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An idea is always a generalisation, and generalisation is a property of think-
ing. To generalise means to think.

Georg Hegel





Abstract

At the end of the nineties the emergence of high resolution (1 m) digital
elevation models (DEMs) settled the context of high precision geomorpholog-
ical analysis. These new elevation models permitted to reveal structures that
remained heretofore undetectable. Earth scientists henceforth benefit from a
field of analysis with a textural richness that was never attained before.
However, the complexity and the volume of the data reveal a series of ques-

tions and problems. The storage size has increased, the computational pro-
cesses have become heavier, and the visual or digital interpretation has be-
come more complex. Moreover, these new models make it possible to charac-
terize and analyse much smaller phenomena than previously. ”Traditional”
DEMs with resolutions ranging from 10 m to 90 m can be used to analyse
a valley or a hillside. Transposed to a cartographic scale, this corresponds
at best to a 1 : 25 000 ratio. As for high resolution DEMs, they show much
more detailed structural levels and can be used to analyse geomorphological
features of 2− 3 meters, this corresponding to scales ranging from 1 : 10 000
to 1 : 1 000.
Yet, in the abundance offered by this growing resolution, large geomorpho-

logical structures are still present, including the finer structures. They are
even the actuators of processes relevant to larger cartographic scales. Conse-
quently, high resolution DEMs contain a multitude of structures, which exist
throughout their interactions with other structures at other scales. This is
the context of the present study.
Geomorphometry - the quantitative counterpart of exploratory geomorphol-

ogy - permits to explore and quantify a wide range of shapes and terrain
indicators. At higher resolution however, the methods of this discipline can
hardly be used. Geomorphometrical methods are based on a geometric model
(a quadratic surface) and few of these methods can be applied it in a mul-
tiscale context. Furthermore inappropriate techniques are frequently used,
hence the idea to move to a multiscale approach called the wavelet trans-
form. The latter had previously been explored by few researchers within the
geomorphometry community, but never thoroughly to micro- and to meso-
scales.
Due to the non-stationarity of DEMs, the wavelet transform was preferred

to the Fourier transform in order to decompose DEMs into multiscale spaces.
This facilitates a coherent navigation from scale to scale, but also makes
new scale specific phenomena emerge for different frequencies. The wavelet
transform is a technique widely used in image analysis. It allows decompos-
ing a signal according to its frequency components, but also according to
the position of the frequencies in the signal. Its multi-scale capacity is an
effective analytical tool in multiple domains. More particularly in geomor-
phology, structural components - specific to a specific phenomenon - are well
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determined in these sub-spaces specific to the scale continuum. Finally an
in-depth analysis of the phenomena enabled us to understand processes and
their and their phenomenological inter-dependencies.

In order to understand the effects and outcomes of the approach we devel-
oped an artificial landslide. We then computed some profiles and analysed
the autocorrelation, slope attenuation and local fractal indicator. The result-
ing high-pass information of the wavelet transform has also been analysed
and filtered using several types of filters. In a case study we used a real-world
landslide to validate the transform and to understand its impact on geological
structures.

Within this case-study we conducted a web-based survey that allowed the
participants to analyse the landslide using wavelet results and to make com-
ments on the potential of the wavelet transform in the field of geomorphome-
try. Moreover, important contributions of this thesis are new algorithms that
allow the illustration of the structural coherence in relation to each subspace.
These are based on the theory of vision of Marr and on structure tensors.

The results of our studies show a high consistency. The wavelet transform
thereby extends the range of tools in geomorphometry. The different struc-
tural scale levels show that such these methods are needed to better under-
stand the phenomenology of geomorphological processes.

Keywords:
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Résumé

Depuis la fin des années 90, les modèles numériques de terrain (MNT) à
haute résolution (1 m) ont fourni un contexte d’analyse géomorphologique
d’une précision inégalée. Le terrain modélisé laisse apparâıtre des struc-
tures qui restaient invisibles auparavant. Les géologues, géomorphologues et
ingénieurs de l’environnement ont désormais accès à un champ d’analyse
d’une grande finesse.

Ces données ont cependant fait émerger toute une série de questionnements
et de problèmes. La taille des fichiers à traiter a explosé, les processus de
calcul se sont alourdis, et l’interprétation, visuelle ou numérique, est devenue
plus complexe. De plus, la taille des phénomènes que ces modèles permettent
d’analyser s’est aussi considérablement réduite. Les MNT ”traditionnels” (de
10 à 90 m de résolution) permettent de traiter des vallées ou des versants
entiers, ce qui correspond à une échelle cartographique de 1 : 25 000 environ.
Les MNT à haute résolution permettent d’aborder des niveaux beaucoup plus
fins, et correspondent à des échelles cartographiques du 1 : 10 000 au 1 : 1 000
environ. Structurellement, cela signifie que des éléments géomorphologiques
de tailles avoisinant 2 à 3 m deviennent visibles et peuvent être analysés.
Toutefois, les énormes possibilités offertes par le grand niveau de détail de la
haute résolution ne doivent pas faire oublier le fait que les grandes structures
géomorphologiques sont toujours présentes et qu’elles se superposent aux plus
petites structures. Celles-ci peuvent même constituer les moteurs de processus
qui se déroulent à des échelles plus grossières. Par conséquent, les MNT à
haute résolution contiennent une multitude de structures qui coexistent en
interaction avec d’autres structures détectables à d’autres échelles. C’est dans
cette perspective multi-échelle que s’inscrit la présente étude.

Les indicateurs géomorphométriques, instruments quantitatifs de la géomor-
phologie exploratoire, permettent d’explorer et de quantifier toute une série
d’indicateurs de forme et de caractéristiques du terrain. Leur utilisation est
cependant limitée dans le contexte de la haute résolution: ils sont basés sur
une modélisation géométrique - une surface quadratique - et rares sont les
techniques qui permettent de les appliquer dans le cadre d’une approche
multi-échelle. Comme leur implémentation est souvent effectuée au moyen
de techniques d’analyse inappropriées, il a semblé pertinent de changer
de méthode et d’explorer l’approche par transformée par ondelette. Cette
dernière n’avait jamais été utilisée et validée d’une manière aussi approfondie
dans le cadre de phénomènes à micro- ou méso-échelle jusqu’ici.

Les MNT sont non-stationnaires. La transformée par ondelette a donc été
préférée à la transformée de Fourier pour décomposer les MNT en une suc-
cession d’échelles. Les ondelettes, et la transformée qui leur est associée, con-
stituent une technique largement utilisée en analyse d’image. Elles permettent
non seulement de décomposer un signal suivant les fréquences qui le compose,



IV

mais aussi suivant la position de ces fréquences dans le signal. Leur capacité à
dissocier les échelles en fait un outil d’analyse efficace dans une multitude de
domaines. Plus particulièrement en géomorphologie, les composantes struc-
turelles - spécifiques à des phénomènes particuliers - apparaissent ainsi dans
ces sous-espaces spécifiques du continuum de l’échelle. Enfin, leur analyse
fine a permis de mieux comprendre les processus et leurs inter-dépendances
phénoménologiques.

Pour comprendre les tenants et les aboutissants de l’approche, un glisse-
ment de terrain artificiel a été produit et soumis à plusieurs analyses en-
treprises sur les résultats de la transformation: calcul de profils, indice
d’autocorrélation, analyse de l’atténuation des pentes et coefficient local de
fractale. L’information passe-haut résultante de la transformée par ondelette
a aussi été analysée et filtrée suivant plusieurs typologies de filtres. Un glisse-
ment de terrain réel a aussi été utilisé pour valider la transformée et compren-
dre son impact sur les structures géologiques. La validation a été poursuivie
par la mise en place d’une enquête sur Internet qui a permis à des utilisateurs
de faire une analyse utilisant les ondelettes et de commenter la valeur ajoutée
de la transformée par ondelettes.

Pour clore l’étude, de nouveaux développements algorithmiques ont per-
mis d’illustrer de la cohérence structurelle par rapport à chaque sous-espace.
Ceux-ci se basent sur la théorie de la vision de Marr et sur les tenseurs struc-
turels.

Les différents résultats démontrent que le traitement et le rehaussement
de MNT est possible en utilisant la transformée par ondelettes. De plus,
ils montrent la haute cohérence de la méthodologie et permettent d’élargir
le panel d’outils géomorphométriques. L’imbrication structurelle dans les
niveaux d’échelle montre aussi que de telles méthodes sont nécessaires afin
de mieux comprendre la phénoménologie des processus géomorphologiques.

Mots-clés:

MNT, haute-résolution, multi-échelle, analyse et filtrage fréquentiels, on-
delette, ondelette de Marr, géomorphologie
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members: Joël (long live musical experiments!), Karine (supporting all those
men), Gilles (do not be shy), Eduardo (I still do not understand everything
you say), Mathieu (the African way of life), Elena (again supporting all those
men, do you not agree “Loulette”?), Thierry (how is junior today?), Nicolas
(admit it “tabernacle”, you love to play the drums!), Claudio (do not hesitate
to offer me some Portuguese wine) and Sylvie (physics and straight humor).

I am very grateful to my main LaSIG mate Roger - Doctor Jens Ingensand
- who had to bear my moods for almost seven years! I think that without
him (and his German sense of humour) I would not have achieved anything.
The scientific and human exchanges we had were really important to end
the worst days and to start the best days! I am almost jealous of his next
office colleague - parting is going to be hard! Thanks also for all the things
he helped me with and for all his advice.

I am infinitely grateful to my family and to my friends for their support.
They surely felt a bit abandoned, which is sometimes hard to understand and
to accept. I will try to catch up! I promise!

And last but not at least, I would like to thank Marie-Claude: for her un-
conditional support over the last few months, even if I have not always been
really present, and for the great correction work of my English writing, even
if she did not really understand what I was trying to prove. Her help, encour-
agement and support are indefinable.



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
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1. Introduction

In the early 2000s, the emergence of high resolution (∼ 1 m) elevation data
allowed exploration of our environment and its morphology under new as-
pects, like analysing micro-faults on a cliff. The enthusiasm of researchers,
but also authorities, engineers and geologists, has been enormous since then.
Nevertheless, new techniques have to be developed in order to process all this
new information. The content of these digital elevation models (DEMs), with
reference to their high resolution, has caused multiple problems to emerge,
such as storage, computation and interpretation. Moreover, the visual per-
ception, i.e. the visible phenomena or relevant structures, has evolved con-
siderably due to the finer description the model permits. Indeed, it is now
possible for instance to analyse visually a hillside and its details. By details,
we refer to elements of only a few meters. Multiscale analysis of such models
has therefore appeared like a new way of analysis and perception of geomor-
phology and its underlying phenomenology.

Over the same period, research on developing form indicators, called geo-
morphometry indicators, has also progressed significantly; note the important
contribution of Wood (1996) in the development of these indicators. However,
these are geometric indicators, because they are computed using the adjust-
ment of a mathematical surface on elevation models.

The motivation for the present research emerged through internal discus-
sions at the GIS laboratory of the École Polytechnique Fédérale de Lausanne.
Indeed, the frequency approach issue arose following a study on these geo-
morphological indicators and their evolution through scale. In fact, there have
been only few attempts to analyse elevation models using frequency domain
approaches. Yet, our environment is composed of frequency information, as
well as some phenomena that are inherent in its evolution (e.g. earthquakes
or mass movements). The limitation, which made most studies fail, is that
almost no natural phenomenon related to Earth science is stationary and
homogeneous. It consists of a nesting of processes and structural elements,
which are interdependent, have various scales, and interact in the natural
system. This means that the size and shape of every structure depends on
the phenomenon it belongs to, but also on the functional scale of the system.

That is the reason why we chose to use a frequency analysis tool, the wavelet
transform, for the multiscale analysis of elevation models. Unlike the Fourier
transform which is the best known frequency analysis tool, the wavelet trans-
form is spatially well-defined and results in a multiscale view of the analysed
data.
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1.1 Research goals

As we are dealing with natural phenomena and their representation in ele-
vation models, our hypotheses are strongly linked to the description of land-
scape in a geomorphological perspective. As thread, we use assumptions in-
spired by the work of Meentemeyer and Box (1987) on “Principles of scale”.
They will help us define the aim and goals of the study. The following as-
sumptions are used:

– Fewer variables may be needed for modelling larger study areas; conversely,
smaller study areas may have more external effects, thus requiring more
variables.

– Dynamics observed at finer scales cause the equilibrium observed at
broader scales.

– Distance decay: everything is related to everything else, but near things
are more related than distant things (Tobler, 1970).

– Apparent detail is lost using areas at broad scale; at fine scale, apparent
new detail may appear in the area.

– Broad scale system size involves emergent properties; fine scale systems
lose some interactions and thus some functional properties.

– A quantitative description of a system cannot be made using only one scale.
– Rough areas must be analysed at relatively finer scales than the rest of the

study landscape.
– Roughness and structural density can be described using a frequency space.

Wavelet theory, and its underlying analysis, is related to these assumptions.
The wavelet analysis is applied to the frequency space representing the entire
spectrum of a 1D or 2D signal. It is a dyadic discretization of this space at
each successive analysis. Moreover, the energy of the spectrum is reduced. As
for spatiality, it is respected by the fact that the transformation is localized.
We know exactly where and how it is applied throughout its results. These are
multiscale views of coefficients, which reflect a successive reduction of details
and roughness. Therefore, there is a strong relation between the assumptions
adapted from Meentemeyer and Box (1987) and the methodology developed
in this study.

These assumptions involve scale, modelling, spatial distances, geomorpho-
logical structures and quantitative systems. Thus, the general aim of the
study is:

The multiscale analysis of geomorphological structures and manifestations
of processes using the wavelet transform
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Using the previous general aim, we will now define the specific research goals
to this study. Regarding this aim, the following goals are defined:
To define a good scaling method for elevation models and, if possible, to im-
plement multiscale analysis approaches.
In order to analyse multiscale processes and structures in geomorphology,

the scaling method has to respect the structural elements of the elevation
model. Scaling through interpolation may be implemented using several
methods and techniques, but not all are appropriate in all circumstances.
They must not inject noise and artefacts into the scaled model. We want to
implement a scaling process which does not generate new structures. There-
fore, it will be necessary to define what a multiscale elevation model is.
To transfer information from fine scale to broad scale and keep the best struc-
tural geometry
As our main data will be of high resolution1, the scaling process will be de-

fined as going from fine scale to broad scale. The problem is to conserve struc-
tural elements through the process until their specific scale level is reached.
The methodology is not appropriate if it injects distortions to broad scaled
elements as it goes through the different levels. For example, if we take a
large-scaled hill, it has to remain structurally preserved until the process
reaches its scale level.
Using scale analysis to generalise and simplify information by retaining only
the essential data for multiscale geomorphological analysis
The central interest of this study is to find out how frequency like analysis

may be applied to geomorphological analysis using elevation models. Thus,
combining scale, frequency analysis and geomorphology, we want to retrieve
only the data of interest related to our system or phenomenon.
To interface scales of interest by combining data at different scales
If we create discrete scale intervals, the representation of the model that

we will have at a specific scale level does not allow us to link the various
scale levels, besides spatial overlay. We must indeed find a way to combine
these different discrete spaces in order to analyse and study the different
interactions. However, multiscale analysis does not make sense if it is limited
to separate structural elements simply into discrete intervals of scale. Thus,
it is still necessary to find a way to recombine these different intervals as
required be a structural analysis which is specific to a phenomenon. Only
then can its nested structures be represented and analysed.
To produce and recognise geomorphological structures through these scale lev-
els
Geomorphological structures are like fingerprints on a glass, they have a

spatial coverage and a certain shape in elevation models. Thus, we may be
wondering whether the imprint may be recognised or not, consequently if
it can be extracted and isolated in the model. We might here see a link
with geometric pattern recognition. However, it should be specified that our
analysis domain is topography in the form of an elevation model and its
underlying geomorphology. The latter, given its nature, is extremely complex
and heterogeneous. And this already greatly limits the application of pattern
recognition techniques.
1 By “high resolution”, we mean what is usually called “very high resolution”,

thus resolutions from 0.5 to 2 m. But for clarity purposes, we will use the term
“high resolution” instead of “very high resolution” in this study.



4 1. Introduction

To identify scale domains and scale thresholds regarding geomorphological
phenomenology

The purpose of any discretization analysis is to simplify and threshold an
information. In a structural perspective, the question is here to understand
the efficiency of the thresholds in the creation process of new scale intervals.
It will then give a geomorphological sense to these new created intervals.
Due to the very definition of “interval”, and whatever its nature is, it has
limits. These may of course be strict (or compact) or fuzzy. However, the
scale discretization results in mathematically well-defined intervals. It will
therefore be necessary to verify in which type of extent they are defined:
compact or fuzzy.

1.2 Outline

Following this introduction, which focuses on the motivations and goals of
the present thesis, the next chapters and sections are structured as follows:

Chapter 2

In this chapter, we introduce the main kind of data and its properties that we
are going to use throughout the study: from the acquisition of elevation data
to the establishment of a regular gridded model. Besides, existing methods
and their underlying indicators, as quantitative methods for geomorphological
analysis, will be shortly presented.

Chapter 3

This chapter is an introduction to scale concepts. It is not supposed to ex-
press new theories or concepts of scale. There are already plenty of studies
and theoretical background in the current literature. We make a review of
scale concepts related to geographical information science (GISc) and more-
over to raster data. Although geomorphology is not directly related to GISc
and its underlying data, we will make a short review of scale issues as it is
our main analytical framework.

Chapter 4

This chapter is the core of the study. It introduces multiscale elevation
models produced using the wavelet transform. The transform is applied to a
virtual model in order to assess the methodology and to understand better
the issues and effects of the transform. This is done by visual analysis, but
also using some statistical and textural indicators.

Chapter 5

A real elevation model is used to assess the methodology developed in chap-
ter 4. Thus, the same indicators as for the virtual model are computed and
analysed. A qualitative study, based on geological information and terrain
observation completes the case study. Some conclusions are given regarding
all the elements analysed in this chapter.
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Chapter 6

This chapter is a validation of the wavelet transform applied in chapters 4
and 5. Two distinct analysis are undertaken: a web-survey called Geomorpho-
metric Analysis System (GAS) and an attempt to classify geomorphometric
indicators computed using the low-pass wavelet transform results. GAS shows
how the wavelet transform results might be used for the interpretation of geo-
morphological structures by an expert audience. The classification shows the
relation of features through scale and their potential interactions.

Chapter 7

As seen through the web-based survey (GAS, chapter 6) experts (geomor-
phologists, geologists, environmental engineer and so on) encounter many
problems analysing multiscale information, which is often also multivariate
information, in multiple layers. Using the elevation model of the case study
of chapter 4 and the results of the web-based survey, this chapter states that
we have to go one step further in the multiscale analysis and introduce also
visualisation of multiscale data. The innovative methodology developed by
Van De Ville and Unser (2008) enables to reduce the number of representative
dimensions. A short case study is thus undertaken in this chapter and some
new approaches for the geomorphological characterization are introduced.

Chapter 8

This chapter consists of a discussion of the proposed methodology. We dis-
cuss the solutions and exploratory analysis of the study regarding the re-
sponse of geomorphological structures using frequency analysis. As an intro-
duction to the study’s perspectives, it is a summary and the conceptual ex-
planation of the undertaken analysis. The web-survey (see chapter 6) assesses
the methodology and the impact of the developed approach on quantitative
terrain analysis and interpretation.

Chapter 9

Finally, this chapter concludes the study by taking into review all the goals
we expressed above. Perspectives, regarding the wavelet methodology, the
representation of filtering processes and further work on the vision concept
of chapter 5 are given. A final conclusion completes these perspectives.
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2. Digital elevation model and geographical
information systems

In the Swiss federal mapping history, one of the first representation of relief
appeared on the Dufour maps (1842-1864) as lines representing more or less
the slope directions in order to simply represent the presence of slopes. How-
ever, this way of representing the topography makes the map difficult to read
because these lines or stripes take a lot of space on the map (Imhof, 2007).
In the second generation of the Swiss national maps (Siegfried, 1870-1892),
the stripes slope gradients were abandoned and replaced by contour lines and
manual relief shading. In the current national maps, the topography is still
represented that way (note that the shading azimuth is 315◦).

With the emergence of digital methods and geographical information system
(GIS) tools, the contour lines were digitized. But this kind of vector data is
not easy to use numerically for relief analysis. It is indeed difficult to calculate
a slope gradient using contour lines. They were then interpolated into regular
grids, hence the appearance of raster elevation models. These terrain models
are called digital elevation models (DEMs) and, since, they are used for a
better understanding and modelling of our environment. For instance, in
GISc, DEMs are used for terrain analysis in a defined spatial process. A
lot of functions enable DEM calculus, contouring, derivation, hydrological
process modelling, feature network extraction and solar irradiation. Research
in 3D DEM representation and computation has grown rapidly over the past
ten years by the emergence of public 3D viewers. Currently 3D remains a
representation mode of DEMs, and data is mostly computed in 2D before
being represented in 2.5D1.

The first DEMs used in GIS were interpolated using cartographic contours
or computed through parallax measures in aerial photography interpretation
(Moore et al., 1991). Synthetic aperture radars (SAR) interferometry and
radargrammetry appeared through the evolution of space technology, e.g.
the shuttle radar topography mission (SRTM) of the National Aeronautics
and Space Administration (NASA). Although these new technologies enabled
the acquisition of global terrestrial coverage, the DEM resolutions remained
in ranges of 15−90 meters. Only terrestrial methods, like levelling, GPS mea-
sures and, in some cases, aerial photography and interferometry can result
in high resolution DEMs (1− 5 m). Airborne laser scanning (ALS) appeared
about 15 years ago for DEM acquisition purposes (Baltsavias, 1999b). This
active system enables the acquisition of high resolution DEMs over a wide
spatial coverage and even over dense vegetation through its canopy penetra-
tion properties. We will focus this study on ALS data, but as a remainder

1 2.5D refers to the fact that a DEMs is a 2D representation (regular matrix) of
3D data (elevation) (Monnier, 1997). It should give a 3D cognitive approach to
2D data.
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the following techniques are or were used for DEM data acquisition (Li et al.,
2005):

– Aerial photography: through two stereo photographies an image matching
is fulfilled; coordinates (x,y and z) can then be measured.

– Radargrammetry and SAR interferometry: space techniques in which the
interferometry of phase in measured. This is an active system using mi-
crowaves. Like carrier phase tracking with a GPS, coordinates can then be
derived from the phase differences.

– Cartographic interpolation: the swiss national DEM (25 meter resolution)
was created using a cubic interpolation from cartographic contour data
(swisstopo, 2004).

– Manual terrestrial acquisition: using GPS or levelling techniques, on site
coordinates are measured and interpolated.

– Light detection and ranging (LIDAR): for more details, see next sections.

The data used in this study are issued from ALS (or LIDAR ). From now
on, we will only consider and describe ALS data.

2.1 Airborne laser scanning - Basic principles

ALS for DEM acquisition purposes was first described in the late 90’s (Balt-
savias, 1999a,b; Wehr and Lohr, 1999). At this time only few companies had
such a system, but since, ALS has become a common and rapid system for
data acquisition. Many national institutions acquired high resolution DEMs
using ALS measured data. A lot of applications were developed in order to
process this data in fields as different as forestry (Gachet, 2009), geomor-
phology (Theler and Reynard, 2008; McKean and Roering, 2004), ecology
(Lassueur et al., 2006), urban planning, and architecture (Rottensteiner and
Briese, 2002). This list is not exhaustive, several other fields use high resolu-
tion DEMs.

2.1.1 Acquisition of ALS data

ALS systems are a combination of two other systems: the LIDAR unit and
the positioning unit (POS in figure 2.1). The first one is composed of the
LASER unit and of the computational units which calculate the distance
covered by the laser beam and the current position of the aircraft. The latter
measures the absolute position using differential the global positioning system
(GPS) and an inertial navigation system (INS).

Differential global positioning system.

The differential GPS (DGPS) system measures the differential positioning
(X, Y and Z) of the aircraft in the WGS84 datum. For an accurate position,
two receivers using two different frequencies (called L1 and L2) are used. The
obtained precision is about 10 cm. “Differential” stands for the correction of
the aircraft GPS measures with a ground GPS which measures its position
on a point. The coordinate of this point are know in the projection system.
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Fig. 2.1. ALS system, adapted from Wehr and Lohr (1999)

Inertial navigation system.

The inertial system measures the accelerations and the attitude (rolling,
pitch and yaw) of the aircraft (figure 2.2). In opposition to the DPGS, this
measure degrades itself with time.

Fig. 2.2. Aircraft attitude

By integrating the measured data, an accurate navigation position can be
obtained for the aircraft. Unfortunately, the INS drifts in time, reducing
the accuracy of the attitude and consequently the position. The measure
frequency is between 100− 400 Hz.

Combining GPS and INS data enables to obtain enough accurate positions
for laser elevation data. This combination makes it possible to compensate
the errors of both systems. The INS drift is corrected by the GPS positioning
and the lack of GPS measures is compensated by the INS measures.
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Light detection and ranging.

The LIDAR telemeter is generally assembled on the INS platform, so that
the aimed direction is generally known. Then the telemeter emits a high
frequency laser beam (∼ 80 kHz). The transceivers enable the measure of
emittance - reflectance time. Exciting light at a specific frequency using mir-
rors produces a concentration of light. This one is released and forms a beam
(or laser beam). The diameter of this beam on the ground, because of the
propagation divergence, depends on the height above ground of the aircraft.
Generally, this diameter is between 15− 30 cm.

The LIDAR produces a laser pulse which propagates through the atmo-
sphere and which is more or less reflected depending on the nature of the
impact point. The propagation speed of this pulse is light speed. The echoes
are consequently detected before the next pulse is emitted.

Principles of laser measures.

The LIDAR systems enable to measure more then only one echo. For ground
and surface investigations, we will limit ourselves to the first and last echoes.
These result from the penetration potential of the laser beam. The first echo
gives the distance of the first reflecting encountered object. The first measured
distance is the tree foliage and the last one is the ground (figure 2.3).

Fig. 2.3. Laser penetrating vegetation - echoes

The laser beam goes from the emitter to an object and back to a receiver.
Knowing the speed (light speed, c = 3 · 108 m/s) of the beam, it is easy to
calculate the distance:

distance =
c · t
2

(2.1)

with t the run time.
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Current laser systems enable the measurement of terrain stripes. The fol-
lowing different systems are distinguished:

– Multiple telemeter systems: each telemeter is oriented in a different direc-
tion (regular angle increment).

– Mobile optic systems: the laser beam is deviated periodically by a rotating
mirror.

– Augmented mobile optic systems: same principle than the previous one, but
augmented by a glass fibre bundle which increases the mechanical stability
of the system2.

The scanner bands enable stripe from 250 m to 700 m, depending on the
opening angle to be captured (up to 30◦). For more details on ALS systems
and specifications, see Baltsavias (1999a,b); Gachet (2009); Wehr and Lohr
(1999).
Classification and interpolation.

Most terrain indicators are computed and modelled using matrices. This
comes from the fact that, in computer science, it is much easier to set an
indicator using regular computational steps, but also because regular data is
easier to handle, store and compress. Thus a lot of developments concerning
elevation were done on elevation data matrices, the so-called DEM.
To define a regular matrix using LIDAR data points, two operations have

to be achieved: a point classification, followed by an interpolation. The clas-
sification is the separation of the echoes into ground or surface points:

– Ground points: raw terrain points (no vegetation, no human infrastruc-
tures), e.g. if the LIDAR survey is done over a forest, ground points will
often be considered as the last echo returning from the ground to the air-
craft.

– Surface points: first echoes and human infrastructures.

Part of this classification process is undertaken automatically by applying
an elevation threshold to the point regarding the mean slope for example
or by using object-oriented data classification (Brennan and Webster, 2006).
Afterwards, a visual verification has to be done in order to assess the auto-
matic classification. Expert software exist for this purpose, and we will not
go further into the classification discussion here.
Following the classification, an interpolation needs to be performed between

these points and a regular grid. Gachet (2005); Li et al. (2005); Monnier
(1997) analysed the most common techniques for DEM interpolation. The
DEMs used in this study were interpolated using triangular irregular network
(TIN) interpolation proposed in the Terrasolid3 software.

2.2 DEM - Digital Elevation Model

The term ”DEM” takes its origins from physical terrain model (Li et al.,
2005). Since the appearance of numerical technologies, DEM has widely been
accepted as a term for the characterization of elevation matrices. Multiple
terms are used. In order to avoid any confusion, a short definition of each
term used in this study is given:
2 see http://www.toposys.com/ for details, accessed 25 May 2009
3 http://www.terrasolid.fi, accessed 29 January 2010
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– DEM - Digital Elevation Model: DEM is the term that will be used as
a generic for the description of general proprieties and process of matrix
elevation data.

– DTM - Digital Terrain Model: DTM is the part of elevation data that rep-
resent the terrain, but only its natural structures and without vegetation.
Sometimes, even large rocks are removed. DTM will be the main type of
DEM used in this study (see chapters 4 and 7).

– DSM - Digital Surface Model: DSM is the model of surface, namely all
elements independently of their kind (natural or human infrastructures),
including vegetation, trees or buildings. If a model does not contain any of
those objects, then the DSM is equivalent to the DTM.

– DHM - Digital Height Model: DHM is a derived model of the last two.
However, it is not a representation of elevation, but a representation of
height. By computing the difference between the DSM and DTM, a DHM
containing differences of surface and terrain is generated. This kind of
model is often used to determine tree heights (Gachet, 2009) and building
heights.

The terrain is a continuous field (x, y) referring to a continuous measure
z, the elevation (Cova and Goodchild, 2002). This field is a tensor field of
multiple directions and amplitudes. As suggested by Cova and Goodchild
(2002), terrain can be represented as a spatial tessellation, which may be
regular, irregular or even hybrid. The basic function of such tessellation is:

zi = f(xi, yi) ∀ i location (2.2)

So at all spatial locations, the model is defined, thus continuous. It can be
represented in many ways such as a triangular network (see next section) or
a regular grid.

In this study, the terms DEM, DTM, DSM and DHM will always
refer to the model in the form of a regular grid (even if a TIN is also
a DEM).

So, for us, a DEM is a regular matrix containing interpolated elevation data,
thus an aggregated continuous variable represented by a discrete spatial grid.
This basis is used as a spatial model for indicator computation. In this study,
we will distinguish three different matrix components (figure 2.4):

– Node: computational model (black crosses, figure 2.4)
– Mesh: connection network of nodes (dot lines, figure 2.4)
– Grid: visual representational model using cells (gray squares, figure 2.4)

Regarding the above definition, a terrain model is spatially continuous
in the space (x, y), discrete in the grid, but thematically continuous
in both (z).

We are going to compute new information using the nodes. The mesh is
a purely conceptual framework of neighbouring and adjacency used for the
definition of a convolution (or moving) window (figure 2.4, zi). Regarding the
chosen size of this computational window (3 × 3, 5 × 5, ..., n × n, n defines
the size and is odd most times), mesh defines which nodes are needed for
the convolution operation. Convolution will be defined more thoroughly in
section 3.3.1. Finally, the grid is only a concept for visualisation purposes. In
fact, it is the visual element which is displayed when a DEM is visualised in
a GIS, the node value is then applied to its relative cell in the grid.
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Fig. 2.4. Conceptual description of DEM elements

We will specify the following properties of DTMs:

– Resolution (r): size of a grid cell (or distance between two non-diagonal
adjacent nodes).

– Width (m): number of columns of the matrix. m · r gives the east-west
extend of the DTM.

– Height (n): number of lines of the matrix. n ·r gives the north-south extend
of the DTM.

– Minimum (min): the minimum pixel value, thus the minimum elevation
over the DTM’s spatial coverage.

– Maximum (max): the maximum pixel value, thus the maximum elevation
over the DTM’s spatial coverage.

– Range: max − min gives the range of elevations. The range gives an in-
dication of the type of terrain (abrupt or flat) covered by the DTM. It is
also highly scale dependent.

The three last statistical indicators give a first overview of the type of DTM
we are dealing with. The minimum and maximum indicate in which kind of
environment the DTM is located. Range specifies the vertical spatial coverage,
showing if there is a great elevation difference, thus if the landforms are steep
and mountainous. But all these properties are completely dependent on the
spatial extension of the DTM and, thus, are dependent on the width, height
and resolution.

As we are mostly interested in landscape feature analysis and recognition,
we shall focus on the definition of DTMs (see section 2.2 for the difference
between DEM and DTM). Terrain is used as the term for specifying the
scope on which the DEM matrix is centred:
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Terrain:
a stretch of land, especially with regard to its physical features.4

However, this definition is not explicit enough and terrain remains an ob-
scure term. As Li et al. (2005) suggested, a DTM contains topographical or
non-topographical information. In this study, we will limit ourselves to to-
pographical information, thus elevations above the sea level in a particular
projection system, including landforms, rocks, rivers, seas and land infrastruc-
tures such as roads; but no elevated infrastructures (bridges or buildings).
DTM are used in landform analysis (Lane et al., 1998), geomorphology

(Bishop and Shroder Jr, 2004; Wilson and Gallant, 2000), terrain modelling
and visualisation (Li et al., 2005). Geomorphometric indicators (see section
2.4) were developed for DTM analysis. Even if they are used on DSM or
DHM, their first scope was DTM.

2.3 Visualisation

Visualisation means only the visualisation of DEMs in GIS software, ei-
ther in 2D matrix visualisation or in 2.5D modelling. The advantage is that
rendering a matrix is easy, because of its image-like structure.
We will not further develop visualisation concepts, but briefly give an

overview of DEM visualisation in GIS software. For more details, refer to
Weibel (1989a); Wood (1999); Buckley et al. (2004) and Li et al. (2005).

2.3.1 Shading

Shaded relief is the common way of DEM visualisation in GIS. There are
many different methods to compute a shading using a DEM (Batson et al.,
1975; Horn, 1981). Most of them use two parameters, the sun incidence angle
and the sun azimuth, and two variables derived (or approximated) from the
DEM, the slope and the aspect (see section 2.4 for more details). Often,
relief shading (or hillshading) is applied with an azimuth of 315◦ degrees. As
Burrough and McDonnell (1998) mentioned, this azimuth has “more to do
with human faculties for perception than with astronomical reality”. Indeed,
cognitive visual faculties are, for most people, better in feature recognition
and analysis for this shading azimuth. Other azimuths enhance other aspects
of terrain properties (e.g. figure 2.5).
Batson et al. (1975) gave a simple method for computing hillshading on a

DEM (equation 2.3). Using trigonometric relation between slope and aspect
of a pixel and the incidence angle and azimuth of the lightening source, the
light intensity can be computed (figure 2.7).

I =
1

1 + cos ε
cos i

(2.3)

where (figure 2.6):

– I: intensity of the reflectance
– ε: angle between the observer and the slope normal
– i: angle between the direct sun beam and the slope normal
4 Compact Oxford English Dictionnary: http://www.askoxford.com/results/?view

=dev dict &field-12668446=terrain&branch=13842570& textsearchtype=exact
&sortorder=score%2Cname, accessed 18 May 2009
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Fig. 2.5. 2D DEM representation (resolution 1 meter), a grayscale intensity of
the elevation values representation does not reflect local structures of the DEM
(a), hillshading (azimuth: 315◦) enhances local structures and landforms (b). Using
another azimuth (135◦), as in subfigure (c), gives another description of the terrain
shapes and structures, DEM c©SITN

Fig. 2.6. Hillshading concept and angles (Batson et al., 1975)
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Fig. 2.7. Hillshading example on a DEM profile, the grayscale intensity is computed
using the slope and aspect of each pixel and incidence angle and azimuth of the
lightening source.

Remarks concerning relief shading

A lot of techniques and methods were developed for digital relief shading.
For a review refer to the relief shading website5.

Regarding the above mentioned azimuth, we have to introduce “terrain in-
version”. Shading is a so-called psychological cue in depth perception (Toutin,
1998), thus it is essentially a cue which is acquired with experience and learn-
ing. Consequently, we see a hill because we have learned that this kind of
illumination shows a hill. As Imhof (2007) stated “Many map users are so
completely conditioned to a light source from above left that they subcon-
sciously expect this direction of lighting ... The result is the inversion of the
positive impression of shape to a negative one.” In relief shading this issue
has always been problematic (Rudnicki, 2000) and there is no proper solution
at the present for the definition of an optimal azimuth angle. As most people
expect an azimuth of 315◦ and this angle is mostly set to this value there
is no major issue. Problems however appear if people are not aware of this
angle or if the azimuth is set to another value. Than, terrain inversion might
become a major concern when analysing the geomorphological features of a
DEM. In this study, all the maps and images will always be oriented to the
north and illuminated with a 315◦ azimuth.

5 http://reliefshading.com, accessed 13 October 2009
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2.3.2 Contour lines

Contour lines interpolated from a DEM are often used to give elevation
information for a visual analysis of the shaded DEM. The shaded relief gives
a terrain overview. No information about elevation is given, nor contained
in it, hence its combination with contour lines. They are iso-elevation lines,
which are most of the time interpolated over the grid using linear or spline
interpolation (De Smith et al., 2008).

As we have seen at the beginning of this chapter, historically, geomorpholo-
gists and geographers often use contours for their analysis. It is their way to
look at continuous value in a discrete way. As Lane et al. (1998) mentioned,
they represent a discrete view of the continuous grid, thus an easier interpre-
tation of terrain structures and forms. However, there is a loss of accuracy,
and, subsequently to the chosen contour interval, features may not be illus-
trated by them (see figure 2.8 for an example). An analysis using only contour
lines is almost impossible, because there is a complete lost of context. There-
fore, often contour lines are overlaid to another media (cartographic map,
aerial photography or DEM) in order to reveal the context.

Fig. 2.8. Contours (elevation interval: 2m) overlaid to a 1 m resolution DEM,
DEM c©SITN
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2.3.3 3D

Visualisation of elevation data became one of the main purpose of DEM
acquisition due to the rise of free 3D viewers6. But for many years (Weibel,
1989a; Burrough and McDonnell, 1998), visualisation has been a tool for
draping spatial analysis results on a 3D (or 2.5D) surface. Currently, most
GIS software have a 3D module in order to make such representations. Thus
computation of new data is made in 2D and its representation in 3D, but
this kind of representation, as Buckley et al. (2004) pointed out, is mainly
an “impressive analytical perspective view”. Analytical perspective enables
to reconstruct the vision we have of topography when we look at our world.
Thus through the 3D representation, the viewer has more cognitive faculties
for the recognition of topographical elements than in 2D. This only because
3D representations tend to the natural representation human cognition is
used to, when looking at natural (or landscape) phenomenon (e.g. see figure
2.9).

Fig. 2.9. 3D visualisation of a landslide, DEM and aerial photography c©SITN

Ware (2004) suggested some remarks concerning 3D versus 2D (not exhaus-
tive):

– 3D environments are more difficult to create than 2D environments with
similar capabilities.

– 3D is (self-evidently) richer than 2D.
– 3D adds far less visual information than it might be supposed.
– 3D must only be used if there are sufficiently more subtasks which might

be achieved regarding 2D.

6 e.g. Google Earth (http://earth.google.com/, accessed 18 May 2009) or Virtual
Earth (http://www.microsoft.com/virtualearth/, accessed 18 May 2009)
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Consequently the type of representation (2D or 3D) clearly depends on
the needs and tasks (Ware, 2001). The 3D representation is not obvious
to use and, in DEM analysis, 3D does not bring any benefit in quantitative
computation. As Ware (2001) stated, it takes people a longer time to generate
a mental map of such space than as for a 2D representation. Moreover, it is
actually difficult to get a good overview of a type of topography. 3D rendering
often reduces the level of detail of the model, thus a smoothing effect. In
addition, the computation of indicators is still done on the matrix. The results
can potentially be draped on the 3D model, but the overview will not be
improved. It is currently easier to perform morphological analysis in 2D.
Therefore we will not explore 3D representations any further.

2.4 Geomorphometric indicators

Geomorphometry, as used in almost all GIS software, was defined conceptu-
ally by Evans (1972). A few years later, Evans (1979) went from a conceptual
definition to a mathematical description using quadratic surfaces (see section
2.4.1). He gave the next definition of general geomorphometry:

Definition 2.4.1 (Evans (1972)). General geomorphometry as a whole pro-
vides a basis for the quantitative comparison even of qualitatively different
landscapes, and it can adapt methods of surface analysis used outside geo-
morphology.

Since Evans (1979) attempt to mathematically describe surface indicators,
many authors have given their own equations, modifying the mathemati-
cal definition of the quadratic surface, for e.g. Zevenbergen and Thorne
(1987); Shary (1995). Others (Skidmore, 1989; Burrough and McDonnell,
1998; Schmidt et al., 2003) made a comparison between the different meth-
ods and techniques. The result showed that all methods give similar results
and that the differences are not significant for visual interpretation.

Moore et al. (1991) and Pike (2002) made a review of the indicators which
can be computed using DEM for quantitative geomorphological analysis,
thus geomorphometry. Applications (Wilson and Gallant, 2000; Bishop and
Shroder Jr, 2004) showed that geomorphometry is the geometrical indicator
of geomorphological analysis. However this one depends on the DEM and its
resolution. For example, slopes computed on a 90 m or a 1 m resolution DEM
do not give the same geomorphological information. So far, few authors have
given a solution for this complex problem.

2.4.1 Quadratic surface and derivatives

Only Evans (1979) solution is developed. Most other solutions are elaborated
through modifications of the quadratic equation (Zevenbergen and Thorne,
1987; Schmidt et al., 2003). A real surface can be approached by a quadratic
surface.

f(x, y) = z = b0 · x2 + b1 · y2 + b2 · xy + b3 · x+ b4 · y + b5 (2.4)
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By convoluting each DEM pixel with a convolution window of size 3× 3, it
is possible to adjust a local quadratic surface for each pixel of this DEM. The
quadratic equation is composed of six unknowns, which are described as the
equation parameters. Using a 3×3 window, we have nine observations, which
is enough to solve the equation. Depending on the authors, the equation
may slightly be modified, changing the type of equation or the number of
observations taken into account to solve the equation using least squares.
Some authors take only the four cardinal pixels (north, south, east and west)
and the central pixel into account for computation. This can be seen as a
solution without over-determination. Evans (1979) gave a solution computed
by using Lagrange’s polynomial solution to approach the parameters. These
ones are a combination of the variables (the pixels in the convolution window).

Using the previous definition of a quadratic surface (equation 2.4), the par-
tial derivatives can be defined. As the equation is of second degree, we can
compute first and second derivatives.

First derivative.

The first partial derivative of the quadratic surface results in the magnitude
(slope) and polar angle (aspect) of central pixel z:

slope = g

(
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∂x
;
∂f

∂y

)
=
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(2.5)

aspect = h
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)
(2.6)

Second derivative.

The second derivative of a quadratic surface gives the curvature of the sur-
face. However, we have to evaluate curvature for given points and in the
desired directions of interest. In fact, curvatures in directions x and y (north-
south and east-west axis) are not relevant, but they should by oriented prefer-
ably in the direction of the maximum slope gradient (in profile) and in the
orthogonal direction of this gradient (in plan).

Profile curvature (PRC) is the given curvature along the slope gradient
where the gravitational effects are maximised (Wilson and Gallant, 2000).
A vector s has to be defined to represent the slope magnitude in the centre
of the quadratic approximation (the pixel where we want to compute the
curvature).

PRC =
d2z

ds2
= g

(
∂2f

∂x2
;
∂2f

∂y2

)
(2.7)

To define the plan curvature (PLC), we have first to define a vector s⊥
orthogonal to s and which has the same magnitude.

PLC =
d2z

ds2
⊥

= h

(
∂2f

∂x2
;
∂2f

∂y2

)
(2.8)

Curvatures have the following meaning:

– Profile curvature measures the rate of change of the slope gradient and is
important for flow speed changes and sediment transport processes.

– Plan curvature measures topographic convergence and divergence. It shows
the convergence probability of water flow on a surface.
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Convention is defined as positive values (case PLC I and PRC I in figure
2.10) for convex values and negative for concave values (case PLC II and
PRC II in figure 2.10).

Fig. 2.10. Illustration of plan (PLC) and profile (PRC) curvatures on the horizontal
and vertical planes

Using these two definitions of curvature, several other types of curvature
evolve, such as tangential curvature (multiplication of PLC and the sine of
slope) or total curvature (Wilson and Gallant, 2000). Each of these curva-
tures has specific issues and application domains. As example (Wilson and
Gallant, 2000), tangential curvature was developed to study flow convergence
and divergence. Refer to Schmidt et al. (2003) for a complete review of all
curvature indicators and the explanation of their meaning.

Multiscale version of derivatives.

Wood (1996) proposed a multiscale version of the first and second derivatives
of the quadratic surface. It consists to take into account a larger neighbour-
hood than the proposed 3×3 window. Thus, the redundancy of the equation
system increases and the solution is given by normal equations. Wood (1996)
used also weighted least squares to give more importance to pixels nearer
to the central pixel by introducing a distance decay on the weights. Conse-
quently, by increasing the size of the convolution window, the computation
of the local indicators is extended to more general features of the DEM.
Fisher et al. (2004) used these developments to define the spatial extend of
mountains. They illustrated the concept of Wood (1996) by showing that the
considered window size had a great impact on the values of the indicators.

2.4.2 Hydrological indicators

Hydrological indicators are indicators of water behaviour on a surface (or
DEM). There is a multitude of them (flow direction, catchment area, flow
width, wetness index, watershed, LS-factor and more). Some are strongly
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correlated with others, others may bring new structural information to DEM
quantitative analysis. In our case, interest is given to the wetness index (WI).
Beven and Kirkby (1979) gave the first definition for this index in the devel-
opment of their hydrological conceptual model TOPMODEL. Many authors
improved this definition, which are compared by Sorensen et al. (2006). Inas-
much we are not interested in the absolute value of the wetness index (see
section 6.3), but rather more in the relation between it and other morpho-
metric indicators. Thus, we will use the basic wetness index of Beven and
Kirkby (1979).

WI = ln
(

As
tanβ

)
(2.9)

where:

– As: specific catchment area, defines which quantity of upslope flow runs
through each pixel of the DEM.

– β: slope (see section 2.4.1).

The WI is used to characterize the soil wetness potential (or soil moisture).
In topography, thus by computing it using a DEM, it “quantifies the role of
topography for redistributing water in the landscape” (Reuter and Nelson,
2009). Indeed, it shows which pixels will be subjected to what surface water
pressure and flow.

2.4.3 Other geomorphometric indicators

There are many indicators which were developed in surface analysis. We
chose to develop only those used in this study. Many recent techniques apply
geomorphometric indicators for the computation of surface specific param-
eters. Wilson and Gallant (2000) developed and explained indicators, like
sun lightening indicators, for Earth sciences. Li et al. (2005) developed some
textural indicators (roughness). This one is part of textural image analysis
(Parker, 1997). Thus, a lot of image analysis processes may be applied to sur-
face analysis. Conceptually, a grid surface is an non-normalised image, the
only difference is that the pixels values are not bounded by the usual interval
[0, 255].

Another surface tool is the analysis of networks. Rana (2004); Schneider
(2003) and Wood (2000) developed a multiscale approach for the analysis
of surface networks. The conceptual ideas are taken from purely geometric
properties of a mathematical surface (Pfaltz, 1976). This latter gave a so-
lution to determine specific surface points (pits, peaks and passes) and the
connective network of those points.

Frequency analysis using Fourier transforms are another type of geomorpho-
metric analysis. In DEM spectral analysis, Pike and Rozema (1975) were the
first to give a hint about the frequency composition of surfaces, but natural
features are non-stationary from a frequency point of view, thus a link to
fractal theory may be more appropriate. The idea of fractal theory is that
“there exists a hierarchy of ever-finer detail in the real world” (Russ, 1994).
Looking to all the concepts and theories which were described in this chapter,
there might be a link between the perception of DEMs structural informa-
tion and fractals. Some of the fractal concepts developed by Russ (1994) will
be applied further in this study in order to point out local self-similarity in
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DEMs and to specify how neighbouring values evolve in our models through
the scale intervals we will define. However, we will not explore the fractal
dimensions of DEMs any further, but chapter 4 will explore more thoroughly
the spectral properties of DEMs.

2.4.4 Geomorphometric patterns

As seen in the previous sections, geomorphometry can produce a lot of in-
dicators and derived variables. Geomorphologists often want to reduce this
multidimensional space into a single component and to characterize territorial
zones defined by classes. This process is called classification of surface land-
forms using geomorphometric parameters. However, there are many possibil-
ities for the classification of geomorphometric information. A non-exhaustive
list is made hereunder. The first technique is specific to geomorphometry and
the others were adapted from classification of multidimensional data:

– Subjective conceptual classification: As example, using Dikau’s curvature
classification (using the profile and plan curvature), it is possible to de-
fine nine types of terrain which are combinations and thresholding of plan
and profile curvatures (see figure 2.11) (Dikau, 1994, 1989). Some recent
developments showed that using object-oriented classification, it was pos-
sible to obtain a good partition into patterns using this type of curvature
discretization (Dragut and Blaschke, 2006). There are many other ways to
classify geomorphometric information, for example by using the swiss soil
classification scheme (BGS, 2002) or a specific partition of topographical
properties like what Hammond (1964) did. But, one has to retain that
these types of classifications impose to define multiple thresholds for each
used information.

– Unsupervised multidimensional classification: the aim is to define the best
hyperplanes in all the dimensions of the used data. Thus, there are many
possibilities for the separation of hyperplanes in multi-dimensional spaces.
The main problem is to build the multi-dimensional space using the ap-
propriated variables, which is decisive in the classification quality.

These two schemes for the definition of geomorphometric patterns are dif-
ferent. In the first one, thresholds have to be applied, thus a partition of the
data into intervals which results in a specific property of the terrain, like
Dikau’s scheme (figure 2.11). The second techniques are less constrained by
thresholds, but the results strongly differ from a region to another. It is not
possible to normalise the approach, because of topographical variations, and
thus variations on the values and intervals defined by the derived geomor-
phometric information. The hard clustered patterns are only dependent on
the features that the DEM represents and on the convergence threshold as
we will see hereunder.
MacMillan and Shary (2009) gave some remarks concerning pattern de-

tection using DEMs. We retained the most interesting ones for our study,
respectively remarks 3, 6, 7, 8 and 9:

– Remark 3 : classification of landforms are commonly specific to a particular
scale or narrow range of scales.

– Remark 6 : landform elements can be extracted automatically by using
land-surface parameters such as slope, curvatures, catchment area, distance
to streams, peaks and depression depth.
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Fig. 2.11. Dikau’s curvature classification scheme

– Remark 7 : a geometric signature is a set of measures that describes to-
pographic form well enough to distinguish among geomorphical disparate
landscapes.

– Remark 8 : it is not possible to select any single fixed dimension for a
moving window that will perfectly capture the wavelength of all landform
features of interest in any given area.

– Remark 9 : extraction of landform types and elements from DEMs com-
monly consist of: (a) preparation of the legend, (b) preparation of the land
surface parametrizations (LSPs) (inputs), (c) creation of the rules, (d) ex-
traction of landforms and (e) assessment of accuracy.

These remarks show some important properties about multiscale DEMs and
their underlying geomorphometric indicators. The first, phenomena inherent,
is that a particular scale will only inform about forms related to it (remark
3). Thus its geomorphometric indicators will also be strongly scale-dependent
and only frequency information described in the specific scale will be retrieved
(remarks 6 to 8). This scale issue is developed in the next chapters, and a
multiscale classification is performed in section 6.3.



3. Scale and scaling process

Since spatial data and spatial operations using numerical data appeared,
researcher and engineers have been confronted to scale issues. Using raster
data for example, Gallant and Hutchinson (1996) stated that topographical
analysis results are sensitive to the resolution of the generalised source. Also,
Quattrochi and Goodchild (1997) analysed how to manage scale issues in
remote sensing. They tried to give solutions to relate remote sensing data
and data obtained from geographical information science (GISc) methods
using vector data. Besides, in order to analyse scale effects on vector data,
Openshaw (1984) gave solutions to deal with aggregation problems on vector
data.

Scale is a central concept not only in the geographical description of our
world but also in modelling environmental patterns and processes. Indeed, ev-
ery environmental phenomenon can be described partially at a specific scale.
More precisely, a single feature1 is scale specific, but the phenomena, to which
the feature belongs, is a combination of different features that are described
by different scales. Thus a natural (or environmental) phenomenon is always
composed of multiscale processes. Even local phenomena are described by a
multiscale combination of features. Multiple authors have treated territorial
scale effects so far.

So, if any geographical information refers to a specific analysis scale, every
environmental data acquisition is correlated to its environmental and terri-
torial scale. Some space-scale effects are illustrated in figure 3.1, but none of
them is scale specific. Scale is not a discrete variable, neither in GISc nor for
environmental phenomena. However, there is no other way to characterize
continuous scale than to interpret phenomena by data discretization.

3.1 Scale

Scale is not only a scientific generalisation or specialisation concept. Indeed,
all phenomena, which have an impact on our environment, are scale depen-
dent. If a lot of researches were carried out concerning scale, one of the most
complete was written by Marceau (1999), in which she gave the following
general definition for scale:

1 In this study, the term “feature” is used as a specific topographical structure
located at a particular place in the sense of the definition of the dictionary of
the Oxford University Press: something important, interesting or typical of a
place or thing. - http://www.oup.com/oald-bin/web getald7index1a.pl, accessed
22 October 2009. Thus it represents a discrete piece of landform in this study.
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Fig. 3.1. Scale dependencies, multiresolution, adapted from Wilson and Gallant
(2000), page 2.

Definition 3.1.1 (D. J. Marceau 1999). Scale refers to the spatial di-
mensions at which entities, patterns, and processes can be observed and char-
acterized. Scale is recognized as a central concept in the description of the
hierarchical organisation of the world.

So, scale is a continuum: entities, forms and even processes are continuous
in scale; the interpretation we make using these different elements, however,
is not.

If scale is described by discrete intervals defining scale of “interest”, then
an underlying scale threshold is applied (figure 3.1). Between these intervals,
a continuum of entities, features and processes can be observed and joined
together (Marceau, 1999). These intervals are related to specific organisa-
tional levels in the scale hierarchy of natural features and processes. They
are defined by the elements one wants to analyse or describe.

With our cognitive capabilities, we can only find interest in a limited number
of phenomena on which we then apply methodologies in order to understand
them. Moreover, computer analysis and processing needs discrete scale steps.
Hence, there is a need to have discrete systems, which are consistent math-
ematically, but also which, through scientific methods, make sense. Creating
scale levels (or intervals) is the most common action amongst the scientific
community in order to reveal natural phenomena.

3.1.1 Scale specifications in geography

There are many references for scale definition in geography. Two major
trends can be distinguished (Marceau and Hay, 1999): relative/absolute
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scales, and what we will call functional scale definitions. The former, defined
by Meentemeyer (1989), is clearly more conceptual then the functional one
defined by Marceau. There is a clear difference between these trends. We will
review them in the next two sections and from a mathematical perspective,
as this is relevant to our study.

Absolute and relative scales.

Absolute scale is related to the Euclidean space. The localisation of elements
is given in a regular coordinate system, which defines the scale of those el-
ements. In conventional geography and cartography, this definition is often
widely used, enabling the representation and localisation of spatial data. In
this case, scale is only defined by the frame of the coordinate system. There-
fore, the smallest element which can be taken into account cannot be smaller
than the grid definition itself. Hence absolute scale is associated with rep-
resentation and localisation of elements, but not with interaction or process
between them. In spatial image analysis, this definition is slightly different,
as shown in section 3.2.

Besides this absolute scale, Marceau and Hay (1999) stated that, in relative
space, scale becomes an intrinsic variable related to spatial entities, forms,
function and processes. From a geomorphological perspective, it is this scale
which enables the characterization of processes and phenomena. The defini-
tion of relative scale is thus complementary to absolute scale. Space is defined
by the spatial elements and processes taken into consideration, such as the
relations inherent to their association. This space, defining relative scale, is
not a Euclidean space, as even distances are relative. What’s more, it is im-
possible to make a projected map out of the relative space. However this
space characterizes the interactions of features at different scales. As for ex-
ample, the interaction between local faults in a slope and stability of this
same slope, i.e. a multiscale relation between features.

Functional scales.

The above definitions lead us to define functional scales in order to under-
stand the interactions between absolute and relative scales, since it is impos-
sible to conceptualize processes inherent to geomorphological phenomena by
focusing only on the absolute or relative scale. Cao and Lam (1997) gave four
types of scale definition: cartographic, geographical, operational and measure
scales. Pointet (2007) preferred to group them in three distinct scales used
in geographical sciences and spatial analysis. These three types of functional
scales are relevant from a geographical and geomorphological point of view
and they are:

– Cartographic scale: represents the ratio of a distance on a map to the
corresponding distance in reality (Marceau (1999) and references therein).
This scale is strongly related to absolute scale as it is a representation of
territorial features in a certain coordinate system.

– Observation scale: represents the scale at which measures and data acquisi-
tion are undertaken (Pointet, 2007). It refers to the resolution of measures.
In remote sensing, this would be the considered surface taken into account
by the measure of reflection.

– Operating scale: refers to the scale at which processes occur. There is a
strong relation to the phenomenon, according to Cao and Lam (1997): “A
phenomenon observed at one scale may not exist at another scale”. This
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links operating scale to the scale at which a phenomenon was observed and
it is represented by figure 3.1.

The interpretation and analysis of geomorphological phenomena are strongly
dependent on the observation scale (Pointet, 2007). The adequacy between
observation scale and representation is carried out through data scaling, based
on the hypothesis that the observation scale is not consistent with the chosen
representation level(s). The interpretation and analysis of geomorphological
phenomena is a confrontation between observation and operating scale. It
is always a subtle interplay of functional scales, on the one hand for the
interpretation and analysis of geomorphological phenomena and on the other
hand for the representation of results.

3.1.2 Geographical information processes and scale

Any process or model of the territory needs geographical information (GI).
It is made of many conceptual data models, depending on the user’s needs
and goals (Goodchild, 1992). For instance, a process in GI is a spatial prob-
lematic solved using a spatial method applied to a dataset. If we look at the
geometric definition of data or measure, each type (e.g aerial photography,
terrain measures, land registry, geological surveys) has been acquired at a
defined scale and in a certain manner. As seen in the previous section (3.1.1),
scale has many definitions. From a GI point of view, it is strongly dependent
on the nature of data and on its level of detail, thus GI processes are scale
dependent.

In geographical information systems (GIS), two main types of data can be
considered: vector and raster data. They are used to represent most GIS
processes. Thus scale and processes issues on these data will have an effect
in cartography too. In the next two sections, we will analyse scale effects on
these two kinds of data from a geometrical and mathematical point of view.

Vector data.

Vector data is one of the main components in GIS methods, and can be
made of points, polylines or polygons. A lot of spatial geometrical operation
were developed using this kind of data. As far as space, scale and geometry
are concerned, a compromise is made for the description of a geographical
feature. It means that the resolution (or the scale definition) of vector objects2

is always linked to what they describe. For instance, the length of a boundary
is highly dependent on the resolution (thus the operating scale) of a vector
object. A boundary (of a district or a country) will not have the same length
regarding a vector object when representing it at two different scales (figure
3.2).

Couclelis (1992) stated that “it is only at some phenomenon-specific but
generally ill-defined scale that points, lines and polygons become reasonable
approximations, if at all”. This shows the difficulty to apprehend scale for
vector data. Often GISc specialists prefer having too precise data in order to
have smooth data on their screen. The problem is however not to have smooth
data, the problem is computational, because visual noise and redundancy has
to be avoided.
2 The term “object” is used in this study as a representation on a map of a feature

of interest.
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A line object is always defined by nodes in GIS. Measuring a line is highly
scale dependent (or dependent on the resolution, thus the distance, between
nodes). If we take a detailed scale object (object (a) in figure 3.2), we will be
able to measure a certain distance. If conceptually we take the same object
at a coarser scale or resolution (object (b) in figure 3.2), we will get another
distance, which will be lower than the first one only because of the resolution.
The same could be shown measuring the area of a polygon.

Fig. 3.2. Distance measured (between the dashed lines) using a detailed scale object
(a) and a coarser scale object (b). Results show that the higher the resolution is,
the more complex a path (a) will be. Its measure will be longer than for a less
complex path (b).

To sum up, there is never an absolute measured distance. An object is
always scale-dependent and so are GISc processes. The first reaction would
be to increase the resolution. Conceptually this would increase the number of
nodes toward the infinite and the measured distance too, which is impossible.
This shows that there is always a choice of scale to make and how crucial
this choice can be regarding GI processes. Sadly, most GIS users make this
choice unconsciously, just using data at the scale they acquired it or received
it.

Raster data.

Raster data scale is limited by the spatial resolution of the pixel matrix (see
section 3.2 for the definition of spatial resolution). GIS use raster data for
background purposes, sampling of land cover and land use, raster pattern
classification, and representation of all variables which are spaced regularly,
may they be continuous or not. As a matter of fact, pixel resolution has a great
impact on what can be done with these products. As examples, figures 3.3 and
3.4 illustrate the Geneva lake region using two different products: satellite
imagery (Landsat ETM+) and aerial imagery. GIS processes or territorial
image processing, through this effective scale difference, will not be the same
for these two pictures. Thus, resolution has a great impact on what can be
done. But what follows will explore this more thoroughly.
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Fig. 3.3. True color Landsat ETM+ image of Lausanne, resolution 30 m

Fig. 3.4. True color aerial image of Lausanne, resolution 0.5 m, aerial photography
c©swisstopo
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3.2 Spatial resolution

Spatial resolution (see definition 3.2.1), similarly to scale, is defined in many
ways. For image analysts, it may be the sampling rate of a numerical instru-
ment. For ecologists, it is the grain of their patterns. Finally, for GISc spe-
cialists working on vector data, spatial resolution is linked to the geometry
of an object, i.e. the shape size for a polygon, the line length or the distance
between two adjacent points (Bian, 1997). For raster data (like gridded eleva-
tion models or spatial imagery), it is linked to observation scale (Woodcock
and Strahler, 1987; Tobler, 1987). Resolution characterizes the separability
of two features and is thereby the dimension at which features can be distin-
guished. Marceau (1999) showed that modifying spatial resolution affects the
precision of classification, hence the strong relation between resolution and
classification. Due to the analytical sensibility of the spatial unit’s definition
used to collect data, this case is linked to the modifiable areal unit problem3

(MAUP). Many others studies (Cao and Lam, 1997; Wong, 2009) showed
that applying the same spatial analysis method to raster data set at different
resolutions gives different results. Thus there is an actual relation between
environment and spatial resolution, suggesting some spatial structure. Tobler
(1987) has already suggested this in his definition of spatial resolution:

Definition 3.2.1 (Tobler, W. 1987). Spatial resolution is defined as the
content of the geometric domain of observation divided by the number of
observations, all raised to the power one over the spatial dimension. The size
of the smallest detectable feature is twice that of the resolution. The usefulness
of a Geographic Information System is constrained by its spatial resolution.
Systems with the same resolution can be compared.

In remote sensing, spatial resolution defines the highest operational scale
which can be reached, creating interdependence between scale and resolu-
tion. Grain is the smallest distinction that is made of ground elements. It
often depends on the imagery optical system or on the density of the mea-
sured laser ground points (see section 2.1). Amongst the scientific imagery
community, it is generally admitted that a point feature has to cover at least
two pixels to have a chance to be detected by visual analysis or image process-
ing. We prefer to raise this number of pixels to three. Tobler (1987) gave an
interesting conversion table (table 3.1) of the relation between cartographic
scale, resolution and feature detection. In addition, he defined the resolution
in relation to the domain (or spatial extend) and the number of observations:

Average Spatial Resolution =
(

Domain

Number of observations

)1/Dimension

(3.1)

3 Openshaw and Abrahart (2000) defined the modifiable areal unit problem
(MAUP) as the sensitivity of analytical results in relation to the definition of
the spatial units. Spatial units can be seen as the smallest unity which can be
identified in a dataset. Openshaw (1984) suggested that “Spatial aggregation is
necessary in order to create a relevant data set”, thus to unveil areas relevant
to some considered phenomenon. From a mathematical perspective and regard-
ing Openshaw (1984), the MAUP is defined as a combination of two problems:
the scale problem (scale of interest) and the aggregation problem (manner of
aggregating data).
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The Domain is the area covered by an interest zone whereas the Dimension
is the spatial dimension (2D or 3D) in which the analysis is made.

Weibel (1989b) used this definition to explain the implication of resolution
in DEM analysis. He expressed this in visualisation and computational issues,
too. The latter illustrates that if products computed from different spatial
resolution layers are overlaid in GIS, scaling problems will rapidly appear
(e.g. overlaying 1 m resolution computed slopes to a 30 m resolution Landsat
satellite image).

Cartographic scale Resolution Detection

1 : 2 000 1 m 2 m

1 : 10 000 5 m 10 m

1 : 50 000 25 m 50 m

1 : 100 000 50 m 100 m

1 : 1 000 000 500 m 1000 m

Table 3.1. Tobler’s relation table between cartographic scale, resolution and de-
tection (Tobler, 1987)

Regarding raster data, a limitation to the above explanations appears by
taking into account the context. The recognition and identification of a spa-
tial feature which has an imprint on a media can be made even if it does
not respect the given limitation. Indeed, regarding the geometric context, a
feature can still be identified, and this, even if it is smaller than the resolu-
tion, but its localisation cannot be better than the resolution. As example,
if we look at a highway - a linear feature - in a Landsat image (figure 3.5),
the luminance of the pixel will vary compared to neighbouring pixels and the
highway recognized, but its localisation cannot exceed the resolution.

Woodcock and Strahler (1987) put forward methodologies to avoid effects
due to raster scale (or resolution), which we have slightly modified:

– If the resolution is a lot finer than the feature of interest, pixel value mea-
sures (of the feature) will be strongly correlated with their neighbouring
pixels. The local variance will be small.

– If the resolution is equal to the feature of interest, neighbouring equivalence
will diminish and local variance increase.

These two points illustrate how hard it is to evaluate which resolution should
be used, regarding what has to be achieved with raster data. These assertions
are deduced from Tobler’s first law of geography (Tobler, 1970): “Everything
is related to everything else, but near things are more related than distant
things”.

As seen, these principles are well defined in the binary case and classi-
fied data. However, the definitions become less obvious and much less stable
when applied on continuous data which represents geomorphological features.
Moreover, if we take the phenomenological perspective of nature, the imprint
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Fig. 3.5. Highway (width ∼ 25 m) in a true colour Landsat ETM+ image (r =
30 m). The highway is located in the middle of the image and goes from the south
to the north.

of related features will have a fuzzy definition. Indeed, it seems that the mea-
sure and representation are defined in terms of scale, but presently almost
no evidence brings us back to the phenomenon.

3.3 Scaling

Jelinski and Wu (1996) showed that scale and aggregation affect the ad-
justment of a model and the estimation of its parameters. Generalisation of
spatial data is therefore limited by the lack of rules and methods dealing
with multiscale spatial phenomena (Ratcliffe and McCullagh, 1999). There-
fore, scale continuum implies discretization in some units which are relevant
of a process or phenomenon. We will now analyse more thoroughly scaling
processes of spatial data and their impacts on multiscale geomorphological
phenomena.

The number of variables needed for modelling and spatial analysis is chang-
ing through scale (Meentemeyer and Box, 1987). Scale modifies the structures
of a model because the number of variables is generally reduced by decreasing
scale. Thus, scaling is not a linear process and is defined as a data transfer
from one scale to another. This can be done using several techniques and
methods, but it always results in a modification of the structural geometry of
the data. Scaling process involves taking information or data at one scale and
using it to derive processes at other scales (Jarvis, 1995); it is a transition
concept which links processes through the different scale intervals.

Spatial data is scale dependent and heterogeneous. It follows that spatial
data is autocorrelated and non-stationary. In addition, it might be irregu-
larly spaced and discontinuous. Meentemeyer and Box (1987) concluded that
spatial data does not follow any rule for parametric statistical analysis. This
affirmation contradicts most of the theoretical background used for spatial
analysis. Jarvis (1995) stated that scaling was non-linear and heterogeneous.
Regarding the properties of spatial data and scaling issues, it is difficult to
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define or propose a single method or technique for scaling geographical data.
There is a strong dependence to the thematic property of the data and its
spatial context.
Besides, two types of scaling can be defined: downscaling and upscaling.

Raffy (1992) showed that there is a clear difference between them. The po-
tentials of methods and relations in scale discretization processes are not
equal subsequently to the specialisation (upscaling) or generalisation (down-
scaling) of the data (Golay, 1992):

– Upscaling: taking information at broader scales to derive processes at finer
scales; this can be seen as a specialisation or decomposition process. Using
raster data, this means to “invent” or bring in some new data.

– Downscaling: decomposing information at one scale into its constituents
at broader scale; this can be made explicit as a generalisation or aggrega-
tion process. When generalising, some details are lost. Meentemeyer and
Box (1987) showed that some interactions were invisible at detailed scale.
Therefore, new proprieties might appear because of a better synergy be-
tween phenomena at a broader scale.

In this study, we will only look at geometrical scaling processes and not
at scaling processes using thematic properties or attributes. The following
definitions will be used to specify scaling processes (figure 3.6):

– Scale: general description of scaling process
– Generalisation: general term to describe the transition from fine scale to

broad scale.
– Specialisation: general term to describe the transition from broad scale

to fine scale.
– Raster data:

– Downscaling: downscaling data is done by spatial aggregation of pixel
values using an appropriate method.

– Upscaling: like downscaling, upscaling is done by interpolation or spatial
aggregation of pixel values using an appropriate technique. But upscaling
does not bring any supplementary information, it is only redundancy
regarding the original data.

– Vector data:
– Simplification: vector data generalisation, e.g. simplification by suppress-

ing vector nodes defining this data. Several techniques exist (such as
Douglas & Peucker’s line simplification algorithm) and applied in GIS
software.

– Segmentation: this operation only injects new nodes to an existing line
or areal feature using some relevant method, no precision is therefore
made or created.

As the present study is based on raster data generalisation, the next sections
develop scale and scaling processes on this specific type of data.

3.3.1 Scaling process in raster data

Raster data is usually a regular matrix or a group of pixels defined by:

{f(m,n)}, m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1, (m,n) ∈ Z2 (3.2)

where M is the number of columns of the data and N the number of lines.
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Fig. 3.6. Scaling - differences between vector and raster data (for vector data, we
consider only the geometrical issues and not the thematic ones, which would bring
us to the MAUP.)
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This 2D sequence is called an image, a surface or a matrix, depending on
the values of its pixels and on the field of application. It is a discretization of
a continuous space into cells which does not affect the conceptual spatial and
thematic dimensions (see section 2.2 for more details). f(m,n) is a function
which represents a measure of light intensity in photography or a measure of
elevation in DEMs. There are multiple types of operations that can occur in
this 2D sequence (non-exhaustive):

– Global transforms: e.g. contrast or brightness
– Spectral global transforms: e.g. Fourier transform and filtering
– Local transforms: e.g. spatial filters
– Geometric transforms: e.g. rotation and deformation

Local transforms include the convolution of a 2D mask or a filter (h) over
a set of pixels. The latter is a “moving” window which is convoluted over
dimensions M and N (figure 3.7). It is purely a mathematical operation over
a set of pixels.

Fig. 3.7. 2D 3× 3 Convolution mask h

Definition 3.3.1 (Convolution, adapted from Jähne (2005)). A func-
tion h(x) is zero except for a small area and is denoted as the convolution
mask. The convolution of a filter h(x) with a signal f(x) results in a new
function g(x) whose values are a kind of weighted average of f(x) in a small
neighbourhood around x. It changes the signal in a defined way and is often
called a filter.

Mathematically, a continuous convolution is defined by the integration of
the filter over the signal (or image):

g(x) = (h ∗ f)(x) =
∫ +∞

−∞
h(t)f(x− t)dt (3.3)

The discrete form of this transform is defined by:

gm,n =
M−1∑
m′=0

N−1∑
n′=0

hm′,n′fm−m′,n−n′ (3.4)



3.3 Scaling 37

Convolution is a local transformation of the central pixel value of a window
through a filter function or an aggregation function. The size of the convolu-
tion mask (or window) is in most usual cases 3× 3. In data scaling process,
if a mask has to be applied to an image, either the size of the mask has to
be changed, or the image has to be downscaled (or generalised).

As seen in section 2.4 in quantitative geomorphology, this operation is typ-
ically used to compute the derivative of the quadratic surface (see equation
2.4, section 2.4.1). The filter function computes this derivative for each pixel.
If we consider that we have a high resolution DEM, the computation of a
derivative using a 3 × 3 window involves a small spatial coverage. If we are
interested in computing a less local derivative, we have to extend the spa-
tial coverage of the window. Currently, there are two concepts which allow
this. Either the values of the DEM are aggregated to decrease the resolution
by using an appropriate generalisation function, then the derivatives calcu-
lated, or the spatial coverage of the convolution window is extended and the
computation of the filter function adapted. We will call these two operations
respectively spatial aggregation and thematic filtering (figure 3.8).

Fig. 3.8. Thematic filtering and spatial aggregation in raster data scaling processes

Spatial aggregation and thematic filtering are differentiated by:

– Spatial aggregation: first, the matrix information (or pixel values) is ag-
gregated using an appropriated technique. The information has to be ag-
gregated to the desired scale, in other words, the local neighbourhood of
each pixel has to correspond to the scale of the desired analysis. By local
neighbourhood it is meant the adjacent pixels, this in order for the matrix
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to fit the 3 × 3 convolution mask, then the filter is convoluted with the
image. Spatial aggregation results in a reduction of information through-
out the resolution decrease. In our example (figure 3.9), the generalisation
filter size is 8× 8 and the operator it represents may be purely mathemat-
ical (a function like the average operator for example) or thematic (like
focal functions). Thus, the choice of the function can be multiple, and it
always depends on what needs to be preserved or illustrated through the
generalisation process.

– Thematic filtering: the size of the filter is adapted to the size of the el-
ements contained in the matrix. This one is not downsampled, but the
local neighbourhood is enlarged in order to take into account non-adjacent
neighbouring effects (n×n) and, moreover, to include a mathematical func-
tion describing a multiscale operator. In quantitative geomorphology, this
is illustrated by the work of Wood (1996).

The data generalisation using spatial aggregation results in an information
loss and, visually, the surface is a less smooth. Spatial aggregation affects
simultaneously the operating scale (change of resolution) and the representa-
tion scale. Thematic filtering is a more local analysis to the extent that local
structures are taken into account during the convolution (figure 3.9).

Fig. 3.9. Slopes computed using a 2 m original DEM. Slopes using the thematic
filtering were computed using a 9 × 9 convolution window. Spatial aggregation
slopes were computed by first generalising the DEM (8 × 8 aggregation filter) in
order to have a 16 m resolution DEM and then slopes were computed using a 3× 3
convolution window. DEM c©swisstopo
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3.4 Geomorphology and scale

In section 2.4, we have introduced geomorphometry and a series of terrain
indicators. Geomorphometry is the quantitative counterpart of geomorphol-
ogy. From the definition of geomorphometry (definition 2.4.1), we will now
enlarge the scope of scale concepts applied to geomorphology; first by defin-
ing it, and second by investigating the impact of scale in geomorphological
analysis and interpretation.
Geomorphology :

the study of the physical features of the surface of the earth and their
relation to its geological structures.4

With this definition, geomorphology appears to be a branch of landscape
analysis completely related to physical properties of a landscape. Landscape
has multiple definitions in earth sciences, ecology, sociology and history. Here,
we will only consider landscape from the earth science point of view, and
specifically the physical impact and trace of landscape structures.
Scale in geomorphology remains a complex problem, because geomorpho-

logical processes may arise at various scales and depend on the interactions
between hierarchical scale elements. Qi and Wu (1996) expressed this problem
notably: “Because of the spatial heterogeneity and hierarchical properties of
landscape systems, understanding the effects of changing scale on the analysis
of landscape patterns is critical to our ability to predict landscape dynamics
across scale”. Thus the appropriate observation scale is function of the en-
vironment and of the type of desired information (Woodcock and Strahler,
1987). Mark and Aronson (1984) stated that the separation between land-
scape scale (and the related geomorphological analysis) and geomorphological
processes are strongly related to the scale of interest, but then, we might ask
ourselves what are the scales of interest? Because a geomorphological shape
and its size are strongly related to the scale of interest, it is undeniably nec-
essary to define shapes in their scale context or at the scale of interest. And,
actually, many geomorphological phenomena are defined by a combination
of typical behaviours and structures at different scales. These hierarchical
imbrications of shapes and processes brought several researchers to fractal5

landscape analysis (Mark and Aronson, 1984; Meentemeyer and Box, 1987;
Klinkenberg, 1992; De Boer, 1992; Lloyd and Atkinson, 1998). Klinkenberg
(1992) stated that for interpretation of geomorphological phenomena geomor-
phologists had to choose between the study of the associated scaling process
and the nesting of scale-specific processes. Thus, either the analysis or in-
terpretation of a phenomenon is the result of a scaling operation, or it is
composed of multiple process which are nested in the scale continuum. There
is still no absolute answer to the geomorphological scaling issues, but all these
developments show that dealing with scale in earth science has a great impact
on the vision we have of earth processes and interaction. Applying a scaling
process to a geomorphological phenomenon already assumes that there is a
scale nesting. As we expect this nesting, we will introduce a framework to
explore it thoroughly.
4 Compact Oxford English Dictionary: http://www.askoxford.com/concise oed

/geomorphology?view=uk, accessed 25 March 2009
5 Fractals are a description of shapes where each part of which has the

same statistical character as the whole, Compact Oxford English Dic-
tionary: http://www.askoxford.com/concise oed/fracal?view=uk, accessed 25
March 2009. See Goodchild and Mark (1987) for details
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3.5 Multiscale analysis in geomorphometry

DEMs contain rich and diverse topographical information. The visual anal-
ysis of a shaded DEM efficiently supports the detection of a great amount of
features at various scales. Earth science experts, such as geologists and geo-
morphologists, use high resolution DEMs to visually assess geomorphological
features.

The detection of the same features using geomorphometric indicators (slope,
aspect, curvature) and hydro-morphological indicators (wetness index, water-
sheds, streams) is complicated due to the fact that they are only dedicated to
local scale analysis. Moreover, in high resolution DEMs, features are nested
one into the other rendering the interpretation of indicators difficult. This
is a computational scale problem (see Lassueur et al. (2006), and references
therein).

Wilson and Gallant (2000) showed that the characterization of landscape
processes and features based on one specific scale is far too simple to model
our environment. In recent years, multiresolution analysis tools based on a
generalisation of Evan’s (1972) geomorphometric indicators have been de-
veloped (Wood, 1996). These tools provide multiple results for one indica-
tor at multiple scales. There is no feature extraction, but rather a multi-
scale/multiresolution topographical analysis and geometric network extrac-
tion.

Geological phenomena are composed of different topographical features.
Klinkenberg (1992) suggested that a phenomenon fits over scale and its fea-
tures are nested in discrete scale intervals, leading to a strong correlation
between features and phenomena (Mark and Aronson, 1984). In human vi-
sion, the neural network is able to distinguish specific features in relation to
a corresponding scale (Marr, 1982), as well as to carry out a multiresolution
analysis. As suggested by Marr (1982), our visual system is probably linked
to tuned cells or, in other words, it has specific frequency intervals which it
is sensitive to. Therefore, computer systems and the visual representations
we make of processed data should reflect this. Nevertheless, in most cur-
rent systems, information is perceived like a static image, and whatever it
represents, our visual system has to analyse the multiple scale levels that it
contains. However, there are two ways to interpret information in an image:
either we know what the image, or data, contains and we focus on retrieving
this information using the most appropriated technique or method; or we
do not know what the image contains. In this case, we use a more general
method to identify and differentiate relevant content in the data. This latter
applies for DEM analysis. Often a specific DEM contains specific information,
like a geological phenomenon, but the identification of its component is not
straight forward. Consequently, topographical features have to be classified
according to their representative scale. In other words, it is necessary to find
the best correlation between a certain level of generalisation (of the DEM)
and the scale of a particular feature of the topography. This process is called
a multiscale analysis of structural topographical features (Marceau and Hay,
1999).

As we have seen in chapter 2, elevation data gathering techniques such as
ALS have been used for a few years. In most developed countries, high res-
olution DEMs have been made available by national mapping authorities.
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These DEMs, through their high resolution, have fundamentally changed the
way we perceive elevation information. High resolution describes very fine
structural levels that stem from different processes. As example, a micro-fold
may be resulting from a landslide or from usual erosion. Thus, the imprint
of this feature will not be contained in the same spatial context regarding
its relation to coarser features. Although high resolution allows us a much
better visual rendering of the territory and of its structures, the relations be-
tween topographical structures and formations are more complicated, hence
they represent a new challenge for quantitative geomorphologist and geo-
morphometry. How can we then identify phenomena which have a multiscale
imprint? In fact, we can still apply the same algorithms and the same meth-
ods used before, but we can no longer confine ourselves to the unique result
we obtain at one scale or using a 3× 3 convolution window, such as defined
by Evans (1979).

Multiscale DEMs are either produced using a top-down approach, or a
bottom-up approach (De Floriani et al., 1996; Schroeder et al., 1992). The
top-down approach involves refinement, going from a coarse resolution to
the desired fine one, called upscaling (see section 3.3). Generalisation, the
bottom-up approach, is a concept connecting phenomena through different
scale levels, from fine to coarse. It is linked to downscaling, which is made
possible by decomposing information in order to reach its constituents at
coarser scales (Marceau, 1999; Jarvis, 1995). Using high resolution DEMs,
we have now moved from a top-down approach (low resolution to high reso-
lution) to a bottom-up approach, which will be developed in the next chapter.
Within this scaling process, structures have to be transferred from one scale
to another. In order to be able to detect a phenomenon (thus its underlying
feature(s)) at a specific scale, it is necessary to have access to the specific
scales at which significant features and their intrinsic relations emerge.

The comparison between generalised DEMs and a basic shape, representing
an elementary landscape structure, could result in a correlation factor be-
tween this shape and the analysed DEM through scale. Furthermore, if we
link this basic shape, which can be represented by a function, to frequency
analysis, we might develop a rigorous and exhaustive multiscale structural
analysis. Moreover, the best representation of our function in a specific scale
level would illustrate which types of structures arise in this same level.

3.6 New multiscale framework in geomorphometry

De Boer (1992) suggested that scale should be used as an analytical frame-
work to reduce the high frequencies caused by finer scale levels. The idea is
to focus on the functionalities and properties of a DEM at a certain scale. As
we will show in chapter 4, and if we think of frequency analysis, the Fourier
transform cannot be used to perform this complex operation due to its sta-
tionary property. Thus we will explore another frequency analysis method
which is the wavelet transform. It has localisation and compact support prop-
erties which fulfil our needs (see section 1.1). If we consider this fine DEM as
part of another coarse DEM through scale, we might want to determine the
best way to separate its corresponding high frequencies. Thus the analysis
of multiscale DEMs has to link two approaches: an analytical function to
describe topography, which is the link to wavelets, and a framework which
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enables the decomposition of a general system in analytical sub-systems.
These sub-systems are a separation of the initial information into low-pass
and high-pass information (figure 3.10, results of operation A). The wavelet
transform enables precisely to define specific scale intervals, thus a pyramidal
representation (or the sub-systems) of terrain models using a bottom-up ap-
proach. The link between each scale is made by the functions describing the
transform and the generalisation scheme has to be adaptive to local terrain
variations.

Fig. 3.10. Scale effect - Proposed framework, A is the generalisation operation (or
analysis) and B is the specific scale reconstruction (or synthesis).

In our framework, we will try to define a way to rebuild multiscale struc-
tural information, but being scale selective. This case induces a complex
transformation. In fact, two separate operators have to be defined (figure
3.10). The first (A) allows the generalisation of information into different
low-pass and high-pass decompositions representing various scale levels. It is
the first step of the wavelet analysis, respectively the wavelet transform. The
second function (B) is part of the reconstruction process of information into
high resolution. This is the second step of the wavelet process, which is called
the synthesis procedure or the inverse wavelet transform. We will primarily
explore this framework in this study.
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The question is, can we define a framework which involves scale driven pro-
cesses and the delimitation of scale intervals. We cannot a priori have any
knowledge of the best partition and representation of the frequency space.
An exploratory approach is therefore necessary to apprehend it, as well as
to understand the link between structures, processes and phenomena. In this
study, we try to define these spaces by interpreting and analysing a certain
reality by means of multiscale representation. In interpreting these spaces,
we hope to reconstruct the reality of the processes that affects a topograph-
ical phenomenon, not only regarding their formal definition, but also in the
context of the structural nesting they are made of. Figure 3.11 illustrates
this. Step I is the core of the study, i.e. the development of the methodology.
Step II is the validation process. However, validation has only been slightly
explored, partly by lack of experts and partly by lack of time. The web-based
GAS survey (chapter 6) gives a few perspectives to validate the method.
It does not go deeply into a validation process, but it is a first attempt to
disseminate the implemented methodology .

Fig. 3.11. New multiscale framework - Transition between reality and the appropri-
ated representation of it. Step I is the development of a methodology to understand
and decompose the complex reality. Step II is the validation process. The framework
is described above and illustrated in details in figure 3.10.
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4. Multiscale DEM using wavelets

As seen in the previous chapter, high resolution DEMs are composed of
multiscale scale information. The bottom-up approach discretizes them into
several scale intervals containing relevant and specific structural information.
Furthermore, frequency analysis is a promising way to apply downscaling and
to analyse the underlying results of dense datasets at very fine scale. As the
Fourier transform is not adapted to non-stationary and heterogeneous signals
(see section 4.1.1), the wavelet transform will be used to circumvent these
limitations. Through conceptual considerations, it creates frequency discrete
spaces, or partitions of the global frequency space. The implicit link between
frequency space and spatial space is hard to make, but using statistical anal-
ysis and visual interpretation of the wavelet transform (WT) results, we will
try to give an explicit scale definition of the new created spatial spaces.

First, we will introduce the wavelet transform with some theoretical elements
and formulation (section 4.1) and then express our approach in using it for
DEM generalisation and analysis purposes (section 4.2).

4.1 Wavelet for generalisation

Human vision uses simple cell in the visual cortex to perceive our environ-
ment. The representation our brain makes of this information is a discretiza-
tion of spatial variables and frequencies (Marcelja, 1980). Wavelets, through
their spatial and frequency definition, fit very well the particular statistical
structure of our visual environment (Field, 1999; Gaudart et al., 1993); they
are spatially localised and defined in the spatial frequency domain (Mallat,
2000). The wavelet transform is a mathematical tool for spectral analysis
and simplification, and it is strongly related to the Fourier transform (Po-
likar, 1995).

Conceptually, the Fourier transform is a combination of harmonic waves
designed to reconstruct an almost random signal (like the elevation profile in
figure 4.1). Wavelet transforms are similar to the Fourier transform, but they
are locally adaptive to the signal. Therefore, they are not inducing an infinite
continuity as a sine or cosine wave does. The next two sections describe these
differences.

4.1.1 Fourier transform

A signal f(x) is defined through its period T = 1
f0

where f0 is the reference
frequency (base frequency). Every periodic signal can be decomposed into a
infinite sum of sine and cosine functions. If we take a 2-periodic function f(x)
(Zwillinger, 2003):
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Fig. 4.1. Fourier versus wavelets

f(x) =
A0

2
+
∞∑
n=1

(An cos(2πnf0x)) +Bn sin(2πnf0x)) (4.1)

If we use complex notation to describe this series, we can show that

f(x) =
∞∑

n=−∞
Dne

2πjnf0x (4.2)

with Dn = 1
2 (An − j ·Bn).

In equation 4.2, Dn are defined as the Fourier coefficients. The Fourier
transform decomposes a signal into two components: the magnitude and the
phase of the coefficients in the complex domain. Thus, if we interpret the
signal as continuous, the Fourier transform is a signal decomposition into
frequencies composing it and defined in equation 4.3.

F [f(x)] = F (ω) =
∫ +∞

−∞
f(x)e−2πjωxdx (4.3)

If we consider a terrain profile and we apply to it a Fourier transform, the
results will give the frequencies composing the signal, but not the localisation
of those frequencies in the profile space. Indeed, the Fourier transform is well
defined for stationary signals, but it can hardly be used for non-stationary
signals, like terrains or terrain profiles. The differences between stationary
and non-stationary signals are:



4.1 Wavelet for generalisation 47

1. Stationary: the statistics of these signals are constant over time. The
signal repeats itself over time (like a sine or cosine wave) and can be
predicted using a sum of sine and cosine waves.

2. Non-stationary: non-redundant signals. The signal cannot be predicted.

Natural phenomena signals are often non-stationary. Intuitively, it is easy
to understand that an integral which covers a complete spatial domain has
not the same properties as natural phenomena. This is similar to the link
between our visual system (see Gaudart et al. (1993) for details) and the
identification of localised natural phenomena. If we take a terrain profile,
the probability that the signal repeats itself is almost equal to zero. Many
authors have applied the Fourier transform to terrain models or shown that
it was not adapted to terrain data (Pike and Rozema, 1975; Amgaa, 2003;
Gallant and Hutchinson, 1996; Mahler, 2001; Martinoni, 2002). However, as
Amgaa (2003) stated: a signal simply cannot be represented as a point in the
time-frequency space and Mahler (2001) concluded that: For analysing non-
stationary or transient phenomena with the occurrence of signal changes at a
particular location, such as a terrain, the space-invariant Fourier transform
is not suitable. Rao (1995) stated that the Fourier transform is well localised
in the frequency domain, but poorly in the space (or time) domain.

The Fourier transform cannot be used to perform this complex operation
because its properties assume that the signal (the topography) is stationary
and not local. Moreover, sine functions cannot represent basic topographical
features in a appropriate way (Gallant and Hutchinson, 1996), because spa-
tial data is generally autocorrelated, non-stationary, non-normal, irregularly
spaced and discontinuous (Meentemeyer and Box, 1987). However, an ap-
proach based on frequency analysis can be implemented (Bjorke and Nilsen,
2003).

4.1.2 Wavelet transform

Wavelets appeared because of the lacks of the Fourier transform in describing
local properties of signals (Cohen, 1992). In the 1930s, the Haar function
was used to study Brownian motion (Graps, 1995). Multiple research fields
therefore used wavelet-like algorithms (see Meyer (1992) for an overview).
Then, in 1946, D. Gabor introduced the first time-frequency wavelet, even
if his development could only be used on a continuous system, the wavelet
transform was in development. The present wavelet transform was defined
and developed by Mallat (1989). He highlights the next relations between
following elements:

– Conjugate quadrature filters. A wavelet ψ defining a conjugate quadrature
filter generates an orthonormal basis of L2(R)1. A conjugate quadrature
filter decomposes a discrete signal into two downsampled signals (double
filtering and downsampling (Mallat, 2000) , see figure 4.4). In the Fourier
domain, ψ̂ can be interpreted as the impulse response of a high-pass filter
(G).

– Pyramidal algorithms (in image processing). Some structures have to dis-
appear from one resolution to another and other structures have to be
maintained. These algorithms enable to generate a 2i+1 resolution image

1 L2 is a space were the defined functions are of finite energy, thus
∫
|f(x)|2dx <

+∞ (Mallat, 2000), where L stands for Lebesgue.
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from a 2i resolution original image, where i is the decomposition level
(Meyer, 1992).

– Orthonormal basis. Mallat (2000) showed that every signal f ∈ L2(R) can
be decomposed on an orthonormal basis {ψi,k}(i,k)∈Z2 , equation 4.4.

f =
+∞∑
i=−∞

+∞∑
k=−∞

〈f, ψi,k〉ψi,k (4.4)

Starting from these elements, Mallat (1989) developed the multiresolution
approximation of L2(R) and defined the continuous wavelet transform. We
will replace the time-frequency concept by position-frequency, because we are
not processing a temporal signal, but a terrestrial localized signal (a DEM).
Using wavelets having variable sizes on the position axis, Mallat (2000) de-
fined the wavelet transform as the transform of a signal in a family of shifted
and dilated wavelets, and he developed the transform for 2D signal.

Definition 4.1.1 (Mallat, continuous wavelet transform). A wavelet is
a function ψ ∈ L2(R) with zero mean:∫ ∞

−∞
ψ(x)dx = 0 (4.5)

If the wavelet ψ is dilated by a factor i and translated by k, we obtain:{
ψi,k(x) =

1√
2i
ψ

(
x− 2ik

2i

)}
(i,k)∈Z

(4.6)

Thus, the wavelet transform of f ∈ L2(R) at position k and scale i is:

Wf(i, k) = 〈f, ψi,k〉 =
∫ ∞
−∞

f(x)
1√
2i
ψ∗
(
x− 2ik

2i

)
dx (4.7)

where ψ∗ is the complex conjugate of ψ.

The dilation factor implies that at each decomposition level i, the wavelet
spectra is divided by 2 (dyadic transform). Mallat (2000) thus introduced
a complementary function in order to avoid redundancy and enable perfect
reconstruction (no information loss) by the inverse transform. This is shown
by relation 4.8, the wavelet subspace being defined by Wi = {ψi,k(x)}(i,k)∈Z.

{f(x)}L2(R) ∈W1 ∪W2 ∪ . . . ∪Wi ∪ . . . ∪Wn, n =∞ (4.8)

If we define V0 = {f(x)} and a fine-to-coarse sequence of subspaces Vi ⊂
. . . ⊂ V0 ⊂ L2(R), to avoid an infinite series of wavelet subspaces Wi, we can
then express:

{f(x)}L2(R) = W1 ∪W2 ∪ . . . ∪Wi ∪ Vi (4.9)

Orthogonality ensures the no-redundancy property between Wi and Vi.
Hence a new function, complementary to ψ, is defined (see equation 4.10),
called the scaling function ϕ(x) (Vi = {ϕi,k(x)}(i,k)∈Z).

〈ϕ(x), ψ(x− k)〉 = 0 (4.10)
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Fig. 4.2. Spectral coverage of the wavelet and scaling functions

Equation 4.10 makes sure that the whole spectrum of f(x) is covered by the
analysis (figure 4.2). Unser and Blu (2003) showed that the scaling function
ϕ can be defined using two ways. Either it is given explicitly or it is derived
from the refinement filter H(z) (itself derived from the wavelet function).

In other words, we use two functions ψ and ϕ, which have a two-scale re-
lation, and which can decompose a signal into two distinctive subspaces Wi

and Vi. The first, related to ψ, represents at each decomposition step i the
half of the analysed frequency space and the second, related to ϕ the other
half. On this latter, the same process can be applied again (figure 4.3).

As we are using discrete sampled signals (DEM), we use the discrete wavelet
transform. To ensure a good interpolation of the DEM generalisation process,
a B-spline basis is chosen as scaling function (see section 4.2.3 for a detailed
description). For a complete description of the mathematics and the derived
filters refer to appendix A.

Wavelet discrete transform.

The discrete transform, as shown in appendix A, defines two quadrature
conjugate filters2(H(z) and G(z)). The first one is the impulse response of the
scaling function ϕ and the second one is the impulse response of the wavelet
function ψ. In fact, they are a low-pass filter and a high-pass filter. Their
conjugate filters allow a perfect reconstruction of the signal (see equation
A.29, appendix A) and they are separable because of the separability of
their impulse response (Mallat, 2000); thus the separability of the two basis
functions (Unser, 2001):

ϕm,n(k, l) = ϕm(k) · ϕn(l)
ψm,n(k, l) = ψm(k) · ψn(l)

(4.11)

where m and n are respectively the row and column dimensions and k and
l respectively the size of the image (k=number of rows and l=number of
columns).

This defines a bi-dimensional convolution by dividing the problem into two
parts: a first unidimensional convolution on the image rows followed by an
unidimensional convolution on the image columns (Mallat, 2000). At each
step, the convolution is followed by a dyadic subsampling (2i) over the con-
voluted dimensions. Intuitively, by considering all combinations of these filter,
four results will be obtained using the wavelet transform: a low-pass image
(c[2k]i+1), a high-pass horizontal image (d[2k]h,i+1), a high-pass vertical im-
age (d[2k]v,i+1) and a high-pass diagonal image (d[2k]d,i+1). The high-pass
2 Quadrature filters implement the filter bank. They split the input signal into two

dyadic subsampled resulting signals: a high-pass and a low-pass.
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Fig. 4.3. Idealized representation of how the space-frequency plane is tiled by the
wavelet basis functions. At high frequencies (e.g., box related to ψ2,k(x)), spatial
localisation is high while spectral localisation is less precise. On the contrary, at
lower frequency (e.g., box related to ψ4,k(x)), spectral localisation increases at the
expense of spatial localisation according to Heisenberg’s uncertainty principle.
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results are usually called the detail coefficients. Figure 4.4 shows the filter
bank of the wavelet transform, represented in the figure by the analysis. The
inverse transform (synthesis) is presented in the next section.

Fig. 4.4. Conjugate quadrature filter bank

Considering two dimensions, Mallat (2000) defined the wavelet basis (equa-
tion 4.12). In the spectral domain (Fourier), the energy of the decomposition
can be defined as shown in figure 4.5. Thus, at each decomposition level and
for each basis, a specific part of the original signal frequency spectrum is
extracted by the corresponding basis. Regarding a decomposition level i, the
low-pass coefficients c[k]i correspond to the signal frequency spectrum cov-
ered by ϕ̂i, the horizontal high-pass coefficients d[k]h,i to ψ̂h,i, the vertical
high-pass coefficients d[k]v,i to ψ̂v,i and the diagonal high-pass coefficients
d[k]d,i to ψ̂d,i.

Theorem 4.1.1 (Mallat). A scaling function ϕ and the corresponding wavelet
ψ generate an orthonormal wavelet basis L2(R). Three wavelets are defined:

ψh = ϕ(x)ψ(y), ψv = ψ(x)ϕ(y), ψd = ψ(x)ψ(y) (4.12)

Fig. 4.5. Dyadic rectangles indicating the energy concentration of ψ̂k,i, adapted
from Mallat (2000)
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Mallat (2000) gave a synthetic view of the wavelet transform results (figure
4.6). The original scale of the image is divided by the dyadic subsampling,
thus the resolution is reduced by a 2i factor (i being the decomposition level).
Figure 4.6 shows the result for the first decomposition level (i = 1). To obtain
the next levels, the transform is applied to the ci+1[2k] coefficients until the
level of interest is reached.

Fig. 4.6. Original signal ci[k] resulting in one low-pass image ci+1[2k] and three
high-pass images dh,i+1[2k], dv,i+1[2k] and cd,i+1[2k].

4.1.3 Inverse wavelet discrete transform

The perfect reconstruction conditions (Vetterli, 1986) define the relations
between the analysis and synthesis filters (see equation A.29 in appendix A
for details). Figure 4.4 shows that the synthesis is just an inversion of the
analysis; the downsampling steps correspond to upsampling and the filters are
reverted translated versions by pairs of the impulse response of the analysis
filters (dual basis3).

4.2 Generalisation of high resolution DEMs

4.2.1 DEMs and wavelet

As seen, few attempts were made to use the wavelet transform on DEMs
(Bjorke and Nilsen, 2003; Pike, 2000). Since the emergence and dissemina-
tion of this image transform techniques, only few researchers (Gallant and
Hutchinson, 1996; Mahler, 2001; Martinoni, 2002; Amgaa, 2003; Bjorke and
Nilsen, 2003) have tried to apply wavelets and their effects on DEMs. Even
in prior years to the 2D wavelet transform development, researchers (Weibel,
1989b) have shown that there is a need to have different spatial DEM resolu-
tions, this in order to be able to apprehend this huge amount of information.
Both approaches, visual and computational, are subject to this fact.
3 A dual basis is defined following: H̃ = [ũ1 ũ2 . . . ũn] = (U−1)H where ()H is the

hermitian transpose (AH = (AT )∗ = (A∗)T , ()∗ is the complex conjugate)(Unser,
2001). This basis is defined in an Hilbert space (scalar field ∈ C)(Zwillinger, 2003)
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Wavelet applications on DEMs are divided into several application fields. A
non-exhaustive list of previous work is proposed hereunder:

– Feature extraction. The wavelet transform can be used for feature extrac-
tion. Studies (Grewe and Brooks, 1997; Amgaa, 2003) have shown that the
considered feature has to be of high gradient limit. In DTMs, most of the
geomorphologic features are nested one in another and gradient limits are
considerably harder to identify, probably due to the higher autocorrelation
than in usual images. Amgaa (2003) and Vu and Tokunaga (2002) applied
wavelets to the extraction and segmentation of DSMs containing building
information. In this context, wavelets are efficient because of the sharp and
clean building limits. The transposition of this work to DTMs and natural
phenomena seems impossible and inefficient for such structures.

– DEM filtering: Mahler (2001) and Martinoni (2002) filtered the wavelet co-
efficients. Results were filtered versions of the original DEM. They also gave
some hints of isolating specific scale information. Since the used wavelets
(Haar and Daubechies) are not symmetric (Daubechies) or complex enough
for terrain representation (Haar), the generalisation and filtering process
induces artificial structures (see appendix B where the 0.5 degree wavelet is
almost similar to the Haar wavelet). Bjorke and Nilsen (2003) tried almost
the same approach. They also used the Haar wavelet. As long as there is
no need for a generalised representation or extraction of morphometric in-
dicators - only a visual analysis of the DEM or of the different coefficients
- the Haar wavelet can be used. However, in quantitative approaches, the
Haar wavelet is problematic because of the square structure it induces.

4.2.2 Validating the wavelet approach

As seen above, wavelets were used for multiple purposes. In our study, we
will use them to fulfil a geomorphological multiscale description of a high
resolution (1 m) DEM containing a landslide. In order to understand what
the effects and issues of the WT are applied to such a structure, we create
a virtual landslide on a regular plane, to which the WT is applied until the
eighth decomposition level (i = 8).

In order to assess that the generalisation scheme using the WT is adapted to
DEMs, the generalised low-pass results are analysed regarding the following
indicators:

– Global surface analysis: statistical indicators (mean, median, maximum,
minimum and standard deviation) computed over the whole generalised
DEMs and regarding all the decomposition levels.

– Profiles: some 1D profiles are visually analysed regarding the zone of inter-
est. The same statistical indicators, as for the global analysis, are computed
for the elevations composing each profile.

– Slope to elevation distribution: it gives us a synthetic view of the maxima
attenuation in the different decomposition levels. It is strongly related to
scale and shows how fast the generalisation process tends to create an
inclined plane.

– Local fractal analysis: the local Hurst coefficient shows how, locally, the
relations between the DEM pixels evolve regarding their specific scale in-
terval.
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– Global spatial autocorrelation: as we analyse the local relations in the
pixel distribution, we want to know how it globally evolves regarding the
elevation distribution. In order to do so, we use autocorrelation indicators
(Moran’s coefficient and Geary’s ratio).

4.2.3 Wavelet function choice

There are plenty of functions which can be used as wavelets. In fact, a
function has to be continuous, tend to zero when x tends to infinity and
have vanishing moments. Most wavelets were designed for a specific task in
a specific application. Thus, by choosing a wavelet transform, the main issue
is to choose either a scaling function or either a wavelet family that satisfies
specific needs. Almost any function could be applied (Reza, 1999) as long as
it meets the wavelet transform conditions.

We choose to explore the fractional B-spline wavelet family. Unser and Blu
(2000) wrote that they appeared to have the smallest approximation error,
i.e. the scale decomposition is true to the original signal. Another property
is that splines are a well recognized interpolation basis for DEMs (Gachet,
2005; Mitasova and Hofierka, 1993), and B-splines are a special case of splines.
Indeed, they are the basic atoms of polynomial splines (Unser, 1999; Schoen-
berg, 1946). A lot of wavelets are constructed on splines (for example Haar,
Battle-Lemarié, B-spline). They allow construction of linear space decompo-
sition and reconstruction schemes (Staadt et al., 1998).

B-spline wavelets have the following properties (Unser, 2001):

– Symmetric and positive - Because of the base definition of B-splines, convo-
lution products of elementary B-splines are always positive and symmetric.

– Compact support - A B-spline of degree n has a compact support over[
−n+1

2 , n+1
2

]
, thus the B-spline basis value is equal to zero elsewhere.

– Differentiable - Regarding the degree of the B-spline, it can be derivated
n− 1 time.

– Optimally localized in position and frequency.

In terms of DEM equivalents, these four properties are expressed as follows:

– Symmetric and positive - DEM structures approach symmetry, but are
rarely symmetric. Moreover, a lot of phenomena represented by DEMs
have some symmetric structures (or approach symmetry). The property of
positivity gives us positive coefficients where the terrain is convex (thus
positive) and negative coefficients where it is concave4. This property, as
we will see in the next sections, is significant for our analytical method
applied to terrain analysis.

– Compact support - Every structure in a DEM, even the largest, has a
compact support. Topography is not infinite. For example, a hill is a 2D
compact supported structure: it has a peak and is delimited by its base
boundary.

– Differentiable - In this study, this property will be not be explored, but
it could be linked to geomorphometry indicators, like the first and second
derivatives (see section 2.4).

4 Concave and convex are used as defined in section 2.4.1.
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– Optimally localized in position and frequency - If we cannot localize struc-
tures in DEMs, the result analysis and visual interpretation are hard to
undertake. As already mentioned at the beginning of this chapter, non-
localized frequency analysis is not optimal for DEMs.

In order to see the effect of the wavelet transform on structures, a SNR
analysis is undertaken and linear profiles are used (see appendix B). For each
wavelet degree (n = 0.5, 1.0, ..., 5), the same profile was computed on com-
pared to original DEM profiles. These were chosen because of their specific
shape.

Results on the profiles (figure B.7 in appendix B, and figure 4.7) confirm the
first conclusion about the smoothing effects. Using a fractional degree lower
than 1.0 induces a stepwise bias. It may either be positive, thus increase
the elevation, or negative and induce a pit. For higher degrees, as visible on
the figures, the higher the degree the more averaging the resulting elevation
seems to be. The correspondence with the original DEM increases as the
B-spline degree is increased. But it is not a linear process and the profiles
of the different degrees seem to converge. Regarding the SNR analysis (see
appendix B) and the profile analysis, our choice is the B-spline basis of degree
3.

Fig. 4.7. Wavelet effect on profile 2

Thus, our choice of wavelet is not based on the wavelet function, but on
the scaling function (B-spline). As shown in appendix A, B-splines of degree
n are convolutions of the basis function β0. The family of wavelets is then
defined by the perfect reconstruction conditions (Vetterli, 1986).

Unser and Blu (2000) developed the so-called fractional splines and wavelets
(see appendix A for theoretical details). For generalisation purposes, hypoth-
esis was made that a B-spline of degree 3 is the best interpolation basis for
DEM generalisation (regarding B-spline basis of other degrees). The asso-
ciated scaling and wavelet functions are shown in figure 4.8. A small study
comparing wavelet analysis using different degrees is given in appendix B.
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Fig. 4.8. Illustrations of the scaling function (B-spline of degree 3)(a) and the
wavelet function (symmetric dual wavelet)(b)

4.2.4 Wavelet transform effect - A simple model

As shown in section 4.2.3, we chose a B-spline scaling function of degree 3.
To apprehend and describe the effect of this transform on a DEM, a simple
virtual landslide model was created on a regular plane. A small introduction
to the shape features of this landslide is therefore given below. This virtual
DEM has following properties (see figure 4.9 for localisation of elements):

– Plane slope: 18.4o

– Scarp zone: 14 ha
– Head zone: 26 ha
– Main body zone: 10 ha
– Accumulation zone: 25 ha

The minimum elevation value is 0 and the maximum elevation value 254.33
and so the range.

Each of these zones has specific properties, e.g. small structural variations.
The whole landslide was combined to a plane of constant slope. In the scarp
zone, strong elevation variations were made, modelling the material destruc-
tion. The head zone is in the continuity of the scarp zone, the included fea-
tures are modelling the unstructured material resulting from the scarp zone.
Mass movement is then shown in the main body, but therein the shape of
moved material is smoother. This was done in order to see if these small
features had an impact on the wavelet transform and could be seen in the
high-pass coefficients. Downhill the main body, the accumulation zone is a
convex hill with, at its end, a steep slope showing the strong mass movement
of the landslide toe. A profile, going from the scarp zone to the accumulation
zone and being centred in the landslide, is shown in figure 4.10 on which this
different elements can be retrieved.

The aim of creating such a DEM was to reproduce a typical landslide. In-
deed, the aim is to understand the theoretical behaviour of the wavelet trans-
form applied to DEMs and to the shapes it contains. These have to be enough
consistent and easy to understand in a morphological point of view, and using
simple (but realistic) shapes is a good generic approach.
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Fig. 4.9. Shaded virtual landslide

Fig. 4.10. Centred profile of the virtual landslide - The dashed vertical lines show
the upper and lower limits of the main body.
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Pyramidal decompositions.

Visual analysis of the low-pass surfaces (or generalised DEMs) shows that,
as expected, less and less details are visible in the successive decompositions.
Figure 4.11 shows the five first levels, but decompositions were computed
until the eighth level. Assuming that the original DEM had a 1 m resolution,
at the eighth level, the resulting surface has a 256 m resolution. Visually, the
landslide (in its global shape) disappears from the decomposed DEM at the
seventh level, thus all the information concerning the landslide was transmit-
ted to the high-pass coefficients and only the regular plane is remaining in
the low-pass resulting surfaces. The size of the original DEM is 768 × 768
pixels. Thus, in the pyramidal decomposition, the size of the resulting low-
pass surfaces is for i = 1 ⇒ 384× 384, i = 2 ⇒ 192× 192, i = 3 ⇒ 96× 96,
i = 4 ⇒ 48 × 48,i = 5 ⇒ 24 × 24 ,i = 6 ⇒ 12 × 12 ,i = 7 ⇒ 6 × 6 and
i = 8⇒ 3× 3.

Fig. 4.11. Low-pass decomposition pyramid; (a) original DEM, (b) first decompo-
sition level, ..., (f) fifth decomposition level

The pyramidal representation is the generalisation result (or low-pass) of
the WT. The elements not retrieved in the different low-pass surfaces are
contained in the high-pass coefficients, depending on the frequency scale. The
so-called details will be sent by the transform in one of the high-pass images.
It is the “orientation” or preferential direction of the wavelet adjustment over
the elements that determines in which high-pass image (horizontal, vertical
or diagonal) the element is sent. Indeed it is always a combination of low-
pass and high-pass filters which determines which value will be in which
resulting image. The geomorphological analysis and interpretation of three
high-pass images is complex and disturbing for non-specialists of the WT.
This partition of the space domain, or in our case, the territorial domain,
is the main limitation of the usual wavelet transform. In chapter 7, we will
illustrate how to get rid of this limitation and give a complex definition to
the high-pass coefficients.
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A wavelet coefficient (the pixel value in the high-pass images) has two char-
acteristics: a magnitude and a direction. The latter was explained in the
previous paragraph. The former is the local energy needed by the wavelet to
have the best correlation with the local structure or element, thus the local
scale versatility. The higher the magnitude is, the more (vertically) stretched
to fit the structure the wavelet is. Inversion of the wavelet shape is given by
a negative coefficient (e.g. figure 4.12). Section 4.3.1 will give more details
about detail coefficient values and analysis.

Fig. 4.12. Mallat’s decomposition scheme applied until the third decomposition
level. Positive coefficients are in red and negative coefficients in blue.
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4.2.5 Global surface statistics

To understand the behaviour of the WT and to ensure that the low-pass re-
sult corresponds to the original DEM regarding their resolution, a few simple
statistical indicators were computed (figure 4.13). The convergence of these
to about 150 m is explained by the fact that at, a specific scale (eighth de-
composition level), almost all structures defining the virtual landslide have
disappeared from the low-pass, and thus, the remaining structure is the reg-
ular plan. Its mean elevation is about 150 m.

Fig. 4.13. Statistical indicators of elevation variation through the decomposition
levels

An interesting fact is that the minimum and maximum also tend to the
mean. This can be explained by the averaging properties of pixel general-
isation. The further the surface is generalised, the more the values of the
generalised pixels tend to the global mean value of the surface; and thus
the generalisation smoothes the minimum and maximum (see section 4.2.7
for more details). Moreover, the standard deviation starts to decrease at the
same levels as the other indicators, and it is the result of the mean conver-
gence. The homogenization of the pixel values causes a decrease of the stan-
dard deviation. It is also noteworthy that, statistically and from the sixth
level, the number of pixels is low, thus probably not any more representative.
Finally, the standard deviation shows us when the number of pixels begins
to be critical in combination with the structural composition tending to a
plane.
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4.2.6 Profiles on generalisations

Profiles on the low-pass results (the generalised DEMs) are used to moni-
tor the trends of generalisation by following a one dimensional signal. The
evolution of this one has the advantage of simplifying the visual interpreta-
tion of physical morphology modifications in a 2.5 dimensional surface. Three
profiles (figure 4.14) were defined on the virtual DEM. First, they were anal-
ysed on the original DEM (i = 0), then on the different generalised DEMs
(i = 1, ..., 8). Only low-pass results are illustrated (see section 5.7.2 for high-
pass filtered profiles).

Fig. 4.14. Profiles on virtual landslide

The first profile goes through the landslide from the top to the bottom.
This area is very disturbed and multiple folds are visible. The second profile
is going through the scarp zone and the head zone. Finally, the third profile
goes through the accumulation zone.

The results for profile 1 are given in figures 4.15 to 4.17 and, for profiles 2
and 3, they are given in appendix C.

The first profile illustrates perfectly the WT effect. As the decomposition
level increases, the details remaining on the resulting surface diminish. There
is a direct link between the generalisation process and the scale of features.
Indeed, from level 0 to level 3, the effect does not seem apparent, but this
is only due to the size of features transferred by the WT to the high-pass
images. At the seventh level, even the biggest structures of the landslide
have been filtered and there are only some traces of a feature located on the
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former landslide structure. All seventh level profiles (figures 4.16, C.2 and
C.5) illustrate this. At the next level, the resulting low-pass surface is the
regular plane which was defined.
Global variance values on the profile (figure 4.17) show almost the same

behaviour than global variance values computed over the whole surface (figure
4.13), but local scale-dependent structures modify slightly the median value.
Because the profile follows the direction of the slope and goes through the
landslide, the convergence value of the different indicators is also 150 m. This
is logically different for the other profiles (appendix C, figures C.3 and C.6).
For profile 2 convergence value tends to the maximum because the underlying
structure is concave and suppressed at the seventh and eighth level. For profile
3, the inverse should happen, but because of the pixel averaging effect (see
section 4.2.7), it is attenuated. Interestingly, the standard deviation remains
stable longer than for the whole surface. If we refer to the profile’s illustrations
(figures 4.15 to 4.16), the overall landslide structure is present in the low-
pass surface until the seventh level, exactly the level at which the standard
deviation decreases.
The global statistics, as seen in figure 4.13 for the whole DEM and in figures

4.17, C.3 and C.6 for the profiles, show a break of linearity in their evolution
through the decomposition levels: for the whole DEM, this break occurs at
the 4-5 levels, for profiles 1 and 2 at level 4, and for profile 3 at level 3.
These breaks are due to the suppression of all high-pass information which is
included in the global shape of the analysed elements (DEM or profiles). Thus,
the wavelet transform begins, at the next level and regarding these breaks, to
have an effect on the global structures, therefore the transfer to the high-pass
images of the global shape included in each type of element (DEM or profile).
This induces a global flattening, thus an attenuation of the maximum or the
minimum, regarding the type of shape (concave or convex) represented. An
interesting observation in profiles 2 and 3 is the much more nuanced reduction
of the standard deviation, while the other indicators are evolving in a less
coherent way (figures C.3 and C.6). This is due to attenuation throughout
the decomposition of the concavity and convexity in the respective profiles.
Even if the structures are reversed in the profiles, the attenuation remains
the same.

4.2.7 Slope to elevation distribution

In order to determine the effect of the wavelet transform on terrain smooth-
ing, slope attenuation can be analysed according to the decomposition levels.
A bi-variated representation (scattergram) is used to visualise slope atten-
uation regarding terrain elevation (Sulebak, 1999). Slopes were computed
using the usual morphometric algorithms using a 3×3 window (Evans, 1979;
Zevenbergen and Thorne, 1987).
Every data generalisation implies a data smoothing whatever its kind is,

sound, image or, as in our case, a DEM. Figure 4.18 shows the smoothing
effect of an average (or mean) filter applied to a simulated profile. In this case,
the extreme value (local maximum) tends to diminish due to the smoothing
effect of the average filter. In contrast to this simple method, the wavelet
transform will tend to maintain structures until the frequency of this element
matches to the decomposition level and, thus, the elimination (transition to
the high-pass images) thereof. Moreover scale-specific structures should be
retrieved in the high-pass images of each level.
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Fig. 4.15. Profiles 1, decomposition level 1-4 (Left side is the northern end of the
profile and right side is the southern end of the profile.)
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Fig. 4.16. Profiles 1, decomposition level 5-8 (Left side is the northern end of the
profile and right side is the southern end of the profile.)
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Fig. 4.17. Statistical indicators of elevation variation through the decomposition
levels over profile 1

In figure 4.18, by taking the average filter, it is clear that the attenuation
will not depend on the frequency (or the spatial distribution) of the extreme
value, but only on the generalisation operator (the average).

The slope to elevation distributions were computed by using the original
virtual DEM and its generalised low-pass results. Figure 4.19 shows only the
results regarding visual context. the legends are different from one scatter-
gram to another. This is due to the fact that the number of used occurrences
diminishes when proceeding through the decomposition levels, because the
DEMs are composed of less and less pixels.

The original DEM is composed of 768× 768 pixels (589 824 pixels) and the
first decomposition of 384 × 384 pixels (147 456 pixels). At each level, the
number of pixels is divided by four. At the eighth level, only 3× 3 pixels (9
pixels) remain for the analysis. Thus, there are not enough pixels left to make
a bi-variated analysis at this level.

In figure 4.19, the results show two distinct facts: the inclined regular plane
and the other structures composing the virtual landslide. The plane is repre-
sented by the horizontal lines in the scattergrams. Indeed, at each elevation,
a certain number of pixels represent the plane. The rest of the values of the
scattergrams represent the distribution of pixels forming the virtual land-
slide, and therefore its internal structures. The disappearance of the horizon-
tal lines through the decomposition levels does not reflect the suppression
of the plane, but it only indicates that the plane is represented by less and
less pixels. Moreover, at each decomposition level, the regular inclined plane
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Fig. 4.18. Attenuation of the extreme value using average generalisation - Example
on a regular profile. The black profile is the original shape of the structure and the
gray profile is the dyadic downsampled result using an average filter.

is represented by specific elevations having a slope of 22◦, but there are less
and less values representing the plane, thus less and less values in the scat-
tergrams. A general decline of slopes can also be identified. The suppression
of steep slopes is due to the elimination of morphological structures at high
scale, because these elements induce high gradients regarding their nature
(high structural variability, and so, steep slopes). The appearance of higher
slope values in levels 4 and 5 shows that the WT maintains extreme values
and in combination with the reduction of local slope, thus more global slope,
the gradients increase. Two high resolution pixels will usually have a lower
slope gradient than two lower resolution pixels representing the same feature.
If we would have used a increased convolution window size, this local slope
effect would have been absorbed by this extending of the spatial window size.

To verify the stability between slope and elevation, a linear regression,
weighted by the number of occurrences, was computed for each scattergram.
By stability, we mean that the slope to elevation distribution should remain
identical through all decomposition levels. The results are given in table 4.1
and figure 4.20. The latter does not take into account all the results for clar-
ity. The regression (table 4.1) shows that the slope - elevation relation is quite
stable and this despite the drastic reduction of the resolution. At the sixth
decomposition level, the trend line begins to vary a lot (visual result, figure
4.20). One has to remember that the resolution of this decomposition level is
64 m.

The seventh level shows that the plane’s slope is also attenuated through the
WT process. Thus the transform is not completely free from global terrain
attenuation. One could ask if the generalisation should take into account a
larger data set in order to avoid the effects of global structures. We never-
theless have to remember that for the seventh level and the eighth level, the
resolution is very low (respectively r = 128 m and r = 256 m).
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Fig. 4.19. Elevation - slope scattergrams for the different decomposition levels of
the virtual landslide (The colour scheme goes from black (no value) to red, from
red to yellow and from yellow to white. The colours represent the number of pixels
in the 2D distribution.)
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Decomposition level β arctan(β) [deg] α

0 0.008 0.49 21.04

1 0.011 0.61 20.46

2 0.015 0.86 19.62

3 0.019 1.09 19.30

4 0.022 1.27 18.69

5 0.029 1.64 17.34

6 0.034 1.94 8.51

7 -0.024 -1.35 5.74

Table 4.1. Weighted linear regression on the scattergrams Slope = β ·Elevation+α

Fig. 4.20. Elevation - slope scattergrams regressions for the different decomposition
levels. The x and y axis limits correspond to the limits of the scattergrams.
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4.2.8 Local fractal validation

Spectral and fractal methods were used to characterize the kind of topog-
raphy included in DEMs. Pike and Rozema (1975) and later Tate (1998)
developed these methods in order to characterize the spectrum and fractal
dimension of DEM profiles and DEMs. All encountered some methodolog-
ical problems in the computation of either the power spectrum or of the
fractal dimension. Some similar problems were mentioned by Braun (2002)
in his attempt to do a spectral analysis over profiles. These problems are
essentially due to the fact that topography is non-fractal (Sulebak, 1999).
Related to this fact, Klinkenberg and Goodchild (1992) wanted to answer a
fundamental question: “Is the land a self-similar fractal?” Their answer was
actually partial, the value of the fractal dimension depending more on the
used fractal-like model than on the type of surface.

Our analysis will not implement a direct spectral analysis of our surface
generalisations, as the reduction of the power spectrum is completely linked
to the definition of the WT filters, thus the wavelet and scaling functions.
We chose to implement a local fractal indicator, the Hurst coefficient (Parker,
1997; Russ, 1994, 1990)(see appendix D for details). This is a local fractal-like
method. It is a measure of the surface roughness. Through the generalisation
process, we expect a reduction of the fractal dimension (or the Hurst coeffi-
cient), because our surface is a plane, on which local structures were applied.
And therefore, these structures are removed by the WT, and the complexity
of the resulting surface diminishes to tend to the original plane.

The larger the Hurst coefficient is, the smoother local variations are. In ab-
solute, we would like to have the same global roughness for all decomposition
levels, but different local roughness variations. The global variations were
measured as a statistical analysis of the Hurst coefficients computed on the
different decomposition levels of the virtual landslide (see table 4.2 and figure
4.21).

Decomposition
level

Mean Minimum Maximum Standard
deviation

Number of
values

0 1.05 0.00 3.60 0.12 568516

1 1.06 0.14 8.82 0.16 136900

2 1.07 0.21 3.38 0.16 31684

3 1.08 0.37 3.38 0.20 6724

4 1.09 0.42 2.55 0.27 1156

5 1.17 0.54 2.21 0.33 100

6 0.85 0.45 1.46 0.22 64

7 0.45 0.35 0.61 0.08 16

Table 4.2. Hurst coefficient results
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As expected (table 4.2), the mean of the Hurst coefficients is stable through-
out the decomposition levels. From the sixth level on, the mean seems to
diminish. This indicates a less smooth surface. It may be induced by the re-
duction of the maximum starting at the fourth level (see figure 4.21). The
maximum has an extremum at the first level due to undefined Hurst coef-
ficients of the previous level (original image, see figure D.4 in appendix D
for details). Due to the generalisation, it is normal that the minimum and
maximum converge to the mean value, thus analysis seems to have a bias
at these high levels: not enough pixels. A constant slope is an indicator of
roughness stability throughout the decomposition levels, thus an indicator of
the fractal composition of a multiscale surface analysis.

Fig. 4.21. Evolution of the Hurst coefficient through the decomposition levels

Remark concerning the local fractal indicator

As we use a multiscale space computed using the WT, we could directly
analyse the energy of the wavelet coefficients in order to calculate the decrease
of the wavelet energy spectra. This was developed on the basis of fractional
Brownian motion5(Flandrin, 1989, 1992). Thus, the method, which we apply,
is linked to fractals, but it is an analysis of the local variations in a circular
7×7 window around each pixel. It does not analyse the global energy decrease
of the WT coefficients like Flandrin’s methodology does. This could show us
the decrease of the energy through the decomposition levels and show us
when our model is not self-similar any more.

5 Fractional Brownian motion is a model for modelling self-similar phenomena
(Nicolis et al., 2006). Brownian motion is a mathematical description for the
modelling of a random movement of a particle. The fractional Brownian motion
is represented by a self-similarity indicator called the Hurst exponent.
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4.2.9 Global spatial autocorrelation

For the analysis of the WT generalisation effect, Moran’s coefficient and
Geary’s ratio6 were used (Anselin, 1995, 2005). These are spatial autocor-
relation indicators. According to Goodchild (1986), the definition of spatial
correlation is: “the degree to which objects or activities at some place on the
earth’s surface are similar to other objects or activities located nearby”. It
is related to Tobler’s first law of geography (Tobler, 1970; De Smith et al.,
2008). In the present study, we are going to compare variables which are the
pixel values of a regular grid. For this purpose, the present work is inspired
by Qi and Wu (1996). They generalised elevation models using an average
function and computed spatial autocorrelation over these different scales. We
will do the same, but use the WT instead of an averaging function.
Moran’s coefficient values are defined between −1 and 1. Where negative

values indicate negative spatial autocorrelation and positive values indicate
positive spatial autocorrelation. For Moran’s coefficient, a zero coefficient
indicates that the analysed surface is completely random.
Geary’s ratio is not defined on the same interval. It is defined between 0 and

2. Zero means that data is completely positively spatially autocorrelated. At
1, the analysed surface is completely random and at 2, completely negatively
autocorrelated.
Looking at the values of Moran’s coefficient (figure 4.22) shows that the

results are extremely good, although the results may seem confusing. Indeed,
it is not the wavelet smoothing effect which is illustrated here, but the reduc-
tion of the number of pixels. It induces more pronounced direct neighbouring
effects (queen contiguity). Thus, two neighbouring pixels will have less sim-
ilar elevations, but a greater spatial extent (lower resolution). In this case,
Moran’s coefficient does not illustrate a smoothing effect, but the increase
of elevation differences between neighbouring pixels. As expected, they in-
dicate that the high original spatial autocorrelation is reduced through the
decomposition. This clearly indicates the generalisation process. However this
reduction of spatial autocorrelation is not linear (like the resolutions of the
decomposition levels). Thus level 0 is not so different from level 1, but level
6 is a lot more different from level 7. At level 8, only the inclined plane is
left on the surface, thus the spatial autocorrelation tends to zero (due to the
definition of Moran’s coefficient, i.e. xi − x̄ tends to zero). Unlike Moran’s
coefficient, Geary’s ratio is less sensitive to the information reduction and
does not indicate the generalisation process well. Therefore, it does not seem
appropriate for the verification of the generalisation process. Geary’s ratio
is more sensitive to local autocorrelation unlike Moran’s coefficient which is
more sensitive globally. In fact, these indicators show exactly what was ex-
pected: a transform which globally reduces the resolution, but regarding the
reduction of the frequency space and not the spatial one.
6 Moran’s coefficient and Geary’s ratio were computed using their definition in Qi

and Wu (1996): Moran =
(

n∑n
i=1

∑n
j=1 cij

) ∑n
i=1

∑n
j=1 cij(xi−x)(xj−x)∑i=1
n (xi−x)2

, Geary =(
n−1

2
∑n
i=1

∑n
j=1 cij

) ∑n
i=1

∑n
j=1 cij(xi−xj)

2∑n
i=1 (xi−x)2

, where n is the total number of pixels, xi

and xj are the values of pixels i and j. x is the mean value of all pixels and cij
is the connectivity of pixels i and j. If these are adjacent, the connectivity has
value 1, else 0. We used the queen contiguity (all eight neighbours) scheme for
the connectivity. Thus, the eight pixels surrounding the analysed pixels have a
connectivity of 1 with this one.
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Fig. 4.22. Evolution of Moran’s coefficient and Geary’s ratio through the decom-
position levels

4.3 Wavelet coefficients

As seen in previous sections and using Mallat’s algorithm (Mallat, 2000),
a wavelet analysis gives four images out of the original one (figures 4.4 and
4.6). Until now, we have analysed the low-pass results of our decomposition
scheme. From one level to another, some information is transferred to the
next low-pass DEM, but part of this information is transferred to the so-
called high-pass coefficients.

For DEM multiscale analysis, we always use the low-pass filtering result,
corresponding to ci+1[2k] in figure 4.4. Likewise, all the analysis were done
regarding this information. This is the main piece of information retained
for the proceeding of the next iteration in the decomposition process. Also,
we know that the wavelet decomposition is one of the most adaptive way to
decompose a signal. It will always exclude a part of the initial information
contained in the signal. If we analyse the information contained in the three
parts dh,i+1[2k], dv,i+1[2k] and dd,i+1[2k], we hope to find the scale corre-
sponding features. The detail coefficients surely contain information of the
used decomposition resolution. It seems logical that a detail coefficient at a
low resolution cannot contain specific high resolution information. The con-
trary is not as explicit as that, because of the pyramidal effect of the wavelet
transform.

4.3.1 Coefficient filtering

All elements of the wavelet transform (ci+1[2k], dh,i+1[2k], dv,i+1[2k] and
dd,i+1[2k]) can be transformed before the wavelet synthesis. As examples,
the transformation may consist of: suppression of one or more of the result-
ing surfaces, enhancement of specific coefficients, soft and hard coefficient
thresholding. In imagery, most of those transformations are noise reduction
operations.
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Fig. 4.23. Filter bank for wavelet coefficients filtering for one decomposition level,
adapted from Unser (2001).

The following elements compose the proposed filter bank (figure 4.23):

– ci[k]: low-pass surface, ith decomposition level
– ci+1[2k]: low-pass surface, i+ 1th decomposition level
– dh,i+1[2k]: high-pass surface, horizontal coefficients, i+ 1th decomposition

level
– dv,i+1[2k]: high-pass surface, vertical coefficients, i + 1th decomposition

level
– dd,i+1[2k]: high-pass surface, diagonal coefficients, i + 1th decomposition

level
– H̃(z−1): low-pass analysis filter (given by the third order B-spline base

function)
– G̃(z−1): high-pass analysis filter (given by the symmetric dual wavelet)
– H(z): low-pass synthesis filter (complementary of H̃(z−1), see section 4.1.2)
– G(z): high-pass synthesis filter (complementary of G̃(z−1), see section

4.1.2)
– c0i+1[2k]: low-pass surface, i + 1th decomposition level, all coefficients are

set to zero
– dfh,i+1[2k]: high-pass surface, horizontal filtered coefficients, i+ 1th decom-

position level
– dfv,i+1[2k]: high-pass surface, vertical filtered coefficients, i+ 1th decompo-

sition level
– dfd,i+1[2k]: high-pass surface, diagonal filtered coefficients, i + 1th decom-

position level
– cfi [k]: low-pass surface reconstructed by the inverse wavelet transform, ith

decomposition level
– F : filter applied to the i+ 1th decomposition level high-pass coefficients.

Mallat (2000) defined this filter bank for images (or 2D surfaces). In figure
4.24 is illustrated, as example, a two level wavelet filtering transform on a
DEM. The operational steps are:
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– WT: the DEM is analysed using the wavelet transform until the second de-
composition level (i = 2). Seven new surfaces are computed, two horizontal
high-pass surfaces, two vertical high-pass surfaces, two diagonal surfaces
and one low-pass surface.

– F: all the low-pass surface coefficients are set to zero, the six high-pass
surfaces filtered using the value of F for the ith decomposition level.

– IWT: using the inverse wavelet transform (IWT), a new surface is com-
puted, containing only the filtered high-pass information, but at the origi-
nal DEM resolution.

Fig. 4.24. Wavelet transform (analysis), enhancement by coefficient filtering, in-
verse wavelet transform (synthesis) - example using a two level decomposition

Given three different spectral reconstructions, three filters were applied to
the high-pass coefficients of each decomposition levels. As we do not want to
enhance the levels regarding main directions (east-west and north-south), all
the detail coefficients (by detailed coefficients, we mean the three high-pass
images given by dv,i[k], dd,i[k] and dh,i[k]) of one level have been enhanced
using the same factor (see figure 4.25 for specific factors). The first filter is
set to one, thus no enhancement is undertaken. The second one is an attempt
of enhancing linear breaks in the DEMs, thus high frequency information. It
is determined by trying different combinations of filter parameters. It shows
that high structural importance is given to the second level. The last filter is
determined using a wavelet filter7.

7 Fi = 1/(0.75−i) where i is the decomposition level. This is a high frequency
enhancing filter, which is largely used in the image processing community.
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These filters are used to highlight the structural nesting, i.e. to highlight
certain types of structures throughout the decomposition levels. Their speci-
ficities were developed to illustrate the following features of the DEM:

1. The first filter is not really one. It is simply the reconstruction of high res-
olution images using the high-pass coefficients. This allows us illustration
of the separation of structures that occurs using the WT.

2. The second filter sets all the coefficients of the first decomposition level
to zero. By hypothesis, we suggest that this level contains only noise or
terrain micro-structures which are not interesting. A lot of importance
(or energy) is given by the filter to the two next levels. For the five last
levels, the filter values decrease progressively. Consequently, the struc-
tures induced by the landslide will be enhanced. The landslide dynamic
has indeed induced a series of cracks, tractions and materials flows, which
we hope to illustrate by giving them more importance through the filter
values.

3. This filter should allow us to see if the DEM acts as an image using
the WT or whether, given its characteristics, it can be compared to a
grayscale image. The filter values are decreasing regarding the decompo-
sition levels. Thus, they give less and less importance to the information
contained in the successive levels. This filter is designed similarly as the
second filter, but the differences between the levels are less abrupt.

Fig. 4.25. Factor Fi applied to the high-pass coefficients before synthesis

The analysis of the signal-to-noise ratio8 (SNR)(figure 4.26) on the decompo-
sition levels shows the proportion of the original signal (or DEM) reproduced
8 Independent Signal-to-Noise ratio:

SNR = 20 · log10

(√
1

(n·m−1) ·
∑n
i=1

∑m
j=1(Ioriginal,i,j−Ioriginal)√

1
(n·m−1) ·

∑n
i=1

∑m
j=1(Inoise,i,j−Inoise)

)
, where Ioriginal is

the original DEM, Inoise are the synthesised coefficients, n and m are respectively
the height and width of the DEM.
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by the coefficient images of the different decomposition levels. As long as the
SNR is not equal to zero (0 dB9), the original DEM is not entirely repro-
duced. Indeed, the wavelet transform reproduces only partially the frequency
space at each decomposition level (figure 4.2). The remaining frequencies are
within the frequency space of the low-pass image, represented by its base
function ϕ (figure 4.2).

Fig. 4.26. SNR of the decomposition levels for the applied enhancement filters on
the virtual landslide

For the second enhancement filter, the first decomposition level is not rep-
resented because the first filter factor F1 is equal to zero. Therefore, the first
high-pass synthesised image is composed of zeros which would correspond to
an infinite noise. The slope of the second filter factors (figure 4.26) is less
steep near the last decomposition levels as the base transform (first filter).
This is due to the filter’s definition which enhances more the high frequencies
than the low frequencies.

As seen, the wavelet transform creates multiscale surfaces whose pixels val-
ues are the wavelet coefficients. The adjustment of the wavelet on the local
frequencies of the terrain is reflected by these values. Eight decompositions
were computed with following resolutions: 2 m ,4 m, 8 m, 16 m, 32 m, 64 m,
128 m and 256 m. All decomposition levels were filtered using the filter coef-
ficients defined previously (see section 4.3.1).

All enhancement and filtering results are illustrated in appendix E. In the
higher levels (6-8), the enhancement filter effect becomes visible, high fre-
quency details become visible in the more general structures. As the usual
detail reconstructions (Filter 1) give a good overall result, the filtered versions
9 Usually, the SNR ratio is given in decibels (dB), because it is mainly used in

sound frequency analysis, but this unit does not make sense in our case. Con-
sequently, the SNR shall be used as a dimensionless indicator and only relative
values will be compared.
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of these reconstructions give additional information on the internal micro-
structures of more global structures. Again, the definition of global structures
versus micro-structures is completely dependent on the decomposition level
taken into account. Thus, what are called global structures are the biggest
structures one can visually determine looking at the filtered or raw coefficient
reconstructions.

Looking at the defined filters (Filter 2 and 3), it seems that the most ef-
fective one is not the usual image processing filter (Filter 3), but the filter
defined empirically (Filter 2). The values of this filter strongly enhance high
frequencies, regarding the values of the filter for higher levels. As the figures
illustrate (figures E.5 to E.8, appendix E), high frequency information is a
very good indicator in understanding how global structures (or low frequency
information) are formed and what are their inherent relations.
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5. Case study

5.1 Introduction to the case study

All elements, information and indicators computed and analysed in the pre-
vious sections are valid for the virtual landslide which was defined. In order
to analyse and compare the effect of the WT filtering, the process was ap-
plied on a “real” DEM. The analysis includes the following indicators: global
statistical indicators, profiles analysis, slope to elevation distribution, local
fractal indicator, global spatial autocorrelation and wavelet coefficient anal-
ysis and filtering. A DEM, including a recent landslide located in the Val de
Travers - Canton of Neuchâtel - Switzerland, in the village of Travers, is used
for this purpose. For a complete geological and data description of the used
DEM, refer to appendix F.

Local analysis should highlight the links between the wavelet transform and
the results of a visual expert morphological analysis using the next elements:
a phenomenon map (Krähenbühl, 2007), the 1 m DEM, the geological map
and an aerial photography. The DEM has a 1 m original resolution and a size
of 768× 1280 pixels. Global indicators were computed, profiles analysed and
different kinds of wavelet filtering applied. This was done in order to assess
the multiscale capabilities of wavelet transforms in DEM analysis.

The validation of the applied methodology and of the WT is done by com-
parison with the results obtained using the virtual landslide, as we do not
have any other comparison material or method. Indeed, we have to validate
the recognised structural elements and variations through, either expert ge-
ological knowledge1, or through terrain observations (like the work done by
Krähenbühl (2007)). The virtual landslide gives us a first approach to un-
derstand the complex structural modifications induced by the WT and the
underlying transform.

5.2 Global statistical indicators

Using the same indicators as for the virtual landslide (see section 4.2.5) will
help to understand the effect of WT process on the Travers DEM.

Global indicators of this DEM show a strong decrease in the surface max-
imum through the decomposition levels (figure 5.1). Surprisingly, the mean,
median and minimum do not seem to be influenced by this decrease. The only
explanation is that this decreasing effect is due to the attenuation explained
1 The expert geological analysis and critics are done in collaboration with Dr.

P. Turberg from the laboratory of engineering and environmental geology (GE-

OLEP) at the École Polytechnique Fédérale de Lausanne - Switzerland.
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in section 4.2.7. Indeed, the minimum is not converging to the mean as much
as for the virtual landslide. This is certainly due to the fact that the DEM
mainly contains a flat region which has almost the minimum elevation. That
is also why the median is smaller than the mean. The standard deviation has
the same behaviour as for the virtual DEM. Thus, even on a DEM, which
was produced using measures of the topographical elevation, the standard
deviation behaves about the same way as for an artificial one.

Fig. 5.1. Statistical indicators of elevation variation through the decomposition
levels

5.3 Profiles on generalisation

The first profile (figure 5.2) goes through the landslide which is part of the
case study. This area is very disturbed and multiple folds are visible. On
the contrary, the second profile is on a fairly homogeneous meadow area,
constituted of a hill. The last one is located on a mound on which there
is an artificial gravel-pit. This one was chosen to see at which scale - or
decomposition level - it will be “absorbed” by the wavelet and transferred to
the high-pass images, thus the disappearance from the low-pass image or the
DEM.

Profile 1

This profile (figure 5.3), despite its location through the landslide, is quite
homogeneous. One has to take into account that the variations are at a finer
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Fig. 5.2. Three profiles used for the analysis, DEM c©SITN

Profile Azimut ◦ Length m

1 312 455

2 324 358

3 90 460

Table 5.1. Profile specifications
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scale than the scale of representation (1 m resolution on 455 m). Global
variations on the profiles show a general reduction of elevation (uphill to
downhill). In figure 5.4, the mean, median, minimum and maximum variations
through the decomposition levels are illustrated. All these values tend to tail
off. The minimum and maximum values tend to converge to the mean. We
will try to assess this in the other profiles.

Fig. 5.3. Profile 1, original DEM (r = 1 m),(Left side is the north-western end of
the profile and right side is the south-eastern end of the profile.)

Illustrations of the same profile on the generalised surfaces are in appendix
G (figures G.1 and G.2). As in the virtual landslide, there is an evident
attenuation of the maximum, but on this profile, the minimum stays stable.
Because this profile is very regular, even if it is going through the landslide,
the wavelet effects still remain hard to apprehend.

Overall, the statistical indicators of profile 1 are similar to the general sta-
tistical indicators of the DEM.

Profile 2

Figure 5.6 shows mean and median values with a tendency to lower from the
sixth level on. By verifying the shape of the profiles (figure 5.5), the transition
from the sixth to the seventh level corresponds to the suppression of the hill
in the DEM, and thus lower elevations. The profile tends to be a line (see
figures G.3 and G.4 in appendix G). As before, the mean, median, minimum
and maximum values converge. The standard deviation begins to decrease at
the same level at which the hill suppression occurs.
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Fig. 5.4. Statistical indicators, profile 1

Fig. 5.5. Profile 2, original DEM (r = 1 m), (Left side is the north-western end of
the profile and right side is the south-eastern end of the profile.)
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Fig. 5.6. Statistical indicators, profile 2

Profile 3

This last profile contains the highest elevation variations (figure 5.7). The
figure shows that the gravel-pit is visible until the third decomposition level,
and the mound, containing this gravel-pit, disappears from the low-pass at
the seventh decomposition level (figures G.5 and G.6 in appendix G).

Fig. 5.7. Profile 3, original DEM (r = 1 m), (Left side is the western end of the
profile and right side is the eastern end of the profile.)

In figure 5.8, the variations (mean, median, minimum and maximum) do
not illustrate these structural suppressions. The maximum value begins to
diminish effectively at the third level, but it is difficult to see the real impact
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of the subsidence on these values. Similarly, the strong increasing of the
maximum at the seventh level is difficult to explain. A possible explanation
is that the wavelet was adjusted to a morphological element at a bigger scale
than the profile 3, thus it is invisible on it. The standard deviation decrease
shows clearly the mound suppression, and it increases at the eighth level
because of the adjustment of the WT to the general slope. Thus, the range
of the elevation values is larger.

Fig. 5.8. Statistical indicators, profile 3

General remarks concerning profiles

The three analysed profiles show that landforms are space dependent and
that the WT is a selective process, regarding the frequency domain, of terrain
generalisation and simplification. Indeed, it is the analysis of the remaining
detail coefficients which will give the frequency domain discretization and,
thus, the extracted feature of a specific scale interval.

As we have already seen in section 4.2.6 for the virtual DEM, statistical
indicators for the Travers DEM, which are calculated from the whole DEM
or in profiles, show again the same type of behaviour. The local maxima
of the DEM are indeed reduced from the third decomposition level, that is
to say from a resolution of eight meters. In the first profile as well as in
the second, it only begins at the fifth level. Moreover, it appears that the
indicators are much less stable in the second profile than as in the others.
A priori, nothing in the shape of the profile suggests that behaviour. It is in
fact the level at which the hill (located between 75 m and 175 m in figure
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5.5) is removed from the low-pass resulting DEM. In the low-pass of the
next level, the profile represents only an inclined plane and not any more
the hill (figure G.4, appendix G). Almost the same behaviour is visible in
the third profile. However, the linearity break occurs more rapidly due to the
progressive elimination of the gravel-pit through the levels. The instability of
the indicators from the sixth level indicates the total suppression of the hill.

The indicator analysis shows that it is possible, using simple indicators, to
detect the suppression of anomalies related to a scale. By anomaly, we mean
that at some levels, certain morphological types are removed from the low-
pass resulting DEMs. This suppression is completely dependent on the scale
of the morphological element, and thus, in a perspective related to wavelets,
on the frequency space in which these elements make sense and are defined.

5.4 Slope to elevation distribution

Compared to the virtual landslide, the Travers DEM is not composed of
a regular inclined plane. Thus, the slope to elevation distribution does not
illustrate a horizontal trend like the virtual landslide. The aim is rather to
verify that the main slope of the distribution’s regression is not attenuated
too much. Indeed, there is a much better slope to elevation stability (table
5.2) for this DEM than for the virtual landslide (figures 4.19 and table 4.1).
The regression α parameter indicates that the general elevation is still atten-
uated, but less than for the virtual landslide. Mainly because of the structural
differences, there is no regular plane in the Travers DEM and, thus, the WT
does not induce as much bias as on the virtual landslide. The plane of the
virtual landslide was influenced by the shape of the wavelet at strong break
limits, like the transition from a regular plane to the virtual landslide.

Decomposition level β arctan(β) [deg] α

0 0.13 7.24 6.36

1 0.12 7.02 6.28

2 0.12 6.89 6.19

3 0.12 6.83 5.83

4 0.12 6.85 5.51

5 0.12 7.00 4.73

6 0.14 7.87 3.96

7 0.16 9.04 1.54

Table 5.2. Weighted linear regression on the scattergrams Slope = β ·Elevation+α
for the Travers DEM

Similarly to the virtual landslide, the number of different values in the
scattergrams is reduced by increasing the decomposition level. Thus, from
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a heterogeneous surface, the decompositions tend to a regular surface. The
scattergram values are more and more distributed around the linear regres-
sion values, consequently the residuals of the linear regression are becoming
smaller and smaller. This information shows that the surface complexity and
roughness decrease through the WT process, thus we go from high-detailed
information to more and more generalised morphologies. In fact, this effect is
also observed in the previous section (section 5.3), but it has not been clearly
distinguished until now.
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Fig. 5.9. Elevation - slope scattergrams for the different decomposition levels for
the Travers DEM
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5.5 Local fractal indicator

Again, the Hurst coefficient (see appendix D) was computed for the Travers
DEM. Visual results are given in figure 5.11. There were some undetermined
pixels in the northern part of the DEM due to the flat neighbouring effect
induced by filtering buildings. The global DEM coverage was reduced in order
to take into account border effects.
The statistical analysis of the Hurst coefficient (table 5.3) shows that there is

a strong reduction of the maximums by increasing the decomposition levels.
These are divided by a factor of two from the original DEM (level 0) to
level 8. Likewise, the minimums are not so much influenced and the means
stay almost constant. Explanation for this is, again, the roughness reduction
through the decomposition level as we saw for the analysis of the virtual
landslide.

Decomposition
level

Mean Minimum Maximum Standard
deviation

Number of
values

0 1.07 0.00 3.57 0.18 524288

1 1.07 0.15 3.06 0.18 131072

2 1.07 0.19 3.05 0.17 32768

3 1.07 0.58 2.24 0.15 8192

4 1.07 0.54 2.19 0.17 2048

5 1.05 0.41 1.77 0.18 512

6 1.03 0.58 1.69 0.20 128

7 0.93 0.38 1.63 0.32 32

Table 5.3. Hurst results for the Travers DEM

The stepwise statistics effect (figure 5.10) shows clearly the reduction of
structural diversity and landforms standardization due to the WT process.
The wavelet seems to be more adapted to the natural or “real” DEM than to
the virtual landslide, because of the increased complexity (no regular plane)
and a structural roughness having a shape which matches more to the wavelet
shape.
If we compare the standard deviation evolution between the virtual land-

slide and the Travers DEM result (figure 5.12), we see that for both types
of surface, it tends first to increase. However, for the virtual landslide, it de-
creases strongly as the decomposition level begins to represent the scale level
at which the DEM tends increasingly to represent a regular inclined plane.
It would have been interesting to continue the successive WT on the Travers
DEM to see if it had the same behaviour. Nevertheless, because of the DEM’s
size and lack of time, this was not undertaken. This break in the standard
deviation could tell us at which the scale all geomorphological elements are
removed from the DEM and, finally, to leave in the resulting low-pass only a
simple inclined plane.
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Fig. 5.10. Evolution of the Hurst coefficient through the decomposition levels on
the Travers DEM

Fig. 5.11. Standard deviation of the Hurst coefficient, (a) decomposition level 0
(r = 1 m), (b) decomposition level 1 (r = 2 m), ..., (d) decomposition level 3
(r = 8 m)
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Fig. 5.12. Standard deviation of the Hurst coefficient, (a) decomposition level 0
(r = 1 m), (b) decomposition level 1 (r = 2 m), ..., (d) decomposition level 3
(r = 8 m)

5.6 Global spatial autocorrelation

The WT filters (H̃(z−1) and G̃(z−1)) are determined using autocorrelation
in the frequency domain. Thus, their effect on the DEM is inherent to the
autocorrelation (in the frequency domain). An important observation is that
the mean of Moran’s spatial autocorrelation, which is measured and com-
puted in the spatial domain, is almost equal for the virtual landslide (figure
4.22) and for the Travers DEM (figure 5.13). Thus, whatever the DEM, the
definition of the WT filters in the frequency domain has the same effect in the
spatial domain, according to Moran’s spatial autocorrelation. Geary’s ratio,
which is more a local measure of spatial autocorrelation, is more increasing
than for the virtual DEM. This shows a slightly faster reduction of the local
spatial autocorrelation. But, as a reminder, there is positive autocorrelation
when Geary’s ratio is equal to zero and at the eighth decomposition, the
values are still equal to less than 0.2, which still indicates a high positive
autocorrelation.



92 5. Case study

Fig. 5.13. Evolution of Moran’s coefficient ans Geary’s ratio through the decom-
position levels, Travers DEM

5.7 Wavelet coefficient analysis and filtering

Using the same enhancement filters as for the virtual landslide (for more
details see section 4.3.1), the high-pass coefficients were enhanced and the
IWT applied. All high resolution images can be found in appendix H. Four
distinct analyses were done. The first is a global analysis of the landslide
context using the filtered coefficients. The second illustrates one-dimensional
frequency modifications induced by the WT in the landslide zone and the
last two are landslide areal analysis of the WT filtering effect.

5.7.1 Global landslide context analysis

In order to understand the global geomorphological context of the land-
slide, a general analysis of the filtered and reconstructed coefficients was
undertaken. Finally these results were compared to Gocht’s geological map
(appendix F, figure F.5). Thus, all the figures of appendix H were used to do
this analysis. Going through the scale levels gave the following results:

Decomposition level 1 (figure H.1, appendix H)

The roughness of the images shows that, contrarily to the pasture area, the
landslide and its hillside are less homogeneous. The landslide is an active
structure and, north-east to it, there is a similar structural element (this
will be analysed in detail in the next levels). Moreover, the hillside indicates
exactly the same structural perturbations. Note that this area is in forest,
therefore roughness might be due to the land cover.
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Decomposition levels 1-2 (figure H.2, appendix H)

The first recognizable structures appear. Except the artificial structures
(roads, house basement and gravel-pit), the high roughness zones show again
structural heterogeneity. The north-south oriented linear structure which is
located at the south of the landslide scarp zone is a forestry road. These
can be found in various areas of the hillside. It is therefore likely that these
heterogeneous zones are rougher due to terrain variations, and not due to the
forest cover. Therefore the DEM is representative of terrain features.

Decomposition levels 1-3 (figure H.3, appendix H)

In the landslide global context, decomposition level 3 confirms the previous
assumptions. At this scale and for the descriptive typology, it is still hard to
make conclusions.

Decomposition levels 1-4 (figure H.4, appendix H)

Uphill the landslide, some south-west - north-east oriented structural ele-
ments appear. These are not directly adjacent to the landslide (figure 5.14,
“Linear structures”), but separated by a very heterogeneous zone (figure
5.14,“Destructured zone”). A first bed strike was drawn on the map and
regarding the geology, the uphill linear structures are the terrace levels of
the limestone subsidence. The bed strike illustrates the limit between these
limestone formations and the destructured zone composed of molasses and
fallen rocks (figure 5.15). The drawn geological profile is clearly very similar
to the one which was drawn using in situ observations and measurements
(figure F.7, appendix F). The analysis of the next levels will confirm and
refine these observations.

Decomposition levels 1-5 (figure H.5, appendix H)

The linear structural elements (called “Linear structures” in figure 5.14)
seem to be subjects to areal generalisation through the scale intervals. Thus,
no exact deformation scheme of the limestone can be drawn or made. More-
over the generalisation process gives us a scale decomposed vision of these
limestone terraces, but it is impossible to give an exact description of the
morphological imbrication and interaction only by visual interpretation of
the coefficients.

Decomposition levels 1-6 (figure H.6, appendix H)

At this level and using the filtered version (filter 2) of the coefficient re-
construction, the destructured zone could be delimited with more precision
(figure 5.16). Again, a generalised version of the linear elements could be rec-
ognized. Some new elements also appeared (described as S1 to S4 in figure
5.16). These are mostly due to older settlements and erosion in the morainic
zone. It is almost sure that S3 was induced by a landslide, but traces of it
have disappeared through the ages. A good indicator of such unstable zones
is the absence of human agriculture, more precisely of pasture. These zones
were not deforested because they have this unstable property.

Decomposition levels 1-7 (figure H.7, appendix H)

The limit between the uphill limestones and the molasse is visible (figure
H.7, Filter 2). Structurally the scale interval is representative of elements
which begin to cover the whole uphill region. The hills which are located in
the valley on the moraine formation are made more and more visible through
the analysed frequency space.
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Fig. 5.14. Context analysis, decomposition levels 1-4, filter 1
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Fig. 5.15. Illustration of the successive geological formation along the landslide
hill

Decomposition levels 1-8 (figure H.8, appendix H)

At this level, the scale interval is clearly showing local geological structures
of the hillside and of the valley. Some interesting structural elements are
highlighted in this level (zones Z1 to Z4 in figure 5.17). For Z1 and Z4 it is the
limestone subsidence which appear (see overlay with geological map, figure
5.18). But for Z2 and Z3, it is less clear. There is a convex hilly formation
included in these zones, but it is hard to define them as limestone subsidences,
as the geological map does not show them. Through the quaternary period
and deposit of the moraine, the limestone formations where eroded, thus some
convex hilly formations appeared. This is exactly what happened with zones
Z1 and Z4. To prove and analyse in detail if this is the case with zones Z2
and Z3, we should enlarge the processed DEM, but as this is not the issue
and goals of the present study, this will not be undertaken.
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Fig. 5.16. Context analysis, decomposition levels 1-6, filter 2



5.7 Wavelet coefficient analysis and filtering 97

Fig. 5.17. Context analysis, decomposition levels 1-8, filter 3
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Fig. 5.18. Global context analysis with geological map (Gocht, 1961), plan
d’ensemble 1 : 10 000 c©SITN
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5.7.2 Profile on the accumulation zone

The accumulation zone (compressed material) begins at the former road,
and it is composed of series of folds in which undulatory micro-structural
elements can be found. The profile and its analysis on the folds (figures 5.19 to
5.21) clearly show these big folds (spaced out by ∼ 20 m) composed of micro
folds. The frequency of these micro elements is higher and the wavelength is
estimated between 2 to 8 meters (figure 5.21).

The profile on the accumulation zone (figure 5.19) was applied to all high-
pass images (8 decomposition levels and 3 types of filter). Figure 5.22 shows
the value of the wavelet coefficients of the first decomposition level. For this
level only this result is shown, because, for the second filter (Filter 2) the
coefficients are null (value of the filter) and for the third filter (Filter 3), the
results do not give significant differences because the effect of the enhance-
ment parameters is not strong enough at this level.

These folds have a homogeneous distribution regarding their frequencies
(see figure 5.19). Indeed, it is a frequency imbrication of terrain folds. The
lowest has an approximately 40 m wavelength with shorter wavelength (2−
4 m) superpositions. This can be seen in figures 5.20 and 5.21 which are a
projection of a profile (located in figure 5.19) through the folds. The residuals
of a linear regression on the profile show the low and high frequency folds.

Fig. 5.19. Profile definition over the folds (in map as “Abrupt feature boundings”),
DEM c©SITN
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Fig. 5.20. Profile with linear regression, (Left side is the north-western end of the
profile and right side is the south-eastern end of the profile.)

Fig. 5.21. Residuals of linear regression

Fig. 5.22. Values of normalized coefficients, decomposition level 1, filter 1



5.7 Wavelet coefficient analysis and filtering 101

The profiles are illustrated following:

– Normalized coefficient values: the coefficients were normalised over a range
of [−100, 100].

– Regression residual: adjusted on the values of the original surface (figures
5.19 to 5.21)

– Breaks: “main” folds identified visually on the original DEM. The location
of these ones is approximate.

Figure 5.22 shows the terrain high frequency variations (wavelength 2 to 8
meters) of the micro folds. However, on the high-pass image, these are not vis-
ible, because the noise (very high frequency variations) is still pre-dominant.
The next figure (figure 5.23) shows the profiles given all enhancement filters
of the second decomposition level. Little differences are visible between en-
hancement filter 1 to 3, but they are not significant. Filter 2 only slightly
smoothes the structures of the profile, because it does not take into account
the first decomposition level (enhancement parameter equal to zero).

Fig. 5.23. Values of normalized coefficients, decomposition levels 1-2, filters 1-3

Not all decomposition levels will be illustrated, but only those which best
illustrate, in our opinion, the multiscale effect of structural feature imbrica-
tions. Figure 5.24 illustrates the fifth decomposition level. The “main” folds
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limits begin to become obvious and easy to establish. Local minimums ap-
pear, defining a structural transition. In the same figure and for the profile
concerning the second type of filter (filter 2), the micro-structures resulting
from the first levels are better conserved than for the two others filters. These
have a smoothing effect on these types of strong structures. The profiles for
the sixth decomposition level (figure 5.25) show this even better. The lo-
cal minimums tend to get smoother, because this level takes into account
frequencies having a longer spatial wavelength than the “main” folds.

Fig. 5.24. Values of normalized coefficients, decomposition levels 1-5, filters 1-3

For higher levels (see appendix I, figures I.1 to I.4), the second filter (filter 2)
seems to conserve better the micro-structures than the two other filters. The
parameters of this filter were established empirically and they show that if an
enhancement has to be done, the values of the filter for the first decomposition
levels have to be much bigger than for the other levels.

Knowing the intern structure of the landslide enabled to establish the mul-
tiscale capabilities of the WT used to process a DEM. The scale imbrication
of differential settling is shown by the multiscale approach. The one dimen-
sional analysis illustrates better this fact, but the comparison between the
visual expert analysis and the filtered versions of the detail coefficient should
give the same results.
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Fig. 5.25. Values of normalized coefficients, decomposition levels 1-6, filters 1-3
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5.7.3 Geomorphological visual analysis

Three types of morphological features were identified:

1. Linear structural elements
2. Areal structural elements
3. Areal detailed elements

The same analyses were undertaken as on the shaded DEM analysis (section
5.7.1).

Linear structural elements

A delimitation of linear elements was undertaken by the geological expert2

using aerial photography, terrain knowledge and observations. From the WT
results point of view, linear elements are difficult to interpret (figure J.1
and J.2, appendix J), because they represent mainly ruptures and traction
faults of small sizes. Thus the differentiation between them and DEM noise is
hard in the first decomposition levels. Detection of such elements is difficult
without more precision. The longest and most intense of these appear on the
high-pass images of the four first decomposition levels, but there is no distinct
difference between the enhancement filters. Contextually, the first and second
decomposition levels give the best rendering of linear elements, but these are
the noisiest levels (in a model precision matter), suchlike linear elements do
not distinctively appear.

In the higher levels, the second enhancement filter (filter 2) preserves better
these linear elements. The filter enables to identify high frequency information
in the general context. For the other filters, there is a tendency for these
elements to be suppressed, thus being replaced by ones at a coarser scale.

Through this analysis and using this methodology, linear structural elements
seem difficult to detect: some are visible, but the resolution does not make it
possible to recognise them clearly. As a reminder, empirically, remote sensing
specialists have established that a feature (or element) should cover at least
three pixels (thus these pixels should approximately have the same values)
in order to be detected; covering less than three pixels, the element is as-
similated to noise (as long as its context is not clearly defined, see section
3.2). Perhaps by computing gradients on the coefficient images and using
edge detectors, such as the Canny edge connectors (Parker, 1997), multiscale
linear elements would be easier to identify. At first, a threshold should be
applied to the coefficients. As we will see in the next chapter and using the
present proposed methodology, some information about their orientation can
be retrieved visually, but clearly not their perfect delimitation.

Areal structural elements

A zonal delimitation was undertaken by the geological expert using the aerial
photography, terrain knowledge and observations. This analysis resulted in
the definition of seven different zones (figure 5.26):

– Zone I: this zone corresponds to the plastic and solid deformations at the
downstream of the landslide. Laterally it is surrounded by more destructive
zones (zone II and V).

2 The expert geological analysis and critics are done in collaboration with Dr.
P. Turberg from the laboratory of engineering and environmental geology (GE-

OLEP) at the École Polytechnique Fédérale de Lausanne - Switzerland.
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– Zone II: this is where the scarp material flowed to. It was mainly liquefied
by the water resurgences.

– Zone III: this is the main scarp zone. Regarding the accumulation zone,
the scarp is very little and material flowed downhill.

– Zone IV: transition zone between the liquefied material of zone II and the
almost flat meadow surrounding the landslide. It is composed of a lot of
little folds due to material differential displacement.

– Zone V: like zone IV, this is the transition between the side of zone I and
the meadow.

– Zone VI: this zone could be linked to zone I, because it is not part of the
liquefaction process, but the material submitted a plastic settlement.

– zone VII: this little zone was influenced by the nearby material displace-
ment, showing some little folds and discontinuities.

Fig. 5.26. Visual delimitation of structural elements using aerial photography,
aerial photography c©SITN

The results of the wavelet filtering are given in figures 5.27 and 5.28. Looking
at the size of the zone, there is no chance for them to appear in the four first
decomposition levels. In figure 5.28, the end of the accumulation, at the south-
west of zone I, appears clearly. Again, it is interesting to see that the internal
structures are better conserved by using a strong enhancement filter (filter
2). Zone II and III show similar behaviour.

At the seventh and eighth levels, some of the defined zones do not respect
the delimitation of the wavelet spatial recognition. As example, zone IV is
not as rectilinear as drawn by the expert, but it intersects a depression (blue
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Fig. 5.27. High-pass results for areal elements using the three filters, for decom-
position levels 1 to 4
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Fig. 5.28. High-pass results for linear elements using the three filters, for decom-
position levels 5 to 8



108 5. Case study

on the images) which is a continuity of zone II. Zone V is the only one which
cannot be identified (even partially). Indeed, on the aerial photography it can
hardly be seen as an entity.

Areal detailed elements

Based on what we have seen and identified in the previous section, we can
now identify three areas in order to make a more detailed analysis of their
different scale components. They are described as follows:

– Zone I is located in the toe of the landslide, thus in the settlement of
the accumulation zone. It mainly contains wave-like structures due to the
plastic behaviour of the phenomenon. The settlement is inherent to the
uphill mass movement. The surface of zone I is 5 360 m2.

– Zone II is the continuity of the material flow which occurred downhill from
the scarp zone. The material consists mainly of clay and sandy liquefied
molasse. It is therefore revealing the fluid material mass movement of the
landslide. Its surface is 2 720 m2.

– Zone III is simply the whole scarp zone (1 810 m2). It is the smallest
of the three zones. It is crucial to note that this area was reshaped and
reorganised by the authorities to ensure the drainage of surface water to the
spillway. Thus the structures composing it are very acute. There are three
surface channels which intersect at the bottom of the scarp zone towards
the spillway.

Fig. 5.29. Visual delimitation of structural elements of the DEM - zones I to III,
1 m resolution shaded DEM, DEM c©SITN
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Identification of landforms is never unique and dissimilarities may appear
when comparing results of different experts. Rather than probing a geological
expert, it is the scale imbrication of structures that we want to demonstrate
and its impact on the phenomena. Moreover, using smaller areas would cer-
tainly give results, but because of their size, the structural elements inside
would be hard to describe from a geological point of view. It was decided
that the zones would be distributed to cover spatially all main structural
elements of landslide (scarp zone, settlement in accumulation zone and fluid
accumulation zone).

Zone I

The overlays between zone I and the high-pass reconstructed images are
given in figures 5.31 and 5.32.

In the first decomposition levels (1 to 3) and for all types of filters, it is note-
worthy that the linear structure types are bent in the direction of the mass
movement (north-west). Moreover, there is a low roughness area between the
north-west and south-west of this zone, as if the structures had a lower am-
plitude in the centre of the zone. This effect however disappears when going
to decomposition level 4. From this level on, the effects of the filters become
visible, but the differences between the results using filters 1 and 3 are still
difficult to identify visually. However, filter 2 gives significant different re-
sults. Indeed, the enhancement of the high frequency spaces highlights the
micro-structures contained in the zone. In the three images of decomposition
level 4, the separation of the zone into two distinct convex areas is visible.
These are separated by a sharp concavity shown by the coefficient amplitude
(i.e. the saturation of the blue colour) visible in the image. As for these two
sub-zones, they are composed of micro-structures of lower magnitude.

The separation of zone I into two sub-zones is visually effective in levels 5
and 6. It clearly identifies the landslide toe and another uphill area (the two
red zones in zone I). There is a terrace-like effect where the toe (filter 2) is
disturbed by micro-folds. Schematically (figure 5.30), zone I represents the
toe and a secondary settlement area. This latter is less perturbed by micro-
folds, which is probably due to the differential settlement. Indeed, the forces
(weight of materials) are extreme at the bottom of the mass movement.

Fig. 5.30. Profile schema of the toe structures - The dashed points show the global
profile tendency, whereas the full line the local structures



110 5. Case study

Finally, decomposition levels 7 and 8 show clearly that the represented scale
intervals are larger than the zone, and therefore the frequency spaces are of
lower wavelength, than those composing the structures of the zone. For the
last level (8), it is interesting to note that the second filter preserves more
detail structures composing the terrain.

Zone II

The same figures 5.31 and 5.32 show the overlay between zone II and the
high-pass reconstructed images.

Again, in the first decomposition levels (1 to 3), structural elements show,
in the northern area of the zone, the preferential direction of mass move-
ments. The second level shows distinctly the fluid flows to which this area
was subjected by the fact that the linear structures are oriented south-north.
As before, the effects of filters are not visible at these levels.

From level 4, the linear structures tend to disappear in the benefit of areal
structural elements. Enhancing the high frequency space using filter 2 seems
however to stabilise these a longer time in the frequency space than by using
the two other filters. In addition and for this level, the defined zone seems
less consistent compared to zone I. Namely, it is more difficult to recognize
this zone through the visual analysis of the images.

Decomposition levels 5 and 6 show a subdivision of the zone into two sep-
arate areas. The first is a sort of bump of rather low convexity south of
the zone and the second a concave hollow in the north. As for zone I, the
micro-structures of the lower levels are best preserved using filter 2.

The higher levels (7 and 8) give no more or little information about the
structural elements of the zone. However, in level 8 and for filter 2, the flow
lines are still preserved north of the zone due to the filter effect.

Zone III

Zone III is illustrated in figures 5.33 and 5.34.

For this zone and because of the structural configuration of the scarp zone
(artificial alteration), the first two levels are different. Level 1 shows the
intense reaction of the wavelets to the drainage canals dug by the authorities.
There are high magnitude oriented structures in two dimensions (x and y)
of the zone. In the second, it is already possible to guess the reconstructed
shape of the canals; they have very acute shapes, which correspond to the
wavelets of the second frequency space.

The next two levels (3 and 4) do not give any additional information for
this zone. Actually, it is likely that structural elements of the scarp zone are
well represented by the first two levels, and therefore, there is less influence
of the third and fourth frequency spaces, thus levels 3 and 4.

In the fifth level and for the image of the filter 2, the location of the spillway
becomes very obvious. There is, however, no more additional information con-
cerning the zone until level 6. From this one, the scarp zone is aggregated to
the rest of the flow zone, including the new road (north-west area). Moreover,
at higher levels, the scarp zone is completely absorbed by hillside phenomena,
which scale exceeds by far the size and structure of the zone. Note that the
filters tend to maintain high frequencies, which highlights the canal dug in
the images of the eighth level using filters 2 and 3.
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To sum up this short analysis of the zones, we have seen that the high-pass
images improve human visual capabilities by applying selective filtering to the
so-called raw data. Enhancement of specific structural information improves
our comprehension of the phenomena.

Fig. 5.31. High-pass results for zones I & II using the three filters, for decomposi-
tion levels 1 to 4
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Fig. 5.32. High-pass results for zones I & II using the three filters, for decomposi-
tion levels 5 to 8



5.7 Wavelet coefficient analysis and filtering 113

Fig. 5.33. High-pass results for zone III using the three filters, for decomposition
levels 1 to 4
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Fig. 5.34. High-pass results for zone III using the three filters, for decomposition
levels 5 to 8
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5.8 Conclusion on the case study

The performed analyses and interpretations of the WT results are purely
visual and contextual, which means that they are determined according to
our analytical capabilities, and not using any deterministic or stochastic in-
dicators. However, the wavelet transform and the associated enhancement
filters give good results necessary to the morphological interpretation of ge-
ological physical phenomena. However, the values of the enhancement filters
are purely exploratory and strongly depend on what type of scaled structures
have to be highlighted. The structural analysis shows that the high-pass im-
ages give a lot of indications regarding geomorphological elements contained
in DEMs. The multiscale approach gives a nested vision of morphological
features.

More than the generalisation process, it is the localised scalable frequency
transfer which is important. Being able to enhance specific spectral informa-
tion enables to understand better the topographical structural system and
its interactions with others systems at other scales. Understanding processes
and interaction showed a better understanding of the morphological process
which induces the landslide.

As first draft, and valid only for this study, we tried to characterize the
elements we analysed (figure 5.35). In three different analyses that we carried
out (see the previous three sections), we identified four types of phenomena
that span scale. Starting with the micro-scale and going to the macro-scale,
the structural hierarchy through the scale intervals is a function of the DEM
resolution and can to be organised as follows:

1. The domain of terrain roughness analysis is defined from levels 1 to 3.
2. The domain of internal individual structures is defined from levels 3 to

5.
3. The domain of internal general structures is defined from levels 5 to 8.
4. The domain of local geological structures is defined from levels 8 to the

upper ones.

This partition is a first attempt to highlight the scale intervals of interest
for the Travers DEM and it should be admitted with precaution. But it
gives an overview of structural organisation and is a help for the multiscale
characterization of the different structural elements.

The discretization of space scales illustrates which structural elements can be
found in which partition. It also shows that a geomorphological phenomenon
always consist of structural elements of different scales. Throughout this anal-
ysis, it must be emphasized that the space partition, that each of the four de-
fined typology covers, is roughly comparable to the number of dyadic spaces,
i.e. to say that each typology covers about 2 frequency spaces (from the
dyadic WT). These conclusions refer of course to the present analysis of the
Travers landslide.

Remark concerning predictive capabilities of the wavelet transform

Some researchers asked us if the wavelet transform had any predictive ca-
pabilities for geological phenomena, like landslide or rock fall. At the present
state of the study, there is no evidence of such skills. The introduced method-
ology and technique only answer an opened question, but does not rethink
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Fig. 5.35. Scale interval typologies - a log2 is applied on the scale axis in order to
reduce the axis length. The different scales are represented by the decomposition
levels and they are representative of the associated resolution.

the current practice. The method is a geomorphological tool for the analysis
of roughness and structural composition of high resolution DEMs. Although
some geomorphometric evidence may predict some geological behaviour, as
long as these predictors have not been described and visually recognised on
the results, the method does not give any predictive indications. As we saw
on the Travers DEM, some areas, located laterally to the landslide (north-
east and south-west) on the hillside, show some similar roughness (compared
to the landslide) in the first decomposition level. Indeed, the south-western
area is an older landslide which was eroded and stabilised through the years,
and the second zone might be a similar bedrock strike as the one located in
the landslide. It might have induced the same kind of phenomenon as the one
which already occurred.
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6.1 Introduction

Following the experimental case study, analysis and interpretation of the
Travers DEM, we decided to validate our methods using two different ap-
proaches:

– GAS: we proposed to an expert audience to do the same analysis us-
ing a web-based system called Geomorphometric Analysis System (GAS).
Firstly, we wanted to know if an analysis performed by someone external to
the study with no a priori knowledge of wavelets was possible and secondly,
if it could be better or worse to a usual geomorphometric analysis, or even
complementary to it. We therefore submitted the reconstructed coefficients
to the scientific community using the web-based GAS survey. After a short
introduction to the landslide phenomenon and in a first cartographic ex-
ercise, the participants had to make a geomorphological analysis of the
Travers DEM using usual geomorphometric indicators (computed using a
3×3 convolution window). In the second exercise, they had to do the same
task again with only the reconstructed wavelet coefficients at hands.

– Multiscale pattern analysis: often, researchers of the geomorphometric
community create classifications using geomorphometric indicators. The
present attempt tries to understand how these classification schemes can
be applied in a multiscale point of view and how the resulting patterns are
evolving through scale.

6.2 GAS - Geomorphometric Analysis System

6.2.1 Purpose and objectives

The purpose of the Geomorphometric Analysis System was to analyse how
researchers specialised in geomorphometry, geology, geographic information
systems and cartography use data derived from DEMs for the analysis and
cartography of landforms. Usual geomorphometry (see section 2.4) is defined
by the quantitative analysis of DEMs and by its underlying indicators. Geo-
morphologists use them to identify, delineate and understand geomorpholog-
ical features.

The wavelet approach, developed in chapter 4, analyses DEMs in the
perspective of a scale specific analysis and therefore visually interpretable
through scale. These results also enable to make a geomorphological quanti-
tative analysis, similarly to what was done in chapter 5.
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The goal of GAS was to compare the two approaches in order to determine
if both of them are exclusive, complementary, or if the wavelet approach is
not suitable for geomorphological analysis.

As hypothesis we state that the localised approach (i.e. the wavelet ap-
proach) is complementary to usual geomorphometry. GAS’s purpose was
thereby to verify the pertinence of the subband selective reconstruction of
the wavelet high-pass coefficients by comparison with usual geomorphome-
try.

GAS was conceived as an online platform that enables the user to visualise
different geospatial data-layers. Moreover the interface offered the function-
ality to digitize and specify spatial features (using points, lines and polygons)
on top of the data-layers that the user chose to visualise. Figures 6.1 and 6.2
show two screenshots of the GAS user interface.

The mapping system was developed using the open Scalable Vector Graph-
ics1 (SVG) standard. The static SVG visualisation capabilities were enhanced
with dynamic JavaScript functionality, for instance to enable the user to
switch between layers or to digitize features. The system uses a spatially en-
abled database called PostgreSQL/PostGIS2 to store features digitized by
the users.

6.2.2 The survey

In order to test the proposed hypothesis we integrated the GAS-digitizing
interfaces (figures 6.1 and 6.2) in an online survey system which consisted of
seven different steps (figure 6.3):

(i) An introduction about the landslide represented by the Travers DEM
from a phenomenological and geological point of view.

(ii) The user has to answer some questions about himself and about his
knowledge regarding GIS and DEMs (see table K.4, appendix K).

(iii) The user has to perform a first cartography. He is asked to draw (point,
line or polygon) the features he is able to identify. Following data is
available: a shaded DEM, slope, aspect profile curvature, plan curvature
and wetness index.

(iv) A second set of questions is asked regarding the first cartography (see
table K.5, appendix K).

(v) An introduction of the wavelet transform and its underlying data pro-
duction is given.

(vi) The user has to perform a second cartography. He is again asked to
specify the features he is able to identify. Following data is available:
a shaded DEM and subband selective reconstructions of the wavelet
high-pass coefficients (see section 4.3).

(vii) A third set of questions is asked regarding the second cartography (see
table K.6, appendix K).

Due to the fact that prior knowledge of the terrain, phenomena and methods
are susceptible to induce a bias in the analysis we carefully selected the people
for this survey. Once selected, participants were invited by email. The GAS-
survey was conducted between June 2009 and the end of September 2009.
1 http://www.w3.org/Graphics/SVG, accessed 15 February 2010
2 http://postgis.refractions.net/, accessed 15 February 2010
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Fig. 6.1. Screenshot of the Gemorphometric Analysis System (GAS) - Digitization
of features using high resolution DTM data
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Fig. 6.2. Screenshot of the Gemorphometric Analysis System (GAS) - Digitization
of features using wavelet data
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Fig. 6.3. GAS framework
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We were able to gather fourteen people for this survey. Four of them were
younger than 30 years. These users were possibly PhD students or young
engineers. The users older than 30 were scientific adjuncts or professors. All
of the participants had some GIS skills and knew what a DEM is. Only two
participants did not know what DEM derivatives are. One did not have any
knowledge of ALS data. (details about the participants are summarised in
table K.1, appendix K.)

Although some of our participants had intermediate skills for the survey, we
can state that the general knowledge of GIS and DEM analysis was good.

6.2.3 Results

As suggested by our hypothesis, users were not satisfied with the first anal-
ysis using only geomorphometric indicators. We argue that this fact might
be related to a lack of qualitative information in the system such as a de-
scription of the geological context or an aerial overview. This is also reflected
by the participant’s comments (see table K.2, appendix K). One participant
for instance stated that he “needed derivatives to be computed at multiple
window sizes and grid resolutions to better assess larger features and provide
context”. This comment suggests that the participant was a geomorphologist
who is used to LandSerf3, a software tool developed by Wood (1996). Land-
serf enables the use of multiple window sizes to compute geomorphometric
indicators, this in order to analyse context effects linked to scale.

Regarding the contribution of wavelet data to terrain analysis we analysed
the comments given by the participants after the second digitization (for de-
tails, see table K.3, appendix K). One important result was a considerable
number of users who found the wavelet reconstructions useful for their analy-
sis. However the global satisfaction did not increase (only one user was more
satisfied). Most participants found the analysis easy to do using these new
layers.

One participant stated that he found the explanatory power of wavelet anal-
ysis somewhat limited, but he was surprised about the fact how well larger
landforms were captured by the low-passed filtered images. Furthermore he
stated that high-pass images show artefacts. (see comment C in appendix K).
The user apparently had some knowledge about wavelets, but the wavelet re-
sults which are given in GAS were already a restricting factor for him and
he would probably have liked less constrained wavelet results.

The positive fact is the two answers to questions 2 and 4 (table K.3, ap-
pendix K). This tells us that wavelets bring complementary information and
understanding in the analysis.

Regarding the users’ general comments, we can conclude that wavelet layers
contributed with complementary information to the terrain analysis but with-
out being exclusive. One comment also showed that it is difficult to interpret
data that is only available visually and that it is important to understand
what the data represents in order to be able to do the analysis.

3 http://www.landserf.org
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Cartography.

It was decided to illustrate the results of the mapping process for only 3
sessions. They are representative of the users’ perception of the structures
contained in the DEM. Session 3 illustrates how people (or different visual
systems) perceive DEM and the shading effect. Although the shading param-
eters (azimuth and sun angle) were indicated in the first GAS description,
the user of session 3 inverted the scarp and accumulation zones (figure 6.4).
She/he actually saw a convex deposit zone where the transition zone is lo-
cated, and a concave scarp zone where the accumulation (or deposit) zone
is located. This illustrates the need to have an independent system which is
more user-friendly, this was however not the purpose of this survey.

The second analysed session (session 7) shows clearly the difference of ter-
rain perception using both type of information. In the second exercise (figure
K.1 (b), appendix K), the user saw something that he actually was not able
to identify, but which confused him regarding the first exercise. In fact, he
identified the zone were the liquefied material flow, or the real deposit zone of
the material which flowed down from the scarp zone. The navy blue and or-
ange stripped zones (figure K.1 (b), appendix K) are settlement zones and not
deposit zones. This fact clearly illustrates that wavelets tools and products
may be used as complement to usual geomorphometry.

The last analysed session (session 9, figure 6.5) shows about the same as
session 7. The wavelet analysis enabled the user to perform a further analysis
than using only usual geomorphometry. Some elements, like the lateral flow
(figure 6.5 (b)), were identified only in the second exercise.

6.2.4 Conclusions

As we have seen, people found the wavelet approach useful and complemen-
tary to usual geomorphometry, but the result analysis showed that they were
confused by the new data, because:

1. Wavelet analysis and synthesis is not a geometrical analysis, as usual
geomorphometric indicators are. Geomorphometry has a short common
history with frequency analysis. The first attempts used the Fourier trans-
form, which is not really suitable in this case and induces a general rejec-
tion of methods which use scale analysis and frequency partitioning (user
comment: I am not sure if this frequency filtering is good here except for
detecting wave-like patterns in the landslide body).

2. The resolution, using subband high-pass reconstruction, does not de-
crease. Users with little geomorphometric skills have problems under-
standing how different sized elements can be retrieved in layers (or im-
ages) which have the same resolution. This issue is common to multi-
scale geomorphometry. In the GAS survey, only one participant gave a
reference to multiscale geomorphometry in the way that Wood (1996)
developed it.

3. Geomorphometry, in its present application, is an “old” methodology. Its
general definition was given by Evans (1972). Since then, technological
developments and computational power have incredibly increased, but
the applied techniques are still the same; geomorphometry specialist and
GIS users still use the well-known 3 × 3 convolution window. Most of
them do not even have a thought on what multiscale geomorphometry
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Fig. 6.4. GAS mapping - session 3, (a) exercise 1 and (b) exercise 2
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Fig. 6.5. GAS mapping - session 9, (a) exercise 1 and (b) exercise 2
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is. This behaviour induces a strong refusal of methods and techniques,
which certainly are not completely innovative, but which give an impulse
to scsle analysis in geomorphometry.

Some criticism has to be expressed regarding GAS. Firstly, the geomor-
phometric indicators were computed using a 3 × 3 window. The users had
no access to enlarged convolution windows (Wood, 1996). The choice of the
window size could have given the users access to indicators (like curvature)
which approach quite well the wavelet reconstruction levels. Secondly, the
users had to do the same analysis in two different exercises and it is very
likely that users have been influenced by a learning effect. The first exercise
gave them the first raw overview of the landslide and the second exercise
enabled them to improve their learning of the phenomenon’s description.

Regarding the structure of the GAS interface, some criticism was also re-
vealed by the users’ remarks. The WT explanations did not seem to convince
some users. Some of them did not really understand what the WT was and
how it dealt with the structures contained in the DEM. Some people under-
stand the WT as a frequency transform using some kind of localized sine and
cosine waves (which it is not!).

Regarding the criticisms above, the following improvements should be im-
plemented in GAS:

– Give a better explanation of the WT. Perhaps should it be less detailed
than at the present.

– Inverse the exercise and find some new participants to do the survey. It
could reveal how pronounced the learning effect is.

– Give access to the users to multiscale information regarding usual geomor-
phometry.

– Reduce the spent time. The exercise should focus on a less general analysis
and give some hints to the users. A lot of them were confused, because
they had not clue on how to do the exercise and on what they had to look
for.

In conclusion, most users found the approach very interesting and com-
plementary to usual geomorphometry. Of course, we did not give too much
guidance information to the users on how to interpret the coefficient images,
because we wanted to test their raw analysis capabilities. However, it appears
that the lack of understanding of the algorithms and methods were a major
limiting factor. All users were able to identify different structures at different
scales, although sometimes their definition was completely wrong regarding
reality. Following the analysis of the drawn structures (see figure 6.4 and 6.5,
and figure K.1, appendix K), it is interesting to notice that no user identified
the same elements regarding which information she/he used: usual geomor-
phometric indicators or the reconstructed wavelet coefficients. Therefore, we
may conclude that wavelet analysis is complementary to geomorphometry.
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6.3 Multiscale pattern analysis

DEMs and the underlying geomorphometry produce a great quantity of
information and indicators. Some of these are highly correlated and some are
independent of each other. This may be compared to the spectral bands of
satellite imaging and like this, classification may be undertaken. There are
many classification frameworks, for a complete review, refer to Caloz and
Collet (2001) for imagery and to MacMillan and Shary (2009) for specific
landform classification.

By having multiple indicators resulting from geomorphometry, we shall use a
multi-dimensional classification method. In addition, as we do not have any
a priori knowledge of the classification scheme, we will explore only unsu-
pervised classification. Thus, we shall determine patterns using the low-pass
results from the multiscale decomposition levels (chapter 4), proposing a mul-
tiscale pattern description of landforms. We will concentrate this section on
the following questions:

– For each type of landform, is there a relevant number of multi-resolution
clusters?

– For each clustering level (resolution) are the multiscale patterns nested one
in another?

– Does the spatial distribution of patterns inform us about the geological
and geomorphological features?

– Is multiscale clustering an effective way to characterize the evolution of
landscape pattern through scale and to assess the primary aims of this
study?

6.3.1 Unsupervised classification of geomorphometric indicators

In order to avoid any a priori determination of classes or categories, we
choose to perform an unsupervised classification. As there are many possibil-
ities for unsupervised classification, we will only skim over some to show the
fundamental differences between them:

– Defined number of clusters: ISODATA and k-means (Bezdek, 1984) are
two techniques which are very similar. ISODATA is only a more specialised
algorithm, because it uses the intern cluster variation to accept or reject
a cluster, thus, the number of cluster may be decreased by the iterative
algorithm. Many authors have used either ISODATA or k-means for the
classification of geomorphometric information (Irvin et al., 1997; Burrough
and McDonnell, 1998; De Bruin and Stein, 1998; Burrough et al., 2000,
2001; Arrell et al., 2007).

– Defined scale analysis: the mean shift algorithm (Comaniciu and Meer,
2002) differs from the two others, because it is not the number of clusters
that is pre-defined, but the spatial boundary (radius) in which a cluster
has to be confined. Because we are not using spectral information (like the
red-green-blue bands), it is hard to define which is the bandwidth threshold
to use. In addition, we are not using normalised data like images which are
normalised between [0, 255].
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Regarding the above descriptions, we will focus on the fuzzy k-means algo-
rithm. The fuzziness is defined by the pixel’s membership to a cluster, which
is never absolute. Indeed, the pixel has a membership to each cluster. Usu-
ally, it is only the hard cluster which is illustrated, or, in other words, the
highest membership to a cluster defines the pixel’s attribution to a cluster.
The issue using this kind of classification algorithm is that it does not take
into account any spatial neighbourhood relation. Each pixel is classified re-
garding its position in the multi-dimensional space of the used variables, but
not regarding its spatial location and thus its surrounding pixels.

6.3.2 Fuzzy k-means

Fuzzy k-means classification has already been applied with success on vari-
ous DEMs with various resolutions (De Bruin and Stein, 1998; Hanesch et al.,
2001; Irvin et al., 1997; Arrell et al., 2007). But each author focuses on the
direct geological patterns obtained and not on the nature of the primary data.
In this part, we are interested in the relevance and relations of partitions of
the landscape using several scales and not in the geological definition of the
obtained patterns.

The purpose is to analyse the nesting of patterns (or clusters) one in another
through different scales as defined by the wavelet transform. The Travers
DEM was used to do this classification.

Fuzzy k-means is a clustering method. Using several variables a multi-
dimensional space is created (see 2D example in figure 6.6). Then an arbitrary
number of random positioned cluster centres is initiated. Through iterations,
the distance4 between the centres and the data point of the multi-dimensional
space is minimised using generalised least-squares. At each iteration, the clus-
ter centres are repositioned using the results of the estimated new centres.
For a complete review of the algorithm, refer to Bezdek (1984). The fuzziness
is originated by the membership of each data point to each cluster. Thus, the
iterations stop once a certain threshold of membership has been reached for
the minimized distances (Hanesch et al., 2001). The mathematical description
of the fuzzy k-means classification is described in appendix L.

The quality of the fuzzy k-means classification may be analysed using some
statistical indicators. First, correlation between the used variables shows how
these are independent one of each other. Ideally there should not be any
correlation between them. But this is hardly achievable as we will use derived
variable from a DEM (see next section). We also used the confusion index
which indicates how good the classification of each observation is. Finally,
two coefficients (the Fscaled partition coefficient and the Hscaled classification
entropy) are overall indicators of the classification. All these indicators are
described more thoroughly in appendix L.

6.3.3 Application to DEM pixel classification

To be able to apply a multiscale cluster analysis, the high resolution DEM
was first resampled using the wavelet transform. This preprocessing produced
a DEM with a 2i resolution (i being the decomposition level, i = 0, 1, 2, 3, 4)
compared to the original DEM. The wavelet transform was applied four times
4 The distance may be the Euclidean distance or the Mahalanobis distance.
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Fig. 6.6. Plot of the elevation versus the distance-to-ridge. This defines a 2D space
in which the cluster could be positioned.

which resulted in five DEMs with five different resolutions: 1 m for the original
DEM, 2 m for the first level DEM, 4 m for the second level DEM and so on
until the fourth level which gave a 16 m resolution DEM. For details about
the wavelet transform, see chapter 4.

The following geomorphometric indicators were computed for each of these
DEMs:

– Slope
– Solar radiation
– Profile curvature
– Plan curvature
– Wetness Index
– Distance to ridges

To these six variables was added the raw DEM and the fuzzy k-means were
applied to the seven dimensional space defined by these variables. For each
DEM, the k-means were applied using 2, 3, ..., 9 clusters. This produced 36
different classifications.

The choice of these variables was made regarding previous studies (Irvin
et al., 1997; Burrough and McDonnell, 1998; De Bruin and Stein, 1998; Bur-
rough et al., 2000, 2001; Arrell et al., 2007). It is clearly an arbitrary choice.
Besides, these variables should be independent, what they clearly are not.
Each geomorphometric indicator is computed using the original elevation,
and most of times, they are a combination of the first or second DEM deriva-
tive. Correlations between the indicators should show if it is pertinent to use
them for the clustering. If there is a high correlation between two of them,
the information will be redundant and will not bring any new information to
the clustering.
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Correlation

As shown in table L.1 (appendix L), the highest (negative) correlation occurs
between the slope and the wetness index. This high correlation is explained by
the fact that the wetness index is computed using the slope (see section 2.4.2,
equation 2.9) and increasing the decomposition level, (negatively) increases
the correlation. The same is visible between the distance to ridge and the
wetness index. Again, they both are dependent of specific catchment area.

The correlation between the slope and the solar radiation is more due to
the specific topography of the DEM. This one covers one hillside and its
downhill valley. Thus the hillside has a preferential solar radiation with a
very regular slope and the downhill region has a smooth slope with another
preferential solar radiation due to the river which is passing across. Authors
(Burrough and McDonnell, 1998) who used the same method for pattern
classification showed that usually slope is more or less highly correlated to
annual irradiation.

Fscaled & Hscaled coefficients

The combination of the partition coefficient and the entropy coefficient give
the next (but not exhaustive) property:

Fscaled = 1 ⇔ Hscaled = 0 ⇔ ∀maxfuzz1, “the associated cluster k is a
hard cluster”. (maxfuzz1 is the first dominant membership.)

Usually, the best classification is considered to be a combination of large
values Fscaled and small values of Hscaled.

The Fscaled and Hscaled coefficients show a reduction of the hard classifica-
tion while increasing the number of classes. Only in the second level, these
coefficients show that four classes would be an appropriated classification
scheme (see figure 6.7). For all the other levels, the two classes choice would
statistically be the most appropriated.

Nevertheless, the Fscaled is a combination of the variance of each class and
the variance between classes. The Fscaled is a global clustering statistical
indicator (Bezdek, 1984). On the other hand, the Hscaled entropy ratio is
more sensitive to local changes.

So, why do these indicators degrade when increasing the number of classes?

Burrough et al. (2000) used two DEMs with different resolutions (5 m and
75 m). Thus we should obtain about the same correlation results for the
second level (r = 4 m) as Burrough. Correlations show a high similarity
with his results and the results concerning the assessing of the classification
(Fscaled and Hscaled coefficients), but for all other levels the results are not
as expected. The ratios are not showing any best class. In other words, the
best class is the two classes and increasing the number of classes makes the
ratios only decrease (Fscaled) and increase (Hscaled), thus the quality of the
classification decreases.
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Fig. 6.7. Fscaled & Hscaled coefficients
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Pattern distribution analysis.

The pattern distribution analysis has to be understood as the analysis of
specific relief configuration in a 64× 64 meter area or window. It was defined
to be representative of the studied area. For each number of clusters and
each decomposition level, indicators of density were computed. On this basis,
the evolution of the patterns through the different scales is analysed, thus
the evolution of the signal frequency embedded in the patterns. We hope to
illustrate the evolution of the unstable high frequency superficial morphology
of the topography into superficial morphology which is more stable, at lower
frequency. In this context, the patterns give a more synthetic view of the
generalisation effects and the geological definition of these patterns. Namely,
if there is a variability of the unstable patterns across scales, and which there
relevance to a specific phenomenon is.

For each decomposition level, a 64× 64 window means:

Level Window size Number of pixels

Level 0 (1 m resolution) 64× 64 4096

Level 1 (2 m resolution) 32× 32 1024

Level 2 (4 m resolution) 16× 16 256

Level 3 (8 m resolution) 8× 8 64

Level 4 (16 m resolution) 4× 4 16

Table 6.1. Size of the pattern analysis window for each decomposition level

Four zones were defined for the pattern density analysis (figure 6.8). These
will be described regarding their geology by using two elements: the DEM
(figure 6.9) and a geological map (figure 6.10) based on the work of Gocht
(1961).
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Fig. 6.8. Location of the four zones, aerial photography c©SITN

Fig. 6.9. DEM and the four zones, DEM c©SITN
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Fig. 6.10. Gocht’s geology and the four zones, (Gocht, 1961)

The following geological descriptions are based on Gocht’s map (figure 6.10).

Zone I

We are dealing with a limestone zone having a quaternary morainic out-
crop, thus a fairly stable zone in a geomorphological point of view. However,
morainic formations have rather a low electrical resistivity and, thus, rather
a high water permeability:

– Location: at the west of the landslide on the side of a hill. It is located
on an agricultural pasture area. In a geomorphological point of view, it is
not located on a lowland formation, but on the extension of a formation
coming downhill from the Jura.

– Geology: it is completely contained in a substratum composed of lime-
stone from the ablian-aptian geological period, thus a more or less stable
formation. This is recovered by moraine from the quaternary period.

Zone II

As for zone I, it is a limestone zone with a morainic outcrop, thus a stable
zone in a geomorphological point of view. As remainder, morainic forma-
tions have a rather low electrical resistivity and, thus, a rather high water
permeability.

– Location: at the north of the landslide on a very flat meadow. Geomorpho-
logically, it is located on a lowland formation (valley of Val de Travers).

– Geology: it is straddling on two limestone substratum formations from the
albian - aptian and urgonian periods, thus a more or less stable substratum.
As for zone I, these are covered by moraine from the quaternary period.
There is a limestone outcrop just at the north of zone II.
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Zone III

In zone III, the geological context before the landslide seems irrelevant, be-
cause the materials which are now located on it come from the scarp zone.
The liquefaction of the material and their flow created an extremely hetero-
geneous geological area. It might be a mix of moraine and sandstone with a
matrix of clay-sandstones.

– Location: inside the transition zone of the landslide, it is surely in a un-
stable formation. After the landslide, it is located in an area of sandstone
which is a mixture of clays and sandstones.

– Geology: before the landslide and looking at the substratum, this zone
was in a transition zone between the uphill sandstone and the limestone
outcrop downhill. The quaternary period deposed a morainic formation on
the top of this substratum.

Zone IV

Regarding Krähenbühl (2007), this zone is located in a strongly disturbed
area with blocky limestone and covered by a thin morainic layer. This implies
strong water flows and infiltration, thus screes. Regarding the forest coverage,
most of them are more or less stabilised.

– Location: south of the landslide on the north hill of the Jura. The slope of
this anticlinal is steep for the Jura. On the DTM, the zone is located on a
disturbed morphological area with a high roughness.

– Geology: the coverage is of sandstone. Furthermore, the sandstone-moraine
interface is located downhill.

Spatial density indicators

For each classification result and each decomposition level, two density in-
dicators were computed in order to verify if specific frequencies or scales
react preferentially to the type of topographical coverage, thus the suggested
geology or geomorphology.

The Shannon5 and the Simpson6 diversity indicators were calculated for
each zone at each scale and for each classification (number of clusters).

The Shannon and Simpson indicators are not significantly different in this
case. The behaviour of these indicators is identical for our four zones (see
figures 6.11 and 6.12). Thus, we will only use the Shannon indicator to do
the analysis.

5 Shannon = −
∑m
i=1(Pi ln(Pi)), Shannon ∈ [0,∞), where Pi is the proportion

of area occupied by each cluster. When Shannon = 0, than the analysed zone
contains only one cluster. Shannon increases as the number of contained clusters
increases (Anonymous, 1995)

6 Simpson = 1 −
∑m
i=1 Pi, Simpson ∈ [0, 1], where Pi is the proportion of area

occupied by each cluster. When Simpson = 0, than the analysed zone con-
tains only one cluster. Simpson increases as the number of contained clusters
increases. Simpson is more sensitive to the presence of “rare” (or poorly repre-
sented) clusters than Shannon (Anonymous, 1995).
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Fig. 6.11. Shannon indicator, (a) Zone I, (b) Zone II, (c) Zone III and (d) Zone
IV
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Fig. 6.12. Simpson indicator, (a) Zone I, (b) Zone II, (c) Zone III and (d) Zone
IV
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Regarding the geological description and the position of the zones, following
assumptions can be made:

– Zone I & II are similar. They are located on similar geological substra-
tum. There are positioned on a homogeneous morphological area, thus they
should be members of the same clusters and the evolution of the Shannon
indicator should be about the same.

– Zone III is located in a very perturbed area, the landslide. But we have
to notice that even if the morphological roughness is high, the zone is still
located in a heterogeneous area, the size of the landslide structures is very
little, thus rather a very high frequency area.

– Zone IV is located in a fallen rock area. Thus, the geomorphological ele-
ments are of bigger sizes than for zone III. The frequency composition of
the geomorphological elements is lower.

Inherently to its definition, we expect the Shannon indicator to increase
as the number of clusters increases. Indeed, when the number of cluster
increases, statistically, the diversity should increase within our areas. It is
interesting to note that:

– There is a clear difference in the behaviour of the indicator between Zones
I & II and III & IV. The less disturbed areas, and therefore more homoge-
neous, have indicator values which are much smaller and their evolution,
gradually as the number of clusters increases, is much less linear.

– The fourth level of decomposition is highly variable and unstable. The
resolution of this level (16 m) and the size of the analysis window (64×64)
are the factors influencing these variations, mainly because the Shannon
indicator was calculated using only 4×4 pixels. This level is not appropriate
to the size of the window, because the frequency space that it represents
is of much lower frequency than the structural elements included in the
window.

– The linear progressions of the indicator in Zone III & IV are ordinary. The
pixels included in these areas are extreme at all levels. There values are
surely not near the average values of the different predictors (elevation,
slope, etc.). Their membership values related to a specific cluster are much
higher than for zones I & II. These latter are in areas of medium fluctua-
tions of the predictors, and so the distances to each cluster centre are less
differentiated.

In conclusion, we found that uniformity of surface makes the classification
less constant through scale. Namely, that these low frequencies structures
are more prone to organisational variations of the clusters. Thus, the number
of clusters within the area is not constant compared to the total number of
classification clusters. In zones III & IV, the indicator is much more constant,
therefore the increase of the cluster number within the zones, compared to the
increasing number of classification clusters, is constant. The high frequency
structural elements, thus high roughness, are more stable even if the indicator
tends to decrease through scale, which is due to the reduction of the number
of pixels. By applying a moving window, it is possible to find stabilities
(frequency stabilities and not geological) of terrain across scale.
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7.1 From wavelets to Marr’s vision theory

As seen in chapter 4, wavelet decompositions are a powerful tool for mul-
tiscale image analysis. Wavelet analysis of high resolution DEMs (Lassueur
et al., 2006) is highly complementary to geomorphometric indicators (Wood,
1996) and includes, for instance, multiscale filtering and enhancement. Ge-
omorphological phenomena are clearly multiscale (Schmidt and Andrew,
2005). Thus, the identification and delimitation of these are not easy due,
on one hand, to their complexity across scales and, on the other hand, to the
inherent geological or geomorphological interactions.

The wavelet transform gives us a partitioned vision of our environment and
of its scale intervals following the dyadic subsampling. As we have seen, our
analysis has mainly been carried out on the detail coefficients and, more
importantly, on their selective reconstruction. However, when we analyse a
landscape and its DEM decompositions into a four component 2D signal
(low-pass, horizontal high-pass, vertical high-pass and diagonal high-pass),
we hardly ever focus separately on the details of the scene using the horizon-
tal (east-west), vertical (north-south) and diagonal (north west - south east
or north east - south west) directions. Classical wavelet transforms (Mallat,
1996, 2000) (see chapter 4) act like a smoothed multiscale derivative operator
when applied to the data, but in a two directional manner. Our visual system
concentrates on the directional continuum. In addition, the landscape and ge-
omorphological forms are focused on a directional field covering the whole az-
imuth (from 0◦ to 360◦), and not just on the three directions described by the
wavelet transform. Thus, we have an interpretative issue. Basically, multidi-
mensional data are processed in a separable way, i.e. dimension-by-dimension,
which leads to multiple wavelets at each scale making the interpretation dif-
ficult. What we want now is to go one step further in the characterization
of scale intervals and their representation than what we have done with the
classic wavelet transform.

7.2 Marr’s theory of vision

Marr’s theory (Marr, 1982) suggests that vision (or human visual capabili-
ties) is linked to information cells tuned into different spatial frequencies, thus
making it possible to do multiscale analysis (Glennerster, 2007). The connec-
tion with the wavelet transform is immediate, because that is exactly what
they do. Whether the dyadic subsampling is the proper way to create the
scale partition of a high resolution is debatable, but the analysis undertaken
in chapter 4 demonstrates that it is useful at least. Ideally, the system should
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reproduce a multiscale analysis, function that the wavelet transform has, but
in a multi-directional and continuous way, and not only bi-dimensional as we
actually have seen.

Marr developed his theory of human vision using three distinct levels
(Francescotti, 1991; Marr, 1982; Poggio, 1981):

– The computational level is constrained by the properties of the visible
world.

– The algorithmic level is the set of rules to carry out the computation level
and its inherent function(s).

– The implementation level is the architecture and realisation of the system.

Marr developed the computational level most thoroughly, which is the one
we are most interested in. As Francescotti (1991) suggested, “The computa-
tional level will involve the specification of certain facts about a human’s re-
lation to his external environment which are powerful enough to ensure that
the visual system successfully and reliably performs its designed function”.
As we mentioned in the previous chapter, high resolution DEMs contain a
huge quantity of information. Geomorphological methods and the underlying
quantitative geomorphometry are mostly univariate in scale. Thus, proposing
multiscale analysis methods gives a better overview of topographical elements
represented by DEMs. Furthermore, offering a multiscale approach where the
experts do not have the choice of scale intervals, but where the approach gives
them the most pertinent scale related information -regarding a given partition
of scale - greatly simplifies the decision support process.

We now introduce various methods using Laplace-gradient wavelets and
structure tensors in order to highlight the multiscale nesting of landscape
features. The method was applied on the Travers DEM including the land-
slide (for a complete geological and phenomenological description, refer to
appendix F) in order to make a first exploratory cartography of the phe-
nomenon. The aim is to show the potential of this method and to give hints
for further development of such tools in terrain analysis systems. Thus, we
will only aim the study at the structural elements composing the landslide
and not at the global context.

7.3 Marr’s decomposition

The recently introduced “Marr wavelet pyramid” (Van De Ville and Unser,
2008; Unser et al., 2009) is an intrinsic 2-D wavelet design inspired by David
Marr’s theory of the primates’ vision (Marr, 1982) that circumvents the lim-
itations of the classic wavelet transform. Each scale is characterized by a sin-
gle wavelet that acts like a Laplace-complex gradient operator. Consequently,
the wavelet coefficients are complex-valued. The phase provides directional
information and the magnitude indicates the wavelet deformation energy.
This links this methodology directly to the implementation of Marr’s theory
(Poggio, 1981) by detecting gradients and directions at all scales.

The Marr wavelet pyramid (figure 7.1), as developed by Van De Ville et al.
(2008), is a method approaching the goal and issues of Marr’s theory. Apply-
ing it on high resolution DEMs brings us closer to the view of the structural
composition of landforms, similarly to what our visual system would ideally
do, according to Marr’s assumptions and theory.
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The great difference with the classical wavelet transform (figure 4.6) is, there
is only one resulting high-pass image, but this one is of complex form and
we have some redundant information due to the first non-dyadic transform
of the Laplacian operator (figure 7.1).

Fig. 7.1. Marr-like wavelet pyramid for one level

All the mathematical description and development are given in appendix
M. Hereunder, we shall only discuss the result of the transform.

Applying the transform to each decomposition level i, the low-pass or gen-
eralised DEM will have a 2i+1 meter resolution and the high-pass or the
detail coefficients will have a 2i meter resolution (assuming that the original
resolution is 1 meter), hence the redundancy. If the complex coefficients are
separated using the real and imaginary parts (figure 7.2), we will retrieve the
partial derivatives regarding the x and y directions.

7.3.1 Magnitude and phase of the complex wavelet subbands

If we combine the two components (real and imaginary) using a polar trans-
form1, we can isolate the magnitude and phase of the operator for each pixel
at each scale (figure 7.3).

We will then observe that the magnitude reveals interesting structural fea-
tures and the phase their underlying azimuth, depending on the decomposi-
tion level (thus the equivalent resolution of the shape). Both these indicators
may be used for multiscale Canny edge detection (Parker, 1997), but this is
not the purpose of this study.

For the first decomposition levels, phase represents phenomena of smaller
sizes than the one which were already mapped (identified in chapter 4). This
is also visible on the associated magnitude. Those are actually micro-folds
which are linked to the large folds. The compacted materials did not with-
stand the pressure created by these large folds, and micro-folds were formed.
Absence of roughness shows that the materials of the settlement zone are
rather homogeneous and plastic. Indeed, pressure was roughly constant over
the duration of the landslide, because the spacing of these folds appears to
be constant (between 2 and 10 m).
1 Magnitude =

√
<(di)2 + =(di)2 and Phase = arctan (=(di)/<(di))
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Fig. 7.2. Marr wavelet pyramid for the Travers DEM, respectively the real part
∂/∂x (a) and the imaginary part ∂/∂y (b) of the complex di[k] coefficients for levels
1 to 4.
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Fig. 7.3. Phase (a) and magnitude (b) results on the landslide area for the first
four decomposition levels (i.e. resolutions of 1, 2, 4 and 8 meters)
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The macro-folds can be already retrieved in the 3rd level magnitude map.
However, the magnitude clearly indicates other type of folds. We can inter-
estingly point out that these folds are not spaced out at regular intervals and
that they correspond to micro-folds.

In the scarp zone, the first level of magnitude and phase clearly show the
drainage area the authorities have built in direct response to the landslide.
We must underline that artificial elements and interventions are those that
stand out best, because they often are most acute. The large gap south of
the accumulation zone, between the large landslide foot and the smaller foot
is clearly visible. Its linearity indicates the direction of material flows.

Fig. 7.4. Magnitude of the first level and the digitized micro-folds

Fig. 7.5. Phase of the first level and the corrected digitized micro-folds
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7.3.2 Subband-selective reconstruction

The selective reconstruction enables us to visualize information at the orig-
inal high resolution, but the contained information is specific to one decom-
position level and to one kind of information (the low-pass or high-pass infor-
mation). Therefore, this is linked to a selective scaling filtering process. It is
equivalent to the wavelet coefficient filtering which was introduced in section
4.3.
Low-pass coefficient reconstruction.
The low-pass results of the filtering process show the scale discretization

which is obtained using the dyadic subsampling. Each decomposition level
has a defined low-pass result complementary to the high-pass coefficients.
The next steps are applied to the low-pass reconstructions:

1. The high resolution DEM is analysed until the nth level.
2. The resulting high-pass coefficients are suppressed.
3. The Marr pyramid is reconstructed using the subband regression (SR)

(figure 7.6).

The results show clearly the reduction of the frequency space following the
decomposition (figure 7.6). However, as with the so-called classic wavelet
transform, the low-pass information visual analysis is difficult. The model is
certainly generalised, but the resulting information loses its context and the
identification of structural elements is made more difficult. Again, it seems
that the bottom-up approach, developed in section 4.3, can provide a better
support to the visual interpretation by adding context to a specific decom-
position level. As a matter of fact, this time, we will not analyse the direct
effects of generalisation, but rather the remains, or high-pass coefficients of
the transform. Because we are less constrained by the processing scheme, the
multi-directional analysis will be added to the multiscale analysis. Neverthe-
less, an additional issue is revealed through this process:

– Each decomposition level gives a subjective view of the considered scale
space.

– Each decomposition level produces two components: phase and magnitude

The low-pass results of the filtering process show the scale discretization
which is obtained using the dyadic subsampling. Each decomposition level has
a defined low-pass result deduced from the combination of the magnitude and
the phase. In the geomorphological analysis, level 5 (figure 7.6 (d)) was used
to digitize the main zones of the landslide phenomenon. This level showed
the best partition of the landslide elements, thus this level is, for our own
visual system, representative of the scale of these elements.
Some topographical elements clearly belong to a scale interval, as micro-

elements to the 2nd level and macro-folds to the 4th level (figure 7.6 (a)
and(c)), but there is no representation of scale imbrications. Most topo-
graphical elements have relations with others in scale, thus we will use a
scale combination method in the next section to overcome this limitation.
As a consequence, if we use 8 levels of decomposition in our model, this

results in the creation of 16 new surfaces. There is therefore a serious rep-
resentation issue regarding this new information. No one is currently able
to manage visually so much information and to analyse it in a selective and
relevant manner. That is the reason why we will analyse the same bottom-up
approach as in the previous chapter.
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Fig. 7.6. Low-pass filtering and SR reconstruction of the Travers landslide DEM
for the following decomposition levels: (a) 2nd level, (b) 3rd level, (c) 4th level, (d)
5th level and (e) 6th level.
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Detail coefficient reconstruction.

Using only each level specific high-pass information does not allow a syn-
thetic view of the topographical evolution through scale (see figure 7.7); i.e.
the high frequency information which is specific to each decomposition level
is too abstract for our visual cognitive system. There is a complete loss of
context, as for example in the 4th level high-pass coefficients (figure 7.7). This
is similar to what we have discussed in the previous section. The specific scale
interval of this level is not relevant without its relation(s) to other scale in-
tervals. To create the link between scale intervals, we reconstructed to the
finest scale (1 m resolution) specific subbands by choosing which elements,
based on their resolution (i.e. decomposition level), have to be included in
the reconstruction process. Figure 7.8 shows the combination results of the
different decomposition levels. It is similar to what was done in chapter 4.
The following procedure was used to create these images:

1. The high resolution DEM was analysed until the nth level.
2. The resulting low-pass grid was suppressed.
3. The Marr pyramid was reconstructed using the subband regression.

The images in figures 7.7 and 7.8 are normalised ([−100, 100]) coefficients
with a colour saturation level at [−20, 20]. Negative values are given in blue
and positive values in orange. The coefficients of the different levels were not
enhanced (frequency boosting), but this could be done easily, depending on
the interest of the geomorphologist.

Fig. 7.7. Specific high-pass coefficients for decomposition level 4.

Thus, combining the high frequency information of each level with the others
using a bottom-up approach gives context to the lowest level that we add at
each iteration (figure 7.8). For example, figure 7.8 (d) is the synthesis (or SR
reconstruction) of the high-pass information of levels 0, 1, . . . , 5. Indeed, we
deliberately omit all the information which is transferred to the i+1th level.
For figure 7.8 (d), this would be the information transferred by the filtering
process to the 6th decomposition level (figure 7.8 (e)).
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If we continue our geomorphological analysis using figure 7.8, we will concen-
trate on the levels of interest regarding the elements that we want to analyse.
As we have already had a global partition of the landslide component zones,
we will first try to correct this one. The lower levels (2, 3, 4) give us informa-
tion about the surface water flow. In this case the multiscale approach enables
us to understand the high complexity of these regarding the morphological
arrangement of the topography. Thus we are able to construct a geomorpho-
logical map, only regarding surface elements, which is then compared to the
phenomena map established by Krähenbühl (2007) (figure F.6, appendix F).
We used the lower levels to visually determine the main earth flows which
occurred in the landslide. The higher levels were used to correct the main
zones we already delimited using the low-pass information. The final result
is illustrated in figure 7.12.
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Fig. 7.8. Cumulated high-pass coefficients for levels 2 (a) to 7 (f)
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7.4 Structure tensors

Structure tensors are a representation of pixel value changes in a local neigh-
bourhood. The complex-valued wavelet coefficients can be interpreted di-
rectly as the gradient of a Laplace-filtered and multiscale smoothed version
of the data. All the mathematical developments are given in appendix M.2.
Regarding the wavelet coefficients, the structure tensors take into account the
local neighbourhood of these by using a 3 × 3 Gaussian window (σ = 1.5).
We chose this window size, because we want to analyse the direct neighbour-
hood of each pixel in each scale and we already have multiscale information
through the Marr-like transform. Thus, the pixel dependency at each scale
regarding structural elements should be highlighted. Through the multiple
products of the structure tensors, three new variables can be computed: the
coherency of the analysed pixel regarding its neighbourhood, the energy of
the pixel, and its local orientation. This can be achieved by using the eigen-
vectors and eigenvalues of the structure tensor, which provide robust and
essential information about the signal variation at a given scale. Specifically,
the three new variables obtained from the tensor (Van De Ville et al., 2008)
describe:

– Orientation: orientation shows the dominant direction of the local struc-
tures. It is less prone to noise than the coefficient-wise orientation. Since
the tensor is a second-order descriptor, there is no difference between a
“positive” and a “negative” edge; i.e. gradients pointing in opposite direc-
tions are considered equally (orientation ∈ [−π/2, π/2]).

– Energy : energy of the the local gradient.
– Coherency : the ratio between the mean square magnitude of the gradi-

ent and the magnitude of the orientation vector gives an indicator called
coherency (coherency ∈ [0, 1]). Large coherency shows that there is a dom-
inant orientation in the local neighbourhood (depending on the Gaussian
window’s size) whereas small coherency indicates isotropy (Van De Ville
et al., 2008; Jähne, 2005).

The different measures obtained from the structure tensor at multiple scales
provide characterization of landscape elements. Figure 7.9 illustrates the re-
sults for the first decomposition level. As expected, coherency shows the
isotropic behaviour of the structures represented by this level (whitest pix-
els) whereas energy the local energy of the coefficients. Through coherency
and for each decomposition level, thus at each scale, we see what the relevant
elements are. Coherency gives us an overview of related pixels.

In order to have a comprehensive visualization of these measures, the three
components are combined in a composite HSB (hue-saturation-brightness)
image. The orientation was coded in the hue level (colour tint), the coherency
in the saturation level and the energy in the brightness level. We applied
histogram equalization to the energy component, since some initial adjacent
pixels (elevations) have markedly different values. These ones induce much
higher energy values than most of the other pixels. A root function (3rd or 4th

order, depending on the decomposition level) was used to soften this effect.
As a result, the images show more and more generalized structures as we go
through the different levels of scale.
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Fig. 7.9. Structure tensor results for the first decomposition level, (a) coherency,
(b) energy and (c) orientation
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Fig. 7.10. HSB images of structure tensor results for the first four decomposition
levels. The colormap shows which colour represents which orientation.
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We see that at the fourth level, the saturation of the HSB image (figure
7.10) is very low, thus the coherency rather low. This means that we are in an
isotropic zone, where there is no preferential direction; even the energy is quite
low. This clearly defines the depleted material deposit zone. By progression
through the other levels, this unstructured zone is also visible.

Undeniably, the HSB representation is hard to interpret. It is a three com-
ponent representation and creating the abstraction levels between these com-
ponents is hard, thus “less is sometimes more”. We therefore chose a point
representation which illustrates only 2 dimensions and which omits the ori-
entation. The point size is proportional to the energy and so is the darkness
of the colour to coherency. This enables to study the evolution of topograph-
ical isotropy in relation to scale. For each level, the results differ due to the
multiscale effect; e.g. the new road is not a coherent entity at a specific scale
(figure 7.11 (a)), but at another scale it is coherent, thus anisotropy appears,
with a high energy. The same kind of effect is visible for the hydrological
network in the scarp zone.

This clearly shows the scale partition in which specific topographical el-
ements are mostly represented or to which scale interval they are related.
Relations between different elements which have the same location, but not
the same scale, can also be identified. For instance, the scarp zone is identi-
fied in the 3rd level, not as a coherent element, but with a high energy (figure
7.11 (b)). And the hydrological network, contained in it, is identified in the
first level with high coherency and energy (figure 7.11 (d)).

7.5 Exploratory geomorphological mapping

Using the different methods and techniques, the following elements appeared
as relevant to the exploratory approach:

– Low-pass result : nevertheless, using only the low-pass results is difficult,
because the different decomposition levels are only represented by their
scale interval, thus the inter-dependence of the decomposition levels is not
represented and the context analysis is hard.

– Subband-selective reconstruction: with this scale partition, it is possible to
conceptualise the hierarchical imbrications of topographical elements. Each
decomposition level gives an indication about the topographical elements
composing its frequency space, and this, in relation to the higher frequency
spaces. So, the two first levels illustrate the folds and faults, the roadsides
and the hydrological network, thus linear elements of the topography. At
the third level, little hills and hollows appear and, at the fourth level,
we identify a generalisation and grouping of these same elements. In our
example, the last shown level, namely the seventh, shows that the underly-
ing frequency space is greater than the size of the topographical elements
contained in the landslide. It links, however, the landslide to the general
topography of the slope.

– Phase and magnitude: in terms of perception scales, the magnitude shows
clearly that above the 6th level, scale or frequency analysis exceeds the
phenomenological size (or scale) of the landslide, i.e. the topographical ele-
ments analysed are of bigger size and lower frequency. For micro-elements,
phase is often very heterogeneous, thus hard to interpret.
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Fig. 7.11. Multiscale energy and coherency analysis; the point size indicates the en-
ergy (the bigger the size, the higher the energy) and the colour shows the coherency:
brown indicates coherency higher than 0.8, beige indicates coherency between 0.2
and 0.8, and points with a lower coherency are not represented. Subfigure (a) is the
coherency-energy representation of level 4, (b) of level 3, (c) of level 2 and (d) of
level (1).
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– Structure tensor : the HSB is not easy to interpret regarding the size of the
analysed elements. A last approach is to simplify the cognitive difficulty
and represents only two variables out of the three resulting from the tensor
structure. Thus, using the discrete frequency spaces, the point representa-
tion illustrates the nesting of structural elements in order to understand
the multiscale phenomenological effects. The interpretation of nested phe-
nomena is thus simplified.

By using these different methods and techniques, we established a structural
map of the landslide. That one is only structural, because it does not take
into account any geological issues; neither does it represent a phenomeno-
logical reconstruction of the landslide. However, as a first approach, it helps
us to identify elements of interest which we will then analyse using terrain
observation and geological information (figure 7.12).

Fig. 7.12. Map of the digitized elements using the Marr pyramid and structure
tensors, aerial photography c©SITN



156 7. A vision for multiscale DEM analysis



8. Discussion

The definition of our framework introduced in section 3.6 has been attested
and validated by the visual interpretation and the quantitative analysis of
chapters 4 to 7. We have seen that they allowed us the definition of scale
intervals (figure 5.35) at which typical structures appeared and were iden-
tifiable. However, this recognition is impossible without the illustration of
the structural multiscale interconnections. This was done using the bottom-
up approach and by combining the multiscale structural elements. Subse-
quently, we believe that we have digitally represented and processed infor-
mation nearby the same way that we would analyse it using our visual system
(see chapter 7 for some perspectives).

8.1 Wavelets and DEMs

As seen in chapter 4, wavelets and the underlying transform are highly
relevant analytical tools for multiresolution analysis. The scale partition is
clearly pre-defined, because of the dyadic subsampling. The spectral localised
investigation of the wavelet transform identifies frequency properties of ter-
rain features. If we think of partitioning scale through frequency, we might
think of the Fourier transform, which in this case is not applicable, because
not localised. Thus, if we suppress or filter some frequencies in the Fourier
domain, we do not know what exactly will be the implications in the spa-
tial domain. As seen, wavelets are ideal to get rid of this limitation. The
filter bank simplicity allows us creation of multiple frequency subspaces in
the spatial domain, thus the analysis of specific and combined scale intervals
by subband suppression.

The main issue using the wavelet transform is to choose a wavelet family
which corresponds to the structural features of a DEM. As we applied the
transform to a DEM countryside region, the spatial breaks are not as sharp as
they would be in a DSM representing a city. The first tentative of analysing
the wavelet effect showed us that a B-spline basis as scaling function was
appropriated for our goals. But it might be completely different for other
types of territorial coverages.

The application of the WT on DEMs and its basic minimalistic parametri-
sation enable the replica of the methodology on other DEMs. Currently, the
only controlling factor is the size of the original DEM, but nowadays com-
puter memory is powerful enough, such as a 20 000×20 000 pixel DEM can be
processed without major issue. Obviously, the scaling function and its related
wavelet family are the main parameters to choose. By having a good scal-
ing interpolation function, we make sure to have appropriate high frequency
coefficients thereafter. By appropriate, we mean that no artefacts, noise or
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wavelet specific structures were injected in the model by the WT. A good
and appropriate generalisation model ensures that, and the analysis of the
detailed coefficients may consequently be undertaken. This is what we veri-
fied by the different analysis regarding the low-pass results. On both of the
surfaces (virtual landslide and Travers DEM), the wavelet transform gave a
well-interpolated result. As accredited by the visual interpretation and sta-
tistical analysis, the transform had the reaction we expected: a generalisation
process with few artefacts and noise injection.

Reconstruction of scale relevant information

The bottom-up approach of combining high-pass coefficients has emerged
from the lack of context resulting from the visual analysis of the high-pass co-
efficients of each level. The whole frequency domain is partitioned in different
levels, but these ones, taken as a unity, do not give relevant information for
the geomorphological analysis, because the geomorphological context is lost.
Indeed, the nesting of structural information is decomposed, which induces
this “loss of context”. This is the main limitation of this analysis. Without
explicitly wanting to prove this nesting through the analysis of the high-pass
coefficients, we have shown that a one scale analysis is not relevant for geo-
morphometric analysis (regarding high resolution). But to counter this “loss
of context”, we have developed the bottom-up approach. High frequencies
give context to scale, thus the nesting of structural information is assured
and illustrated. Filtering the high-pass coefficient levels is only a way to ex-
aggerate or threshold specific frequency information. It is clear that this can
only be undertaken once we know which structural elements are represented
by the different levels. Even if we are able to analyse a DEM using the wavelet
transform, there is clearly a lack of scale interval specification.

Wavelet effect on geomorphological features

As shown in figure 5.35 (chapter 4), the defined scale intervals provide an
identification range for various structural types which may be experienced in
reality. However, it is significantly harder to determine at what scale which
elements will be transferred from a low-pass image at decomposition level i
to a high-pass image at decomposition level i+1. In fact, any natural feature
is a composition of certain frequency spaces, which are a priori unknown.
The wavelet transform does not analyse directly structural elements, but the
frequencies that compose them. The decisive step is thus the identification -
by the wavelet - of the main frequency components, or rather the frequency
combinations, which then are transferred; that is to say, from the lowest to
the highest frequency composing the feature. It therefore becomes obvious
that the decisive step is the lowest frequency that composes the feature. If
we look at the defined spaces (figure 5.35), we have focused our discretization
on the lower frequencies composing the feature.

Visualisation and interactive exploration

In chapters 4 and 5, the geomorphological analysis, in its quantitative ap-
proach, is enhanced by the coefficient filters, consequently a huge amount of
information is created. The illustration of the results may be disconcerting for
non-specialists, because we have multiple views of the same spatial area but
containing different and discrete information. Thus, being able to represent
all this information in a synthetic view is still an issue for which we have no
practical answer. Perhaps, as Wood (2009) suggested, we should find a way
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to reduce this visual complexity and even visualize data in another way than
a 2D projected image. Ideally, it would mean to implement the following two
principles:

1. Complex analytical visualisation solves the problem of information mul-
tiplicity.

2. User interaction should provide access to information in a simple and
easy way, e.g. find a way to navigate through the different scales.

8.2 Wavelet transform applied to geomorphological
characterization

8.2.1 Geomorphological scale and the wavelet transform

If we look at the scale definition of Tobler (1987) (see table 3.1), there
is always a relation between the spatial resolution and the spatial size of
the structural components of a DEM. Nevertheless, the relation between a
scale interval, which is linked to a well-defined sub-space of the frequency
domain, and the size of a structure is less explicit. Highlighting the link
between the size of structural components and the frequency domain would
give us a good methodology to extract and analyse scale-specific structures.
But as seen in this study, we are only able to make a link between the
resolution of the decomposition level and the size of shapes, or the landforms
structure represented therein. Moreover, this link is empirical, because it
emerged from afterthoughts following discussions with the expert. Using the
results of the case study (section 5) and approximately, the ratio may be set
at: 2 pixels · resolution = shape size. For example, this would mean that at
the fourth level (r = 16 m), structures having a size of about 32 m should by
highlighted by the WT and its enhancement. Indeed, this relation matches
Tobler’s statements.

By visual interpretation of the subband reconstructions (reconstructed high-
pass coefficients) of the Travers DEM and throughout its global context, we
were able to construct empirical geological spaces which correspond to the
decomposition levels (figure 5.35, section 5.8). But these are based on our
single analysis of the Travers DEM and, therefore, cannot be taken as any
kind of absolute definition. The defined spaces have a local meaning. They
could lead us to a scale based typology of geomorphological structures.

As we are able to interpret scale effects on geomorphological structures, we
might ask ourselves which are the element we do not recognise or identify.
Indeed, and compared the usual geomorphometry, topographical context is
not possible as no slope or even slope flow accumulation indicator are com-
puted. Only topographical structures are enhanced and extracted using the
wavelet transform.

So, if we state that wavelets are intuitive, can easily be applied on DEMs
and give pertinent results by showing structural scale nesting, we can ask the
question why the geomorphological community does not use them?
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Although we are not dealing with this question throughout this study, we
assume that the methodological approaches might be the reason of this lack
of usage. A premise of answer can be given by the experimental design ap-
proaches used by the geomorphometric community: it is essentially an ap-
proach using processes. That is to say, geomorphometry tries to characterize
a process by carrying out structural analysis (using geomorphometric indi-
cators). In contrast, image analysts are often primarily interested in feature
detection and in its characterization to define the involved processes. Further-
more, Marr’s approach and the underlying structure tensors bring us clearly
closer to geomorphometry. It defines indicators that describe the process.
Although Marr’s approach brings us some of the methodological elements re-
lated to geomorphometry through the definition of structural indicators, this
question remains open. The elements above are only assumptions sustaining
the debate.

8.2.2 Patterns & multiscale DEMs

Since the end of the 20th century, more and more publications have been
written on classification of geomorphometric indicators for geomorphological
characterization purposes (refer to section 6.3 for a review). As a first attempt
to determine multiscale patterns using k-means, we tried to classify our low-
pass results - the generalised DEMs - regarding geomorphometry indicators
(elevation, slope, plan and profile curvature, solar radiation, topographical
wetness index and distance-to-ridge) (see section 6.3 for the detailed study).
The results, given the classification statistical indicators (confusion index,
F-coefficient and H-coefficient) showed us that only two clusters were statis-
tically pertinent for most of the decomposition levels, which is not satisfactory
for a classification using seven variables. Only for the second level (r = 4 m)
the indicators identified the 4 clusters solution as the best one. Moreover, the
correlations between the input variables (geomorphometric indicators) were
too high to expect an independent multi-dimensional space. An additional
pattern diversity study is undertaken. The evolution of diversity in some
pre-defined zones shows the behaviour of the wavelet interpolation scheme
through the levels.

The question is why do we have no positive results where others have suc-
ceeded? Several factors may interfere. The first might be the spatial coverage
of the Travers DEM. This one contains a hillside (south-eastern part of the
DEM) which flows down to an almost flat valley. If we compare our results
to the studies which were already undertaken, the structural configuration
of our DEM does perhaps not contain enough different morphological ty-
pologies for the classification of the last decomposition levels (thus the low
resolutions, which correspond to the resolution of the previous studies). But
we are unable to give an explanation for the first levels (r=1 m, 2 m, 8 m).

As conclusion of this classification attempt, patterns analysis using k-means
is not appropriate in our case. The statistics (correlation, confusion index,
F-coefficient and H-coefficient) of almost all levels show that k-means are
not appropriate. Moreover the result interpretation is almost impossible, due
to their diversity. Conceptually and regarding Tobler’s definition (equation
3.1), it is hard to define the parameters for natural phenomena. There is
no way to define the Domain or the Number of observations, thus a un-
clear definition of the equation component. A priori, these two parameters
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are unknown in the classification scheme. We might guess them, but there
is no definite answer to the number of elements composing a phenomenon.
Furthermore, the sensitivity to describe natural phenomena and processes is
specific to each person. A lot of studies, which deal with the classification of
geomorphometric indicators, use a high number of operating parameters. Un-
deniably, this excessive setting of parameters, factors and variables cuts out
almost any replica possibility of the methodology. As example, reproducing a
geological map, using classification of geomorphometric indicators, does not
bring anything, since the map is anyway already existent.

Geomorphometric information contains a huge amount of information and as
Goudie et al. (1990) noticed, “The nature of relationships identified between
variables depends on the scale of an investigation” or Turner (1989): “Because
landscapes are spatially heterogeneous areas ..., the structure, function, and
change of landscapes are themselves scale-dependent. The measurement of
spatial pattern and heterogeneity is dependent upon the scale at which the
measurements are made.”. The developments of this study enlarge the scope
of a single scale analysis by adding the multiscale dimension. It ensues that
the classification framework is hard to define using a priori categories or
classes, thresholds and data are different for each scale level.

As remark, and further development, this kind of classification does not
allow taking into account the fact that we have multiscale data. Each clas-
sification for each decomposition level is an independent realisation. I.e., for
each level we create a new classification space, but the method does not take
into account the relations between the different levels. It induces a lack of
coherence between the classifications of the different levels. From our point of
view and to be more consistent in multiscale classification, the inter-relations
between the different scale levels should be explored more thoroughly in all
further developments of a classification scheme using multiscale DEMs.

8.3 Marr’s vision and DEMs

In chapter 4, the wavelet transform was analysed and used for the geomor-
phological characterization of a geological phenomenon. As we already know,
the reconstruction of the detail coefficients result in scale-dependent images.
Their values are wavelet magnitudes, and the orientation of the high-pass
coefficients is given by the three high-pass subbands (horizontal, vertical and
diagonal). Chapter 7 is a tentative to go a step further in the representation
of DEM multiscale filtering. Using Marr’s vision theory (Marr, 1982) and lat-
est developments in its application to image processing (Van De Ville et al.,
2008), we tried to give a more synthetic view of coefficient phase and mag-
nitude, describing a novel DEM multiscale analysis approach. Combined to
weighted structure tensor, the results give one synthetic image (figure 7.10)
of the analysis.

The phase and magnitude are embedded in complex wavelet coefficients,
which provide a unique representation of multiscale nested features. The com-
bination of coefficients from distinct decomposition levels permits to obtain
scale dependent structures. This localised and oriented multi-structural infor-
mation, as well as structure tensors, provide additional analytical elements.
The multiscale analysis contributes to an improved understanding of the ele-
ments that compose a topographical phenomenon. Like what was done using
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the classic wavelet transform, the implementation of pyramidal decomposi-
tion techniques simplifies the combination of frequency spaces resulting from
the discretization of continuous scale. With the case study and the analysis of
surface effects, we improve the comprehension of the landslide dynamics. The
identified and digitized elements should help to apprehend the mass move-
ment and flows of the landslide area. Therefore, mapping them gives a first
overview of the main topographical factors that characterize the phenomenon
(figure 7.12).

As we have seen in chapter 7, phase and magnitude give good results in the
first levels. We were able to analyse high frequency structural linear elements
(micro-folds), which were not identified using the classic wavelet transform. It
is mostly the phase which gives the best overview of these structures, because
their linearity gives context to phase in the two first decomposition levels.
It is similar to the highway on a satellite image example in section 3.2. As
we progress through the levels, phase becomes nevertheless less evident to
interpret visually. These upper decomposition levels are clearly not any more
representative of linear structures, but of areal structures. For such structures,
phase represents a kind of “generalised” aspect, but with almost no relation to
its neighbouring values at this stage. It is the structure tensor analysis which
gives a synthetic local weighted solution to this issue. The values of phase
and magnitude reflect structural information through scale. However, we are
not able, except for micro-structures, to identify fundamentally different or
new information compared to the classic transform.

As we have seen we use a Laplacian operator. If we adjust the orders of the
isotropic Laplacian (γ) and of the complex gradient (N)(equation M.3, ap-
pendix M), we can computed the second derivative in a multiscale framework.
This would approach us to the methods developed by Wood (1996). But in-
stead of using a quadratic surface (equation 2.4, section 2.4), our derivation
basis would be the complex polyharmonic B-spline. It enables us to propose a
clean and nice approach to compute multiscale first and second derivatives of
the DEM using the wavelet transform. This approach would bring us nearer
to the current methods used in geomorphometry.

Marr’s scope of analysis is to bring us nearer to human vision by the syn-
thetic view of scale. This issue is clearly reached regarding the structures we
are able to recognise. Finally, the analysis of the structure tensor (coherency,
orientation and energy) is, in our opinion and regarding our goals, the most
interesting result. According to three geologists and from a geomorphological
point of view, the combined images (HSB image) is hard to interpret. For
them, it looks like “art” on terrain, mainly because the three represented
dimensions (coherency, orientation and energy) are hard to distinguish. Con-
sequently, we proposed the coherency and energy composition, dropping the
orientation.

Coherency & Energy

As stated in chapter 3, a feature has to cover at least two pixels, which was
enlarged to three in our study, in order not to be assimilated to noise in an
image or a DEM. If coherency takes into account the phase and magnitude
of each pixel regarding its neighbouring pixels (3 × 3 convolution window),
than we actually are trying to identify structural elements using neighbouring
analysis tools. Furthermore, if we add to that the multiscale component, we
have an overview of which scale interval (or frequency space) represents which
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type of structure (e.g. the scarp zone in figure 7.11). Indeed, we could make
an inventory of structural elements regarding their scale, but this is only
correct as long as the defined structures are not too scale-complex.

8.4 Framework benchmark

The framework used in this study is composed of two main steps: I (method-
ology) and II (validation) (figure 3.11). Following the above discussion and
remarks, we are able to provide consistent and coherent analysis as well as
multiscale interpretations of high resolution DEMs. Chapters 4 to 7 have
shown that scale analysis on a heterogeneous and non-stationary signal is
possible by using local and compact-supported techniques (wavelets). The
wavelets synthesis capacities have also shown that it was possible to combine
structural elements from different scales.

However, we still need to ask ourselves what the consequences on the side
of geomorphology and its experts are. These new methods can be used pro-
vided that experts validate and accept them. Although the web-based GAS
survey (chapter 6) partially fulfilled and verified these methods, GAS re-
mains predominantly non-dynamic. That is to say, some very specific results
are presented to an audience, and they can neither be altered nor can other
types of synthesis be applied. Notably, the type of coefficient filter cannot be
modified, neither can scale specific reconstructions be undertaken. This lack
will be introduced as a perspective in the next chapter.
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9. Conclusion

Scale exploration in geomorphometry is possible using multiple methods. As
we have seen, most of them are confined to the geometric analysis of a grid-
ded elevation model. Using the wavelet transform, we add a new approach to
exploratory geomorphometry. This allows us implementation of any potential
structural combinations at different scales. Although the approach is defined
in the frequency domain, the localisation properties of the transform is a
significant advantage compared to the Fourier transform. Consequently, we
are able to analyse non-stationary and irregular signals such as an elevation
model. Moreover, we combine wavelet coefficients using different decomposi-
tion levels. These results are enhanced by the sign of each spatially localised
wavelet coefficient. Using these reconstructed generalisations, it is possible to
specify and isolate features and structures of a specific phenomenon.

However, the multiplicity of information reveals a representation problem.
This includes a way to interpret multiple views and structural combinations
that cover the same phenomenon. A first approach is given by recent algo-
rithmic developments in the field of wavelet analysis. The different analysis
and interpretations show that all applied wavelet tools are well suited to
geomorphological analysis.

9.1 Review of the goals

Each defined goal (see section 1.1) will now be taken in review and com-
mented regarding what has been analysed and expressed in this study.

To define a good scaling method for elevation models and, if possible, to im-
plement multiscale analysis approaches

This first goal was clearly achieved. We have shown that it was possible to
generalise DEMs using the wavelet transform. The generalisation process is
validated by the statistical indicators, the visual interpretation and the pro-
file analysis. In the continuity of the generalisation filter bank, the wavelet
transform gives us a unique way to represent specific scale spaces by recon-
structing specific subbands. The multiscale information can be reconstructed
using almost infinite possibilities of combination and coefficient filtering. The
second methodology (chapter 7) enlarges the scope of multiscale analysis by
the identification of specific scale (or frequency) intervals related to simple
structures, throughout the coherency-energy analysis.
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To transfer information from fine scale to broad scale and keep the best struc-
tural geometry

The information transfer is carried out by the wavelet transform in a dyadic
scale interval. It was shown that this process creates a generalised model of
the original without bias or artefacts. Thus, structures are maintained in the
model as long as they correspond to the underlying scale interval. Although
there is no absolute quantitative method or technique to verify it, we used
multiple methods to prove the adequacy between the generalisation steps.

Conserving the best structural geometry is complicated in the natural phe-
nomena representation (the model). What is “the best structural geometry”
in relation to natural structures? How is that defined? If we had a modelled
structure or feature with well-defined edges and borders, then we could try
to analyse the conservation and quality of geometry through scale. Further-
more, if we take a second feature geomorphologically similar to the first one,
but with a slightly different shape, we cannot be sure that its scale interval
will correspond to the one of the first feature.

Using a scale analysis to generalise and simplify information by retaining
only the essential data for multiscale geomorphological analysis

We are looking for geomorphological features whose structure cannot be pre-
defined. It is the analysis and interpretation, which will define the structural
hierarchy and thus the feature of interest. As we have seen, its determina-
tion is crucial for the characterization and understanding of a phenomenon.
Nevertheless, its theoretical definition depends completely on the geomor-
phological context in which it is located. Thus, there is no universal solution.
The wavelet analysis of the frequency domain aims at providing the best
structural combinations regarding a feature for geomorphologists. It does not
provide direct recognition of the feature, but suggests scale combinations - or
frequency combinations, given the interdependence of scale and frequency -
at which the feature can visually be identified. In certain circumstances and
context, we can expect a repetitive behaviour of the wavelet analysis regard-
ing a structural typology; that is to say, to give relevant scales for a type of
phenomenon. Nevertheless it is not a quantitative indicator, but a scale inter-
val. Our methodology fulfils this goal, but the recognition and identification
of features can only be supported, not automated.

To interface scales of interest by combining data at different scales

This goal is partially fulfilled, because we show how to do it and we give
examples. But multiple combinations can be made, and for each new one,
a new layer is created, increasing at the same time the number of layers to
analyse. As stated above, we are able to create a lot of combinations, but
our visual system cannot link an infinite number of them. Thus, we have to
concentrate on a specific number of such combinations.

To produce and recognise geomorphological features through these scale levels

The only mapped features are digitized through visual interpretation of the
different methodologies. There is, at the present, nothing in this study which
automates pattern and/or structure recognition. Section 9.3 gives some hints
on what could be undertaken to try to achieve this goal. But again, our spatial
domain is made of heterogeneous natural features, each of which has its own
shape. Thus, there is almost no chance to be able to define a normalised
methodology to do such recognitions.
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To identify specific scale domains and scale thresholds regarding geomorpho-
logical phenomenology

An attempt (figure 5.35) to fulfil this goal has been made. However, we
should continue the wavelet transform further than the eighth level to be
able to give a clear partition of scale into domains. However, the size of
the original DEM is a first limitation. More importantly and as an essential
condition, the defined domains must be validated using another DEM which
contains other features at other scales.

9.2 Final outcome

The technical elements presented clearly do not replace terrain observa-
tions, geological mapping, geomorphology, and expertise. They simply give
additional analytical techniques and methods that allow the expert to focus
directly on topographic remarkable elements. Moreover, methodologically, it
is necessary to define an implementation framework, because these techniques
are certainly not time-consuming regarding the processing, but they provide
a large number of new surfaces and images. This means for the experts that
they will have to choose the best data combinations for their purposes. There-
fore, it requires a good knowledge of the process and its underlying effects.

We believe that we have introduced innovative analysis techniques to help
experts to characterize a phenomenon better in its topographical aspects.
Moreover, the multiscale approach extends the analysis by simplifying the
complex hierarchy of topographical elements. Although the approach is still
exploratory, we can now partition the spatial domain using its spectral com-
ponents and identify scale-specific features. Moreover, we believe that the
convergence of geomorphology with image analysis and processing can only
be beneficial to these disciplines and enrich them.

9.3 Perspectives

9.3.1 Energy of wavelet coefficients

In chapter 4, we used a local fractal indicator to analyse local self-similarities.
In the wavelet application field, the log plot of the wavelet energy spec-
trum versus the scale interval is used to analyse the fractal properties of
each decomposition level on the whole image (Flandrin, 1989, 1992; Nicolis
et al., 2006). This plot shows the variation of the high-pass coefficients’ en-
ergy throughout the decomposition levels. At a specific level, this energy will
be so low that the wavelet transform does not give us any useful information
any more.

The slope break of the plot gives an indication of non-fractal images versus
fractal-like images. It is certainly interesting to do such analysis on DEMs
and to specify what implication the multiscale approach has on the fractal
dimension of the generalised DEMs. Perhaps, this could also be an approach
to specify until which level the wavelet transform is pertinent. Thus, regarding
the original DEM, it should show us when the image is not self-similar any
more and, consequently, inform us about the wavelet transform reliability.
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9.3.2 Vision for geomorphometry

Marr’s vision theory is a link between our visual perception and the inter-
pretation we make of the world surrounding us. As we attempt to connect
the wavelet pyramid to his theory, it opens up the field of visualisation of our
new data. We have seen that we are able to produce a huge quantity of data,
using little time and limited efforts. It is however surely not appropriate to
transmit all this information as it is. We have to find a way to synthesize
the information, similarly to what the Marr-like wavelet pyramid does, and
imagine new visualisation methods for information and its underlying anal-
ysis. Data complexity has to be interpreted by specialists, but if we manage
to synthesize information to make it usable and interpretable for the Earth
science community, the dissemination of such methods and techniques will
be enlarged.

Another exploratory field is to continue in direction of Marr’s theory and to
apply the latest developments of Van De Ville and Unser (2008), especially
the Marr primal sketch of the structural information in an image. This sketch
uses the complex coefficient resulting from the transform and is an iterative
process to create a scale consistent sketch. However, this approach was not
addressed in this study.

9.3.3 Linking geological space and decomposition levels

Links between geological scale intervals and decomposition levels can be
created by analysing a much larger DEM, in order to reach less detailed
scales. The problem now is that we have used a rather small DEM (1280×768
pixels), which limits our assessment and our interpretation of micro- and
meso-geology. The response of larger geological formations to the wavelet
transform would be the next step. This extension should allow us classification
of hierarchically geomorphological features better, including bigger geological
formations. Moreover, also to understand the effect of filters used on larger
structures, and therefore, be able to understand the structural nesting in a
bigger spatial extend than at present.

It is a scale specification issue. If we are able to specify at which resolution
which structure arises, we could give to geomorphologists the scale interval
at which the elements are isolated by the transform. Therefore give them the
best view of a geomorphological feature and of its composing features.

9.3.4 Dissemination of the wavelet transform applied to DEM
analysis

As the GAS survey illustrates (chapter 6), most participants found that the
wavelet approach was complementary to usual geomorphometric indicators.
In their actual form, the algorithms can however hardly be disseminated.
The whole concept should be analysed in order to distinguish which features
are important to non-experts (of the wavelet transform). More tools should
be given, and visualisation efforts undertaken to diffuse the method. Simple
analytical features should be added to the tool panel, such as representing
the frequency space of the decomposition levels, filtering using pre-defined
filters, soft and hard thresholding of the coefficients, etc.
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If the method and approach are to be communicated to a wide audience,
presenting it in a user-friendly manner is essential. It could be a step toward
the reconciliation of geomorphologists and frequency analysis. It is neces-
sary to ask ourselves whether the proposed interface should give the user
the know-how or the understanding of the scientific method. By know-how,
it is suggested to provide geomorphologists with analysis capabilities using
frequency analysis. As a first introduction, the GAS web-survey (chapter 6)
gives us a first glimpse of what the interface should be. Moreover, from our
point of view, it is important that the know-how is developed and not the
complete knowledge of the mathematical background. Most GIS users do not
know exactly the scientific development of the methods or tools they use. For
example, most GIS users do not have any idea of the strict definition of the
slope that they calculate using a DEM. However, they calculate it and use it.
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Cao, C. and Lam, N. S.-N. (1997). Understandintg the scale and resolu-
tion effects in remote sensing and GIS. In D. A. Quattrochi and M. F.
Goodchild, editors, Scale in Remote Sensing and GIS, pages 57–72. CRC
Press.

Cohen, A. (1992). Ondelettes et traitement numérique du signal. Recherches
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mouvements de terrain par l’analyse des indices topographiques, géologiques
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l’école polytechnique, Paris, France.

Mallat, S. G. (1989). A theory for multiresolution signal decomposition:
The wavelet representation. IEEE Transaction On Pattern Analysis and
Machine Intelligence, 11(7), 674–693.

Marceau, D. J. (1999). The scale issue in social and natural sciences. Cana-
dian Journal of Remote Sensing, 25(4), 347–356.

Marceau, D. J. and Hay, G. J. (1999). Remote sensing contributions to the
scale issue. Canadian Journal of Remote Sensing, 25(4), 357–366.

Marcelja, S. (1980). Mathematical description of the response of simple cor-
tical cells. J. Opt. Soc. Am., 70(11), 1297–1300.

Mark, D. M. and Aronson, P. B. (1984). Scale-dependent fractal dimensions
of topographic surfaces: An empirical investigation, with applications in
geomorphology and computer mapping. Mathematical Geology, 16(7), 671–
683.

Marr, D. (1982). Vision: a computational investigation into the human repre-
sentation and processing of visual information. W. H. Freeman and Com-
pany.

Martinoni, D. (2002). Models and Experiments for Quality Handling in Digi-
tal Terrain Modeling. Ph.D. thesis, Faculty of Science, University of Zurich.

McKean, J. and Roering, J. (2004). Objective landslide detection and sur-
face morphology mapping using high-resolution airborne laser altimetry.
Geomorphology, 57(3-4), 331–351.

Meentemeyer, V. (1989). Geographical perspectives of space, time, and scale.
Landscape Ecology, 3(3/4), 163–173.

Meentemeyer, V. and Box, E. O. (1987). Scale effects in landscape studies.
In M. G. Turner and D. J. Bogucki, editors, Landscape Heterogeneity and
Disturbance, pages 15–34. Ecological Studies 64, Springer-Verlag.

Meyer, Y. (1992). Les Ondelettes, Algorithmes et Applications. Armand
Colin, Paris, France.

Mitasova, H. and Hofierka, J. (1993). Interpolation regularized spline with
tension. Mathematical Geology, 25(6), 657–669.
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Glossary

ALS Airborne Laser Scanning

DEM Digital Elevation Model

DGPS Differential Global Positioning System

DHM Digital Height Model

DSM Digital Surface Model

DTM Digital Terrain Model

FT Fourier Transform

GI Geographical Information

GIS Geographical Information System

GISc Geographical Information Science

GPS Global Positioning System

HTTP HyperText Transfer Protocol

IDW Inverse Distance Weighting

IFT Inverse Fourier Transform

IMU Inertial Measurement Unit

INS Inertial Navigation System

IWT Inverse Wavelet Transform

ISODATA Iterative Self-Organizing Data Analysis Technique

LASER Light Amplification by Stimulated Emission of Radiation

LIDAR LIght Detection And Ranging

LSPs Land Surface Parameterizations

MAUP Modifiable Areal Unit Problem

NASA National Aeronautics and Space Administration



182 Glossary

PHP Hypertext Preprocessor

PLC PLan Curvature

PRC PRofile Curvature

SAR Synthetic Aperture Radars

SNR Signal-to-Noise Ratio

SRTM Shuttle Radar Topography Mission

SVG Scalable Vector Graphics

SVM Support Vector Machines

TIN Triangular Irregular Network

WGS World Geodetic System

WI Wetness Index

WT Wavelet Transform



Mathematical notations

m Number of columns in an image or a set of pixels

n Number of lines in an image or a set of pixels

x x = (x1, x2, . . . , xn), vector

i Wavelet decomposition level (usually in this study i = 0, . . . , 8)

j Complex numbers, imaginary unit

ψ Wavelet function

ϕ Scale function

L Lebesgue space

Wi ith wavelet subspace (high-pass domain)

Vi ith subspace of function f(x)

ω Angular frequency (Fourier domain)

z Complex number of the z-transform (z = A · ejθ = A(cos θ + j sin θ))

ci Low-pass coefficients of wavelet transform of the ith level

dh,i Horizontal high-pass coefficients of wavelet transform of the ith level

dv,i Vertical high-pass coefficients of wavelet transform of the ith level

dd,i Diagonal high-pass coefficients of wavelet transform of the ith level

H Low-pass wavelet filter

H̃ Dual version of filter H

G High-pass wavelet filter

G̃ Dual version of filter G

β B-spline function

β̂ Impulse response (in the Fourier domain) of β

β+ Causal B-spline function
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β− Anti-causal B-spline function

β∗ Symmetric B-spline function

aϕ Autocorrelation of function ϕ(x)

C(ejω) Fourier transform of coefficient c[k]

∆ Laplace operator

∇ Gradient operator



A. Fractional B-splines and Wavelets

This appendix is a general introduction to fractional B-splines and their
associated wavelets. It only shows the main formulas and developments used
to understand out the wavelet transform. For a complete theoretical intro-
duction, please refer to the given bibliography, which includes the following
papers and books: Mallat (1989); Meyer (1992); Dierkcx (1993); Unser (1999);
Mallat (2000); Unser and Blu (2000).

A.1 B-spline Interpolation

B-spline interpolation can be defined using Schoenberg’s theorem (Schoen-
berg, 1946). We can describe a spline as a linear combination of shifted B-
splines, introducing a convolution (see section 3.3.1) in the definition and
giving a polynomial form to the spline:

Theorem A.1.1 (Schoenberg).

s(x) =
∑
k∈Z

c(k)βn(x− k) (A.1)

where s(x) is a signal, c(k) the B-spline coefficients and βn the B-spline basis
function of degree n.

A.1.1 B-spline basis function

If we use an uncentred causal version of the B-spline basis function and of
degree 0 then:

β0
+(x) =

{
1 if x ∈ [0, 1[
0 otherwise

(A.2)

Using the convolution property of the B-spline basis function (recursion
formula), we can compute the causal B-spline basis for a B-spline of degree
n (see figure A.1 for examples):

βn+(x) = β0
+(x) ∗ β0

+(x) ∗ ... ∗ β0
+(x)︸ ︷︷ ︸

n+1 times

(A.3)

In the Fourier domain, the causal B-spline basis function of degree 0 is
defined as (Unser and Blu, 2003):

β̂0
+(ω) =

(
1− e−jω

jω

)
(A.4)
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Fig. A.1. Causal B-spline basis functions, from degree 0 to 5.

By spatial convolution (equation A.3) of this function n times with itself,
we obtain, in the Fourier domain, the basis function for a B-spline of degree
n:

β̂n+(ω) =
(

1− e−jω

jω

)n+1

(A.5)

This is the causal version of the B-spline basis function. If we want to have
a symmetric function, we need to convolve the causal and anti-causal part
of the function (Unser and Blu, 2000). The anti-causal part can be defined
the same way we defined the causal part. Thus, the symmetric version of the
B-spline basis is defined following:

βn∗ (x) = β
n−1

2
+ (x) ∗ β

n−1
2
− (x) (A.6)

What, in the Fourier domain, finally gives:

β̂n∗ (ω) =
∣∣∣∣1− e−jωjω

∣∣∣∣n+1

(A.7)

A.1.2 B-spline coefficients

The c(k) coefficients can be computed using the convolution properties in
the Fourier domain of the Schoenberg Formula:

s(k) =
∑
k∈Z

c(k)βn(x− k) = (c ∗ bn1 )(k) (A.8)

bn1 are the sampled B-spline coefficients. Their definition in the Fourier do-
main is:

(bn1 )−1 F↔ 1
Bn1 (ejω)

(A.9)
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If we use equation A.8 and these sampled B-spline coefficients, we can com-
puted the coefficients corresponding to the signal s(k) :

c(k) = ((bn1 )−1 ∗ s)(k) (A.10)

C(ejω) =
S(ejω)
B(ejω)

(A.11)

Since we want to subsample our signal, we have to introduce a scaling func-
tion. In order to be a stable basis for this purpose, it has to be orthogonal.
Thus, if we define our scaling function as ϕ, the orthogonality is reflected by:

〈ϕ̃(x), ϕ(x− k)〉 = δk (A.12)

where δk is the discret unit impulse and ϕ̃(x) the unique dual function (Unser
et al., 1996). Unser and Blu (1999) defined the scaling function using the
fractional B-spline autocorrelation for orthogonalisation:

ϕ(x) =
∑
k∈Z

(aϕ)−1/2βn(x− k) (A.13)

The Fourier transform of the autocorrelation filter is:

(aϕ)1 F↔ 1
Aϕ(ejω)

(A.14)

and finally:

A(ejω) =
+∞∑

k=−∞

∣∣∣β̂n(ω + 2πk)
∣∣∣2 = A

n−1
2 (ejω) (A.15)

A(ejω) is the frequency response of the filter’s autocorrelation (see section
A.1.3 for computational issues). It may be computed using either the con-
vergence of the infinite sum in the Fourier space or by computing explicitly
β̂.

We have now the B-spline interpolation coefficients. These will be combined
to the wavelet transform.

A.1.3 Filter autocorrelation

In order to compute the B(ejω) coefficient, we need to estimate the filter’s
autocorrelation in the Fourier domain. As shown in section A.1, either we
estimate the autocorrelation, or we compute the coefficients explicitly. We
choose to estimate them using the autocorrelation.

The filter autocorrelation has to be estimated at ν = k
N , k = 0, ..., N − 1 by

using the equivalent Poisson expression An(e1πjν) ≈
∑
n∈Z

∣∣∣β̂n+(2π(n+ ν)
∣∣∣2+∑

n∈Z

∣∣∣β̂n−(2π(n− ν)
∣∣∣2. Once the filters are defined at frequency points ν =

k
N , it is not necessary to recompute them at each decomposition step i. At
i = 1, we need Hn

k and Gnk for k = 0, ..., N − 1 and at the next step i + 1,
we need Hn

2k and Gn2k for k = 0, ..., N2 − 1. This means that the filters can
be precomputed before the WT only by using the degree of the B-spline (n)
and the size of the signal (respectively N for the row dimension and L for
the column dimension).
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A.2 Wavelets

In signal processing, a wavelet analysis is a signal representation of a finite
or rapidly decaying waveform. The associated transform is composed of two
functions. The first is the scaling function ϕ, which is scaled and shifted
throughout the transform to fit a signal. It is associated to a second function
ψ called the wavelet function. These two functions define mirror quadrature
filters, respectively filter H for the scaling function and G for the wavelet
function.

Definition A.2.1 (Mallat, continuous wavelet transform). A wavelet
is a function ψ ∈ L2(R) with zero mean:∫ ∞

−∞
ψ(x)dx = 0 (A.16)

If the wavelet ψ is dilated by a factor i and translated by k, we obtain:

ψi,k(x) =
1√
2i
ψ

(
x− k

2i

)
(A.17)

Thus, the wavelet transform of f ∈ L2(R) at location k and scale i is:

Wf(i, k) = 〈f, ψi,k〉 =
∫ ∞
−∞

f(x)
1√
2i
ψ∗
(
x− k

2i

)
dx (A.18)

Definition A.2.2 (Mallat, linear filtering). The wavelet transform can
be written like a convolution:

Wf(i, k) = 〈f, ψi,k〉 = f ∗ ψi(k) (A.19)

With:

ψi(x) =
1√
2i
ψ∗
(
−x
2i

)
The Fourier transform of ψi(x) is:

ψ̂i(ω) =
√

2iψ̂∗(2iω) (A.20)

For each wavelet, there is a scaling function ϕ, which can be interpreted as
the impulse response of a low-pass filter:

ϕi(x) =
1√
2i
ϕ
( x

2i
)

(A.21)

A.2.1 Mirror filters

If we take a scaling factor i = 1 (dyadic subsampling), the following decom-
position can be made:

ϕ
(x

2

)
=
√

2
+∞∑

n=−∞
h[n]ϕ(x− n) (A.22)

which gives in the Fourier domain:

ϕ̂(2ω) =
1√
2
ĥ(w)ϕ̂(w) (A.23)

finally:

ĥ(w) =
√

2
ϕ̂(2ω)
ϕ̂(w)

= H(ejω) = H(z) (A.24)
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Using the corresponding two-scale relation and the definition of the B-spline
autocorrelation (cf. equations A.23 and A.13), the refinement filter can by
computed through (Blu and Unser, 2000):

H(ejω) =

√
Aϕ(ejω)
Aϕ(ej2ω)

√
2
∣∣∣∣1 + e−jω

2

∣∣∣∣n+1

(A.25)

Mallat (2000) showed that if the scaling function ϕ(x) satisfies three condi-
tions (Riesz basis criterion, refinability and partition of unity), a correspond-
ing wavelet ψ(x) exists and it is a linear combination of shifted versions of
the scaling function (Unser and Blu, 2003):

ψ
(x

2

)
=
√

2
∑
k∈Z

g(k)ϕ(x− k) (A.26)

where g(k) is the impulse response of the wavelet synthesis filter.

Using Mallat (2000), we obtain the wavelet filter1:

G(z) = z ·H(−z−1) (A.27)

The decomposition of a signal using the wavelet transform boils this signal
down to low-pass, high-pass filtering and down-sampling. Vetterli (Vetterli,
1986) gave the following theorem for a perfect reconstruction of the signal:

Theorem A.2.1 (Vetterli). The conditions for a perfect reconstruction
are:

H̃(z−1)H(z) + G̃(z−1)G(z) = 2 (A.28)

H̃(z−1)H(−z) + G̃(z−1)G(−z) = 0 (A.29)

A.3 Computing the wavelet transform

First, we define the next variables and parameters (figure A.2):

– s[k]: discrete signal corresponding to our elevation data.

– S(ejω): signal in the Fourier domain.

– i: scale index of the decomposition.

– B(ejω): discrete B-spline filter in the Fourier domain.

– C(ejω): spline coefficients in the Fourier domain.

– c[k]: B-spline coefficients in the spatial domain.

To apply the wavelet transform in the correct way, we have to inject the B-
spline coefficients into the filter bank. Thus, we must first prefilter the data
with the spline prefilter. Once we have computed these, we can apply the
wavelet transform using Mallat’s algorithm. Again, the transform results are
spline coefficients which have to be post-processed to obtain elevation data
again.
1 z is the z-transform operator, which is a generalisation of the Fourier transform.

It is defined by z = ejω
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Fig. A.2. Signal pre- and post-processing



B. Fractional spline wavelet and scaling
functions

As seen in appendix A, there are plenty of functions which could be used to
define a wavelet family and, by deduction, the corresponding scaling function.
We chose to use the fractional spline wavelets family (Unser, 1999) regarding
the spline interpolation basis that may be defined as scaling function (see
section B.1). If we use a B-spline basis function, the associate wavelet family
will be symmetric dual1 wavelets. In order to select an appropriate degree
of B-spline basis, an empirical study using different degree is made: n =
0.5, 1, 1.5, ..., 5. Scaling and wavelet function shapes are shown in figures B.8
to B.16 (except for degree 3, see figure 4.8 in chapter 4).

B.1 Fractional spline wavelets

B.2 Choice of B-spline degrees

As reminder and regarding our goals, the scaling function should:

– Give the best possible generalisation, e.g. be the best interpolation func-
tion.

– Not inject structures into the DEM due the shape of the wavelet.

B.2.1 Frequency composition of low-pass reconstructions

Using the DEM of Travers as input signal (see appendix F for details on
this DEM), each basis (of degree n) was applied until the fifth decomposition
level. For each level, a synthesis (reconstruction) was applied to the low-pass
subsampled DEM, but with omission of all high-pass coefficients. The SNR2

was then computed between each DEM and the original DEM.
The SNR gives advice on the similarity between two images. Thus the lowest

it is, the more similar the two images are.
As we go through the scales, the SNR gets higher. This seems normal because

the DEMs are less and less similar to the original surface as they are more
and more generalised. As shown on figure B.1, at each 0.5 augmentation of
the B-spline degree, the SNR gets lower. For one level, the SNR decreasing
between degrees 0.5 and 1 is of factor 2.
1 Scaling and wavelet functions ϕ and ψ are dual when for every i the decom-

position formulae is: f =
∑
k∈Z

〈
f, ψ̃jk

〉
ψjk +

∑
j′≥j,k∈Z 〈f, ϕ̃jk〉ϕjk (Bernard,

2001)
2 Independent Signal-to-Noise ratio:

SNR = 20 · log10

(√
1

(n·m−1) ·
∑n
i=1

∑m
j=1(Ioriginal,i,j−Ioriginal)√

1
(n·m−1) ·

∑n
i=1

∑m
j=1(Inoise,i,j−Inoise)

)
, where Ioriginal is

the original DEM, Inoise are the synthesised coefficients, n and m are respectively
the height and width of the DEM.
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Fig. B.1. SNR of the different n degrees low-pass reconstruction (decomposition
level 5) of the Travers DEM

To have a better view of the evolution at higher degree, a log10 function was
applied to the SNR values. It is interesting to see that since degree n = 2,
the SNR are almost converging. Differences, looking at the SNR, are little
between degrees n = 2 to n = 5.

Conceptually, degrees n = 0.5 to n = 1.0 are not appropriate as the shape of
the basis function is not smooth enough and does not correspond to natural
terrain shapes. This is exactly what can be seen in figure B.2. The square
structures are induced by the wavelet shape, thus this degree does not respect
one of our conditions.

An infinite convolution of the B-spline basis would tend to a sinc function,
but the progression of the retrieved information in the different decomposition
levels is not linear, thus it is not necessary to use higher levels. We chose to
use a cubic B-spline basis (n = 3) as scaling function because it was already
used as refinement or generalisation filter for DEM.

By visually comparing the original DEM (figure B.3) to the fifth level re-
constructed DEMs (figures B.4 and B.5), low degrees surfaces (n ≤ 2) are
not appropriate because their shape injects noisy information to the model
(see the square structures in figure B.3, (a), (b), (c) and (d)). From higher
degrees (n > 2), differences between the reconstructed surfaces are hardly
visible and they correspond to the generalisation process expected by going
from the original DEM to the fifth decomposition.
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Fig. B.2. log10(SNR) of the different n degrees low-pass reconstructions (decom-
position level 5) of the Travers DEM

Fig. B.3. Original DEM c©SITN
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Fig. B.4. Reconstructed DEMs, degrees n = 0.5 (a), n = 1.0 (b),n = 1.5 (c),n = 2.0
(d),n = 2.5 (e),n = 3.0 (f)
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Fig. B.5. Reconstructed DEMs, degrees n = 3.5 (g), n = 4.0 (h),n = 4.5 (i),n = 5.0
(j)
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B.3 Profiles on generalised DEMs

Three profiles are defined on a DEM (figure B.6). The first one (Profile 1
on figure B.6) is covering a very de-structured zone, beginning just under
the new reconstructed road going through a landslide and finishing in the
scarp zone. The second (Profile 2) covers a hill, but on the top of it there is
a gravel-pit resulting in strong structural modifications.

Fig. B.6. Profiles , 1 m shaded DEM c©SITN

Fig. B.7. Profile 1
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B.4 2D shape of fractional B-spline scaling and wavelet
functions

Fig. B.8. Illustrations of the scaling function (B-spline of degree 0.5)(a) and the
wavelet function (symmetric dual wavelet)(b)

Fig. B.9. Illustrations of the scaling function (B-spline of degree 1)(a) and the
wavelet function (symmetric dual wavelet)(b)
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Fig. B.10. Illustrations of the scaling function (B-spline of degree 1.5)(a) and the
wavelet function (symmetric dual wavelet)(b)

Fig. B.11. Illustrations of the scaling function (B-spline of degree 2)(a) and the
wavelet function (symmetric dual wavelet)(b)

Fig. B.12. Illustrations of the scaling function (B-spline of degree 2.5)(a) and the
wavelet function (symmetric dual wavelet)(b)
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Fig. B.13. Illustrations of the scaling function (B-spline of degree 3.5)(a) and the
wavelet function (symmetric dual wavelet)(b)

Fig. B.14. Illustrations of the scaling function (B-spline of degree 4)(a) and the
wavelet function (symmetric dual wavelet)(b)

Fig. B.15. Illustrations of the scaling function (B-spline of degree 4.5)(a) and the
wavelet function (symmetric dual wavelet)(b)
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Fig. B.16. Illustrations of the scaling function (B-spline of degree 5)(a) and the
wavelet function (symmetric dual wavelet)(b)



C. Profiles on generalised surface
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Fig. C.1. Profiles 2, decomposition levels 0-4, (Left side is the western end of the
profile and right side is the eastern end of the profile.)
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Fig. C.2. Profiles 2, decomposition levels 5-8 (Left side is the western end of the
profile and right side is the eastern end of the profile.)
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Fig. C.3. Statistical indicators of elevation variation through the decomposition
levels, profile 2
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Fig. C.4. Profiles 3, decomposition levels 0-4 (Left side is the western end of the
profile and right side is the eastern end of the profile.)
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Fig. C.5. Profiles 3, decomposition levels 5-8 (Left side is the western end of the
profile and right side is the eastern end of the profile.)
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Fig. C.6. Statistical indicators of elevation variation through the decomposition
levels, profile 3
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D. Hurst coefficient

D.1 Hurst coefficient

We used the development described in Parker (1997); Russ (1994) and Russ
(1990).

A scalable window is convoluted over the DEM. Considering the different
distance classes inside this window, the elevation range is attributed to each
distance class and a log− log plot is made for each convoluted pixel. Then, a
linear regression is applied to the log− log plot and the slope of this regression
is defined as the Hurst coefficient.

On each pixel of the DEM, the Hurst coefficient is computed using a max-
imum distance (dmax) and the resolution r of the analysed DEM. The dis-
tance threshold is simply the ratio of the maximum distance and the reso-
lution (threshold = ceil(dmax/r)). Thus, on a convolution window of radius
threshold, each possible distance is defined as a class. For each one, the range
of the included pixel values is computed (called the elevation range). The class
distances are then defined as x axis and the elevation ranges as y axis on a
log− log (natural logarithm) plot. The slope of a linear regression on this plot
gives the Hurst coefficient (the slope of the adjusted line). For computational
purposes, the original DEM size is increased using mirror border conditions.

D.1.1 Example of Hurst coefficient computation

If we define a matrix with a 1 m resolution (r = 1), dmax = 3 and
threshold = 3. As example and for one pixel (see figure D.1 for the example
values), the Hurst coefficient would give the following results:

– c0 (d0 = 0): is not defined as a class because the distance is equal to zero.
– c1 (d1 =

√
02 + 12 = 1): the elevation range is computed using the local

minimum and the local maximum of pixel in classes c0 and c1, thus c1,
value = 770− 738 = 32

– c2 (d2 =
√

12 + 12 =
√

2): the elevation range is computed using the local
minimum and the local maximum of pixel in classes c0, ..., c2, thus c2,
value = 810− 738 = 72

– c3 (d3 =
√

22 + 02): the elevation range is computed using the local
minimum and the local maximum of pixel in classes c0, ..., c3, thus c3,
value = 810− 738 = 72

– c4 (d =
√

22 + 11 =
√

5): this would be the next class, but because d4 >
threshold, this class and higher distance classes are not taken into account.
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Fig. D.1. A central pixel with its local neighbouring pixels. Using threshold = 3,
three classes (c1, c2, c3) are defined.

Class Distance Range ln(distance) ln(range)

c1 1.00 32 0.00 3.4657

c2 1.41 72 0.35 4.2767

c3 2.00 72 0.69 4.2767

Fig. D.2. Hurst example

Fig. D.3. Example log− log regression
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By adjusting a linear regression on the log values of the distance and range,
the Hurst coefficient is defined. In this example, the equation of the linear
regression is: y = 3.6009 + 1.1699x, thus the Hurst coefficient (slope of re-
gression) is: 1.1699 (figure D.3).

The Hurst coefficient is similar to a measure of surface roughness, as the
one defined in Li et al. (2005) for example. As Russ (1990) proposed, the
convolution mask is usually an octagonal 7-pixel wide window.

D.2 Hurst coefficient on virtual landslide

The Hurst coefficient was computed using a 7 × 7 window for each image.
Thus, the distance is constantly increasing with the increasing of the decom-
position level. Conceptually, the distance is equal to 7 meters for the original
DEM (r = 1 m), 14 meters for the first decomposition level (r = 2 m) and
so on for the next levels.



212 D. Hurst coefficient

Fig. D.4. Hurst coefficient, (a) decomposition level 0 (r = 1 m). The white holes
are flat areas. These are undetermined, because the elevation range is equal to
zero, thus the natural logarithm tends to −∞. As a reminder, a large Hurst co-
efficient indicates a smooth image. In this case, flat areas give an infinite slope,
thus the smoothest image one can get. (b) decomposition level 1 (r = 2 m), ..., (e)
decomposition level 4 (r = 16 m)



E. Detail coefficient of the virtual landslide

Fig. E.1. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition level 1, filters 1-3
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Fig. E.2. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition levels 1-2, filters 1-3
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Fig. E.3. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition levels 1-3, filters 1-3
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Fig. E.4. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition levels 1-4, filters 1-3
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Fig. E.5. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition levels 1-5, filters 1-3
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Fig. E.6. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition levels 1-6, filters 1-3
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Fig. E.7. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition levels 1-7, filters 1-3
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Fig. E.8. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−40, 40]), decomposition levels 1-8, filters 1-3



F. The Travers landslide description

The Travers landslide is a recent landslide which occurred on April 10th

2007. It is located1 in Swiss Jura (figure F.1) in the village of Travers -
Canton of Neuchâtel. The factors which induced the mass movement were
intense rainfall (393 mm rain) and active thaw the month before.

F.1 Data

This section describes the different data, that is the acquired high resolution
DEM and the geological map established by Gocht (1961).

F.1.1 DEM

The DEM used for the case study was acquired nine days after the landslide
occurred (19th April 2007) using the scan2map2 airborne LiDAR points. The
raw point density (∼ 4 pt/m2) enabled the interpolation of a 1 m DEM
using a TIN. The resulting DEM is a matrix of 1280× 768 pixels with a 1 m
resolution (figure F.2). Local authorities built a new road in order to be able
to access the uphill farms and utilities, which causes the discontinuity in the
landslide zone just between the transition zone and the scarp zone. Besides,
the scarp zone was also remodelled by the authorities in order to facilitate
the surface water drainage coming from the three resurgences in the scarp
zone.

Using the acquired DEM, contour lines (interval 5 m) were computed to
illustrate the gentle slope on which the landslide is located. The only steep
zone (figure F.4) on the DEM is located in the south-east part of the DEM,
which represent the uphill zone of the Jura range.

1 In the Swiss projection (CH-1903), the centre is: 542′270.00, 198′400.00
2 scan2map is a research project of the Geodetic Engineering Labora-

tory at the Ecole Polytechnique Fédérale de Lausanne (TOPO-EPFL, see
http://topo.epfl.ch/laserscanning/, accessed September 16th 2009)
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Fig. F.1. Localisation of the Travers landslide. The landslide is identified by the
black and white stripped zone. CN1000,CN25 c©swisstopo
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Fig. F.2. Shaded DEM of Travers - Canton of Neuchâtel, DEM c©SITN
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Fig. F.3. Contour lines (interval 5 m), computed using the DEM, overlaid to the
shaded and height coloured DEM of Travers - Canton of Neuchâtel, DEM c©SITN
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Fig. F.4. Slope map, derived and segmented from the DEM of Travers, plan
d’ensemble 1 : 10 000 c©SITN
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F.1.2 Geological Map

The surface of the DEM is composed of quaternary moraine and formations
from the Cretaceous (Ablian, Hauterivian, Valangian and Purbeckian) and
Jurassic (Purbeckian and Portlandian) periods. The molasse is a sedimentary
clastic formation. Between the moraine and the Cretaceaous-Jurassic forma-
tions, there is a fallen rock zone which is a matrix of the uphill formations.
These uphill formations are organised in strata revealing some terrace-like
formations.
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Fig. F.5. Geological map (Gocht, 1961), plan d’ensemble 1 : 10 000 c©SITN
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F.2 Description of the Travers landslide

The phenomenon analysis of the landslide shows that this one is of type
earth flow - landslide (Krähenbühl, 2007). In the upper part of the landslide
(south-east, figure F.6), it consists of a major scarp zone made partly of
morainic deposits and partly of silty sand interpreted as weathered products
from the molassic bedrock. This bedrock is composed of tertiary molassic
deposits made of sandstones and marl. The material slid along a surface
of rupture parallel to the slope (translational landslide at the molasses’ roof
level) according to two different modes in the phenomenological point of view.
The displaced material, rich in sandy muddy saturated material, was lique-
fied and produced a flow, which now occupies the upper central and oriental
part of the accumulation zone. In the continuity of this first movement mode,
the morainic displaced material, and its pedological coverage, slid in a more
ductile way and depleted on the accumulation zone by forming folds which
clearly can be distinguished on the north-west part of the accumulation zone
(see figure F.6). The spatial distribution of the main landslide folds is illus-
trated in the phenomena map. We can see that four groundwater resurgences
appeared subsequently to the landslide; three in the scarp zone and one in the
middle of the accumulation zone. The displaced and bedrock material were
saturated as the landslide happened. It induced the evacuation of groundwa-
ter which was under pressure. As a consequence, several wetlands, as well as
ponds, appeared in the accumulation zone. The three scarp zone resurgences
are drained (on surface) to a spillway. This was done in order to reconstruct
a new road, which was stabilized with tree trunk stilts.

Fig. F.6. Phenomena map, July 2007, (Krähenbühl, 2007), aerial photography
c©SITN
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Krähenbühl (2007) undertook a study to determine what the geological is-
sues that induced the landslide were. In situ observation and analysis were
made in order to establish a phenomenological mapping (figure F.6). As con-
clusion it was established that the phenomenon is a combination of thaw,
heavy rain (393mm in three weeks) and infiltration of water. The uphill lime-
stone strongly influences the water infiltration due to the high porosity of the
composing materials. This water spreads rapidly inside the altered masses of
sandstone and high volumes of subsurface water are under pressure at the
interface between sandstone and moraine. The clay composing this latter
prevents the discharge of the confined groundwater, but at one point, the
pressure liquefies the sandy material constituting the moraine due to the in-
herent increased cohesion. The moraine clay begins to slide on the sand (see
figure F.7). From the scarp zone, the flow was constituted of laminated clay
material. It flowed down to the north side of the landslide zone, leading to
the deposit of these materials and packing down the morainic coverage of
the north-west landslide area. This settlement caused the deterioration of
materials (clay) and multiple water resurgences appeared in the sliding area.

Fig. F.7. Geological cut of the Jura region (Krähenbühl, 2007)

The spread of water in the landslide area is difficult to understand due to
several factors:

1. Surface water flowing from the scarp zone is drained towards the new
road. The resurgent water in the transition and accumulation zones comes
therefore from subsurface flows.

2. The lamination and settlement significantly altered the material in a
heterogeneous mass. The material identification is complicated and un-
certain.

The landslide stabilization occurs primarily through the drainage of the
water that induces residual sliding of materials. However, the understanding
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of the hydrological processes is difficult due to various phenomena composing
the landslide.
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Fig. G.1. Profile 1, decomposition levels 1 to 4, (Left side is the north-western end
of the profile and right side is the south-eastern end of the profile.)
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Fig. G.2. Profile 1, decomposition levels 5 to 8, (Left side is the north-western end
of the profile and right side is the south-eastern end of the profile.)
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Fig. G.3. Profile 2, decomposition levels 1 to 4, (Left side is the north-western end
of the profile and right side is the south-eastern end of the profile.)
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Fig. G.4. Profile 2, decomposition levels 5 to 8, (Left side is the north-western end
of the profile and right side is the south-eastern end of the profile.)
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Fig. G.5. Profile 3, decomposition levels 1 to 4, (Left side is the western end of
the profile and right side is the eastern end of the profile.)
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Fig. G.6. Profile 3, decomposition levels 5 to 8, (Left side is the western end of
the profile and right side is the eastern end of the profile.)
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Fig. H.1. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition level 1, filters 1-3
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Fig. H.2. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition levels 1-2, filters 1-3
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Fig. H.3. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition levels 1-3, filters 1-3
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Fig. H.4. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition levels 1-4, filters 1-3
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Fig. H.5. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition levels 1-5, filters 1-3
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Fig. H.6. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition levels 1-6, filters 1-3
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Fig. H.7. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition levels 1-7, filters 1-3
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Fig. H.8. Images of normalized coefficients (normalisation at [−100, 100], satura-
tion at [−20, 20]), decomposition levels 1-8, filters 1-3
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I. Fold profiles

Fig. I.1. Values of normalized coefficients, decomposition levels 1-3, filters 1-3
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Fig. I.2. Values of normalized coefficients, decomposition levels 1-4, filters 1-3
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Fig. I.3. Values of normalized coefficients, decomposition levels 1-7, filters 1-3
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Fig. I.4. Values of normalized coefficients, decomposition levels 1-8, filters 1-3



J. Linear structural elements on the Travers
DEM

Fig. J.1. High-pass results for linear elements using the three filters, for decompo-
sition levels 1 to 4
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Fig. J.2. High-pass results for linear elements using the three filters, for decompo-
sition levels 5 to 8



K. GAS - Geomorphometric Analysis System

GAS is a SVG web-mapping interface combined to an online survey. It was
online from June 2009 to the end of September 2009.

The web-based questionnaires and mapping interface are composed of:

1. The SVG interface is built using PHP scripting and all terrain attribute
values (elevation, slope, etc) are sent to the client (web navigator) using
Javascript arrays.

2. The interaction between the user and its client is animated through
Javascript which modifies the SVG content interactively.

3. All the spatial data digitized by the user is sent using HTTP requests
(Javascript and PHP). At the server side, the data is stored in a postGIS1

database.
4. The answers to the questionnaires are stored in PostgreSQL2 database.

Due to the complexity of the subject and the limited potential audience,
we did not have a lot of surveys. Therefore the analysis of the results will be
done in a statistical manner, thus quantitative, but mostly qualitatively.

1 postGIS: http://postgis.refractions.net/, accessed 17 September 2009
2 http://www.postgresql.org/, accessed 17 September 2009
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K.1 Result analysis

K.1.1 First questionnaire results

User age: ≤ 20 years 21-30
years

31-40
years

41-50
years

51-60
years

≥ 60 years

0 4 7 2 1 1

User GIS
skills:

Very bad Bad Intermediate Good Very good

0 0 2 7 5

User DEM
knowl-
edge:

Yes No

14 0

User
who used
DEMs:

Never Rarely Sometimes Often Very often

2 0 5 3 4

User ALS
knowl-
edge:

Yes No

13 1

User who
used ALS
DEMs:

Never Rarely Sometimes Often Very often

3 1 4 6 9

User who
know
primary
DEM
deriva-
tives:

Yes No

12 2

User who
know
secondary
DEM
deriva-
tives:

Yes No

12 2

Table K.1. Answers to the first questionnaire of the Gemorphometric Analysis
System (GAS) study. For the exact formulations of the question, refer to table K.4
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K.1.2 Second questionnaire results

User satis-
faction:

Satisfied Not satis-
fied

4 10

Estimated
difficulty:

Very diffi-
cult

Difficult Neither Easy Very easy

1 2 10 1 0

Enough
data?:

Yes No

8 6

Table K.2. Answers to the second questionnaire of the Gemorphometric Analysis
System (GAS) study. For the exact formulations of the question, refer to table K.5

The following comments were given regarding the first question (If not,
why?, the capital letters are an anonymous identification of users):

– A: “Difficult to know what I see.”
– B: “Lack of familiarity with the technology, the data and the region.”
– C: “I would have liked to have seen a digital elevation model, not only its

hillshade in order to have a better view on the directions of movement.”
– D:“I am not a geologist or geomorphologist and do not have enough knowl-

edge about the important processes so I did not know what to map.”
– E: “A complete analysis takes more than 20 minutes. It is necessary to

have additional documents (aerial photography). Particularly, the landslide
uphill zone with the new road is hard to interpret. I limited myself to some
feature relative to the landslide.” (translated from French)

– F: “I do not know enough.” (translated from French)
– G: “I am not used to the geomorphological vocabulary.” (translated from

French)
– H:“The help bubbles of the tools are boring me! I can erase them... So I

have problems to see the top of the map.”
– I: “Needed derivatives to be computed at multiple window sizes and grid

resolutions to better assess larger features and provide context”
– J: “Matter of time (20min!?). I missed the elevation data itself ”
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K.1.3 Third questionnaire results

User satis-
faction:

Satisfied Not satis-
fied

5 9

Wavelet
useful?:

Yes No

11 3

Wavelet
under-
stable?:

Yes Partially
yes

Partially
no

No

1 9 3 1

Easy with
wavelets?:

Def. yes Yes Neither No Def. no

1 10 0 3 0

Table K.3. Answers to the third questionnaire of the Gemorphometric Analysis
System (GAS) study. For the exact formulations of the question, refer to table K.6

The following comments were given regarding the first question (the capital
letters represent the same user):

– B: “Same as before... (Lack of familiarity with the technology, the data and
the region.)”

– C: “I find that the explanatory power of the wavelet analysis is somewhat
limited. As far as I know wavelets are applied to detect frequencies in the
1D or 2D domain. I am not sure if this frequency filtering is good here
except for detecting wave-like patterns in the landslide body. However, I
am surprised how well larger landforms are captured by the low-pass filtered
images. The high-pass images show some artefacts.”

– D: “Again, I know too little about landslides. But I definitely could distin-
guish more patterns with the added layers.”

– E: “The second analysis could help to affine the first one, but I see that
some important elements were already detected, thus I did not digitize the
whole again.” (translated from French)

– F: “Sorry, cannot do it better...” (translated from French)
– G: “Same again, not enough vocabulary” (translated from French)
– K: “Hard to detect differences in decomposed maps”
– H: “Always the same problem with the help bubbles. Perhaps a problem of

web browser...”
– J: “Time again, but I am also not used to the wavelet concept”

K.1.4 General comments

Following general remarks and comments were given at the end of the survey:

– B: “I reviewed a paper about this for a forthcoming conference in Zurich.”
– C: “Nice work.”
– D: “Maybe I should not be considered a earth science specialist...”
– E: “It is an additional element to help to do an analysis, which is always

a good thing, but without being completely determining” (translated from
French)
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– K: “Maps show different things for different decomposition level, it would
be useful to understand what is highlighted at what decomposition level.”

– H: “I think that wavelet layer could be an interesting complement to the
first and second derivatives of DTM. But, depending of the topographic
roughness, only few wavelet layers are helpful.”
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Fig. K.1. GAS mapping - session 7, (a) exercise 1 and (b) exercise 2
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K.3 Questionnaires

Question Possible answers

How old are you? <= 20 or 21 - 30 or 31 - 40 or 41 -
50 or 51 - 60 or > 60

What is your profession? GIS specialist or Geologist or Ge-
omorphologist or Morphometry spe-
cialist or Environmental engineer or
IT specialist or Image processing
specialist or Cartographer or Other
(with description)

What is the level of your GIS skills
(GIS: Geographical Information Sys-
tems)?

Very bad or Bad or Intermediate or
Good or Very good

Do you know what a DTM (Digital
Terrain Model) is?

Yes or No

Have you used DTMs to carry out
geomorphological terrain analysis?

Never or Rarely or Sometimes or Of-
ten or Very often

Do you know what airborne laser
scanning is?

Yes or No

Did you already use very high res-
olution DTMs generated from laser
scanning?

Never or Rarely or Sometimes or Of-
ten or Very often

Do you know how primary topo-
graphic attributes (slope, aspect and
curvature surfaces) are derived from
a DTM?

Yes or No

Do you know how secondary topo-
graphic attributes (catchment area,
wetness index, solar radiation and
other surfaces) are derived from a
DTM?

Yes or No

Table K.4. First set of questions
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Question Possible answers

Are you satisfied with the analysis
you carried out?

Yes or No

If not, why? User comment

Were there enough available spatial
data (DTM and derivatives) for the
cartography of the landslide?

Yes or No

How difficult was it to identify spe-
cific structures of the landslide?

Very hard or Hard or Not hard, not
easy or Easy or Very easy

Table K.5. Second set of questions

Question Possible answers

Are you satisfied with the second
analysis you carried out?

Yes or No

If not, why? User comment

Were additional wavelet layers useful
for you in order to detect more fea-
tures or to discover complementary
information?

Yes or No

Did you understand what the new in-
formation was showing?

Definitively yes or Yes, partially or
No, not fully or Definitively no

Was it easier for you to identify spe-
cific structures of the landslide using
wavelet layers than using a standard
DTM and associated derivative infor-
mation ?

Definitively yes or Yes or Did not
change anything or No or Definitively
no

Have you any remarks/comments? User comment

I would like to be informed about re-
sults and further developments.

E-mail address, contact address

Table K.6. Third set of questions
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L.1 Generalised Least-Square Errors - fuzzy k-means

If X = {x1, x2, ..., xn} is a set of n variables. For each variable x ∈ X, we
have m observations. The set of clusters C = {c1, c2, ..., cC} is a partition
of X and c1, ck, ..., cC are integers with boundaries k ∈ [2, C). The k-means
algorithm computes a membership µ for each nth variable (of each mth ob-
servation) to each cth cluster. It is based on the minimization of the objective
function Jp:

Jp =
n∑
k=1

C∑
i=1

(µik)p‖xk − ci‖2 (L.1)

The partition is an optimization of the function by iteration:

µik =
1∑C

k=1

(
‖xicj‖
‖xick‖

) 2
p−1

(L.2)

and:

ck =
∑n
i=1 µ

p
ikxi∑n

i=1 µ
p
ik

(L.3)

where:

– p is the weightening exponent, a real number p ∈ [1,∞).
– µik is the degree of membership of xi in the cluster k.
– xi is the ith of m-dimensional measured data, X ⊂ R2.
– ck is the kth centre, k ∈ [2, C).
– C is the number of chosen centers.

The norm can be computed using the Euclidean distance or the distance
of Manhattan. In this study, the Euclidean distance was used for norm com-
putation. There are a few methods / indicators to assess the quality of the
classification.

L.1.1 Confusion Index

The confusion index (CI) indicates how good the classification of each ob-
servation (separately) is. For each set of membership values (of each obser-
vation), it is possible to calculate the ratio of the second dominant value to
the first dominant value:

CI =
maxfuzz2
maxfuzz1

(L.4)
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– maxfuzz1: first dominant value
– maxfuzz2: second dominant value

It is commonly admitted that if the resulting confusion index CI is lower
than 0.6, then the cluster k from which the first dominant value is taken is a
hard class. Thus, the pixel has been hard classified and that there almost no
chance that the pixel is part of another cluster.

Two tests are described to assess the quality of the clustering in general:

L.1.2 F, partition coefficient

The F test is calculated following:

F =
1
n

n∑
i=1

C∑
k=1

(µik)2, 1/C < F < 1 (L.5)

The number of chosen clusters changes the boundaries of the F value. In
order to be able to compare the different F values obtained through the
different number of chosen clusters, we need to normalise it:

Fscaled =
F − 1/C
1− 1/C

(L.6)

when Fscaled tends to 1, then the clusters are the most significant.

L.1.3 H, classification entropy

H =
1
n

n∑
i=1

C∑
k=1

−µik ln(µik) (L.7)

Like for the F value, we need to normalise the H value:

Hscaled =
H − 1 + F

ln(C)1 + F
(L.8)

When Hscaled tends to 0, then the number of clusters is the most significant.
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L.2 Results for the Travers DEM

L.2.1 Correlation of geomorphometric information

Level 0 Elevation Slope Solar irrad Profile curv. Plan curv. Wetness I. Ridge dist.
Elevation 1 0.66 0.01 0.01 -0.65 0.07 -0.4
Slope 0.66 1.00 -0.89 -0.01 0.01 -0.52 0.04
Solar irrad. 0.01 -0.89 1.00 0.03 0.01 0.40 -0.02
Profile curv. 0.01 -0.01 0.03 1.00 0.43 -0.08 0.02
Plan curv. -0.65 0.01 0.01 0.43 1.00 -0.23 0.04
Wetness I. 0.07 -0.52 0.40 -0.08 -0.23 1.00 -0.29
Ridge dist. -0.4 0.04 -0.02 0.02 0.04 -0.29 1.00

Level 1 Elevation Slope Solar irrad Profile curv. Plan curv. Wetness I. Ridge dist.
Elevation 1 0.69 0.01 0.01 -0.68 0.29 -0.43
Slope 0.69 1.00 -0.90 -0.02 0.01 -0.56 0.22
Solar irrad. 0.01 -0.90 1.00 0.04 0.01 0.43 -0.20
Profile curv. 0.01 -0.02 0.04 1.00 0.38 -0.08 0.03
Plan curv. -0.68 0.01 0.01 0.38 1.00 -0.27 0.08
Wetness I. 0.29 -0.56 0.43 -0.08 -0.27 1.00 -0.44
Ridge dist. -0.43 0.22 -0.20 0.03 0.08 -0.44 1.00

Level 2 Elevation Slope Solar irrad Profile curv. Plan curv. Wetness I. Ridge dist.
Elevation 1 0.72 0.02 0 -0.71 0.52 -0.47
Slope 0.72 1.00 -0.91 -0.04 0.01 -0.60 0.35
Solar irrad. 0.02 -0.91 1.00 0.05 0.01 0.47 -0.33
Profile curv. 0 -0.04 0.05 1.00 0.38 -0.06 0.03
Plan curv. -0.71 0.01 0.01 0.38 1.00 -0.27 0.09
Wetness I. 0.52 -0.60 0.47 -0.06 -0.27 1.00 -0.54
Ridge dist. -0.47 0.35 -0.33 0.03 0.09 -0.54 1.00

Level 3 Elevation Slope Solar irrad Profile curv. Plan curv. Wetness I. Ridge dist.
Elevation 1 0.77 0.02 0.00 -0.76 0.44 -0.52
Slope 0.77 1.00 -0.91 -0.07 0.01 -0.63 0.27
Solar irrad. 0.02 -0.91 1.00 0.09 0.02 0.49 -0.25
Profile curv. 0.00 -0.07 0.09 1.00 0.37 -0.05 0.03
Plan curv. -0.76 0.01 0.02 0.37 1.00 -0.28 0.07
Wetness I. 0.44 -0.63 0.49 -0.05 -0.28 1.00 -0.44
Ridge dist. -0.52 0.27 -0.25 0.03 0.07 -0.44 1.00

Level 4 Elevation Slope Solar irrad Profile curv. Plan curv. Wetness I. Ridge dist.
Elevation 1 0.82 0.03 -0.02 -0.81 0.65 -0.57
Slope 0.82 1.00 -0.93 -0.11 0.00 -0.65 0.43
Solar irrad. 0.03 -0.93 1.00 0.13 0.04 0.52 -0.40
Profile curv. -0.02 -0.11 0.13 1.00 0.39 -0.04 0.03
Plan curv. -0.81 0.00 0.04 0.39 1.00 -0.31 0.09
Wetness I. 0.65 -0.65 0.52 -0.04 -0.31 1.00 -0.55
Ridge dist. -0.57 0.43 -0.40 0.03 0.09 -0.55 1.00

Table L.1. Correlation between the variables for the k-means clustering for each decomposition
level

L.2.2 Confusion index

The confusion index results show that the highest number of well-classified
pixels is by using only two classes. The threshold was set to 0.6.

Regarding the dyadic subsampling, a log2 was applied to the values. Each
level line (see table L.2) should be spaced by a factor 2 (relation between the
dyadic subsampling and the number of pixels).
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Proportion of well-classified pixels for each class

Level Number of pixels 2 3 4 5

0 668160 92% 87% 85% 84%

1 167040 90% 83% 85% 83%

2 41760 86% 84% 85% 81%

3 10440 92% 89% 81% 79%

4 2610 93% 86% 83% 77%

Proportion of well-classified pixels for each class

Level Number of pixels 6 7 8 9

0 668160 83% 82% 80% 79%

1 167040 80% 80% 80% 78%

2 41760 81% 79% 79% 78%

3 10440 82% 83% 83% 78%

4 2610 80% 79% 79% 80%

Table L.2. Confusion index for the different levels and the different number of
clusters

Fig. L.1. Confusion index analysis
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L.2.3 Result of the fuzzy k-means classification

It is not the characteristics of the clusters that we want to explain and
explore in our case, but rather the interactions of the latter through the
decomposition levels, i.e. the multiscale classification. For all decomposition
levels, a similarity was visually made in order to give to the same clusters
the same colour. Visually this increases the comparative capabilities between
the levels. But, this does not mean that clusters having the same colour or
the same topographical typology represent the same topographical effect.
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Fig. L.2. Decomposition levels 0 to 2, 2 clusters



L.2 Results for the Travers DEM 269

Fig. L.3. Decomposition levels 3 to 4, 2 clusters
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Fig. L.4. Decomposition levels 3 to 4, 3 clusters
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Fig. L.5. Decomposition levels 3 to 4, 3 clusters
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Fig. L.6. Decomposition levels 3 to 4, 4 clusters
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Fig. L.7. Decomposition levels 3 to 4, 4 clusters
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Fig. L.8. Decomposition levels 3 to 4, 5 clusters
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Fig. L.9. Decomposition levels 3 to 4, 5 clusters
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Fig. L.10. Decomposition levels 3 to 4, 6 clusters
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Fig. L.11. Decomposition levels 3 to 4, 6 clusters
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Fig. L.12. Decomposition levels 3 to 4, 7 clusters
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Fig. L.13. Decomposition levels 3 to 4, 7 clusters
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Fig. L.14. Decomposition levels 3 to 4, 8 clusters
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Fig. L.15. Decomposition levels 3 to 4, 8 clusters
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Fig. L.16. Decomposition levels 3 to 4, 9 clusters
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Fig. L.17. Decomposition levels 3 to 4, 9 clusters
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M. Laplace-gradient wavelet pyramid and
structure tensor

All the developments and theory presented in this appendix are taken from
following publications: Jähne (2005); Unser et al. (2009); Unser and Van
De Ville (2008); Van De Ville et al. (2005, 2008); Van De Ville and Unser
(2008); Madych and Nelson (1990); Bigun et al. (2004)

M.1 Laplace-gradient wavelet pyramid

A Laplacian operator is defined as the second derivative of a signal. In its
real notation and in the spatial domain (R2), it is usually described as:

∆f = ∇2f = ∇ · ∇f =
∂2f

∂x2
+
∂2f

∂y2
(M.1)

and in the Fourier domain:

∆f
F↔ −‖ω‖2 f̂(ω), ω = (ω1, ω2) (M.2)

As starting point to the wavelet pyramid and combining the 2D definition of
the laplacian operator in the complex domain, we can identify the Laplace-
complex gradient, which characterizes the complete family of shift-invariant,
scale-invariant, and rotation-covariant convolution operators (Van De Ville
and Unser, 2008):

Lγ,N = (−∆)
γ−N

2

(
−j ∂

∂x
− ∂

∂y

)N
(M.3)

with:

– γ ∈ R+ (γ > 1/2): the order of the isotropic Laplacian
– N ∈ N: the order of the complex gradient

In association with this, we have a complex polyharmonic B-spline βγ,N (Van
De Ville and Unser, 2008; Van De Ville et al., 2005) which is a distribution
annihilated by discrete iterations of the complex Laplacian (Madych and
Nelson, 1990). Its scaling relation for dyadic subsampling (factor of 2 in each
dimension) can be expressed conveniently in the Fourier domain (Van De Ville
and Unser, 2008):

β̂γ,N (ω) =
Vγ,N (ejω)

‖ω‖γ−N (ω1 − jω2)N
=
Vγ,N (ejω)
L̂γ,N (ω)

(M.4)

where:

– Lγ,N (x) F↔ L̂γ,N (ω)
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– Vγ,N is a polar representation of the interpolation localisation. It can be
decomposed into: Vγ,N (ejω) = Vγ(ejω) · ejθN (ω)

– Vγ(ejω) = (8/3(sin2
(
ω1
2

)
+sin2

(
ω2
2

)
)+2/3(sin2

(
ω1+ω2

2

)
+sin2

(
ω1+ω2

2

)
))γ/2

– θN = ∠(j[ω1]− j[ω2])N is the phase1

The complex polyharmonic B-spline satisfies all properties for a dyadic mul-
tiscale analysis of L2(R) (Riesz basis, unity and scaling relation), thus in the
Fourier domain (Van De Ville et al., 2008):

β̂γ,N (2ω) =
1
2

H(ejω)︸ ︷︷ ︸
Scaling filter

β̂γ,N (ω) (M.5)

H(ejω) = 2
β̂γ,N (2ω)

β̂γ,N (ω)
(M.6)

By using the semi-orthogonality properties W+
i−1 = Vi	⊥Wi, we can define

the wavelet basis. The wavelet function is embedded in the finer approxima-
tion scale; i.e., the high-pass filter W expresses the relationship in equation
M.7. This associated wavelet function is a multiscale version of the complex
Laplacian operator; i.e., the wavelet is defined as ψγ,N = Lγ,N (φ) , where φ
is an appropriate smoothing kernel (Van De Ville et al., 2008):

ψ̂γ,N (2ω) =
1
4

W (ejω)︸ ︷︷ ︸
Wavelet filter

β̂γ,N (ω) (M.7)

W (ejω) = 4
ψ̂γ,N (2ω)

β̂γ,N (ω)
(M.8)

Here, we use γ = 3 (number of vanishing moments) and N = 1 (order of
the complex gradient). Consequently, the wavelet transform corresponds to
a multiscale version of the operator L3,1:

L3,1 = −∆
(
−j ∂

∂x
− ∂

∂y

)
= ∆

(
j
∂

∂x
+

∂

∂y

)
(M.9)

Thus:

ψ(x) = ∆

(
j
∂

∂x
+

∂

∂y

)
{β2(2·)}(x) (M.10)

This shows that the Marr-like wavelet spans the augmented wavelet space.
Finally, we can define the coefficients:

di[k] = 〈f(·), 2iψ3,1(2i · −k/2)〉
ci[k] = 〈f(·), 2iβ3,1(2i · −k)〉 (M.11)

To obtain the pyramid decomposition of the signal, we apply the efficient
filterbank algorithm depicted in figure M.1. The decomposition is applied
iteratively to the low-pass coefficients ci+1[k]. The wavelet coefficients are
not subsampled, which leads to a pyramid structure with mild redundancy.
In this paper, we chose up to eight decomposition levels (i = 0, . . . , 7).
1 where [ω] stands for the unique ω ∈ [−π, π[ such that ω − [ω] = 2nπ for some

integer n (Van De Ville et al., 2008).
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Fig. M.1. Laplace-gradient wavelet pyramid filterbank using the z-transform rep-
resentation (adapted from Van De Ville and Unser (2008))

Before applying the synthesis procedure, we can process the wavelet coef-
ficients (di+1[k]), as embodied in the box F of figure M.1. The synthesis
procedure uses a so-called subband regression method to obtain the most
consistent reconstruction with respect to the (redundant) decomposition (box
SR in figure M.1, see Unser and Van De Ville (2008) for more details).

The synthesis (reconstruction) is done using a subband regression because
of the information redundancy between the ci+1[k] and the di+1[k]. We want
get rid of the less informative part in order to accomplish an perfect re-
construction. Thus we have to minimise the redundancy using least squares
between the coefficients.

M.2 Structure Tensor

As we use a pure Laplacian operator (γ = 3, N = 1), we might use structure
tensor theory directly without needing to compute the second order deriva-
tive, the Laplacian being already one (Van De Ville et al., 2008):

di[k] =
[
=(di[k])
<(di[k])

]
= 2i

[
∂/∂x
∂/∂y

]
︸ ︷︷ ︸
∇

∆{f(·) ∗ β6(2i·)}(2−i−1k)︸ ︷︷ ︸
gi[k]

(M.12)

The structure tensor is defined by the maximisation of the cosine between
the gradient of the directions and an orientation vector n̄ (Jähne, 2005):

(∇gT n̄)2 = |∇g2| cos2(∠(∇g, n̄))→ max (M.13)

If we want to maximise that in a local neighbourhood w of size k′ (where
w is a fixed-size smoothing window with positive weights), in the continuous
space, it follows that the maximisation is undertaken in:

Ji(k) =
∫
Ω

w(k + k′)(∇g(k + k′)∇gT (k + k′))dk′ (M.14)

In the discrete space, this gives (Ω is the window):

Ji(k) =
∑
k′∈Ω

w[k′](∇g(k + k′)∇gT (k + k′)) (M.15)
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The norm of gi along the orientation of any direction is given using a vector
u = [cos(θ), sin(θ)]T :

‖Dugi‖2w = 〈uT∇gi,∇gTi u〉w = uTJu (M.16)

If we maximise that (with ‖u‖ = 1 as constrain), we have an eigenvector
equation system. We can link the complex coefficient directly to the complex
moments of the system (Bigun et al., 2004; Van De Ville et al., 2008):

M
(1)
i (k) = 2−2i〈di[k], di[k]〉w = (λmax − λmin)ej2θ (M.17)

M
(2)
i (k) = 2−2i〈|di[k]|, |di[k]|〉w = λmax + λmin (M.18)

Thus, we do not need to construct J and the following structure tensors can
then be built:

– Energy = λmax + λmin = M
(2)
i (k).

– Orientation = θ = arg(M
(1)
i (k))

2 ∈ [−π/2, π/2] which is the direction of
minimal inertia.

– Coherency = λmax−λmin
λmax+λmin

= |M(1)
i (k)|

M
(2)
i (k)

∈ [0, 1].
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