and reflections). For x € R we define the
parameter shift Sy : CO(S,R?) — C°(S,R3) by x of a curve v as

Sz[(t) = 7 (t +)

and the parameter reflection R, : C°(S,R3) — C°(S,R3) around x as

R:[y](t) = v(2z —).

Shifts and reflections form a group.

Note that symmetry-groups of a curve are usually not just a subgroup of the orthog-
onal group O(3) but a product of such a subgroup and a subgroup of parameter shifts
and reflections. Neglecting the latter would only give a point-wise symmetrical shape
not appropriate for our purposes. To make this difference clearer we give an example.

Example 3.1. Consider an egg shaped curve v as in Figure . The point-set y(S)
1s tnwariant under mirroring along the dashed line m. But the curve is not, because
~v(0) # m.y(0). Choose a t* such that v(t*) = m.y(t*) and define G := {id,m o Ry}
then v will be G-symmetric.

18

Fourier representation of closed curves

3.3 Symmetry of Fourier Knots

In the previous section we claim that symmetry is easy to enforce on Fourier knots, but
before we can compute the symmetrization given in Definition [3.3] we need to explain
how the Fourier coefficients transform with respect to a given symmetry operation. To

rotate or reflect a point in R? we have the following matrices.

Definition 3.5 (Rotation and Reflection Matrices). Let v € R3,||v|| = 1. We call
M, (w) = w —2(v,w)v a reflection matriz. M, mirrors on the hyperplane orthogonal to

v. We call

va1 (1 — cosar) + vz sin cosa + v3 (1 — cos) vov3 (1 — cosa) — vy sina

cos a + v? (1 — cos @)
Dv,a =
cosa + v3 (1 — cos)

v3vy (1 — cosa) —wvesina wv3vs (1 — cosa) + vy sina

a rotation around v by a € R.

The next lemma describes how the coefficients in the Fourier representation trans-
form when we reflect or rotate a Fourier knot or shift its parameterization.

Lemma 3.1 (Actions on Fourier knots). Let v(t) = >, (a; cos(fit) + bisin(fit)) be a

Fourier knot.

o Let M € O(3) be an orthogonal matriz. Then

with

or

(M.A)(t) = Z (&i cos(fit) + b; Sin(f,'t))

SRERIS

e Let S, be a parameter shift by some x € R. Then

with

or

a; = cos(fix)a; + sin(fiz)b,,

(Se)(t) = 3 (@i cos(fit) + bisin(fit))

7

<a7;> _ (cos(fix)I sin(fm)]) <ai>
bi —sin(f;x)I cos(fix)I) \ b;

v1v3 (1 —cosa) —vgsina vyvz (1 — cosa) + ve sin

b; = —sin(f;x)a; + cos(fix)b;,

Symmetry of Fourier Knots 19

Figure 3.2: Trefoil symmetry axis for two different views. The red axis (prisma) is
the 3-symmetry with rotation angles of 27/3. The three blue axis (ellipsoids) give the

second symmetry, which is a rotation of angle w. The generators of the symmetry group
are one element of both types.

o Let Ry be a parameter reflection around x € R. Then
(Re)(t) = Y (@i cos(fit) + bisin(fit))

with

C_Li = COS(QfZ‘JZ)CLi + sin(2f,~:c)b,~, l_)z = sin(2fix)ai — COS(inl')bi,
a;\ _ [cos(2fix)l sin(2f;x)l a;
bi) \sin(2fiz)I —cos(2fx)I) \b;

A priori we do not know a symmetry group for an ideal knot K within some isotopy
class [K] since there is no analytic expression for most of them. However studying
approximately ideal shapes obtained by the numerical computations explained in later
chapters suggests possible symmetries.

or

]

Conjecture 3.1 (Assumed symmetries of ideal 31, 4; and 5; knots.). After a reparametriza-

tion, a translation and a rotation the following symmetry-groups are suggested by the
numerical data:

o Trefoil (31):
Gz, = {(Dooyan3oSiys) o(DaooyrrmoR) 1i=0,1,2, j=0,1}
The number of elements in this group is therefore |Gs,| = 6.
e Figure eight knot (41):
Gy, = {(Do10yx051/2)" (Mg ©Do10yr20814) i,5=0,1}.
This group has |G4,| = 4 elements.

20 Fourier representation of closed curves

Figure 3.3: Three different views of the figure-eight knot symmetries. The first symmetry
is a rotation of angle 7 around the red axis. The second generator of the symmetry group
is a reflection through the light blue plane and then a rotation of angle 7/2 around the
red axis.

e The 51-knot has only two elements in its symmetry group given by
Gs, = {(Do1oyx0Ro) :j=0,1}

These symmetries are visualized in Figures 3.2 [3.3] and [3:4 The trefoil has a 3-
symmetry by rotating the knot by an angle of 27/3 around the red axis. The second
set of symmetries is a rotation by 7 around the green axis from the center of the knot
through the middle of an ear as seen in Figure [3.:2l The generators of the symmetry
group are one of each type stated before. With these two elements we can produce
the whole group. The figure eight knot has a slightly less obvious symmetry group. A
rotation by 7 about the red axis in Figure [3.3]is a first symmetry. Another symmetry
is obtained by rotating the knot by /2 around the same axis and reflect it through
the transparent blue plane. These are the generators of a symmetry group with four
elements. Finally the 5;-knot can be mapped to itself by a rotation by 7 around the
red axis as depicted in Figure [3:4 Note that we did not include the reparametrization
in our explanation since it is intrinsic to the curve and not visualized in the figures.

Lemma 3.2 (Fourier coefficients of 31, 41 and 51). Assume that symmetry Conjecture
3.1 is true. Then the Fourier coefficients must fulfill the following equations:

e Trefoil: For ¢ € N:

azi+1,1 = —b3it12 €R, aziy12 = aziy1,3 = b3it1,1 = b3i+1,3 =0,
asi+2,1 = bzit22 €ER, agiy22 = agito3 = b3i12,1 = b3i423 =0,

b3ir33z € R, a3i431 = a3i43,2 = a3i43,3 = b3i43,1 = b3i132 = 0.

Symmetry of Fourier Knots 21

e 4y: Forie N:

a4i11,1 = bait13,04i113 = —bgiy11 €ER, agi412 = bgir12 =0,
(4122, 045122 €R, aai421 = ai42,3 = bait21 = baig23 =0,
(45131 = —b4i133,04i133 = bgiy31 €ER, agi432 = bgi432 =0

a4i+4 = baiya = 0.
e 5y: Forie N*:

a;1 = a;3 =bjz =0,

a;2,b;1,b;3 € R.

Proof. Note that two Fourier knots describe the same curve iff all coefficients coincide,
since sin(f;t) and cos(f;t) form an orthogonal basis. Furthermore if some curve 7 is
G-symmetric, then v = 4.

o Trefoil: Let v be a G3, symmetric curve. By Lemma [3.I] there exists for each g €
('3, and each frequency f; a 6-dimensional matrix M, ; that acts on the coefficient

Q;

vector such that M, ; (b > is the i-th coefficient vector of g.7.

%

Computing A
0, — 29<n My
|G31|
yields:

1/2 0 0 0 —-1/2 0 1/2 0 0 0 1/2 0
0 000 0 0 0 000 0 0
0 000 0 0 0 000 0 0
Msii=1 49 o900 o ol Mi2=[¢o 000 0o o
~1/2 00 0 1/2 0 1/2 0 0 0 1/2 0
0 000 0 0 0 000 0 0

&

Figure 3.4: The symmetry group for the 5; knot has only a single generator, which is a
rotation of angle m about the red axis.

22 Fourier representation of closed curves

and

Msis =

oS O O O O O
O O O O o O
o O O O o O
O O O o o o
S O O O O O
_ o O O O O

a
Note that M; (bl> is the i-th coefficient vector of VG, and by the above reasoning
i

() =)

which yields the wanted relations.

we have

e 4¢ : For this knot the matrices are

/2 0 0 0 0 1/2 000000
0 0 0 0 0 0 010000
‘ 0 0 1/2 -1/2 0 0 . 0000O0O
Maina 0 0 —-1/2 1/2 0 o0 |’ Muv2=10"0 0 0 0 0
0 0 0 0 0 0 000010
/2 0 0 0 0 1/2 000000
1/2 0 0 0 0 —1/2
0O 0 0 0 0 0
0 0 1/2 1/2 0 0
Miss =14 1/2 1?2 o o @ Mura=0
0O 0 0 0 0 0
-1/2 0 0 0 0 1/2

where My; 4 is the zero matrix. These matrices imply the relations.

e 51 : And for the final knot we compute

M = ZQEGE)l M;
' ’G51|

to obtain

=

Il
cocoocooo
coocor o
oo oooo
oo~ o oo
coocooo
o oo oo

Symmetry of Fourier Knots 23

If one of the above knots is properly aligned and then symmetrized with respect
to their assumed symmetry group by the equation in Definition [3.3] then the Fourier
coefficients will be of the form claimed by Lemma The original shape used in the
symmetrization process has to be close to ideal and close to the enforced symmetries,
otherwise the resulting knot might not even be in the same isotopy class. A circle for
example is an ideal shape and has all the above symmetries and its Fourier coefficients
do fulfill the relations in Lemma [3.2] however it is none of the knot types we discussed.

In order to produce a Fourier knot in the correct isotopy class, the number of coef-
ficients approximating the knot has to be taken into consideration. More complex knot
shapes need more coeflicients, since higher frequency terms are necessary.

24

Fourier representation of closed curves

Chapter 4

Visualization

In this chapter we introduce the main tools used to visualize properties of knotted curves.
The first part will be about color gradients for pp, pt and tt plots, which are designed to
enhance the important features of these plots. Standard color gradients can not resolve
the fine detail and are replaced or adapted. In the second part we describe a 3D viewer
program used to investigate and analyze curves and in particular ideal knot shapes. The
various features of the viewer are illustrated on an example curve.

4.1 Color gradients

The visible color spectrum C as perceived by a human eye can be parameterized in
different ways. An often used representation of the color space is the RGB cube (where
RGB stands for Red, Green and Blue). But there exist many other mappings like HSV
(hue, saturation, value), CMYK or YCbCr which are used in different applications and
are based on things like sensitivity to light of the human eye or the color spectrum of a
computer or television screen [311, 16} [74, B5]. We will use the RGB space to illustrate
gradients; it is analogous for other color spaces. We define RGB to be the unit cube
[0,1] x [0,1] x [0, 1] and introduce the mapping

RGB — C.
which symbolically means, that a color in C is described by a 3-tuple (r, g,b) € RGB.
Definition 4.1. A color gradient is a path c(s),s € [0,1] through the RGB cube from

c(0) = (r0, g0, bo) to c(1) = (r1,91,b1).

Example 4.1. A widely used path c1(s),s € [0,1], is the rainbow color gradient or full

25

26 Visualization

Figure 4.1: Rainbow or full saturation gradient running from blue to red over four edges
of the RGB cube.

saturation spectrum parameterized by

~—

~—

BjWNI= A= O
ool A=
S~—

—

With this gradient we travel from the color blue along four edges of the cube to the red

corner (see Figure[4.1]).

Color gradients are widely used in designer and drawing applications. Our interest in
them is a little more scientific. When we are dealing with functions of one variable, then
there is no special need for color, since all the information can be drawn in a 2D graph
or plot. This is no longer true for functions of more than a single variable. Here it is
necessary to mimic the supplementary dimension larger than two with a color. Consider
a function f(z,y), z,y € [—1,1] whose values are between 0 and 1. Then we can map
every pair (z,y) to a color ¢(f(z,y)), where c(s) is a gradient. It is easy to read such a
plot when using for example the rainbow gradient. High valued regions are in red and
low valued in blue (hot and cold). This is sometimes sufficient to study and understand
a function f. Suppose now that f has a lot of small, local variations. Using once again
the rainbow gradient, we are not able to resolve the fine structure since the eye can
not distinguish colors that are close in the RGB cube. The eye and brain are trained
to spot contrasts and we need to introduce that in the way we construct appropriate
gradients. The study of a given function is usually done in several steps and most of
the time we would initially have some idea of how it looks. This information can then
be used to construct an appropriate gradient to emphasize the small scale structure of
the function. If we know or presume that f varies a lot in a region with small values,
then we can tailor our gradient to change the color much faster in this regions to make
the variations visible to the eye. This is not always trivial and might involve a thorough
investigation of f beforehand. Fine tuning a gradient as we obtain more information is
usually the way to proceed.

A gradient that well resolves some of the functions studied in this thesis is given by
the RGB path ca(s), s € [0, 1]

(s) = c(s) if s€[0,1—¢)
A= blend(h(s),cs(s),c1(h(s))) if se[l—e,1]

Color gradients 27

Figure 4.2: Gradient ca(s) defined in the text, with ¢ = 1/10 and a blend function that
linearly mixes in a rainbow color gradient in the interval s = [9/10, 1].

where blend(s,x,y) is a function that smoothly blends the colors z,y € RGB for s €
[0,1] with blend(0,z,y) = x and blend(1l,z,y) = y. The blending can be a linear
interpolation between the two colors. In this thesis blend(s,z,y), s € [0,1] is used as
follows

dsy+ (1 —4s)x, s€[0,1/4),

Y, se[1/4,1].

The function h(s) takes s from the interval [1 — ¢, 1] to [0, 1]. The path c.(s) is another
gradient and given by

blend(s,z,y) = {

“(sin(2nfs) + 1)), seo,1].

ce(8) = (s, %(Sin(%rfs —7)+1),

Here, f is the color oscillation frequency. The gradient ca(s) is depicted in Figure
This gradient will be very helpful to study pp, pt and tt plots of ideal knot shapes. All
the action will be focused in a small interval close to 1. That is exactly where we mix
in a rainbow color gradient in co.

Remark 4.1. A gradient does not need to be a continuous function. We define the
discontinuous pulse function II(x) by

I(x) = { 0 for|z| >

1 for|z| <

N[N[=

A black and white contour gradient is the path

N
Ii(s) = ZH((S —x;)/bj), i=1,2,3,

where we put N pulses at x; and each pulse has width b; and the pulses should not
overlap. The coordinates for the RGB color are either all zero (black) or all one (white).
Applying this gradient to a function f is equivalent to using a standard contour plotter
for the values xj. We can control the width of the contour-lines with b;. If a visually
appealing image is required, then one might have to smooth the step function II so
that different levels of gray are also available and creates an anti-aliasing effect (color
smoothing) at the borders of the contour plot. Anti-aliasing is the art of removing edgy
artefacts due to pizelization in an image (see for example [70]).

Remark 4.2. Sometimes it is useful to deal with a cyclic gradient. For a path I'(s),s €
[0,1] we have the condition I'(0) = I'(1). For the rainbow gradient ci(s) we simply

28 Visualization

connect the blue and red corner and we have a cyclic rainbow gradient. This is especially
useful if the function has some periodicity. If we want to color the arc-length of a closed
curve, it makes sense to use a cyclic gradient in order to get a smoothly varying color
along the curve.

Remark 4.3. The use of gradients like ca(s) can lead to formation of Moiré patterns.
When the sampling of a function with a gradient is too low, then artificial shapes and
patterns might become visible that do not reflect the real behavior of the function. A
car wheel spinning backwards in movies is a trivial example of such a pattern, since the
camera filming at a fixed frame rate can not resolve the correct motion of the wheel.
Moiré patterns will arise later when the gradients introduced here are applied to ideal
knot shapes.

4.2 curview

Throughout the work for this thesis we investigated different properties of knotted
curves. The different aspects of the analysis of curves led to a growing set of tools
and utilities that have then been compiled into a C+4++ library called 1ibbiarc, where
the most frequently used functions are available as an API. For availability of the li-
brary see Appendix [A] The core library provides functions to interpolate point-tangent
data with biarcs, access information like curvature and torsion, compute the length and
thickness, and much more. The native data format for curves used by libbiarc is PKF,
initially designed by B. Laurie. The specification for the PKF file format is described
in [I0]. There is another widely used program to manipulate and visualize knots called
KnotPlot [60] which has a different data format than PKF. The specific approximations
used in this thesis forced us to build another software package.

Our software eventually grew to a collection of tools to manipulate and analyze open
and closed curves and links. The library contains small programs to generate well known
curves, such as circles, ellipses, helices, etc. Conversion tools help to prepare data that
can be used in other software packages, for example 3D studios such as Blender [2§],
which has been used to render a lot of the images in this thesis. In an early stage of this
work we mainly used scripts, and the rendering programs Pixie [3] and PovRay [51] to
render images. The ease of use particular to Blender moved us away from them. The
library can still be compiled with Pixie support, but this will not further be explained
in this thesis.

The package also includes a viewer program called curview which uses Coin3D
[33], a free implementation of the Openlnventor [48| [73] specification. Openlnventor
is a high level graphics suite based on OpenGL [44] 65] to quickly develop graphics
applications. The event management and user interface is done by SoQt [33], which
is the binding element between the operating system, its window manager and the
Openlnventor implementation used, in this case Coin3D. SoQt is based on Qt [45] a

Nej

curview 2

File Tools 2D Plots Add Help

Ro Roty [EEEFTTo=umm Motion Z

Ready

Figure 4.3: Screenshot of the curview interface with a trefoil.

very complete user interface framework.

We will focus on the viewer in greater detail since the other parts of the libbiarc
are well documented and too voluminous to be listed here. A link to the online doc-
umentation or a PDF version (292 pages at the time of writing), the command line
options and the key bindings for the viewer can be found in Appendix [A]

The viewer interface is depicted in Figure Standard actions as known from
other 3D modelling programs are rotating and translating the curve object with left and
middle mouse click plus dragging. A right click opens a pop-up with different viewer
settings. Notice that a lot of the key bindings are not available in the viewer menu, and
there are a few things in the menu that do not have key bindings.

The viewer has a minimalistic curve modeling feature when in BIARC view mode
(refer to Appendix for an explanation of the different view modes). The button
showing a red arrow in the right panel activates the picking mode. In this mode it is
possible to select data points or tangents and edit them. The biarc representation is
interactively updated. If the curve is not closed, then the RETURN key appends a new
data point with tangent at the end of the current curve.

30 Visualization

O ==

(a) (b)

Figure 4.4: The “infinity” example curve as defined in the text used to illustrate the

functionality of curview.

The menu items in File load PKF curves, clear the scene, or save the current
state of a curve. The second last menu Add is to load Openlnventor scene files (for
the specification of .iv see [73]). Adding such scenes is useful to show supplementary
information about a knot like externally computed normals or to simply add a sphere
for curves lying on a sphere. In what follows we will explain the menus Tools and 2D
Plots in more detail.

To that end we introduce the infinity or eight-shaped curve depicted in Figure [£.4]
The program inf in the objects directory of libbiarc produces this shape. The
parameterization is given by

a cos(2mt)

~(t) = b sin(4mt) , t€[0,1],a,b,c € R. (4.1)
(6—(47rt—37r)2 _ 6—(47rt—7r)2)

c
The parameter values for the example curve are a = 1,b = .3 and ¢ = .1. We will
sometimes refer to the two outer loops as “ears” and the middle part as the “crossing”,
even though the curve has no self intersection as seen in Figure 4.4 This example curve
is now used to describe the remaining features of the viewer.

4.3 pp,pt and tt plots

Before we deal with the second entry in the Tools menu, we move to 2D Plots, where we
can open a new window for each of the three plots, pp, pt or tt. The plots are generated
for the current state of the curve. This means that if a user modifies the curve, then
the plots update and reflect the changes in the active plots. The three plates in Figure
are the respective plots for our example curve.

pp, pt and tt plots 31

(pp) (pt) (tt)

Figure 4.5: 2D plots of pp, A/pt and A/tt functions for the example curve. Darker
colored areas, and the labels correspond to regions discussed in the text.

Here we need to say that the pt and ¢ plots are normalized such that the values are
in [0,1]. The graphs pt(s,o) and tt(so) are therefore in a unit cube, since s, € [0, 1].
The values used in the plots are A/pt and A/tt. This is a natural scaling, since the
thickness A is a lower bound for pt and ¢t. And for a circle or a sphere radius that goes
off to infinity, the value is zero. The pp plot does not have this scaling, we simply stretch
the gradient between the smallest and the largest value for the pp plotﬂ These plots
in 2D with the special color gradient are a start, but usually not enough to understand
their relation to the actual curve in 3D. This is why the viewer lets the user click on
the different plots and draws the appropriate object in the 3D scene displaying the
curve. In other words, if the user clicks on a pixel (z,y) in the pp plot window, then
the corresponding chord is drawn in the 3D scene. Our intuition for a distance plot is
usually quite good, since we can tell by eye where the maximum and minimum values
for pp will occur along the curve. To demonstrate this anyway we refer to Figure [4.6]
where we selected two regions in the pp plot (small darker colored rectangles in Figure
M (pp)) which can be done by dragging a square over the pp plot instead of picking a
single pixel. The origin, i.e. (0,0), of the plots is in the upper left corner of the picture
and the parameters s, t are arc-length. Several points or regions can be visualized in the
scene by pressing shift and repeating the selection. For a highlighted area in the plot we
do not draw the whole rectangle, but only a cross that runs vertically and horizontally
in the middle of the rectangle. Drawing the entire rectangle would quickly fill the scene
with line segments and then it is hard to see anything at all. The selected regions for the
example curve correspond to areas close to the maximum and minimum distance values
along the curve. Intuition already tells us that the maximum for pp must be between
the two ears and the minimum in the crossing region. This is what we see in Figure

Studying a pt plot is at the beginning not a trivial task. The same functionality as
for pp is available for pt. As mentioned several times, pt is the radius of a circle tangent

We use color gradient cz(s),s € [0, 1] from Section where for pp, we linearly map the interval
[0, PPmaz] to [0,1]. Since we plot A/pt and A/tt, these values can naturally be used with gradient
c2(s),s €10,1]

32 Visualization

l\(v

Figure 4.6: Visualization of the pp chords corresponding the the small darker areas in
Figure [4.5] (pp).

at one point of the curve and running through another. So the corresponding object to
visualize is a circle. Selecting a region in the pt plot draws circles the same way as it did
the chords for pp. The visualization in Figure [£.7] matches the selected areas in Figure
(pt). Let us start with the region labeled with (1). The circles in 3D are drawn in
Figure (1). This is the neighborhood where the minimum of pt is achieved. Walking
away from the crossing point to either side, the radii of the circles increase. Note that
the tangency of the circles is at the curved bit running behind. If we move to one of
the loops with both points, the tangency and the point through which the circle passes,
then we reach the picture in Figure (2), which corresponds to region (2) in Figure
(pt). Here the circles stay close to the shape of the ear, since it is close to circular,
which is why this region of the pt plot is rather flat with a radius of the circles larger
than at the minimum of pt. The circles get really large if the point and the tangency
is on one of the straight segments between the loops, since they are almost co-linear.
The radii decrease as soon as we either move the tangency or the point to a loop, since
we move away from the co-linearity. With the pt plot window and the corresponding
visualization it is straightforward to investigate the pt properties of the example curve.

The last candidate is the tt plot where spheres are drawn in the viewer window. By
picking any point or region, the viewer will behave in the same way as with pt, only
with spheres. The minimum of ¢¢ is the same as pt and Figure (1) demonstrates the
position of this sphere. In the ¢t plot this is the center of the rainbow colored region
(see Figure (tt)). If we pick two tangents in one of the loops, the center and radius
of the sphere do not vary much. The two spheres corresponding to the points (1) and
(3) in the tt plot are visualized in Figure (2). If in this same plot we follow the red
line, which is the anti-diagonal, then we observe what is drawn in Figure (3). Note
that with the chosen parameterization of the curve, ¢¢(0,1) is the outmost point in one
of the loops and the anti-diagonal tt(s,1 — s),s € [0, 1] means that we symmetrically

pp, pt and tt plots 33

it W
*;'/!.’.-—‘,A

Figure 4.7: Visualization of the pt circles of the three regions in Figure [I.5] From left
to right, close to the minimum of pt (a), large, flat plateau in the pt landscape (b) and
pt values for almost co-linear point-tangents (c).

move away from this point in opposite directions. Another way of seeing this is that
one tangent runs in the direction induced by the orientation of the curve and the other
tangent runs backwards in the opposite direction. So the sphere starting in one loop
shrinks to become the minimal sphere and grows again till it reaches the other loop
of the curve. Since tt plots only involve tangents of the curve, this plot is the most
aggressive one in the sense of small variations. If we wiggle at a tangent, the ¢t plot
endures considerable changes. This is why numerical artefacts (noise) might appear
close to the diagonal. This noise is also present in the pt plot, but, due to the resolution,
not as visible.

We would like to point out that pt and ¢t plots make C? details visible. Consider a
straight line with a small variation not visible to the eye. The pt and ¢t plots will make
this feature visible. This makes the use of these plots on curves in S? interesting.

This kind of analysis gives a lot of insight for a given curve and has been extensively
used to study ideal knot shapes presented in sections to come. As explained in Section
[2.1] the thickness of a curve is the infimum of the pt function. So aside the viewer
plots in 2D and its ability to draw corresponding objects in the viewer window, we can
also visualize the plots in 3D to see where the minimum of pt actually is, and what its
neighborhood looks like. The plates in Figure [I.9] display the three plots stacked one
on top of the other starting with ¢f at the bottom, pt in the middle and finally pp on

(1) (2) 3)

Figure 4.8: Visualization of the ¢t spheres, where (a) is the minimum of ¢¢ (labeled (1)
in Figure (tt)). In (b) the spheres for the labeled points (1) and (3) are shown and
finally an envelope of spheres corresponding to the red path in Figure (tt).

34 Visualization

top. Earlier we explained that the minimum of pt or t¢ corresponds to the maximum
of A/pt or A/tt, which is close to 1. In the plots in 3D we invert these values, namely
pt = (1—A/pt) and £t = (1 — A/tt), so that the pt minimum is actually a real minimum
in the 3D terrain as well.

Using the plots in Figure [£.5] and the 3D height-maps in Figure £.9] we can identify
the regions we investigated before in the viewer. The pp function has a global minimum
along the diagonal, where the distance is zero. Further we can spot a single hill and a
dip in the landscape (pp is symmetric) and they correspond to the maximum between
two loops and the local minimum between the crossing mentioned above.

This local minimum becomes global in the pt plot. Region (2) in Figure (pt) is
where the circles look similar to the loop and the 3D terrain shows a small flat plateau
at this location. Walking uphills from region (2) to region (3) we reach another, larger
plateau. The further we move up, the larger the radii of the circles. On the plateau the
radii go to infinity. There are three other striking landmarks in the center of the terrain.
The small hill exactly in the middle of the plot corresponds to the radius of curvature
in the middle of the ear and the two dips close by (there are actually four along the
diagonal) are the smallest local radius of curvatures of the curve. For an appropriate
value of the parameter a, larger than the current one, in Equation , it is possible to
bring the minimal local curvature at these four points down to the global minimum of
pt. Then the thickness of the curve would at the same time be limited by local curvature
and global contact. We then say that curvature is active.

A look at the tt landscape indicates that the interesting features are all close to the
anti-diagonal. If one follows the red line in Figure (c) on the ¢t terrain, then this
path goes from a little plateau in the loop region to the global minimum and back to a
little plateau. This is the smoothly changing sphere envelope visualized in (c). Away
from the anti-diagonal we quickly reach rather large flat planes where the radii of the
spheres become very large. This is because the curve is almost in a plane.

4.4 Visualization of curves in S?

Investigating a curve in S? is not as immediate as in our well known R3. In Section
we will introduce stereographic projections to “see” what the curve looks like. These
projections are not required for the type of visualization shown here. Consider a curve
v on the 2-sphere S2. We can separate this sphere in a northern Hy and a southern
hemisphere Hg [72]. Then we define the two projections

my : Hy — Dy, mg: Hg — Dg

where Dy, Dg are the two disks given by {p € R?||p| < 1}, lying in the equatorial plane
of the sphere. Figure[4.10]shows this procedure and the resulting two disks, where points

Visualization of curves in S3 35

Figure 4.9: From top to bottom : pp, pt and ¢t landscape for the infinity curve. The pt
and tt 3D visualization actually lies in a cube of edge size 1, but this would not be very
useful. The height-fields are scaled down to about 1/4th of the other edge lengths.

36 Visualization

Figure 4.10: A curve on the 2-sphere decomposed into two hemispheres is projected onto
two disks shown to the left and to the right of the sphere.

on the border 0Dy and 0Dg are identified. This means that a curve leaving disk Dy
at p reenters disk Dg at the same point.

Inspired by the three dimensional case we can carry this construction over to curves
on S? [72]. Here the hemispheres are projected to two balls By and Bg, where B = {p €
R3||p| < 1}. In Figure we show this on a closed curve in S3. The points on the
borders of the balls are identified similar to the R? case. The rainbow gradient coloring
helps to follow the curve. The tool s3viz included in the 1ibbiarc constructs two PKF
files containing the components of the curve for each ball. They can then be viewed and
analyzed in curview. We have not used this visualization. One of the reasons is that
the brain needs practice to understand this way of seeing S3.

Visualization of curves in S3 37

Figure 4.11: Separation of S? into two hemispheres, where each hemisphere corresponds
to a ball in R? as shown. The curve visualized here is the trefoil on a Clifford torus
discussed in Section [6.5] and arclength colored. Unlike in the 2D version, it is necessary
to spin the two spheres in 3D to see how close the curves are from the center of the
spheres.

38

Visualization

Chapter 5

Computations of ideal knot
shapes and the libbiarc

In Chapter [2] we have introduced the concept of an ideal knot K which is a minimizer
with respect to its ropelength L/A in the isotopy class [K]. Now we will consider the
computational side of this problem. Finding such a minimizer in a given isotopy class
is also called tightening, shrinking, inflating or optimizing a knot. This nomenclature
comes from the fact that we can see our problem of minimizing L/A from at least two
different perspectives. Either we fix the radius of the knot and reduce the length of the
curve (tightening, shrinking) or we fix the length of the curve and try to increase the
radius of the tube (inflating). In what follows we will review known algorithms that
perform these optimizations. The problem of ideal knots is in some sense a particular
case of an optimal packing problem, where one tries to put N objects in the smallest
area or volume possible. In the case of ideal knots it is packing one object, namely a
tube, but the whole interest is determining the optimal shape of the deformable tube.

5.1 SONO

The first method is the so called Shrink-On-No-Overlap (SONO) algorithm as introduced
in [53]. Inspired by the physical tightening of a piece of rope, the algorithm is based on
rescaling a given knot and applying a repulsive hard-sphere potential on interacting bits
of the curve. This algorithm is well suited for quickly finding a configuration of the knot
in the neighborhood of the ground state, i.e. the state such that the knot minimizes the
energy L/A. This algorithm is appealing for creating animations of the knot tightening
process. During this thesis SONO has been reimplemented to quickly reach knot shapes
that were then further processed with other algorithms. The original implementation of
SONO was done in Fortran. Our version is in C+4. We will briefly review the principle
of the algorithm following the presentation in [53].

39

40 Computations of ideal knot shapes and the libbiarc

Input: z1,...,zx, D, Overlaps, ShrinkFactor, e, Tol, I[ter, M
Output: z1,...,zy5

L «— Length(zxy,...,zN)

l—L/N

skip < (wD)/(2l)

nn <« NearestNeighbours(xy,...,xN,skip,e)

for j — 1 to Iter do

every M times
skip — (7wD)/(2l)
ShiftNodes(xy,...,TN)

ControlLeashes(x1,...,ZN)

nn < NearestNeighbours(z1,...,xyN,skip,&)
end
overlap < RemoveOverlaps(zy,...,xyN,nn, D(1+
Tol))

if overlap < Overlaps then
| Shrink(x;, [, ShrinkFactor)

end

end
Algorithm 1: Shrink on no overlap algorithm (SONO) used for knot tightening.

Let v, embedded in R?, be the centerline of a thick knot in isotopy class [K]. A
discrete piecewise linear version of this knot is given by N points z; placed uniformly
along . By uniformly we mean that the Euclidean distance of neighboring points is
I = L/N. L is the length of the polygon formed by the points ;. The pseudo-algorithm
is given in Listing [T

The algorithm takes as input a polygonal knot given by N vertices x;,¢ =1,..., N
and a few more parameters. The main parameters are the imposed diameter of the
thick knot D, the number of tolerated self-intersections Overlaps and a scaling factor
ShrinkFactor (tightening of the curve). The secondary parameters are two tolerances
e and T'ol, the number of iterations Iter, and an update parameter M. Their meaning
will become clearer in the explanation of the subroutines. The first step is computing
the piecewise linear approximation to length of the curve and the leash length [, which
will determine the length of the segment between two vertices z; and x;11. We only
want global repulsion, which is why we use the local curvature as a bound to compute
a skip value telling how many neighbor vertices can or have to be neglected. After
that, the routine NearestNeighbours initializes an array of integers nn for the nearest
neighbors. Every column in the table nn corresponds to a vertex x; and contains the
vertices x;, j # i that are at a distance closer than D(1+¢). In the loop one recomputes
every M times the skip value. The method ShiftNodes displaces by a small amount
the points along the connecting edges; this is supposed to simulate thermal activity and
is used to prevent getting stuck in a local minimum. The next routine ControlLeashes

& @
© ©

Figure 5.1: Four configurations of a 5.1-knot tightening run with SONO where the

overlaps are pushed apart more than the prescribed diameter D.

readjusts the segment lengths between the vertices, since we would like to keep the
polygonal knot nearly equilateral. Every M steps we also update the nearest neighbor
table. The most substantial work is done in RemoveOverlaps, where we check for
every vertex x; if the distance constraint given by D is satisfied. This distance is only
computed between x; and the nearest neighbors as computed in NearestNeighbours.
If a vertex x; is closer than D to x;, we symmetrically push them apart along the chord
c(xi,)ﬂ The resulting distance is then not D, but D(1 + Tol). This helps to improve
the convergence in an early state of the tightening process. The main loop is repeated
Iter times, but one could of course use a stopping criterion, which is, however, not easy
to define. For a good convergence of the tightening process, the authors in [53] suggest
for the number of vertices N a multiple of L/D.

SONO performs extremely well on shapes far away from ideal. Figure [5.1]illustrates
a few snapshots of the tightening of the 5.1 knot. The algorithm quickly reaches a state
close to ideal. The last frame in Figure has been obtained after a computation time
of about 30 seconds on a Thinkpad T60 with a 2GHz CPU. In the first stage of the
shrinking process, once the tube starts touching itself it stays in that confirmation for
quite a while. The knot has to break its symmetry and that can only be done due to
the node shifting process, which emulates some entropy in the system to help the knot
leave its symmetry constraint. As soon as the symmetry is broken, the knot quickly
converges to a state, close to the ideal shape. There still seems to be a lot of space in

'For the chord we use the points as arguments and not arclength.

42 Computations of ideal knot shapes and the libbiarc

Figure 5.2: Approximately ideal 5.1 knot computed with SONO where the repulsion
factor between interacting parts is reduced to zero. This removes the free space in the
middle of the curve (see Figure |5.1)).

the center of the knot, which is due to the fact that this quick run has been done with
a tolerance Tol = 0.1 in the RemoveOverlaps step. Every time a contact occurs, the
points are pushed 10 percent more apart than the prescribed diameter D, hence the
space in the center. Gradually decreasing the tolerance Tol will then further improve
the knot shape. After about 10 more seconds using the last shape as shown in Figure
and with a tolerance T'ol = 0, we obtain what is shown in Figure Note that
there is no formal proof that this configuration is indeed close to ideal, but the image
in Figure [5.2] looks convincing.

5.2 Gradient flows and RidgeRunner

The SONO algorithm is just like carrying out a physical experiment. It is however dif-
ficult to mathematically track what actually happens during this process. The process
is actually a particular case of a constrained gradient flow, where one numerically com-
putes the gradient of the energy and uses it to perform the optimization. In SONO, the
energy is the length of the polygonal curve and its gradient would show where the curve
can be shortened. This gradient usually points in the normal direction and depends
on the curvature along the curve, since we prohibit self penetration and the problem
of a pure curvature flow (see [49]) becomes a constrained gradient flow. These con-
straints are enforced in the overlaps removal stage in SONO. In the rest of this section
we present a different approach of a constrained gradient flow as explained in [56], 9].
The implementation of this method is called RidgeRunner.

The thickness introduced in Chapter [2] requires a curve to have a certain regularity.

Gradient flows and RidgeRunner 43

In particular, the definitions do not apply to curves approximated by linear segments.
A polygonal knot V is a set of vertices v;,7 = 1,..., N joined by linear segments. The
authors in [9] tackle the regularity problem by inscribing arcs (not biarcs) of circles
in a polygonal curve when they compute the thickness. However, the optimization
algorithm is done on the polygonal representation only. They show that their definition
of polygonal thickness tends to the thickness of a curve. The polygonal thickness is
the minimum of the curvature computed using angles between linear segments and the
minimum of the length of double critical chords. The definition of curvature gives a
bound on the double critical chords that have to be considered. This means that chords
between points close together along the polygonal curve can be discarded. The curvature
and chord distances are used as constraints g; = 0 and the length L of the polygonal
curve is the function to be minimized. The gradient VL is uniquely decomposed into an
infinitesimal motion 4, where the directional derivative of the constraint satisfies g; > 0.
The second set of motions, orthogonal to the infinitesimal motions, are called resolvable
motions and are given by

r = —Z)\ngi, with)\Z Z 0.

The optimization problem is now a constrained steepest descent method. In steepest
descent one follows the negative direction of the gradient, in this case

—VL=1+r.

Directly following —V L is not possible, since the constraints g; have to be taken into
account. The constrained steepest descent is given by the infinitesimal motions i. To
compute ¢ at each step of the minimization, it is necessary to solve the non-negative
least squares problem

min |[Az — VL|,z > 0, (5.1)

where A is a matrix of dimension 3N x E with E the number of active constraints
g; = 0. Far from optimal, at every step only a few constraints are active and the matrix
A is extremely sparse. The resolution of systems like Equation [5.1] has extensively been
studied in numerical linear algebra [55]. Once z is computed, the constrained step to
the next configuration of the polygonal curve is given by

1= Ax — VL.

Due to numerics, after a step is taken in direction ¢, some of the constraints might
be violated and [9] explains an error recovery for these cases. A motion in the opposite
direction of the violated constraints g; can be generated, since

ATy = [(Vgi,u)] = [Vugil,

the recovery motion u can be computed by solving ATu = —R, where R is a column
vector with the corrections for the constraints g;. This global move u, in contrast to
SONO, helps the knot to recover from inter-penetration even when the knot is already
in a very tight configuration. RidgeRunner produces the best knot shapes we know of.

44 Computations of ideal knot shapes and the libbiarc

5.3 Metropolis Monte-Carlo

The two previous algorithms are deterministic in nature and the chance of getting
trapped in a local minimum can not be excluded since the ropelength energy land-
scape seems very bumpy. Now we present another type of minimization algorithms
based on a thermodynamic system and therefore stochastic processes. The first goal
is to compute the equilibrium value of a thermodynamic quantity such as the density,
entropy or free energy of a system of particles. Consider the state or phase space {2 and
P(z),z € {2 a normalized probability function P(x) on 2. The normalization condition
is [Lcn P(x)d"r = 1. The mean value wrt P(z) of a quantity A is defined as

(Ay_L;QAmﬂ%@J%. (5.2)

The standard Monte-Carlo method randomly samples {2 to compute (A). An often
cited example is the estimation of m by Monte-Carlo integration. Uniformly sample
the unit square [0,1] x [0,1] with N points z;. The ratio of the points |z;| < 1 and
N yields an estimate of /4. Depending on the problem, the phase space {2 might be
huge. If on top of that, the probability distribution is extremely localized in one or more
regions, uniform sampling wastes a lot of resources. The trick to reduce this problem
is called importance sampling. The probability function P(z) can be used to guide the
integration but most of the time P(z) is not explicitly known for a given system.

A modified version of the above has first been introduced by [41]. They replace the
random sampling of {2 by a Markov chain, which is a path through the phase space where
the current state only depends on the previous state. Another hypotheses motivated by
statistical physics is to use the canonical ensemble for P(x) and Equation becomes

fren Alx)e 51 d"

—E(z) n
fxeﬁe G

(4) =

(5.3)

where T is the temperature, k the Boltzmann constant and E the energy of a given state
x € (2. If a statistical system is ergodic, then the time average is equal to the space
average wrt the equilibrium measure (or canonical ensemble) P(z)dx

1 T

lim — Aa@m:/Amm@m
T—oo T Jo N

for a Markov process {X (¢)}+~0. The importance sampling in the Metropolis algorithm

is now achieved as shown in Algorithm [2]

The output of Algorithm [2|is A;,i =1,..., N, where A; = A(X;) for a time-discrete
Markov chain {X;}i—1 . n. For the discrete value of the quantity A at step ¢ and we
have

Simulated annealing in R? 45

Input: inital state s € {2, iterations Iter, T
Output: A4;,i=1,...,N

for ¢ — 1 to Iter do

A; «— EvaluateA(s)

s* « Move(s)

AFE « Energy(s*) — Energy(s)

if AE <0 then /* accept move */
| s« s*
else /* accept with prob p */

p«— exp(—AE/(kT))
r «—Random ([0, 1])
if » < p then

| s« s*

end

end

end
Algorithm 2: Metropolis Monte-Carlo algorithm is used to compute the value of
a physical quantity A in a thermodynamic system at temperature T considered to
be in an equilibrium state.

The importance sampling is due to the fact that we avoid entering high energy regions,
since they do not contribute to the integral in Equation [5.2l We now observe that
with this algorithm a system evolves towards a minimal energy state. It can therefore
be used to find a global minimizer of some energy functional E. In the optimization
process of ideal knots this energy functional is often the ropelength, other knot energies
are discussed in |47, 57 [14].

5.4 Simulated annealing in R?

The original Metropolis Monte-Carlo runs for a fixed temperature 7" where the aim is to
compute the equilibrium value of some quantity A in that thermodynamic system. By
reducing the temperature T as a function of time, we can simulate the chrystallization
of a physical object, for example water becoming ice. If this cooling process is done
extremely fast, the crystal structure does not have time to properly arrange itself. Slowly
cooling the material permits to build a perfect internal crystal structure. This is what
simulated annealing does [32]. Simulated annealing is a Metropolis Monte-Carlo method,
where the system is cooled down as we give it time to converge to an energetically optimal
state. Initially a high temperature lets the system get out of large local valleys. But
by slowly reducing the temperature the chances to escape from such valleys shrinks and
the “chrystallization” process has time to converge to the global minimum of the phase
space. Note that in the tightening process we do not have a phase change as is the case

46 Computations of ideal knot shapes and the libbiarc

for many physical systems although the symmetry breaking of the 5; knot might be
said to do so. In simulated annealing we do not need an explicit gradient, as is usually

the case for optimiztion problems. The pseudocode of simulated annealing is listed in
Algorithm

Input: inital state s € §2, iterations Iter, T, cooling
C

Output: final state s € {2

for ¢« < 1 to Iter do

s* « Move(s)

AFE « Energy(s*) — Energy(s)

if AE <0 then /* accept move */
| s« s*
else /* accept with prob p */

p«— exp(—AE/(kT))
r «Random ([0, 1])
if » < p then

| 5« s*
end
end
T—T(1-0C)
end

Algorithm 3: Simulated annealing algorithm with decreasing temperature 7T'.

Polygonal curves

A polygonal curve is a set of vertices z; € R%,i = 1,..., N connected by linear segments.
This is similar to Section with the difference that no arcs of circles are inscribed.
Simulated annealing has been discussed for polygonal knots for example in [36, 56]. In
the deterministic algorithms, shortening the curve is the preferred way of optimizing the
ropelength. The simulated annealing approach seems to favor minimizing the ropelength
L/A of a curve by keeping the length L fixed and moving the vertices of a curve to
maximize the thickness A.

The phase space of this problem is 3 x N dimensional, since every vertex has 3
degrees of freedom and we can displace any of the N vertices. The interval in which
each coordinate can lie is the real line R. In practice this interval is much smaller since
we have to stay in the same knot class and moving a vertex too far away from the rest
of the curve will introduce a sharp turn, the thickness goes down and the ropelength
up. Hence it is not necessary to restrict the interval for the coordinates, the energy will
take care of that.

If the knot is still far away from ideal, then the vertex moves should be rather large.

Simulated annealing in R? 47

Large moves might change the knot type (isotopy class). So the usual way is to start
with a knot already close to ideal - obtained for example with SONO - and annealing
that shape with small moves.

The simulated annealing algorithm can be seen as Algorithm [2] where we follow a
trajectory through the phase space - to reach a global minimum - as we decrease the
temperature T by some cooling factor. Further we associate a step size with each vertex
x; which helps to adjust the move size in different regions along the curve. If a move
involving a vertex x; gets accepted, then we increase the step size for z; and decrease
it otherwise. So regions with a high acceptance rate are supposed to move quicker than
regions where we encounter more resistance and are supposed to choose smaller moves.
The stopping criterium is usually related to the temperature 7', if T is too small, then
we stop the algorithm.

Biarc curves

The main reasons why the authors in [I1] moved away from a polygonal representation of
knots are that ideal shapes are known to live in the space C1'1(S, R3) and that curvature
and arc-length of the curve are explicitly known. Biarcs do have the same C'! regularity
as ideal knots and are therefore good candidates to compute with. The configuration
or phase space is now larger, since we have N point-tangent data pairs (p;,t;). So for a
curve in R? we have 6N different degrees of freedom and N constraints (unit tangents).
The simulated annealing per se stays the same as in the polygonal case, the energy is the
ropelength of the biarc curve and a move is either changing a point p; or a tangent t;.
Here the step size is even more important since the points p; are in R? and the tangents
t; in S?. Points and tangents have completely different scales. Simulated annealing will
usually first need some time to find appropriate scalings of point and tangent data.

Extending the simulated annealing program from the polygonal to the biarc case
is straightforward. The shapes computed in [66, 11] were done with the annealing
code from Ben Laurie. During the work of this thesis we developed a software library
that includes simulated annealing code for biarc curves. In our implementation we
provide base classes for the moves and the annealing process implementing functionality
that remains the same for any simulated annealing problem. Developing new annealing
problems by deriving from the base classes then required little time. The different
approximations for the knot shapes, and the fact that we wanted annealing to run in R3
and S? justified the class design. Appendix explains the base classes and presents a
few example implementations.

Using this new code, several knot shapes up to nine crossings have been annealed.
Part of the shapes used as starting condition came from Eric Rawdon et al.[2] as com-
puted with RidgeRunner outlined in Section

48 Computations of ideal knot shapes and the libbiarc

Fourier Knots

The difficulty of improving the knot shapes approximated either by linear segments
or biarcs brought our attention to another representation, namely Fourier knots as
introduced in Chapter [3] The main reason for switching to Fourier coefficients was
actually the striking symmetry observed in the trefoil. Enforcing symmetries on knots
based on linear segments or biarcs is rather difficult. As described in Chapter [3 a
Fourier coefficient representation of a knot shape makes symmetrization very natural.
We will now outline the various steps involved in converting a point-tangent curve to a
Fourier knot and then annealing that shape.

Recall that a Fourier knot v is given by

~y(t) = Z (ajcos(fit) + bisin(fit)), te0,1], i=1,..., (5.4)
i
where f = 27i is the frequency and the parameter ¢ is chosen to be in the interval [0, 1].
The coefficients a;, b; € R3,i > 0 are

4G = 2 /0 () cos(2mit)dt, (5.5)

1
by = 2/ ~(t) sin(2mit)dt.
0

We can write the curve v(t) as a Fourier series for each coordinate due to the periodicity
in the parameter t. We ignore the coefficient ag, since it is a constant vector correspond-
ing to a translation of . In the case of links this term would play its role, but not for
knots. Notice that the parameter ¢ is not arc-length.

The first goal is to construct a member of some isotopy class [K]. The coefficients can
be approximated by numerically computing the integrals in Equation[5.5 In practice we
have a knot (¢) as a polygonal or a biarc curve which can be reparametrized such that
t € [0,1]. Then we compute the integrals on the right hand side of Equation with
some numerical integration scheme. This scheme does not have to be very sophisticated,
a simple rectangle summation scheme is enough to get a coarse approximation for a; and
b;. The number of coefficients needed depends on the complexity of the shape. From
the coefficients a;, b;,0 < ¢ < N we can synthesize the knot v using Equation , and
verify visually that the knot is still in the correct isotopy class.

Annealing Fourier knots is now done in the same fashion as point or point-tangent
sampled curves. In each iteration step of the simulation, we pick a coefficient vector a;
or b;, modify it and recompute the ropelength of the knot. Then the current state gets
accepted or rejected according to the rules of simulated annealing.

An important detail that we omitted in the previous paragraph is how to compute
the energy or the ropelength of a Fourier knot. It seems difficult to compute L/A based

Ideal Fourier knot results 49

directly from the Fourier coefficients. The length L is

L= [l

but there is no expression for the thickness A. So we have to reconstruct a biarc rep-
resentation using Equation [5.4f With the biarc curve we are able to efficiently compute
A and therefore an energy for the annealing simulation. The simulation parameters
are the usual ones like temperature and cooling rate. An additional parameter is the
number of biarcs used to interpolate the curve. Notice that the Fourier annealing can
actually be seen as a way to generate global moves for biarc annealing, since in the end
the energy L/D is always evaluated on a biarc curve.

5.5 1Ideal Fourier knot results

We will now present the Fourier trefoil, the figure eight and the 5;-knot resulting from
Fourier annealing as explained in the previous section. Initial runs have been executed
with a low number of non related coeflicients, since at that point we did not yet know
how the symmetries suggested in Conjecture [3.1] would affect the coefficient structure as
proved in Lemma [3.2] We discovered the pattern by first aligning the knot’s symmetry
axes with respect to the z—, y— and z—axis. Then, during the annealing process, we
regularly symmetrized the knot. Observing the coefficients during this process suggested,
that the coeflicients are not independent and a few coeffiecients even vanish. We recall
that the coefficient structure for the trefoil is
cos sin

-A

B

0

o O O
O O O
o O O
o W
O o o©

where every row contains first the coefficient vector for the cos terms and then for the
sin terms. Restricting annealing to only the independent and non zero coefficients of the
trefoil gives a tremendous speed up compared to traditional annealing on all coefficients.
The size of the configuration space is actually six times smaller. At the beginning we
annealed a knot with only a few coefficient rows and added a coefficient as soon as we
felt necessary. Notice that we proportionally increased the number of nodes used for
the biarc representation compared to the number of Fourier coefficients. The necessity
of constantly changing simulation parameters required a lot of “baby-sitting”. In about
a week of simulation time we could reach, and even beat the ropelength of the biarc
trefoil (which we name vg) computed by J. Smutny in [66] where the time to obtain the
shape took more than 6 months.

Interestingly, our Fourier trefoil (call it yr) given by only 6 independent double values
had a ropelength of about twice the one for vp. If we build vr with 18 independent

50 Computations of ideal knot shapes and the libbiarc

values, then we are only 1%o away from the ropelength of vp. The trefoil vp is made
of 512 biarcs, which corresponds to 512 x 6 = 3072 independent floating point double
precision values. The Fourier trefoil with a ropelength lower than g is given by only
165 doubles. The radius of curvature, pp,pt and tt plots are depicted in Figure [5.3
The symmetric pp and tt plots are in the same image. Then we show the 2D and 3D
version of the pt plot. An important feature in the 3D plot is the two deep valleys,
where the minimum of pt is achieved. The floor of a valley is rather flat, but actually
has two minima for each value of s. In other words, if we pick an s in the 2D plot
and follow the parameter t of pt(s,t), then we encounter two minima, and this for
every s € S. The flat plateaus close to the diagonal correspond to the three “ears” of
the trefoil which are close to circular. As mentioned earlier, the diagonal of pt is the
curvature of the curve and on the plateaus looks almost constant. Compare this to
the radius of curvature plot in Figure (a). The two peaks in the curvature profile
are points where local curvature might be active. An interesting point is that for a low
coefficient Fourier trefoil these peaks are very low, only when we added more coefficients,
then the peaks would rise towards one. Gerlach observes in his thesis [19], that a knot’s
curvature profile can be manipulated locally without significantly reducing the thickness.
Therefore, the curvature profile for two knots € away from ideal can look very different.
With a low number of Fourier coefficients we did observe Gibbs phenomena close to the
peaks, which is an indication for discontinuity in curvature. Increasing the number of
coefficients gradually removed these oscillations.

The results for the figure eight knot presented in Figure [5.4] clearly show the Gibbs
oscillations close to the four peaks in the curvature plot (a). This knot has 96 inde-
pendent Fourier coefficients. We did not run the 4; as carefully as the trefoil, but we
could still go below the ropelength of the 4; knot presented in [66]. The oscillations
in curvature for a lower ropelength is exactly what we explained before with Gerlach’s
argument. The 2D plots and the pt 3D version do not show valleys as for the trefoil
but several disconnected “holes” that we will call space invaders due to their shape (see

6.3).

Figure shows the results for the 5; knot which is not very converged. There are
two reasons for this. We have spent most of the time to anneal and analyze the Fourier
trefoil and we only have a single symmetry for the 5; knot, which is not an extreme
speed up in annealing. But we can use its curvature plot in Figure (a) to illustrate
that the peaks can only form for a high number of Fourier coefficients. The little bumps
in the curvature profile would correspond to the early stage of the three trefoil peaks.
The 57 knot Fourier representation has 250 coefficients which seems large compared to
the two previous knots. However, the effective number of coefficients for a symmetrized
knot depends on its symmetry group. For the 5; we probably increased the number of
coefficients too fast.

The symmetries can also be identify in the pp, pt and tt plots. We will discuss the
pt plot but the same carries over to the two other functions. Consider for the trefoil

Ideal Fourier knot results 51

A/p(t)

1/2

0
0 1/2 1
Fourier parameter ¢

(a)

(c)
Figure 5.3: Fourier trefoil results. From top left to bottom right there is (a) a curvature
plot, (b) the symmetric pp and ¢t plots merged at the diagonal into one image, (c) 3D

and (d) 2D versions of the pt function.

Computations of ideal knot shapes and the libbiarc

52

1/2

A/p(t)

0
1/2 1
Fourier parameter ¢

(a)

o

(c)
Figure 5.4: Fourier figure-eight (41) results. From top left to bottom right there is (a)
a curvature plot, (b) the symmetric pp and ¢t plots merged at the diagonal into one

image, (c) 3D and (d) 2D visualizations of the pt function.

Ideal Fourier knot results 53

A/p(t)

2PN\ WA A

0
0 1/2 1
Fourier parameter ¢

(a)

(c)
Figure 5.5: Fourier 5; knot results. From top left to bottom right there is (a) a curvature
plot, (b) the symmetric pp and ¢t plots merged at the diagonal into one image, (c¢) 3D

and (d) 2D versions of the pt function.

54 Computations of ideal knot shapes and the libbiarc

(a) (b)

Figure 5.6: Reparametrization function T'(¢) (a) for a non-uniform sampling of the
Fourier trefoil (b).

vr(s),s € [0,1] only pt(s,t),s € [0,1/6],t € [0,1], then we can construct the rest of the
function. Chapter [3] states that the parameterization of the curve has to be taken into
consideration. For the symmetry about the axis from the center through an ear the
reparametrization function is Ro[yr|(s) = v(—s). This means that pt(—s, —t) = pt(s,t)
which gives us the interval s = [—1/6,0]. Finally the remaining 2/3rd is given by the
rotation about the central axis, where the reparametrization is Ry /3[vr](s). So shifting
the pt patch we currently have 1/3 in the s and ¢ direction we get the complete function
pt. The figure eight pt function is constructed by taking s € [0,1/4] and shifting the
plot four times by 1/4. Taking s € [0,1/2] for the 5; knot and the parameter reflection
yields the second part.

A remaining open question concerning pt plots is whether we can reconstruct a curve
given its pt plot. To construct a curve curvature and torsion is necessary, curvature is
available along the diagonal of pt, but the torsion must be extracted by some other
means. For a C3-curve, the torsion 7 is available on the diagonal of tt.

Remark 5.1. The biarc sampling for the trefoil v is non uniform and the refinement
has been done in the curvature peak regions. We observed that this helped as well to
improve the Fourier trefoil. During the synthesization of vp(t) with Equation a
reparametrization function T(t) given by

19 sin(67t)

T(t) =
&) =2+ =0 6r

1s used to slow down in high curvature regions as illustrated in Figure (a). Therefore
vr(T'(t)),t € [0,1] yields a non uniform sampling as shown in Figure (b) with more
points in the three regions of interest.

Simulated annealing in S3 55

5.6 Simulated annealing in S?

The existence of ideal knots has not only been shown for curves in Euclidean three-
space [8, 22} 25], but also for S? [I9]. There are no knots in R*, since we have one more
dimension in which we can “open” the knot. To illustrate this claim we consider a knot
in R? and add temperature as a fourth dimension. Then we can always open a knot by
heating the part of the rope we need to cross and cooling down the other part. This
process will always lead to an unknot. Restricting the knot from R* to S?* removes this
degree of freedom and, knots do exist in S? (even ideal knots [19]).

It is easier to construct a knot v in R3, since we can visually check whether or not it
has the knot type (is in the isotopy class) we expect. The same procedure is less obvious
in S? since we can not simply look at the shape. The stereographic projection P is given

by
2

2= (2,(0,0,0,1))
which maps a point 2 on S? to R3 with respect to the northpole at (0,0,0,1) and the

P:S*— R3, T

z,

projection plane through (0,0,0,—1) as shown in Figure The meaning of the larger
sphere S in this illustration will become clear after the next definition ([57]).

Definition 5.1. An inversion in a sphere S with radius r and center ¢ in RY is given
by

2
T:RY - RY, :v'—>c+< r)(a:—c)

|z = c|

where ¢ — 0o and oo — c.

We can write a stereographic projection from S? to R® with northpole ¢ as an inver-
sion in a sphere S with center at ¢ and radius r = 2 (see again Figure . The same
mapping T is used to project R3 to S3. For polygonal curves this would suffice to map
a knot v - embedded in R3 - to S3.

In the case of biarc curves we are also interested in properly mapping the tangents
onto the unit 3-sphere. To this end we compute the differential of T" at = # ¢ to be

742 7”2

T'(z): RN - RN, ¢t

-2 Tz —c){z—ct).
et 2 e)
With 7' and T” it is now straightforward to embed a biarc curve into S3. Note that the
tangents are not of unit norm after the mapping. Unit speed parameterization of the
biarc curve is enforced by normalizing all the tangents.

In practice, a curve v(s) € R3 is projected to S® by embedding it first in the plane
(x,,2,—1)T. Then applying T and T’ yields the result. The converse is done by first
projecting and then discarding the fourth coordinate of the curve which is now again
embedded in the plane (z,y, z, —1)7. Note that 72 = id. A knot’s type does not change

under inversion.

56 Computations of ideal knot shapes and the libbiarc

Figure 5.7: Illustration of an inversion in a sphere S with center ¢ and radius r, where
a point p in R? is mapped to T'(x) on S3.

Especially after manipulating a knot in S? it is often desirable to project it back to R3
for inspection. Depending on how the knot lies in S? it might be necessary to change the
northpole of the projection (in particular the center ¢ of the inversion). The resulting
knot will no longer lie in the plane (z,y, z, —1)T as explained before. So suppose an
inversion center ¢* # (0,0,0,1)”. We obtain ¢* = (0,0,0,1)” by a change of basis in S3.
This change of basis is done with Givens rotations [21].

Definition 5.2. A Givens rotation is represented by a N x N dimensional matriz

1 ... 0 0 o 0
O --- cosf --- —sinf@ --- 0
G(Z7k70):
O --- sinf --- cosf --- 0
0 --- 0 0 |

where the sin and cos terms appear in the it and k** row and column.

The product G(i,k,8)x rotates a vector x € RY by an angle @ in the (i, k)-plane.
Repositioning the inversion center c¢* = (1, 9,3, 74)7 to (0,0,0,1)7 is then obtained
by three consecutive Givens rotations in the (x;,x4),7 = 1,2, 3 planes with angles

arccos Ty

sign(w;)y/x? + 22

The inversion in S embeds the knot in the plane (0,0,0, —1), where we simply discard

0; =

the fourth coordinate to obtain a curve in R3.

Simulated annealing in S3 57

Up to now we have dealt with how to construct knot shapes in S3. We are interested
in computing ideal shapes analogous to knots in R?, where we minimize the ropelength
L/A. The space S? is compact and we no longer have scale invariance for knots, which
means that the ropelength is no longer an appropriate energy functional. There are
actually four natural and different problems one can consider in S3 [8, [19] :

1. maximize the thickness A,
2. maximize thickness A for a fixed length L,
3. minimize length L for fixed thickness A,

4. maximize the length L for a fixed thickness A.

The last problem in this list is not generic in the sense of ideal knot shapes, although it
belongs to the field of optimal packing problems as discussed in [20] for curves in S2.

In a first step we interpolate the projected knot with biarcs. Two point-tangent data
pairs span a sphere as explained in Section . For point-tangent data in S? x S3, where
the tangents lie in the S? tangent space, this sphere is exactly S?. The biarc machinery
and the thickness computation is still valid for curves in S?. With this, all the necessary
tools are available for simulated annealing on biarc knots in S3. The first simulations
carried out were maximizing the thickness of the set of knots up to seven crossings. For
this we used both a biarc and a Fourier representation, where for the Fourier case we
had to use a knot in R?, change its coefficients, project it to S® and only then compute
the energy 1/A.

There is the claim [I9] that an ideal shape in S* where we maximize thickness A has
to be in both hemispheres. The projection of a small knot in R3 will result in a curve
close to a pole. To stretch the knot to both hemispheres during simulated annealing we
introduced a scale move, which is actually more a conformal transformation, where one
picks a centre, a direction and the magnitude and applies a scaling motion to the knot
in order to push part of the knot to the second hemisphere. On Fourier knots, simply
rescaling all the coefficients with the same factor will change the scale of the knot on S3
and can be seen as a conformal move of the curve on S3. This transformation helped
especially in an early stage of the annealing process.

As already mentioned, annealing knots regularly demands user interaction, which
made us focus on only a few, namely the trefoil, the figure eight and the 5; knot. There
is no point for the moment in presenting the different plots and graphs for all these
knots. We will revisit these shapes in the chapter about knot self contact and close for
now the discussion about knots in S?.

58 Computations of ideal knot shapes and the libbiarc

5.7 Thickness computation

Until now we implicitly assumed that the thickness of a biarc curve can be computed.
On the next few pages we explain the algorithm to do so. The bottleneck of simulated
annealing is the compuation of the thickness and is therefore worth optimizing. The
thickness algorithm was then parallelized to speed up simulated annealing runs.

Given an arc-length parameterized curve or knot y(s), s € [0, L], we want to compute
Alv]. Unfortunately there is no explicit expression for A and it has to be approached
numerically. The curve v is sampled at the points v(s;),i = 1... N with point-tangent
data. A first possibility to compute A is

ARl < minpt(si, s5),

where we approximate the thickness by the smallest radius of the discretized pt function.
This value is an upper bound, since the thickness might be achieved between data points
along the curve. This way of computing the thickness has been used in early stages of
an annealing runs, where approximate values for A were not an issue. For a sufficiently
fine sampling of the curve this approximation converges to the thickness of « [66]. The
author in [66] developed an algorithm based on biarcs. Instead of using a large number
of data points for the computation, the arcs of the biarc sampled curve are considered.
The shortest distance between the base segments of all pairs of arcs is computed, then
every arc pair split into 4 new arcs and mutual distances computed again. Based on two
different tests, the double criticality test and the distance test, candidate arc pairs that
can not achieve thickness are discarded. This procedure computes the thickness A of a
biarc sampled curve v to a relative tolerance €. Note that this algorithm was developed
in R3 but remains valid in S3.

Input: n arcs a;, €
Output: thickness A, length L

L «+ Length(a;)

Tmin < MinRad (q;)

ArcPairs «+— DblCritTest (a;)

ArcPairs «+ DistTest (ArcPairs)

Erels Dub, Ap < ThickBounds (ArcPairs)

while ¢ < g, and Ay < Tyin do
ArcPairs « Bisect (ArcPairs)

ArcPairs « DblCritTest (ArcPairs)
ArcPairs «+ DistTest (ArcPairs)
Erels Aupy Agp +— ThickBounds (ArcPairs)
end
Algorithm 4: Given a curve v made of n arcs of circles a; and a tolerance ¢,

compute the thickness A[y].

Thickness computation 59

The algorithm as presented in Listing [4] takes as input n arcs a; given as a Bézier
triangle with control points (ag, a1, az2);, two for each biarc of the curve. The length of
the curve is the sum of the arc lengths. In the next step MinRad computes the smallest
local radius of curvature of the curve r,,;,, the local constraint to the thickness. After
that, the tests Db1CritTest and DistTest discard candidate pairs that can not achieve
thickness. The double critical checks whether a double critical chord is possible or not
within a given pair of arcs. The condition fails for an arc pair (ao, a1, a2), (b, b1,be) if
any one of the four statements fails

(w,tp) < —siny and (w,t1) < —sinvy
(w,tp) >siny and (w,t1) > sinvy (5.6)
(w,to) < —siny and (w,f;) < —sin~y '
w, tp) > sin and (w,#;) > sin
(w, to) gl) gl
where
_ 41— a0 — ax—a1
0= a1 — ag| = el
~ bl - bO ~ bo—b
O o b T enl (5.7)
. ao —az| + [bo — ba _ ao+az—(bo+b2)
Y T gt as— (bo + bo)] | Jaota—(otb)l’

This condition is necessary, but not sufficient. However as proved in [66], it becomes
sufficient when the arc length goes to zero, which is the case after enough bisections
(splits). Note that in the first double critical test, candidate pairs that are next neighbors
are ignored.

The distance test discards pairs if the smallest possible distance between the arcs is
still larger than the largest possible distance of the currently best candidate, i.e.

mindist(a,b) — e, — g5 > mindist(a®,b*) + g4+ + p

where mindist(a,b) is the smallest Euclidean distance between the segments as —ag and
by — byp. The arc pair (a*,b*) is the currently best candidate. The error terms g, are
given by

1 —w,
“N 14w,

€o =W lag — a1]

with w, = cosd,, where J, is the base angle of the Bézier triangle. The error terms for
b,a* and b* are analogous.

The function Bisect splits an arc a into two sub-arcs b and ¢ as shown in Figure
(.8 The error terms for the sub arcs are given by

€a

24+ 201 + wa)

gbzgc:

60 Computations of ideal knot shapes and the libbiarc

b1 ba=co C1

ap=by ag2=C2

Figure 5.8: Bisection of an arc of circle given by the Bézier control triangle (ag, a1, a2)
in two sub-arcs (bo, b1, b2) and (co, c1, ¢2).

Finally the thickness bounds function ThickBounds computes the following quanti-

ties
. N
Ap = min(rpn, min —(mindist((a,b); — €4 — €p))
7
1
Ay = min(rp,, min §(mindist((a, b)i +ca + b))
7
Emax = {2%)}5(5@ + Eb)
€ — Emaz
rel Alb

where Ay, and A,y are the lower and upper bounds of the current thickness and (a,b);
is the i*M candidate pair.

The algorithm ends when the relative tolerance €,.; is below &,.;. Whenever we will
state or use a thickness, we mean
A = Ay,

which is the smallest possible radius of the curve with certainty of no self intersection
of its tubular neighborhood.

5.8 Parallelizing the thickness algorithm

Now we would like to compute the thickness in parallel using more than a single CPU.
This is natural since the bisections are done on a per arc pair basis. Once we have a set
of candidate arc pairs the only remaining thing to do is compute the minimal distance
on arcs containing a double critical point. The smallest of these values is the thickness
of the knot.

There is a master process and several slave processes depending on the available
number of CPUs, where every slave process gets a few candidate arc pairs and computes
the minimal distance on double critical arcs, if it exists. The master handles in a
client-server way the communication with the slaves by sending new arc pairs and the

currently best thickness value. If a slave reports to be done with its work it sends back

Parallelizing the thickness algorithm 61

the distance found. If the computed distance is either larger than the one received from
the master or there are no double critical points found, then the distance value sent
back to the master is simply a large number. In what follows we will discuss in more
detail the work of each process, present the details of the complete algorithm, go into
implementation issues and present some benchmark results. The last part points out
possible improvements.

The master or root process initializes the knot and computes a first set of candi-
date arc pairs. Now it has to send one or more pairs to every available slave, which
will compute the shortest distance on the pairs. Once every slave has gotten its first
workload, the master cycles through them and waits for the worker processes to be done
with their task. They report back the computed distance and the master immediately
sends the next arc pair (or more than one) to constantly keep the work processes busy.
Every time the master receives a distance value, it updates the thickness and sends this
value in future jobs. As soon as all the arc pairs are processed, the master notifies the
processes that their work is done and ends.

MPI: A Message-Passing Interface Standard

The MPI API specification is a standard for MIMD parallel computing that defines how
different processes with separate memory spaces communicate to fulfill a computation
or program execution. The communication is done with a message passing protocol be-
tween the various processes running in parallel. The communication between processes
can be point-to-point (blocking) or asynchronous (non-blocking). A point-to-point com-
munication is considered to be finished when the sender and receiver exchanged the data.
For the non-blocking case the sender does not wait until the data has been received by
its communication partner.

Different computer and cluster manufacturers have different implementations of the
MPI interface tailored to their hardware. A relatively widespread implementation is
MPICH, which has also been used as a basis for other MPI implementations. LAM or
openMPI are other implementations of this interface standard.

We will not present the entire list of MPI functions. A minimal program is the
following code.

#include <stdio.h>
#include <mpi.h>

int main (int argc, char *argv[]) {
int rank, size,

MPI_Init(&argc, &argv);

62 Computations of ideal knot shapes and the 1libbiarc

Master

- Initialize knot

- Compute candidates

- Set thickness to
smallest local radius
of curvature

¢

Master
Send arc pair(s) and
smallest distance to }
every slave ~Slave I— - Slave 2—— Slave N——
Compute Compute Compute
and return and return and return
distance distance distance
T Master < —Slave 1—
Collect distance values ~ Compute
from slaves and send > a_nd return
new candidate arc : distance
pair(s) until all arc pairs |
are processed. < —Slave 2
“| compute
and return
distance
< —Slave N—
“| Compute
and return
distance
Master
Send stop signal to v 1 ¢
every slave
Slave 1—— ~Slave 2—— Slave N——
l Exit. Exit. Exit.
Master
Return thickness value
and exit.

Figure 5.9: Flowchart of the thickness parallelization. The master initializes the candi-
date arc pairs and distributes them to the slave processes. They compute the shortest
distance and report it back to the master. The algorithm stops when all candidates are
processed and the master returns the thickness A of the curve.

Parallelizing the thickness algorithm 63

MPI Comm_ rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

printf ("Process %d of %d\n", rank, size);
MPI_Finalize();

return O;

In the program listing we use MPI_Init to initialize the MPI environment and MPI_Finalize
to end the execution. The function MPI_Comm_rank asks what processor ID this process
has and MPI_Comm_size requests information about how many CPUs are available in
total.

Running MPI programs in a parallel environment such as a computing cluster de-
pends on the different implementations. A sample invocation with MPICH using 4
CPUs would be the following

mpirun -machinefile machines -np 4 program

where the file machines contains a list of host machines and their number of CPUs. Two
other routines are worth mentioning since they are the basis of every parallel program

for sending and receiving messages.

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

The various arguments are buf, a pointer to the data to be sent or received - count,
the amount of data of type datatype. The integers dest and source define the rank of
the partner process, tag is a message identification and MPI_Comm is a communication
handle. A common handle is MPI_COMM_WORLD which includes all the available processes.
It is possible to define other communicators depending on the network and computation
topology implemented in the program.

Collective communication is possible as well. A broadcast sends a message to all the
processes, scatter and reduce sends one task to all the processes in a group or reduces

values on all processes to a single value on one process.

64 Computations of ideal knot shapes and the libbiarc

Custom datatypes

The MPI standard defines a series of datatypes like MPI_INT or MPI_DOUBLE. In this
algorithm we have to send information concerning the candidate arc pairs to the com-
puting children. Every message passed from one process to another must have a specified
datatype. We want to send a message containing enough information for the child pro-
cesses to be able to compute the minimal distance. That is why a new MPI datatype
was necessary. It is possible to define an entire structure as a new MPI datatype, which
in our case would be the Candi<Vector> class, which describes a candidate arc pair.
The class Vector is either a 3 or a 4 vector. However, the size of the candidate struc-
ture is 248 bytes, which would cause considerable communication overhead. In order to
compute the minimal distance we only need the Bézier points (9 + 9 double) for the arc
pair, error information (2 4+ 2 double) associated with each arc and the currently best
minimal distance (1 double) for the subdivision process. This is a total of 23 doubles
adding up to 184 bytes, which is slightly better than sending the whole structure. We
add one more double used as a signal. Implementing signals with floating point values
is usually a bad idea due to rounding errors, but here we set this value larger than 0 if
we want the receiving process to compute the distance, and smaller than 0 if we want
to inform the process that it can exit. An alternative could be a MPI mixed data type,
where we would use a single bit as a signal, and the 23 doubles. The implementation
is easier with only doubles and with a single bit alignment problems could occur due to
fixed buffer lengths in the sending and receiving process.

The new datatype is therefore an array of 24 doubles, initialized at the beginning of
the MPI program with

MPI_Datatype MPI_Candi;
MPI_Type_contiguous(24, MPI_DOUBLE, &MPI_Candi);
MPI_Type_commit (&MPI_Candi);

This datatype can then be used just like MPT_INT or MPI_DQOUBLE. The next thing to do
is prepare the data to be sent to the worker processes. For that purpose we have the
following two routines

void pack_candidate(const Candi<Vector> &c,
const double curr_min,
double res[24]);

void unpack_candidate(const double res[24],

Candi<Vector>* c,

double *curr_min);

These functions are not part of MPI, which does have functions to pack and unpack data,
but we use our own implementation to deal with the specialized candidate structure.

Parallelizing the thickness algorithm 65

The function pack_candidate fills an array of doubles with the information needed from
Candi<Vector> and unpack_candidate initializes the Candi<Vector> from res. Since
the master process has a list of candidates to process, it packs the data in an array of
doubles and sends it to the slave process, which then unpacks it into a Candi<Vector>
object. The minimal distance gets computed, and only this double value is sent back to
the master.

Batching candidates

Subdivision on one arc pair can finish very quickly depending on how close we already
are to the final thickness value. The consequence is that the child processes will ask
for new candidate pairs and the master might become a bottleneck if it is already busy
sending out new candidates to the children. To reduce this communication overhead we
can play with the number of arc pairs sent at once. This is called batching and needs
more memory to store all the arc pairs, but then the workers simply process the whole
list and only when finished, they ask for new pairs. The sending and receiving MPI
routines are

MPI_Send(serial, BATCH, MPI_Candi, i, TAG, MPI_COMM_WORLD);
MPI Recv(serial, BATCH, MPI _Candi, O, TAG, MPI_COMM_WORLD, &stat);

where serial is the send /receive buffer, BATCH the number of arc pairs, i = 1,..., #CPUs—
1 is the process rank (0 for the master). Whether batching speeds up the computation
depends on various parameters like the number of arc pairs, the knot shape, active local
curvature, etc.

Discussion

In what follows we use an approximately ideal trefoil to test the program. Everything
has been computed on an Intel “Woodcrest” cluster with one master and 14 bi-dual
nodes. Figure[5.10] (a) shows the time needed to compute the thickness as a function of
the number of CPUs. Up to 10 CPUs, the speed improvement seems reasonable. For
more than 10 CPUs the gain flattens out. The master can not serve the workers at full

speed, since there are too many of them, which slows down the whole computation.

The next experiment is shown in Figure (b), where we vary the number of knot
data points, keeping the number of CPUs at 8 for all the runs. This is compared to
the standard thickness computation on a single CPU. We can see a more or less linear
behavior with a slope visibly smaller for the multi CPU case. Parallelization becomes
interesting if we have to compute with extremely refined knot shapes as is the case at
the so called end-game, which is when a knot shape is believed to be close to ideal and,
as we will see in the next chapter, there are many contact chords.

66 Computations of ideal knot shapes and the libbiarc

Earlier we discussed that the master could send more than a single candidate pair
to the child processes. Figure m (c) plots the time versus the number of arc pairs we
send in a row. The knot shape has 512 data points and we vary the batch size between
1 and 100. The computation gets faster the more candidates we send at once. A batch
size larger than 100 slows the computation down. The master’s minimal distance value
allows us to discard a lot of candidates early on, but this is no longer the case if we send
batches to each child process.

Another delicate point is the actual shape. Different shapes might lead to completely
different timings depending on how close various parts of the curve are to the final
thickness. If a knot has several regions where points are at distances close to A, then it
will take much longer to converge. All the subdivisions have to be carried out until the
relative tolerance is reached and only then can the master compare the various values
and compute the smallest one. The computations in Figure (d) show that the
speed-up can be significantly different from one knot shape to another. For the knots
where the time of a single CPU comes very close to that of the 8 processor run could be
explained by this worst case scenario: Suppose that we compute 7 arc pairs in parallel
and the master receives 7 distance answers, where the smallest is used for the next 7
arc pairs. If we would follow these 7 candidates in the single CPU case it might happen
that the first pair is already the smallest out of the 7 and the next 6 are discarded since
they can not yield a lower value. If this is true for almost every block of 7 pairs, then
the times for the single and multi processor runs have to be close.

A different analysis, compared to the various parameters discussed above, is the
time the master needs to do the initial setup and preliminary computations. Table [5.17]
summarizes this for a series of knots with a number of crossings up to 9. The knot js,
has been computed by [66] and is a very good approximation for an ideal trefoil knot.
These times indicate, that the master spends a lot of time in the initialization step. For
the k3, the master needs the same time as the slaves, for the k5, the worker processes do
basically nothing compared to the master. In contrast, for the j3, knot, the initialization
step takes only a fraction of the computation by the processes. The reason is that the
J3, knot is very close to ideal and a lot of candidate pairs have to be considered in the
thickness computation. The other knots have fewer nodes (around 200) and are further
away from ideal. Note that the batch size has been set to one for these computations.

Possible improvements

The above analysis of the various parts and parameters of the algorithm points out a
few weak points and ideas for optimizations. The master might have a lot to do with
interprocess communication if the children rapidly finish their computations, however if
this is not the case, then the master is idle, waiting for child processes to send back their
values, when it could also compute some candidate pairs. If we make the master compute
as well, then some of the children might have to wait until the master again answers

Parallelizing the thickness algorithm

67

'y

w

—_

Time (s)
< - o ¢ h
S ot = Ot N Ot W Ot ke ot Ot

RAT.
B

0.4

0.35

0.3

0.25

0.2

Time (s)

0.1

0.05

10

number of CPUs

15 20

(a)

25

30 35

‘Par,allel T

ingle

X

0

2

6

8 10

number of crossings of first knot in class

()

Time (s)

Time (s)

0.6 T T T 3
Parallel + .
ingle X -
0.5 P
04 x .
x
0.3 b
X - X
0.2 X A
Cx S
X - o+
0.1F -+ .
R
-
T--t
| | | | | |

0
200 250 300 350 400 450 500

550 600
number of knot data points
(b)
2.5 T T
£
2 8
|
1.5 b
B i
Es R o
1k **+¥+ B + o+ |
0.5 b
0 | | | | | |
0 50 100 150 200 250 300 350 400

Batch size

(d)

Figure 5.10: Four different benchmarks for the thickness parallelization. The plots are
(a) the number of CPUs, (b) the discretization of the curve, (c) different knots and (d)
the batching parameter, all versus time in seconds.

knot

j31
ks,
ka,

data points

512
160
208
232
280
304
352
376

master (sec)

0.165336
0.016368
0.024819
0.031302
0.042829
0.052276
0.067262
0.067325

workers (sec) total (sec)

2.092650
0.016206
0.018046
0.000165
0.000162
0.013455
0.012944
0.000118

2.258000
0.032578
0.042868
0.031471
0.042995
0.065735
0.080209
0.067447

Figure 5.11: Timings for the master, slaves and total time spent to compute the thickness

of the given knot.

68 Computations of ideal knot shapes and the libbiarc

the phone, wasting precious time. This issue could be surmounted by implementing an
interrupt system, where the children stop the master in its computation, send the value

and receive new pairs.

The master’s minimal distance value is important to quickly discard pairs if they
can not achieve better. Keeping the children up to date by sending them a new distance
value whenever the master receives a better thickness (for example by broadcasting)
could take care of that problem. Table [5.11] pointed out that the master spends a lot of
time in the initialization step, mainly by setting up the arc pairs and the first double
critical filter. Delegating part of this first filtering to the children would reduce the
master’s work.

Chapter 6

Contact sets and contact surfaces

In this chapter we will discuss self contact of ideal knot shapes. A self contact is where
the tubular neighborhood of the knot touches itself. Therefore we are interested in
computing double critical chords that are of length twice the thickness, or local contact
where curvature is active (see also Chapter . Physically this corresponds to increasing
the radius of the thick curve up to the thickness, and identifying points between which
we have self contact.

Definition 6.1. Given a closed, non-intersecting curve v(s) € C1(S,R30rS?) we define
the contact set C'S to be

CS ={(s,0) € I xI|pt(s,0) = A[]}.

The set of contact points CP located on the tubular neighborhood of a thick curve with
radius equal to its thickness is

CP={pe R?’]center of the pt(s,o) circle,(s,0) € CS}.

For a double critical contact chord ¢(s, o), this corresponds to the center of the chord
p=((s) +~(0))/2.

Since we only have numerical approximations of ideal knot shapes, it is necessary
to introduce a tolerance to specify what we consider to be a contact. We introduce a
parameter e, such that the contact chords satisfy pt(s,o) < Alv](1+¢). We will also
call the set of chords c¢(s,o) for all (s,0) € CS the contact set. The meaning will be
clear from the context.

Remark 6.1. Consider a circle with radius 1 and thus A = 1. For this case every pair
(s,0) on the circle is an element of C'S, since pt(s,0) = A, s,0 € [0,27]. Nevertheless,
CP is the simple point in the center of the circle.

69

70 Contact sets and contact surfaces

6.1 Contacts and the pt function

Evaluating pt on the nodes of a point-tangent discretized curve is straightforward. But
from the definition of a contact set we see that this point-wise evaluation is not sufficient.
Consider a biarc discretized curve v where we would like to compute the smallest pt value
between a point p and some point p* on an arc a. In order to do that we first need to
know how to compute the shortest distance between a point and a circle.

Definition 6.2. Suppose we are in R®. The polar axis A of a circle C(s),s € [0,27]
with radius v and center c is

A= {c+Ab]) R}

where b is the binormal of the circle.

Every point of a circle is equidistant to points lying on the polar axis, since it is
the straight line orthogonal to the plane in which the circle lies and running through its
center. The shortest and longest distance between a point not on the polar axis and the
circle are stated in the following lemma.

Lemma 6.1. Let p be a point in R® and C(s),s € [0,2n] a circle with radius r and
center ¢, with p # c. Then the distance function d(s) = |p — C(s)| is constant if p lies
on the polar azis of C or has a minimum and a mazximum for two points p— and p4 on
the circle C. These points are given by

p—c

pr=cFr—— (6.1)

p—c|
where P is the point p projected on the plane in which C lies, i.e. p=p—">b-(p —c)b
with b the binormal of the circle.

Proof. First we rewrite the parameterization of the circle C' in the base (e, e2, €3), where

er = 3—07 es =b, e3=-e1 Xeog.
p—c|
The circle is then
C(s) = ¢+ rcos(s)ey + rsin(s)es, s €[0,2x].

Next, considering that e;, i = 1,2,3 is an orthonormal frame and (¢ — p) - e3 = 0 by
construction, we differentiate |p — C(s)|?,

0

55— C(s),p = C(s)) = 2rsin(s)(p — ¢) - e1.

Since (p — ¢) - e1 # 0, the minimum of the distance function is at s =0 and s =n. O

which yields

The line from p through the center of the circle generated by the bezier arc (ag, a1, az)
intersects the latter in p_.

Contacts and the pt function 71

Figure 6.1: Smallest pt circle between a point p € {2 and an arc of a circle with Bézier
control points (ag, ai,as). In order for pt to be have minimum on this arc, the point p
must lie in §2. The point p_ is given by the shortest distance between p and the circle
on which the arc lies.

Remark 6.2. In S? the binormal of the circle used in the previous lemma is not simply
available by a cross product. Given p € S* and a circle C(s) € S® with center c € R* and
radius v, we first construct an arbitrary orthonormal basis {e1,es} in R* for the plane
of C(s). Then the point p is projected onto the plane spanned by {e1,es}, i.e.

p=cter-(p—cler+ex-(p—cea
The point closest to p on C(s) is now

p—c
p—cl

p-=c+r
The same construction is of course valid in R3.

As outlined earlier we are interested in computing the minimum of pt between a
point p and an arc a. An in depth discussion and a proof for all the cases that can occur
when computing pt between a point and a circle and in particular an arc of a circle has
been carried out in [66]. However, to compute the contact set of a biarc approximated
curve v we do not need to consider all the cases. Figure [6.1] illustrates the only case
used to compute the contact set. It shows an arc of a circle a with its Bézier control

triangle (ag, a1, az) and a point p ¢ a. The only relevant case is when p lies in 2. Note

72 Contact sets and contact surfaces

that the region {2 is a cake piece which extends to oo in the direction perpendicular
to the plane in which the arc of the circle lies. A point p is in volume {2 when

(ap —a1)-(ap—p) >0 and (ag—ai)-(ag —p) > 0. (6.2)

For a point p € 2, the minimum of pt is achieved inside the arc a at p* given by the
minimum of the half distance (pp), i.e. p* = p_. In other words, the radius of the circle
going through p and tangent at p* on the arc a is half the distance between p and p*.
The other cases can be neglected. Here is why :

e If pt is achieved as a maximum of pp then a point p' close to p* on the arc a must
be closer to p than p*. Suppose %|p — p*| = A this would mean %|p —pf| < A,
which is impossible.

e If p is in the region to the left or to the right of {2 (see again Figure , then
pt has its minimum on one of the endpoints a, call it p* and the corresponding
tangent t*. Since only double critical chords can be part of the contact set we
must have (p — p*) - t* = 0. According to for an endpoint of a this is only
possible if p lies on the border of (2.

Input: 2N arcs a; = (ag, a1, a2);, thickness A, toler-
ance €
Output: list of contacts C'S

CS 10
for b € a; do
for c € a; do
p < bo
if ptCondition(p,c) then

p_ « ClosestPoint (p,c)

if [p— —p|/2 < A(1+¢) then

add chord (p—,p) as a new contact to

cS

end

end

end

end
Algorithm 5: Given a curve v by 2N arcs of circles, the thickness A and tolerance
g, extract the contact chords.

Listing [5] explains how to extract the contact set for a curve v. We approximate v with
N biarcs. The 2N sub arcs a; of the biarcs or actually the Bézier control points thereof
are given as input to the algorithm as well as the thickness A[y]. For every possible pair
of arcs (b,c), b # ¢ € {a;} we check if Condition is satisfied with p = byg and c the

arc of circle on which we want to compute the minimum of pt (function ptCondition).

A classic : the R? trefoil 73

If the condition is satisfied, then we compute the minimum of pt as the minimum of
pp = %|p — p—|, where p_ is given by (ClosestPoint). Finally the chord p — p_ is
added to the contact set if [p —p_|/2 < A(1 +¢).

6.2 A classic : the R? trefoil

We will now discuss the contact set of a biarc interpolation of the Fourier trefoil ~
presented in Section [3:3] and introduce at the same time the notion of contact surface.
We first give the characteristics of the trefoil, namely the thickness A, computed with
Algorithm 4] the length L and the ropelength L/A

L =1
A = 0.0305397
L/A = 32.744237.

The thickness A and Algorithm [5 lead to a set of contact chords ¢;(s,t) where we
recover the arc-length parameters s and ¢ by finding the biarc on which the point lies
and bisecting it until we find s* and ¢* such that v(s*) and +(t*) are the endpoints of
¢i(s,t) for all the contact chords. This yields the contact set shown in Figure Note
that the contacts correspond to the minimum of pt along the knot where the radius of
the circle is A. As mentioned in an earlier chapter the pt landscape has a valley with
two minima at the bottom. A necessary condition for an ideal shape is that every point
is either in contact unless it is a straight line [24]. The plot in Figure shows that
every point y(s) is indeed in contact with two other points noted y(o(s)) and v(7(s)).
We will call o(s) and 7(s) the contact functions since the contact set of the trefoil is
CS ={(s,0(s))|s € IU(s,7(s))|s € I}. Note that the function 7 is the inverse of o, and
it is therefore sufficient to consider only one of the functions for the trefoil’s contact set.
Further the contact functions are periodic, smooth and monotone. These conclusions
are for the moment motivated by numerics, but will be proven in a later section. Contact
chords ¢(s,o(s)) will be called outgoing contacts and ¢(s,7(s)) incoming contacts. We
now introduce the concept of a contact surface.

Definition 6.3. A ruled surface X' is a surface generated by translating and rotating a

straight, possibly variable length, line segment through space.

A parameterization for X is for example given by
S(s,) = pls) + hu(s)o(s), 5,k € [0,1]

where p(s) is a curve in space, v(s) a vector on the unit sphere, and pu(s) € R a scaling
factor for v. We can now define the two border curves p(s) = X(s,0) and ¢(s) = X(s, 1),
and give another parameterization for X' :

Y (s,h) = (1 — h)p(s) + hq(s).

74 Contact sets and contact surfaces

arclength s

Figure 6.2: Fourier trefoil contact set separated in the two contact functions o(s) (solid
line) and 7(s) (dashed line).

Consider the outgoing contact chords of the trefoil v(s), s € I parameterized by o(s).
The two points 7(s) and y(o(s)) are the endpoints of the outgoing contact chord at s.
Running along s smoothly varies the endpoints of the corresponding contacts.

Definition 6.4. The contact surface of an ideal knot v(s),s € S in space and contact
set 0(s),s €S is the ruled surface X defined as

Y(s,h) = (1 =h)y(s) + hy(o(s)),s € S,h € [0,1].

The contact surface X' of an ideal knot ~y is a constant width band, where the length
of the linear segments used to construct X' is twice the thickness 2A[y]. The contact
curve of the knot is then given by

My2(8) = 2(s,1/2).

Note that C'P = 7;/5(I). This is where the tubular neighborhood of the knot touches
itself. Note that we constructed the contact functions o(s) and 7(s) by linear interpo-
lation since the initial discrete contact set lacks resolution in some regions due to the
parameter used to extract it. Figure (a) shows the contact surface constructed by
triangulating sufficiently many chords, parameterized by c¢(s,o(s)) walking along the
knot by varying s between 0 and 1. In Figure (b) we also add the trefoil knot and
the contact curve. Studying the contact surface of the trefoil brought our attention to
billiards on knots.

A classic : the R? trefoil 75

(a) (b)

Figure 6.3: Contact surface (a) for the Fourier trefoil and (b) visualization of the same

surface including the original trefoil curve with a radius of the tube much smaller than
A and the thickened contact curve.

Definition 6.5. Let v be a curve in CY1(S,R") and o(s),s € S its contact set. A
k-billiard on v at s* € S arises when

go...o0(s") =s"
———

k times

This definition of a billiard on a curve means that if we start at a point v(s) on the
curve and follow the contact chords according to o, then after k steps we reach ~y(s)
again.

Example 6.1. The only known analytic shape of an ideal knot is the unknot. Consider
a circle of radius 1. Fvery point s on the circle is in contact with every other point. The
double critical contacts are given by

o(s)=s+m, se€]|0,2n].

The double critical contact chords give a 2-billiard at every point s, since 0%(s) = s and
the billiards starting at s and s + 7 are identical.

Figure [6.4]is a plot of o(s),0%(s) and o?(s) for the Fourier trefoil. Powers of o have
been computed by linear interpolation. This gives a hint as to where we might find a
billiard. A candidate for a 9-billiard is around s = 0. So we recursively compute the
contact chords along the knot starting at «(0). The adopted parameterization of the
trefoil identifies v(0) to be the point furthest away from the center of the knot. So it is
on the 7 rotation symmetry axis in the middle of one of the “ears”. Figure [6.5 shows
how the 9-billiard is located in the trefoil. Notice in Figure (b), that the closed
trajectory is not planar. The star shaped path has the correct symmetries with respect
to the trefoil and seems to be the only billiard existing. But this is again only suggested
by numerics and visualization.

76 Contact sets and contact surfaces

1/2

o(s),0"(s) and o9(s)

0L '
0 1/2 1
arclength s

Figure 6.4: Plot of different powers of the contact function o(s) for the Fourier trefoil,

namely o, 0% and ¢?.

(a) (b)

Figure 6.5: Visualizations of the 9-billiard contact chords on the trefoil.

A classic : the R? trefoil 77

Ba B3

Figure 6.6: The parameters s; = 0°(0) of the 9-billiard partition the trefoil in 9 curves:
i, B and f;, i = 1,2, 3. These curves are related with respect to the trefoil’s symmetries.
The contact function ¢ maps the parameter interval of each curve bijectively to the
parameter interval of another of the curves.

Remark 6.3. The powers o' and 0?° show points that come very close to the diagonal,
but in order to be an 11 or 20-billiard we would need 11 or 20 such points along the
diagonal. The number of these points is however much lower, and these powers can
therefore not yield a billiard.

The contact star leads to another observation : it is possible to construct the whole
trefoil with only two curve parts. Recall that due to symmetries only 1/6 of the trefoil
is needed. We define the fundamental domain that generates the symmetric trefoil by

a(s) = s), se|o(0),07'(0),

B(t) = @), telo,07%0)].

The complete trefoil is then obtained by symmetry operations on the segments a and 3.
There is a total of 9 curve segments o, 3, 5, ¢ = 1,2,3 and this partition comes from
the 9-billiard. We label the nine arclength parameters of the billiard by s;, ¢ =0,...,8,
and the nine components of the trefoil are illustrated in Figure [6.6]

For the following discussion we drop the index 7 and consider the fundamental domain
«a and (. The 7 rotation symmetry axis through the middle of o means that « is self

78 Contact sets and contact surfaces

symmetric with respect to that axis. This same symmetry maps § to 3. Rotating «, 3
and 3 by 120 degrees about the center axis yields the finished trefoil.

We now establish the contact connectivity between the different curve segments.
The 3D visualization in Figure reveals how the congruent curve segments 5 (blue)
and (3 (red) are in contact with a (green). This holds for all three “ears”, but only one
case is shown. The slightly transparent blue surface simply emphasizes that the red
surface is “behind” the blue. The contact surface patches are delimited by the contact
billiard. The supplementary two contact chords visualized in the same picture seem to
form an angle extremely close to 7, are orthogonal to the 7 rotation symmetry axis and
are located in the middle of an a segment. This however is not yet the whole contact
surface. There is also contact between § and 3, which is easy to identify using the
contact surface in Figure [6.3

Using the notation - ~ - (in contact with) and the curve segment labels given in
Figure [6.6] we now have the connectivity

Bi ~ o,
Bi ~ o, i=1,23
Bi ~ Bir1,

where we wrap ¢ from 3 back to 1.

A last remark about the symmetrized trefoil is that it lies in a circumsphere with
radius 7pmae = |7(0)| which touches the curve ~(s) at the points v(k7/3),k = 0,1, 2.
There also exists an insphere with radius 7y, = |y(1/2)], touching the curve at the
points y(t;), t; = (20 — 1)/6, i = 1, 2,3, which is the point in the middle of the segments
a;. All these points either touching the circumsphere or the insphere lie on a symmetry
axis of the trefoil. For the discussed Fourier trefoil of arclength 1, the radii are

Tmin = 0.0362947, 710, = 0.0973923.

Note that the thickness for this knot is A = 0.0305397 and there is therefore unoccupied
space in the center of the knot. This must be the case. For suppose A = 7, there
would exist a ball of radius A centered at the origin touching the curve in three points.
A theorem of Gerlach [19] quoted in Theorem implies that the curve would have to
be a circle, a contradiction.

6.3 Surgery on a space invader

The next knot we inspect is the 4; or figure-eight knot. Figure [6.8] shows the contact
set for a slightly more annealed version of the 4; knot presented in [I1] with thickness
A = 0.02374408 and L = 1. As mentioned earlier, even though the thickness of the
Fourier 4; in Section [5.5]is slightly better, the curvature profile is less converged. These

Surgery on a space invader

Figure 6.7: Symmetric trefoil contact properties between a segment o and the two

congruent components 3 and [(blue and red). The straight successive pair of contact
chords, and the 9-billiard are also shown.

1/2
arclength s

Figure 6.8: Contact set for the figure eight knot.

80 Contact sets and contact surfaces

i,

B —

!
0 1/2 1
arclength s

(a) (b)

Figure 6.9: (a) decomposed space invader of the figure eight contact set and (b) the

total resampled contact set for the 4; knot. Symmetry of the minima of the pt function
implies that only two copies of a space invader need to be considered.

small variations along the curve lead to a less complete contact set. This is the reason
why we chose the biarc annealed version of the 4; to extract the contact set.

The contact set immediately reveals that it can not be expressed as a function o(s)
which is smooth, connected and monotonic as was the case for the trefoil. Rather there
are two disconnected components where the shape of each component looks like an
enemy in the classic arcade game “Space Invaders”. A single space invader can further
be decomposed into a body and legs. The body is a ruled surface similar to the contact
surface of the trefoil, and each leg is a double sided sheet. The way the contact set is
numerically sampled right now can not lead to smooth surface. We need again a uniform
sampling as for the trefoil. The discrete contact set is not monotonic, so we rotate the
plane in which the space invader lies by /4 and split it into an upper and a lower curve,
where the legs are included in both curves. Uniform sampling of the two curves and
rotating back by —m/4 leads to the picture in Figure (a). Note that we thicken the
double sided sheets (corresponding to the legs) slightly so that the result is a single,
closed, non-smooth surface since there are two extreme 180 degree turns at the tips of
the legs. We are interested in a visual impression of the contact surface and this surgery
will eventually lead to that.

Due to the 2-symmetry of the knot we can construct the second component from
the first by a shift of (+1/4,+1/4) in the (s,t)-plane as remarked in Section The
contact set shows 4 space invaders, but only two are relevant since the minimum of a
pt function for an ideal knot from which we compute the contacts is symmetric. This,
and the fact that one of the figure-eight symmetries involves a parameter shift Sy /o, is
actually why a single space invader is symmetric with respect to a diagonal axis cutting
the head through the middle. The final result of the resampled contact set is shown in

Torus knot contact surfaces 81

Figure 6.10: The surfaces in red and blue are the two components of the figure eight
contact set.

Figure (b). It is now straightforward to construct a triangulated contact surface for
each component. Figure shows the two components in different colors as well as
the figure-eight shape with a tube radius much smaller than its thickness.

The details of the 3D shape are difficult to see on a static image. It is still possible
to follow the red or blue surface from one double sided sheet to the other (the legs of
the space invader). The two components of a single space invader colored in Figure
can be identified in the 3D version. The green component is the smoothly rotating side
of the surface and the red component has a tent-shaped feature just before the double
sided sheet at both side. If we consider both components, then we see that the end of
a double sided sheet comes close just opposite to a tent of the other component, but
without touching it, which could indicate that the connecting segment along the curve
is a straight line. Straight bits on curves do not have to have contact with the rest of
the curved knot. This can also be observed in the contact set (Figure (b)). The
difference in arc-length s between the lower end of a leg of one space invader and the
upper tip of a small triangle in the body of the other space invader is ds = 0.0077 (about
8%o of the length of the knot).

6.4 Torus knot contact surfaces

In the last two sections we have discussed the contact properties of the trefoil and the
figure-eight knot. The trefoil knot belongs to a particular class of knots called torus
knots.

Definition 6.6. Let T : [0,1] x [0,1] — R3 be a torus with radii a,b € R. A (p,q)-torus
knot also noted T, 4 is a knot that is ambient isotopic to a knot that wraps p times around
T in one direction and q times in the other.

82 Contact sets and contact surfaces

Figure 6.11: The blue curve is a trefoil or 75 3 torus knot lying on a gray shaded torus
in R3.

The trefoil is a (2, 3)-torus knot as illustrated in Figure A parameterization for
a knot « wrapping p and ¢ times around a torus 7' C R? of major radius R and minor
radius r is
cos(ps)(R + rcos(qs))
v(s) = | sin(ps)(R+rcos(qs)) |, s €10, 2m7].
rsin(p s)

We used the previous equation to generate initial conditions for the ideal knots com-
putations. All of the ideal torus knots we studied show a double valley in the pt plots
just like the trefoil. The minima in the valleys can again be parameterized by the pe-
riodic contact functions o(s) and 7(s). However, for torus knots other than the trefoil,
additional isolated contacts are also present in the contact set. To construct a smooth
contact surface they have to be discarded in the numerical process. Figure [6.12] shows
the complete contact set and the contact surface for the torus knots T 5,75 7,12 9 and
T511. Notice that the last knot is still quite far from ideal. The isolated contact chords
in the pt plots seem to form crosses. At first, this indicated, that from a given arclength
parameter s, we have two or more isolated contacts. Then we numerically verified, that
the contact chords do not start at exactly the same point, when they seem to lie on
horizontal or vertical lines.

The T3 5 knot computations are not as well converged as the trefoil and we could
not identify a billiard in this knot. We suspect that a knot’s symmetry might imply
a billiard, which would mean that the 755 knot could have one, but did not attempt

Contact sets in S? 83

anything in that direction. Neither did we investigate billiards on other torus knots.

The contact surfaces in Figure [6.12] were actually 3D printed as physical objects. We
will present images of the shapes in Chapter [7}

6.5 Contact sets in S*

Torus knots can also be constructed in S?. A torus is a mapping of the unit square S x S.
If we consider S C C, then the torus is embedded in a four dimensional space.

Definition 6.7. A Clifford torus is a torus embedded in S* [5]

SxS={(Re? re?) e§%0,6€0,2n), 2+ R>=1,r,ReR}.

The major and minor radii of the torus (R and) are treated the same way as in R?
and a (p, ¢)-torus knot on a Clifford torus in S? is given by the curve

v(s) = (ReP, reti®), 0,4 € [0,2n).

H. Gerlach proposed [19] to consider the family of (2,3)-torus knots on a Clifford
torus with radii R = sinn, r = cosn. He then computed the optimal value for 1 where
this knot has maximal thickness. This value is 7 = arctan(,/3/2). Figure (a) shows
the unit square for the torus on which this curve lies. Further we draw a dashed line
for contact chords in S? which shows that every point along the curve is in contact with
exactly two other points. Further the dashed line crosses the curve 5 times. So at every
point on the curve there exists a 5-billiard. The fact that every point is in contact with
exactly two other points can be compared to critical pitch helices in R? [38] 66]. Closed
curves lying on a Clifford torus are actually helices in S* and the critical pitch analogous
to the optimal value for 1. There is however the difference that in R? that the two non
local contacts at a point of the curve extend to infinity in both sides of the helix.

An observation about (2, 2n+1)-torus knots for n > 0 is that for n = arctan (\ / %)
we have an ideal helix with a 2n+-3-billiard at every point along the curve. This has only
been verified numerically. The contact surface for n = 1,2, 3,4 with the appropriate n
is a torus. For a different 7, there are only a few contacts and it can therefore not be
a critical pitch helix. The relation between 1 and a (2,2n + 1)-torus knot has not been
proved, it is only numerically motivated.

The trefoil on a Clifford torus as proposed by Gerlach and baptized the g-Trefoil,
is actually a very good candidate for ideality (maximizing thickness) in S®. Running
simulated annealing on this shape did not lead to anything better. On the other hand
simulations starting from an arbitrary trefoil ended up close to a g-Trefoil.

84 Contact sets and contact surfaces

|
A
¢,
£y

arclength s

arclength s

Figure 6.12: From top to bottom : Contact functions o, 7 and isolated contacts are

plotted to the left, and on the right the corresponding contact surface for the torus
knots T275, T277, T279 and T2711.

Homotopy 85

(a) (b)

Figure 6.13: The unit square in graph (a) depicts the optimal (2, 3)-torusknot in S*. The
dashed line is a 5-billiard and a Villarceau circle cutting the trefoil in 5 points. Picture

(b) shows the trefoil on a Clifford torus with a few Villarceau circles in red projected to
R3.

The contact chord in S? is not a straight line. It lies on the unit sphere and is a
geodesic on the sphere, i.e. an arc of a great circle. The previously announced 5-billiard
is in fact a Villarceau circle.

Definition 6.8. [5] The intersection of a bitangent plane with a torus is called Villarceau
circles.

The union of all the contact billiards along the trefoil gives the Clifford torus on which
the trefoil lies. Figure [6.13] (b) shows the stereographic projection of the g-Trefoiland
the contact chords to R3. The red lines are Villarceau circles and the black lines are the
Villarceau circles orthogonal to them, which are not contacts. The union of the “curved”
contacts to a contact surface indeed produces a torus (Figure (b)). We use the
inversion in a sphere technique from Section (page [p9)) for the 3D visualization.

6.6 Homotopy

The contact set of a trefoil as discussed in the first part of Section [6.2] has been observed
by [66], 11, 54] and confirmed by [2]. The following is joint work with H. Gerlach. In this
section we would like to define a set of hypotheses from which it can be proven that the
contact set for the ideal trefoil is itself a trefoil. Numerics suggest that the hypotheses
are satisfied on the ideal trefoil as well as on subsets of the contact set of other 75 25,41

86 Contact sets and contact surfaces

ideal torus knots in R3, so that their contact sets would also contain 15 2n41 knots.

We will now rephrase the properties of ideal knots explained in Chapter [2]and proved
in [24]. Assuming C?-smoothness it was proved [24] that an ideal knot v at any param-
eter s is either locally

(1) straight, i.e. v"(s) =0,
or thickness is attained by at least one of the following

(2a) locally, i.e. |[y"(s)| = 1/A[],

(2b) globally, i.e. there exists t # s, such that the contact chord c(s,t) := y(t) — v(s)
has length 2A and is orthogonal to v at y(s) and ~(¢).

The discussion about the contact set of the ideal trefoil 7 in Section [6.2] suggest that :

(H1) in the sense of (2b), every parameter s of the trefoil is globally in contact with
precisely two distinct parameters that we denote by o(s) and 7(s). The functions
o and 7 can be chosen such that the contact chords c(s,o(s)) and c(s,7(s)) are
continuous functions in s,

(H2) there is some s € I, such that o(o(s)) # s,

(H3) the angle between the contact chords Z (¢(s,o(s)), c¢(s,7(s))) is uniformly bounded
away from zero.

Since v is a homeomorphism on its image, (H1) implies that o(s) = v~ 1[c(s, o(s)) +
v(s)] and 7 are both continuous as well.

We claim that o (and likewise 7) is (locally) strictly monotone. Assume it is not
monotone, so that it has some local extremum. Without loss of generality we assume
that o has a local maximum in s*. Then there exist two sequences a;, b; close to s* with
a; < s* < b;, such that o(a;) = o(b;) — o(s*) for i — oo. This implies, that the two
different contact chords c(a;, o(a;), c(b;,o(b;)) converge to the single chord c(s*, o(s*))
contradicting (H3). If o is not strictly monotone, then o(s) = ¢ € I has more than one
solution, which would imply more than two contact chords from ¢, contradicting (H1).

Since I is a circle and o is monotone, it is also surjective. By construction o must
be fixed-point free since |c(s, s)| = 0 # 2A. This together with the monotonicity implies
that o is indeed injective and orientation preserving.

We claim o(s) # o~ 1(s) for all s € I. First notice that S = {s € I|o(s) # o7 1(s)} is
open and by (H2) non-empty. Now let s; € S be some sequence with s; — s and consider
the contact chords c(s;, o(s;)) and c(s;,071(s;)). By (H3) we deduce o(s) # o~ 1(s), i.e.
S is closed as well, and therefore I = S.

Homotopy 87

Finally we claim 0~! = 7. At any given s € I consider the three potential con-

tact chords c(s, o(s)),c(s, 7(s)), c(s,071(s)), The first two are different by (H1) and the
case c(s,0(s)) = c(s,071(s)) was excluded in the previous paragraph. It remains that
h

c(s,0(s)) = c(s,77%(s)), which resolves to 771 = 0.

Recall that we may parameterize the union of all contact chords as the contact
surface

(s, h) =(s) + he(s,0(s)) = (s) + h(y(o(s)) — 7(s)),
for s € I,h €]0,1] and the contact curve [54]

y(s) + y(o(s
Y ja(s) = X(s,1/2) = ():z(())’
which is where the tubular neighborhood of ~ touches itself.

Now we have to make a stronger assumption on the smoothness of ¢ and on the
angles between the tangents along a contact chord :

(H4) o € CY(1,1),

(H5) ~'(s) -+'(o(s)) >0 Vsel.

Fix h € [0,1) and consider the curve v;(s) = X(s, h). By (H4) and (H5), we infer that
it is a regular C'-curve.

Next, we claim that v, is simple. We have to distinguish between the two cases
h # 1/2 and h = 1/2. For the former, assume that there were distinct s1,s2 € I with
Y (s1,h) = X(s2,h), i.e. v(s1)+hc(s1,0(s1)) =v(s2)+hc(s2,0(s2)). This would imply
that the normal disks [25] of radius A around 7(s1) and v(s2) (h < 1/2) or y(o(s1))
and v(o(s2)) (h > 1/2) would intersect, contradicting the assumed thickness. A double
point of ;5 would imply that the original v touches a ball of radius A in four coplanar
points from which we infer by Theorem in Appendix [C] that it is a circle.

We conclude that X(s,h),h € [0,1) is a C'-connected family of regular, simple
curves, so they are all ambient isotopic (Apply Lemma in Appendix |C|to each fiber,
use compactness and connectedness of [0, 1 —¢] and transitivity of isotopy). In particular
71/2 has the same knot type as 7.

Examples

In the previous section we derived an ambient homotopy between the contact curve and
the knot itself using hypotheses (H1)-(H5). We now want to illustrate the homotopy
using the approximate ideal Fourier trefoil 4 from Section of length L[] = 1, since
(H1) can only be approximately satisfied, and similar to [11, [66] we approximate o by a
function & computed as follows : fix s = 0 and consider fs(t) = |v(t) —v(s)|. Note that

88 Contact sets and contact surfaces

0.062
0.0618
0.0616

0.0614 [

fs(@(5)), fs(7(s)) and f5(fi(s))

(XVIEE SR N A A

0.061

0.4

0.3 b

2 01 .

arclength s arclength s

(c) (d)

Figure 6.14: (a) The distance function fs(¢) for s,¢ € I. The dashed lines in the valleys
indicate the two local minima, i.e. 7(s) and 7(s). (b) Graph of the local minima fs(7(s))
and fs(7(s)) (solid lines), which are smaller than the local maximum fs(zi(s)) (dashed
line) that separates them in the valley. (c) The periodic function & (s) for an approximate
ideal trefoil 4. (d) A graph of the scalar product 7/(s) - /(5 (s)) between the tangents
at s and 7 (s).

Homotopy 89

Figure 6.15: The trefoil homotopy visualized with the contact curve 7, 5 (visible in 1-3);
the chords ¢(s, o(s)) are shown in (2) and the surface X'(s, h) in (3). Note that the tube
radius of both the trefoil and the contact curve are much smaller than A, in order to
reveal the contact set.

fs(t) is twice the pp function for fixed s. Numerics indicate that fq(¢) has three local
minima, in particular fs(s) = 0 (see Figure (a)). Pick the local minimum of fs(¢)
closest to 2A and set 7 (s) = t for the corresponding ¢ value. Sampling s up to L[7]
and restricting the minimization to a small neighborhood close to the previously found
minimum yields 7 (s). If the numerical shape satisfies (H1)-(H5), then (s) = o(s). By

picking the other minimum close to 2A we can extract 7 and compare it to ¢!

using
linear interpolation. They coincide up to an error of 1073, Further we have that for all
s, the local minima f,(5(s)) and fs(7(s)) in the valley are separated by a local maximum
fs(fi(s)), which is always larger by at least 2 - 1075 than either of the local minima as
depicted in Figure[6.14] (b). The way we extract & here is just another method compared

to previous sections, and could instead be done based on the pt or ¢t functions.

We take this as a hint that (H1)-(H5) are reasonable. In particular for (H1),
lc(s,5(s))| deviates from 2A by less than 3 - 1075, while the dot product between the
contact chords and the tangents is less than 4 - 107°. Assumption (H4) is suggested by

Figure (c), and (H5) by Figure (d).

Figure [6.15] illustrates the homotopy. The different components of the image are the
center curve of the trefoil - thickened to a fraction of the thickness A and the contact
curve ;9 in view (1). In the upper left part (2) a set of contact chords c(s,o(s)) are

90 Contact sets and contact surfaces

Figure 6.16: Contact chords and the contact surface visualized in the same image for
the knots Ty 5, To 7, Tog9 and T5 11 (upper left to lower right). Note the isolated contact
chords for these higher knots that are in addition to the continuous contact surface.

visualized as thin cylinders and in the upper right (3) we show the ruled surface, which
is the previously defined X'(s,h), for s € I,h € [0,1]. The black arrows indicate the
direction of the homotopy as h varies. This takes the trefoil center curve v(s) to the
contact curve 71 /5(s).

The discussion about torus knots in Section [6.4]suggests that the construction carries
over to these knots after filtering a few isolated contact chords. They appear in the center
of the knot and are elements of the contact set in addition to the smooth contact surface
and associated contact curve. In the same way, and also for the trefoil there may well
be isolated points where local curvature is active. Figure [6.10] visualizes the contact
contact chords, curve, surface for the knots 7o 5, T5 7, T 9 and T3 11. Note that they all
belong to the class of torus knots 75 2,,41.

On the angle condition for ideal knots 91

6.7 On the angle condition for ideal knots

In previous sections we used numerical evidence to formulate mathematical claims such
as the homotopy argument. The ultimate challenge is still to describe an ideal knot
either by a closed form expression, or some differential equation that would allow effi-
cient numerics. For the trefoil we have the following constraints: the symmetry group
suggested in Section [3.3] the contact properties of the fundamental domain as discussed
in and assumptions (H1)-(H5) in the previous section. However, all this is still not
sufficient to formulate a system of differential equations for the trefoil. This section is
motivated by the fact that given the fundamental group «, § of a trefoil we can con-
struct the rest of the knot and the pieces are related through contact. We would like
to formulate a new set of constraints relating « and 3, perhaps leading to a closed and
consistent system of differential equations. The approach taken here is motivated by
the mechanics of knots [39].

Let T(s) € R be a tension along a curve v(s) in R3. The curve is unit speed
parameterized, i.e. |y (s)] = 1, such that the tangent field is given by ~/(s) = t(s). We
use the change of the tension in the tangent direction along the knot and an external
force density F'(s) to write the balance laws

(T'(s)7'(s)) + F(s) = 0
= T'(s)y'(s) + T(s)y"(s) + F(s) = 0.
Suppose that the force density F'(s), which is a force per unit arc length, is in the normal

plane of /() for each s, as is the case for double critical contact chords. Computing
the dot product with ~/(s) yields

T'(s) = 0.
Thus the tension T is constant along the curve v(s), i.e. T'(s) = T. The equations are
now
T (s) + F(s) =0,
or

Tk(s)n(s) + F(s) =0,

where n(s) is the principal normal and x(s) the curvature. In some sense the curvature
force density T'k(s) in the normal direction n(s) wants the knot to become shorter. One
can set the tension T' = 1, this only rescales the force density F'. In order for the curve
to stay in an equilibrium state, we have to identify the force density F'(s) acting against
the local curvature. For that we thicken the knot to the radius of its thickness A. Since
the tube then starts touching itself, we relate the force density F'(s) to self contact.

For the shapes arising from one of the numerical methods we need to sample the
curve y(s) with N points ~(s;). Figure shows three of these points on -y, the
principal normal n; at y(s;) and the angles 6; and 1); between the principal normal and

92 Contact sets and contact surfaces

Figure 6.17: Illustrates the angle 6; between the principal normal n; at y(s;) and contact
chord ¢(s;,0(s;)). The same holds for the angle 1; and chord c(s;, 7(s;)).

the contact chord. We also define the forces per unit arc length Fio, the “outbound”
force at s;, and the “inbound” force F.

Projecting the force densities to the principal normal and the binormal at a given
point 7(s;) we can write

Flsine; + FPsinf; = 0 (6.3)
—FiI cosY; + Fio cosb; +rk; = 0,

where we recall that we deal with forces per unit length. Written as N systems this
reads

Mlylzbz, izl,...,N

Sin’gZJi sinGi FI 0
M; =) i = y) bl = .
(—cos; cosb;) & (F,L»O) < —K;)

By computing the determinants

where

det M; = sin; cosb; 4+ cos; sinb;
= sin(6; + ;)

we can express the force densities as

o 1 cosf; —sinb; b
¥i = sin(6; + ;) \ cosv; sin; v

On the angle condition for ideal knots 93

At a sample point v(s;) on the curve we therefore have the force densities

sin 6;
Fl = " 4 6.4
¢ sin(6; + 1) " (6:4)
FO _ —sin 1% ..
’ sin(6; + ;) "

From this we can derive a compatibility condition. Physically one expects that the
outbound force at s is equal to minus the inbound force coming from the curve segment
in contact and given by the contact function o(s). In order to derive a compatibility
condition between forces, we equate the contributions of the forces per unit length of
the intervals [s, s + ds] and [o(s),0(s + ds)] :

o(s+0s)

s+ds
/ FO(t)dt = — / FL(t)dt.
s o(s)

Dividing the last equation by ds and taking the limit s — 0 yields

FO(s) = —FI(a(s))0'(s). (6.5)
An analogous computation for 7(s) yields

F'(s) = —F9(r(s))r'(s).

When the force densities are eliminated by use of (6.4), condition (6.5) reduces to a
purely geometric relation that should be satisfied on segments of ideal shapes with
double contact chords.

We computed these force densities on a numerical approximation of the ideal Fourier
trefoil (from Section and a 51 knot, which is a slightly more annealed version of
a b1 knot from E. Rawdon. For a partitioning s;, ¢ = 1,..., N of the interval [0, 1], a
discrete second order version of is

1

§(FO(Sz‘+1) + FO(s0))(si1 — 8i) = %(FI(U(SHI)) + F'(0(s:)))(0(sig1) — o(si)) (6.6)

Figure shows plots of the angle § between the principal normal n(s) and the
outgoing contact chords c(s, o(s)), the bottom row depicts the forces F©(s;)(s;j4+1 — ;)
and F1(o(sj))(o(sj+1) — o(sj)), with j = 1,..., N, N being the number of biarcs, and
FI. FO evaluated as in , for the trefoil and 51 knot. In Section we suppose that
every point on a torus knot is in contact with two other points on the curve plus a few
isolated contacts. Here we implicitly take the same assumption. The knot 5; has two
isolated contacts. At these points the curvature is balanced not only by two contact
forces, but by three. Numerics makes it difficult to properly treat a point that has more
than two contacts, which is why we discard isolated contacts. This introduces errors in
the forces at points with isolated contacts, which are very few compared to the number
of sample points we choose. The trefoil does not have any isolated contacts (only maybe

94 Contact sets and contact surfaces

0(s) vs. arclength s 0(s) vs. arclength s

(a) (b)

0.1 T .1 ?
P ~(FO(si41) + FO(5:)) (101 — 51) 0 —(FO%s1) + FO(5) (5111 — 1)

Do (FI0(si) + Flo(si))(0(sian) = o(si)) -ooeememes (F1(0(si11)) + F7 (0(0)))(0(5541) = 0(s:)) ==

H
H
H
H
{

04 ‘ = 04 :
0 arclength s 1 0 arclength s 1

() (d)

Figure 6.18: The left column corresponds to the Fourier trefoil and the right column to
the 51 knot. In the upper row the angle 6 between the principal normal and contact chord
¢(s,0(s)) is shown. The bottom row is the actual angle condition, where the black line
is the outbound force (F(s;y1) + FO(s;:))(six1 — 8i), i = 1,..., N and the dashed line
represents the inbound force (F(o(s;x1)) + F1(o(s:)))(0(si11) —o(s;)),i=1,...,N.

On the angle condition for ideal knots 95

local curvature active at six points). The spikes and the noise in these graphs might be
due to several things. If we consider the trefoil and its fundamental group as discussed
in Section then the large segment [is in contact with a small segment o and vice
versa. This means that the sampling is always sparse in 8 and dense in a. Computation
of the principal normals and the curvature is a delicate matter especially in the region
where local curvature might be active, in particular on the short segment a. The angle
condition relates information at « to 3, which means that slight errors in normals or
curvature values imply altered angles and forces and reflect as noise or even spikes in

the graphs (see Figure[6.18)).

The plots indicate that condition is not satisfied everywhere. A different exa-
planation than the one in the previous paragraph is, as mentioned in Section that
a small local perturbation of an ideal knot can significantly change its curvature profile
while still being close to ideal. This argument also applies here since the curvature plays
its role and the forces can be perturbed in the same way.

Remark 6.4. Conditions and have a priori nothing to do with the mini-
mization process of a knot with ropelength as the energy. A more in depth investigation
is necessary to link the two problems. One could argue that the angle condition is in
some sense a conditional curvature flow and therefore related to what algorithms like
SONO or RidgeRunner do. But it is unclear whether they minimize the same energy.

96

Contact sets and contact surfaces

Chapter 7

Printing a contact surface in 3D

Given an appropriate meshed surface of a 3D object there exist various technologies for
making the physical object. Such machines are called 3D printers. A model that can
be printed in 3D needs to comply with a few rules. They might vary from one printer
to another. The first thing is what is commonly called being “water tight”. If we put
the object in a water tank, it is not supposed to get filled with liquid. In other words,
the surface has an inside and an outside and the mesh cannot have holes. A second
condition is the so called manifold property, which, in short, says that every edge is
part of exactly two polygons of the mesh and does not intersect another edge (excluding
endpoints). And the normals to the polygons all need to point in the correct direction in
order for the printer to distinguish the inside and outside of the object. A 3D printer will
usually also have size constraints. Objects that are too large or have too fine structures,
or smaller than some tolerance, cannot be printed.

7.1 Closing the surface

The triangulated contact surface as explained in Section [6.2] is not water tight. The
sharp edge is not connected and we present hereafter two ways to close the surface.

Suppose that we have a set of contact chords ¢;, i = 1,...,n for a knot « and further
that we are able to construct a smooth contact surface S;. We now want to extract its
border 051 = (81 U B2, where 31 and (2 are two curves, and build a triangulated surface
Sy between (31 and 2, such that 9(S1US3) = 0. Using the definition of a contact surface
we can write (1(s) = X(s,¢) and fa(s) = X(s,1 —¢).

The steps involved in extracting two boundary curves 31 and (2 are shown in Figure
First, the contact chords are shortened (b) and translated in the direction normal
to the contact surface (c). Since the endpoints of the contact chords lie on the boundary,

we are now able to construct 81 and fs. Pick a point p in 81 and the closest point p* to

97

98 Printing a contact surface in 3D

A%
PG

vl

Figure 7.1: Procedure to close the contact surface of a trefoil by extracting two borders

and constructing a triangulation between them.

Printing the surface in 3D 99

p in By. If we follow (31 and (2 and triangulate the boundary we obtain the grey surface
in (d). Restoring the original points for the contact chords (normal displacement (e)
and shrinking (f)) gives a triangle mesh which is water tight and which has successfully
been printed.

There are however several problems that can occur during this process. The value
for shrinking is limited on both sides, if the contact chords remain almost the same, then
if after shrinking the distance between points on the boundary (1 or (o is larger than
the distance between points on different boundaries, the boundary extraction algorithm
will jump from (7 to B2 and vice versa. On the other hand, if the contact chords are
too short, then we might jump from one endpoint of the contact chords to the other. A
relatively fine uniform sampling can help to avoid both cases.

Another issue is the two starting points for 81 and (. It is not obvious how to guess
the first two close points on different edges. If after the double border extraction we
realize that the distance between the first and last point of one border is larger than the
distance between the first point on this border and either the first or last point on the
other border, then we have to redo the process. This second time however we know two
points on different edges, since the first and last point of one border is further apart.

The last trouble we might encounter is the triangulation. The direction of 31 and 3
could be opposite and the triangulation could be wrong. A simple reordering of either
(1 or (B2 solves this.

This method is a natural way of closing the contact surface but can still construct ill
conditioned triangles (long and skinny). We used this algorithm for our first 3D printed
models. For newer versions however a simpler way of closing the surface has been
chosen. For that we used Blender and its feature “select non-manifold”. This exactly
selects the boundary of our surface. Merging vertices with increasing tolerance values
will eventually remove all the non-manifold regions and properly close the surface. The
mesh loses some detail along the sharp edge when merging vertices, but the 3D printer
usually can not print extremely small parts and the borders will lose some detail anyway.

7.2 Printing the surface in 3D

In an early stage of this thesis a first set of trefoil contact sets was printed in the
Computer and Visualization Laboratory group of G. Abou-Jaoudé at EPFL. The models
were made of paper and then in plaster. At the time, we used the border extraction
method explained in the previous section to close the contact set.

Then we discovered the online 3D printing service Shapeways [63]. It is possible to
upload 3D meshes to their website. The models are checked and tested to determine if
they can be printed (normals pointing outwards, manifold property, size constraints).
They propose a variety of materials to choose from. We decided to order a few models

100 Printing a contact surface in 3D

in a material called “White, Strong & Flexible”, which is a nylon kind of material, the
strongest currently available on their website. It is also possible to print objects in
metal, but for that, the wall thickness has to be at least Imm. We did not order an
object in metal yet.

The objects printed by Shapeways are a simple trefoil, which is naturally closed and
with correctly oriented normals. We can now produce contact surface meshes for other
knots than just the trefoil. The approach to close the surface for Shapeways the same
as with Blender, where we lose some fine structure along the sharp edges, which is not
problematic since the printer has a hard time creating the sharp edge anyway. In Figure
we show photos by B. Favre of a Shapeways printed trefoil knot, and the contact
surfaces for the trefoil, 51, 7; and 9;.

Figure 7.2: Trefoil model (top) and contact surfaces for 31,51,7; and 9; (bottom).

Chapter 8

Conclusion

In this thesis we exploit the interplay between scientific computation and visualization
to enhance the understanding of ideal knot shapes.

Chapter [2] introduced the necessary background material, including the notion of
a space curve, a thick curve and the concept of ideal knot shapes. We first defined a
tubular neighborhood of radius r > 0 around a closed, smooth curve, which is a thick
curve or tube. The largest radius r for which such a neighborhood is injective is called
the thickness A of the curve. We relate the thickness A to the smallest radius of a circle
through three points on the curve (the pt function). Ideal knots are ropelength (L/A)
minimizers of a given isotopy class. Only a few ideal shapes are known analytically,
such as the circle and the Hopf link. So we approach this question numerically using
the biarc discretization (Section [2.2)), mainly following what has been developed in [66]
but extended to RY so as to be able to compute in S?, i.e. the three sphere embedded in
R*. A closed curve approximated by biarcs is in C11(S,R3), which is known to be the
appropriate regularity of ideal knots.

In Chapter [3] we discuss Fourier knots, which are simply a different parameterization
of a closed space curve. An appealing property of this representation is that we can
enforce symmetries on knot shapes. Starting from prior computations of various types,
we conjecture the symmetries of the trefoil, the figure-eight and the 5; knot and show
that a symmetrization of the knots with respect to these symmetries is visible in the
Fourier coefficients. In particular these coefficients are no longer independent, and
several vanish. This property proved to be helpful in the numerical part of this thesis,
where we could speed up the computation of approximately ideal knot shapes.

Before the presentation of the numerical computations of ideal knots in Chapter
a discussion of visualization in Chapter [4] explained the design of a specialized color
gradient, which is used to emphasize detailed structure in the pp, pt and tt plots of ideal
knots. Then curview is described, which is a curve viewer program included in the
libbiarc library. A simple example is presented in order to familiarize the reader with

101

102 Conclusion

the 2D plots pp, pt and t¢ that arise in the Chapters [f] and [6] about computations and
contact, respectively. The last part of Chapter [] describes a possible way to visualize
curves in S3.

Chapter [f] deals with numerical algorithms to approach ideal knot shapes. The
algorithms mentioned are SONO, RidgeRunner and simulated annealing. Simulated
annealing on knots was first done by B. Laurie [36]. Our simulated annealing code,
based on the biarc discretization, is part of the libbiarc and has been augmented
beyond previous biarc simulations by a coordinated non local move set based on the
Fourier representation of the knot. Since we know how to efficiently evaluate thickness on
a biarc approximated curve, we switch between the two representations when annealing
Fourier coefficients. In this sense, annealing a Fourier knot is just a particular, global,
annealing move, since we always compute the objective function (the ropelength) on a
biarc curve. The thickness evaluation algorithm and a parallel implementation concludes
this chapter. Thickness evaluation seems to be the bottleneck in our computations, so
parallelization of this part is worthwhile.

Now that we possess a set of reasonably converged ideal knot shapes of various
isotopy classes — we usually computed with all the knots up to nine crossings — we in-
vestigate their contact set properties. Chapter [6] has three substantial parts. First we
defined the notion of a contact set C'S, which informally is where the tubular neighbor-
hood touches itself. This is also based on the pt function, where a pair (s,0) € CS if
pt(s,0) = Aly]. We then discuss the contact sets of the trefoil and a few other torus
knots, where the midpoints of the contact chords form a curve. In the second part,
Section [6.6], we show under a few assumptions, that the contact curve of the trefoil is
ambient isotopic to the knot, and is therefore in the same knot class. The contact set
of the figure-eight knot is fundamentally different, since there are two disjoint compo-
nents. For torus knots we believe that for fixed s every pt(s, -) cut has exactly two global
minima plus a few isolated contacts. The figure-eight knot does not have this simple
structure and there are regions that do not seem to have contact at all. This does not
contradict known results provided that the curve segments that are not in contact are
straight.

In the investigation of the trefoil contact properties we discovered a closed trajectory
when following iterations of the contact function o(s), starting from s = 0, which is on
the 7 rotation symmetry axis. This trajectory is a closed 9-billiard and partitions the
trefoil into nine curve segments, where only two (called o and f3) are independent, the
remainder being constructed by simple symmetries. This partitioning of the knot is
significant because it also partitions the contact set. We have not carefully checked
whether such billiards exist on other R? knots.

In the third and final part of Chapter [6] we discussed an angle condition for ideal
knots. In order to derive a set of differential equations for the ideal trefoil the 9-billiard
narrows the problem down to parameterizing « and (3, and relating them with the

103

Figure 8.1: Knot 8;3 seen from a possible symmetry axis.

contact function o and the angle condition presented in Section [6.7. At every point
s € S along the knot, curvature, inbound and outbound forces balance in a certain
explicit sense, which involves the local curvature, the incoming c(s,7(s)) and outgoing
c(s,0(s)) contact chords, and the angle between the chords and the principal normals
at s,0(s) and 7(s). We have a compatibility condition, since there are two different
ways of computing the same force: first as the outbound force at s and second as the
inbound force at o(s). As observed, comparatively large changes in curvature can be
made locally with only very small associated changes in thickness. As these balance laws
involve the curvature, they might offer a smoothing algorithm for ideal knots already
close to ideal.

In the final Chapter [7] we describe how the contact surface meshes obtained in Chap-
ter [6] can be 3D printed. Surprisingly, a physical model of the contact surfaces showed
aspects about the surface that we had not realized by looking at them on a computer
screen. For example, the contact curve of the more complicated torus knot 75 11 starts
becoming less and less planar, while we wrongly assumed the contrary when inspecting
them via visualization on a computer screen.

Several directions of future work are opened up by this thesis. Analytically, the
ingredients for a closed form expression of the trefoil might now be close to being found.
We want to find two curves a(s),3(t) € C®(I,R3) such that we have C' boundary
matching conditions at the endpoints. Is curvature active at the endpoints of o and 37
Do we have zero curvature at the midpoint of a? The angle condition implies a second
copy of 3, but for that we need the contact function o(s). An analytic expression for o
seems elusive.

From a numerical point of view, futher computations on higher order knots using
biarcs and the 1ibbiarc for thickness evaluation are still desirable. In addition to what

we have learned from the trefoil, better contact sets of higher order knots could lead to

104 Conclusion

a generic understanding of how to partition a knot’s contact set, considering its regions
of possibly active or vanishing curvature, straight pairs of double critical chords and
symmetries, which, at least to our knowledge, are less present in more complicated
knots. Nevertheless symmetries do arise, for example the knot 813 shown in Figure [8.1
is a very good candidate for Fourier annealing, since the symmetries visible in Figure
are clear. The principal drag axis as computed in [10, 23] indicate projections along
which the knot shapes might show some symmetry.

Appendix A

libbiarc

The library is available as a static Mercurial [50] repository at
hg clone static-http://lcvmwww.epfl.ch/libbiarc/

or as a tar ball at lcvmwww.epfl.ch/libbiarc/tars/libbiarc-0.1.tgz. There is
an extensive documentation at lcvmwww.epfl.ch/libbiarc/doc/html explaining the
different API calls and tools included. How to install and generate the documentation

is also explained on that web site.

A.1 Command line options

The viewer curview in the inventor directory is started with at least one filename of
a PKF file and the following optional arguments

-N=NODES number of points on the curve
-S3=SEGMENTS cross sectional segmentation
-R=RADIUS tube radius

-Tol=TOLERANCE mesh adjustment tolerance
—-closed closes all the curve

-iv-scene <file.iv> add a .iv scene-graph to the scene.
-texture <img_file> texture map the pkf curve
-whitebg white background color

where in order of appearance we have the number of data nodes, the cross sectional
segments, the radius of the tube, and a tolerance value used for the mesh creation.
Further the flag -closed is used to treat all the curves as closed. Right now it is not
possible to mix open and closed curves in the same scene. A very handy option is the

105

lcvmwww.epfl.ch/libbiarc/tars/libbiarc-0.1.tgz
lcvmwww.epfl.ch/libbiarc/doc/html

106 libbiarc

-iv-scene argument. We can ask the viewer to load an inventor scene file (.iv) to add
supplementary objects like spheres, line sets or surfaces. This has often been used to
analyze specific knot shapes, and for example their contact properties. The next option
permits the user to map a texture image on the tube, and the last option switches
the background color from default black to white, which has been used to produce the
images for the thesis.

A.2 Key bindings

Here we describe the key bindings for curview, and their actions where letters A-Z are

case insensitive.

Keys F, V : Increase (F) and decrease (V) transparency of the tube.

Keys A, Y or Z : Increase (A) and decrease (Y/Z) the radius of the tube by 10%.
Keys S, X : Change the number of circular segments.

Keys D, C : Resample the curve with more (D) or less (C) data points.

Key 1 : Cycle through different curve framings (Frenet frame, parallel transport or

writhe framing).
Key L : Open or close a curve. This is only available in BIARC view mode.

Key Return : For this we need to be in BIARC mode. Creates a new curve if currently
there is none. If there is already a curve object, then the viewer adds a new data
point in the direction of the last tangent. Only single component curves can be
edited.

Key Delete : Removes the last picked data point in BIARC mode.

Key Space : Cycles through three different viewing modes: SOLID, WIRE and BIARC.
The first is the standard view, WIRE shows the mesh of the tube and the BIARC rep-
resentation draws the curve as a line with little red spheres (actually octahedrons)
for the data points, blue spheres for the biarc matching points. The tangents at
every point are yellow at data points and green for the matching tangents.

Key W : Exports the current state of the curve to the file curve.pkf. The curve is
correctly oriented with respect to the current camera view.

Key R : This function is only available in BIARC mode. Resamples the curve between
two selected data points with 10 nodes. First hit R, then click on the two locations
where you need to change the sampling of the curve.

Annealing 107

Key 2 : Displays the inertia axes [27] of the curve. If the modifier CTRL is pressed, then
it orients the curve with respect to these axis. Repeating this, cycles through the
three different axes.

Keys I, 0, P : Opens a different window with either a pp (0), pt (P) or ¢t (I) plot.

Key Q : Close the viewer.

A.3 Annealing

As detailed in Chapter [f] simulated annealing is an algorithm to find a global minimum
in a configuration space by a coordinated random search. The principle is simple,
change the configuration and check whether the new energy associated to the problem
is lower. If it is the case, we accept the change, if not we accept it according to some
probability. In simulated annealing this probability is given by a Boltzmann distribution
and depends on the current temperature. It is not a very efficient method, but gives good
results depending on the underlying problem without having to compute any gradient
of the objective function. These annealing base classes are available in the directory

experimental/annealing in the libbiarc.

A.3.1 Implementation

Since we use simulated annealing for different problems, the need of an abstract anneal-
ing structure was necessary. All the core routines and parameters are defined in abstract
base classes. Every particular problem could then rapidly be implemented deriving from
these classes. It is no longer necessary to reprogram the whole simulation machinery for
every new problem. The main classes are

class BasicMove
class BasicAnneal

The changes that can be made during an annealing run need to be derived from
BasicMove. This class contains the routine move, to be reimplemented in the derived
classes, accept and reject which are called by the main annealing class. They adjust
the step size associated to every move object and undo rejected moves. A given problem
might have various orders of magnitudes when it comes to moves, that is why the step
size is very important to control it. The constructor initializes the step sizes and the
step change, which is performed depending on whether a move gets accepted or not.
Derived classes would contain problem specific data, like floating point values or entire

structures that get changed in the annealing process.

108 libbiarc

The simulation task itself is derived from BasicAnneal. The annealing class has
an array of possible moves or changes and the interface for that is implemented in
BasicMove as explained earlier. Once the necessary moves are implemented, the only
routines from BasicAnneal that have to be reimplemented are energy and probably
best_found, stop and the constructor to define new parameters for the problem.

A word about parameter handling. Parameters are given as a string params with
key=value pairs delimited by a comma. Example: T=.01,N=10,best_filename=best.txt.
The different key, value pairs get extracted in the initialization with the helpers

// Extract strings

#define extract(Var,params)
#define extract2(Var,Str,params)
// Extract integers

#define extract_i(Var,params)
#define extract_i2(Var,Str,params)
// Extract floats

#define extract_f(Var,params)
#define extract_f2(Var,Str,params)

There are two versions for extracting strings, floats or integers. The first one assumes
that the variable name Var is the same as the name in the parameter string, the other
version can extract variables where the names differ. It looks for the string Str in params
and initializes Var correctly. To complete the presentation of the base annealing class,
there are a few other routines. The method show_config prints the parameter settings,
accept_curr_moves and reject_curr_moves are called if the current configuration
gets accepted or not. wiggle performs a random move, update_minmax_step controls
the move step sizes, logline prints simulation information during the run. A call to
do_anneal starts an actual simulation.

A.3.2 Toy problems

To demonstrate the versatility and ease of use of this abstraction, we implemented three
different toy problems. Further investigating these problems would be another research
project. The only reason we present these toy problems is to illustrate the way of using
the base class structure.

Dot repulsion

In this problem we try for N dots ; € R?,i = 1,..., N, to minimize the energy

N

E(xy,...,an) = Y (2= |oi — a5])%.
ij=1

Annealing 109

Figure A.1: Annealing results for the dot repulsion problem for N = 2, 3,4, 5,10, 100.

This means that every point wants to be at Euclidean distance 2 from all other points. A
move for a point z; is implemented as two float moves stored as two SimpleFloatMove
objects. The class SimpleFloatMove is derived from BasicMove. The simulated an-
nealing has an additional parameter NN, the number of dots and is taken care of in
the constructor. The simulation stops if the temperature gets too low. In best_found
we write the coordinates for all the points to best_filename. Figure [AT1] shows the
minimal state found for N = 2,3,4,5,10 and 100 points.

Square box problem

In the second problem (still in R?) the goal is to find the smallest square box in which
we can fit N smaller square boxes all of the same size. The only additional parameter
is the number of boxes N just as in the previous example. Then we define a Box class
containing the center (2 floating points) and an orientation angle (1 float). The edge
size of a box is fixed to one. The moves are implemented as three SimpleFloatMove,
acting on the center coordinates and the angle of the boxes.

The annealing class initializes the N boxes in a random fashion and sets up the
possible moves. In the wiggle routine we move and rotate a box, accepting only non
overlapping configurations. The energy is given by the edge length of the bounding
square box surrounding all the smaller boxes.

Figure [A-2] shows the results for N = 2,3,4,5,10,17. The results are correct up to
N = 10, where the optimal edge length has been proven to be 3.707(3 + 2-1/2) [17].
This is an indication that the energy function used in this problem could further be

110 libbiarc

Figure A.2: Annealing results for the box problem with N = 2,3,4,5,10,17.

improved.

Curve fitting

This last example program has to some extent been used to fit a monotone contact
function for the ideal trefoil o(s). Given a list of points (z;,y;) € SxS,i=1,...,N we
try to fit a monotonely increasing function

f:S—,8S s — f(s)

with periodic boundary conditions in both directions. We try to stay as close as possible
to the data points in a least squares sense. The energy functional is therefore

N

E(mlv""xNayl,"'vyN7f) = Z(yl_f(xl))z

i,j=1

The monotone function f is given by M points and linearly interpolated between data
points.

For the additional annealing parameters we need a parameter M for the number of
data points we use to define f. This time we also have two other parameters, filename
contains the data we want to fit and resume_from can be used to continue a previously
stopped run.

Appendix B

Blender Python plugins

A variety of 3D modeler and renderer softwares exist on the market, such as Alias’
Maya, 3D Studio Max, and many more [40} [42]. In particular there is Blender, an open
source 3D studio [28] with good functionality and tools. Almost all of these programs
have some mechanism for extending their functionality either with binary plugins or a
scripting language, sometimes proper to each package. In Blender there are two ways of
extending its functionality, either with binary plugins or one can simply write plugins in
plain Python using the Blender Python API. This API permits the user to easily create
and manipulate objects like primitives or meshes or to edit directly material, modifier
or animation properties. The Blender documentation states that the preferred way of
extending Blender is with scripting, which is what we will present here.

A Blender Python script usually contains a part where one deals with the geometry
or the objects to be generated and modified in a scene, then a GUI part responsible
for the look and feel of the plugin, and finally an event management system, where one
registers event handlers. The scripts are written or loaded in Blender’s Text Editor
window, where they can then be executed.

In the libbiarc package, scripts for importing PKF curve files into Blender are
located in the experimental/blender directory. We now give a brief description of
what they do.

pkfanim.py The script loads a sequence of PKF files from a directory. Then, using
the radius and the number of nodes along the centerline specified in the GUI, it
generates a tubular mesh object for every PKF found in the directory. Finally the
meshes are included in the scene as a Blender animation.

pkfcurve.py Here we import a PKF curve as a Blender trajectory or curve object.
This object could then be used for beveling or trajectory following.

pkfmesh.py This tool is probably the most useful if one only wants to produce a still

111

112 Blender Python plugins

image of a given curve. It produces a Blender mesh from a PKF file similar to the
animation script, but only for a single file.

struts.py A very handy tool to import contact chords as small cylinders.

wire.py The purpose of this script is purely artistic. It creates a wire frame like object
of the tubular mesh of a curve with cylinders. Then it adds spheres as joints at

the data points.

Two rendered examples produced using the above scripts are shown in Figure B}

113

Figure B.1: Two pictures rendered with Blender and constructed with the plugins pre-
sented in this section.

114 Blender Python plugins

Appendix C

Two theorems

For the readers convenience we included the statement of two results used in this thesis,
and cited in the references, but which might not otherwise be easily accessible.

Theorem C.1. [I8, Satz 3.27] Letv € C1(S',RY) be a closed curve of positive thickness
O := Aly] > 0. And let Bg(C) be an open ball around some center C € RN, such that
Bo(C)N~(SY) = 0. Now let there be two distinct points X,Y € dBg(C)N~(SY), which
are not antipodal on 0Bg(C) (i.e. | X —Y]| < 20).

Then v joins X andY by a geodesic arc of radius © running on 0Bg(C).

Lemma C.1. [58] Letn € C(S',R3) be a regular simple closed curve. Then there exists
a constant e* > 0 depending on 1 such that all ¢ € C* (S, R3) with ||¢"—1||cos1 gs) < €
are ambient isotopic to 1.

115

116 Two theorems

Bibliography

[12]

[13]

Adams, C., The Knot Book W. H. Freeman, New York, (1994).

Ashton T., Cantarella J., Piatek M., and Rawdon E., Self-contacts sets for 50 tightly
knotted and linked tubes mat.DG /0508248, (2005).

Arikan, O., Pixie OpenSource RenderMan, www.renderpixie.com, (21 september
2009).

Barth N., The Gramian and K-Volume in N-Space: Some Classical Results in Linear
Algebra JYT Vol. 2, Issue 1, (1999).

Berger M., Geometry I+11, Springer-Verlag, New York (1987).
K. M. Bolton, Biarc curves, Computer-Aided Design 7 (1975) 89-92.

Buck, G.; Simon, J., Energy and length of knots, in Lectures at Knots96, ed. Suzuki,
S., World Scientific Publishing, Singapore (1997) 219-234.

Cantarella, J.; Kusner, R.B.; Sullivan, J.M. On the minimum ropelength of knots
and links. Inv. Math. 150 (2002), 257-286.

Cantarella J., Piatek M., Rawdon E., Visualizing the tightening of knots In VIS
'05: Proceedings of the 16th IEEE Visualization 2005 (VIS’05), pages 575-582,
Washington, DC, USA, 2005. IEEE Computer Society.

Carlen, M., Computation and visualization of stokes flow of knotted filaments,
Master’s thesis, EPFL, Lausanne (2005)

Carlen, M.; Laurie, B.; Maddocks, J.H.; Smutny, J., Biarcs, Global Radius of
Curvature, and the Computation of Ideal Knot Shapes, in Physical Knots, Eds. J.
Calvo, K. Millett, E. Rawdon, and A. Stasiak, World Scientific (2001), 153-162.

Do Carmo, M.P. Differential Geometry of Curves and Surfaces. Prentice Hall, New
Jersey (1976).

Folland, G.B., Fourier Analysis and Its Applications, Brooks/Cole Publishing Co.
(1992).

117

www.renderpixie.com

118

BIBLIOGRAPHY

[14]

[15]

[18]

[19]

[24]

[25]

[29]

[30]

Michael H. Freedman, Zheng-Xu He, and Zhenghan Wang., Mo6bius energy of knots
and unknots, Ann. of Math. (2), 139(1):1-50, (1994).

E. Friedman, Packing unit squares in squares: a survey and new results, The Elec-
tronic Journal of Combinatorics DS7 (2005).

Galer, M., Horvath, L., Digital imaging : essential skills 3rd ed., Focal Press,
Oxford, Boston (2005).

F. R. Gantmacher, Matrix Theory, Vol. 1, Chelsea Publishing Company, New York
(1959).

Gerlach, H. Der Globale Kriimmungsradius fiir offene und geschlossene Kurven im
RY, Diploma thesis at Bonn University 2004.

Gerlach, H. Ideal Knots and Other Packing Problems of Tubes, PhD thesis to
appear 2010, http://library.epfl.ch/theses/, EPFL Lausanne

Gerlach H., von der Mosel, H., What are the longest ropes on the unit sphere?,
Preprint Nr. 32 Institut f. Mathematik, RWTH Aachen University (2009).

Golub, G. H.; Van Loan, C. F., Matrix Computations (3rd ed.), Johns Hopkins
University Press, Baltimore, MD, USA, (1996).

Gongzalez, O. and De la Llave, R., Existence of ideal knots, Journal of Knot Theory
and Its Ramifications 12 (2003) 123-133.

Gonzalez, O., Graf, A.B.A. and Maddocks, J.H., Dynamics of a rigid body in a
stokes fluid, J. Fluid Mech 519 (2004), 133-160.

Gonzalez, O., Maddocks, J.H., Global Curvature, Thickness and the Ideal Shapes
of Knots, Proc. Natl. Acad. Sci. USA 96 (1999), 4769-4773.

Gongzalez, O.; Maddocks, J.H.; Schuricht, F.; von der Mosel, H. Global curvature
and self-contact of nonlinearly elastic curves and rods, Calc. Var. 14 (2002), 29-68.

Gonzalez O., Maddocks J.H., Smutny J., Curves, circles, and spheres, Contempo-
rary Mathematics 304 (2002) 195-215

Gruber, C. Mécanique générale Presses polytechniques et universitaires romandes,
Lausanne (1988).

Hess, R., The Essential Blender: Guide to 3D Creation with the Open Source Suite
Blender, No Starch Press, San Francisco, CA, USA, (2007).

V. Katritch, J. Bednar, D. Michoud, R. G. Scharein, J. Dubochet and A. Stasiak,
Geometry and physics of knots, Nature 384 (1996) 142-145.

Kauffman, L.H., Fourier Knots, Chapter 19 of [67].

http://library.epfl.ch/theses/

BIBLIOGRAPHY 119

31]

[32]

33]

[34]

[46]

[47]

Kim M., Wood S., The MPEG-4 Book, Prentice Hall (2002).

Kirkpatrick, S., Gelatt C. D., Vecchi M. P. Optimization by Simulated Annealing,
Science, New Series 220 4598 (1983) 671-680.

Kongsberg SIM AS, www.coin3d.org, (21 september 2009).

Krotenheerdt, O. and Veit., S. Zur Theorie massiver Knoten, Beitr. Algebra und
Geometrie, 5 (1976), 61-74.

Kylander O.S., Kylander K., GIMP - The Official Handbook, Coriolis
Value/November (1999).

Laurie B., Annealing Ideal Knots and Links: Methods and Pitfalls, Chapter 3 of
[67].

R.A. Litherland, J. Simon, O. Durumeric, E. Rawdon, Thickness of Knots, Topology
and its Applications 91(3) (1999), 233-244.

A. Maritan, C. Micheletti, A. Trovato and J. R. Banavar, Optimal shapes of com-
pact strings, Nature 406(6793) (2000) 287-290.

Maddocks J.H., Keller J.B., Ropes in equilibrium, STAM J.Appl. Math. 47, 6 (1987)
1185-1200

Meade, T. and Arima, S., Maya 6: The Complete Reference, McGraw-Hill, Inc.,
New York, NY, USA, (2004).

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller
Equation of State Calculations by Fast Computing Machines J. Chem. Phys. 21,
1087 (1953).

Murdock, K.L., 3D Studio MAX R3 Bible, Wiley (January 2000).

Alexander Nabutovsky, Non-recursive functions, knots “with thick ropes”, and self-
clenching “thick” hyperspheres, Comm. Pure Appl. Math., 48(4):381-428, (1995).

Neider, J. and Davis, T., OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Release 1, Addison-Wesley Longman Publishing Co.,
Inc.,Boston, MA, USA, (1993).

Qt — Cross-platform application and Ul framework, qt.nokia.com, (21 september
2009).

O’Hara J., Energy of Knots, Chapter 16 of [67].

O’Hara J., Family of energy functionals of knots, Topology Appl., 48(2):147-161,
(1992).

www.coin3d.org

120

BIBLIOGRAPHY

[48]

[55]

[63]

[64]

Open Inventor Architecture Group, Open inventor c++ reference manual, Addison
Wesley, (1994).

Osher, S. and Sethian, J.A., Fronts Propagating with Curvature Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations, J. Comp. Phys, 79 (1988)
12-49.

O’Sullivan, B., Mercurial: The Definitive Guide, O’Reilly Media, (2009).
Persistence of Vision Raytracer Pty. Ltd., www.povray.org, (21 september 2009).

Piegl, Les and Tiller, Wayne, The NURBS book (2nd ed.), Springer-Verlag, New
York, (1997).

Pieranski P., In Search of Ideal Knots, Chapter 2 of [67].

Pieranski, P.; Przybyl, S. In Search of the Ideal Trefoil Knot, in Physical Knots,
Eds. J. Calvo, K. Millett, E. Rawdon, and A. Stasiak, World Scientific (2001),
153-162.

Luis F. Portugal F.L., Judice J.J., and Vicente L.N., A comparison of block pivoting
and interior-point algorithms for linear least squares problems with nonnegative
variables, Math. Comp., 634208 (1994), 625-643.

Rawdon, E. J., Can computers discover ideal knots?, Erperimental Mathematics,
1243 (2003), 287-302.

Reiter P., Knotenenergien, Diploma thesis, Math. Inst. Univ. Bonn, (2004).

Reiter, P. All regular curves in a C'-neighborhood are ambient isotopic. Preprint
Nr. 4 Institut f. Mathematik, RWTH Aachen University (2005), http://www.
instmath.rwth-aachen.de/preprints

Rolfsen, D., Knots and Links Publish or Perish, Inc. Houston, Texas (1976).

G. Scharein, R.G., Interactive Topological Drawing, PhD Thesis, Department of
Computer Science, The University of British Columbia, (1998).

F. Schuricht and H. von der Mosel, Global curvature for rectifiable loops, Mathe-
matische Zeitschrift, 243 (2003) 37-77.

F. Schuricht and H. von der Mosel, Characterization of ideal knots, Calc. Var., 19
(2004) 281-305.

Shapeways passionate about creating, www.shapeways.com, (14 december 2009).

T. J. Sharrock, Biarcs in three dimensions, in The Mathematics of Surfaces II, Ed.
R. R. Martin, Oxford Univ. Press, New York, (1987) 395-411.

www.povray.org
http://www.instmath.rwth-aachen.de/preprints
http://www.instmath.rwth-aachen.de/preprints
www.shapeways.com

BIBLIOGRAPHY 121

[65]

[66]

[74]

Shreiner, D., OpenGL Reference Manual: The Official Reference Document to
OpenGL, Version 1.2, Addison-Wesley Longman Publishing Co., Inc.,Boston, MA,
USA, (1999).

Smutny, J. Global radii of curvature and the biarc approximation of spaces curves:
In pursuit of ideal knot shapes, PhD. Thesis No. 2981, EPF Lausanne (2004),
http://library.epfl.ch/theses/?display=detail\&nr=2981.

A. Stasiak, V. Katritch and L. H. Kauffman (Eds), Ideal knots, Ser. Knots Every-
thing 19, World Sci. Publishing, River Edge, NJ, (1998).

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces,
Princeton University Press, (1971).

Trautwein, A.K., An introduction to harmonic knots, Chapter 18 of [67].

Upstill, S., RenderMan Companion: A Programmer’s Guide to Realistic Com-
puter Graphics, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
(1989).

Wang, W. and Joe, B., Classification and properties of space biarcs, in SPIE: Curves
and surfaces in computer vision and graphics III, Boston, 1830 (1992), 184-195.

Weeks, J., The Shape of Space, M. Dekker, New York (1985).

Wernecke J., The Inventor Mentor: Programming Object-Oriented 3d Graphics
with Open Inventor, Release 2, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, (1993)

Wright, W. D., The measurement of colour, 4th Ed., Hilger, London (1969).

http://library.epfl.ch/theses/?display=detail\&nr=2981

	Title
	Abstract
	Résumé
	Contents
	Introduction
	Theoretical background
	Curves, thick curves and ideal knots
	Biarcs

	Fourier representation of closed curves
	Fourier knots
	Symmetry of curves
	Symmetry of Fourier Knots

	Visualization
	Color gradients
	curview
	pp,pt and tt plots
	Visualization of curves in S3

	Computations of ideal knot shapes and the libbiarc
	SONO
	Gradient flows and RidgeRunner
	Metropolis Monte-Carlo
	Simulated annealing in R3
	Ideal Fourier knot results
	Simulated annealing in S3
	Thickness computation
	Parallelizing the thickness algorithm

	Contact sets and contact surfaces
	Contacts and the pt function
	A classic : the R3 trefoil
	Surgery on a space invader
	Torus knot contact surfaces
	Contact sets in S3
	Homotopy
	On the angle condition for ideal knots

	Printing a contact surface in 3D
	Closing the surface
	Printing the surface in 3D

	Conclusion
	libbiarc
	Command line options
	Key bindings
	Annealing
	Implementation
	Toy problems

	Blender Python plugins
	Two theorems
	Bibliography

