
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Troyanov, président du jury
Prof. J. Maddocks, Prof. J. P. Buser, directeurs de thèse

Prof. S. Hildebrandt, rapporteur 
Prof. R. Langevin, rapporteur 
Prof. N. Monod, rapporteur

Ideal Knots and Other Packing Problems of Tubes

THÈSE NO 4601 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 22 FÉVRIER 2010

À LA FACULTÉ SCIENCES DE BASE

CHAIRE D'ANALYSE APPLIQUÉE

PROGRAMME DOCTORAL EN MATHÉMATIQUES

Suisse
2010

PAR

Henryk GERLACH



ii



Abstract

This thesis concerns optimal packing problems of tubes, or thick curves, where thickness
is defined as follows. Three points on a closed space curve define a circle. Taking the
infimum over all radii of pairwise-distinct point triples defines the thickness ∆. A closed
curve with positive thickness has a self-avoiding neighbourhood that consists of a disjoint
union of normal disks with radius ∆, which is a tube.

The thesis has three main parts. In the first, we study the problem of finding
the longest closed tube with prescribed thickness on the unit two-sphere, and show
that solutions exist. Furthermore, we give explicit solutions for an infinite sequence
of prescribed thicknesses Θn = sin π

2n . Using essentially basic geometric arguments,
we show that these are the only solutions for prescribed thickness Θn, and count their
multiplicity using algebraic arguments involving Euler’s totient function.

In the second part we consider tubes on the three-sphere S3. We show that thickness
defined by global radius of curvature coincides with the notion of thickness based on
normal injectivity radius in S3. Then three natural, but distinct, optimisation problems
for knotted, thick curves in S3 are identified, namely, to fix the length of the curve
and maximise thickness, to fix a minimum thickness and minimise length, or simply
to maximise thickness with length left free. We demonstrate that optimisers, or ideal
shapes, within a given knot type exist for each of these three problems. Finally, we
propose a simple analytic form of a strong candidate for a thickness maximising trefoil
in S3 and describe its interesting properties.

The third and final part discusses numerical computations and their implications for
ideal knot shapes in both R3 and S3. We model a knot in R3 as a finite sequence of
coefficients in a Fourier representation of the centreline. We show how certain presumed
symmetries pose restrictions on the Fourier coefficients, and thus significantly reduce
the number of degrees of freedom. As a consequence our numerical technique of simu-
lated annealing can be made much faster. We then present our numeric results. First,
computations approach an approximation of an ideal trefoil in S3 close to the analytic
candidate mentioned above, but, supporting its ideality, are still less thick. Second, for
the ideal trefoil in R3, numerics suggest the existence of a certain closed cycle of contact
chords, that allows us to decompose the trefoil knot into two base curves, which once
determined, and taken together with the symmetry, constitute the ideal trefoil.

Keywords: Ideal knots, tube packings, thick curves, simulated annealing, Fourier
knots, curve symmetries.
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Zusammenfassung

Diese Arbeit behandelt optimale Packungsprobleme von Tuben, die wir als dicke Kurven
modellieren. Dabei definieren wir Dicke auf Basis des globalen Krümmungsradius wie
folgt: Drei Punkte auf einer geschlossenen Raumkurve definieren einen Kreis. Die Dicke
∆ ist das Infimum aller Radien solcher Kreise durch paarweise verschiedene Tripel. Eine
geschlossene Kurve positiver Dicke hat eine selbstschnittfreie tubulare Umgebung, die
aus der disjunkten Vereinigung zur Kurve normaler Kreisscheiben mit Radius ∆ besteht
und die Tube darstellt.

Die vorliegende Arbeit besteht aus drei Hauptteilen. Im ersten Teil untersuchen
wir das Problem, die längste geschlossene Kurve vorgeschriebener Dicke auf der zwei-
dimensionalen Einheitskugel zu finden. Wir zeigen, dass Lösungen existieren und geben
explizite Lösungen für eine unendliche Folge vorgeschriebener Dicken Θn = sin π

2n an.
Mit elementaren, geometrischen Mitteln zeigen wir, dass keine weiteren Lösungen für
die vorgeschriebenen Dicken Θn existieren und bestimmen ihre Anzahl in Abhängigkeit
von n mit Hilfe der Eulerschen ϕ-Funktion und weiterer algebraischer Argumente.

Im zweiten Teil betrachten wir dicke Kurven auf der 3-Sphäre S3. Wir zeigen,
dass Dicke, definiert über den globalen Krümmungsradius, und der normale Injekti-
vitätsradius in S3 äquivalent sind. Wir identifizieren drei natürliche, aber unterschied-
liche Packungsprobleme verknoteter dicker Kurven in S3: (a) Fixiere die Länge und
maximiere die Dicke. (b) Fixiere eine minimale Dicke und minimiere die Länge. Und
schließlich (c) maximiere die Dicke ohne Einschränkung der Länge. Wir zeigen, dass zu
einer gegebenen zahmen Knotenklasse für jedes der Probleme Optimierer existieren, die
ideale Kurven genannt werden. Abschließend stellen wir eine einfache explizite Kurve
als Kandidaten für die dickemaximierende Kleeblattschlinge in S3 vor und beschreiben
seine interessanten Eigenschaften.

Der dritte und letzte Teil behandelt numerische Berechnungen und sich daraus er-
gebende Folgerungen für ideale Kurven sowohl in R3 als auch in S3. Wir modellieren
einen Knoten in R3 als endliche Folge von Koeffizienten einer Fourier-Darstellung der
Mittellinie und zeigen, dass wir ideale Knoten damit approximieren können. Weiter zei-
gen wir, wie bestimmte, vermutete Symmetrien die Koeffizienten einschränken und so
die Anzahl der Freiheitsgrade reduzieren. Dadurch beschleunigen wir den verwendeten
Algorithmus (simulierte Abkühlung) deutlich.

Danach präsentieren wir unsere numerischen Ergebnisse: Erstens liegt die numerisch
gefundene dickemaximierende Kleeblattschlinge sehr nahe bei dem oben erwähnten ex-
pliziten Kandidaten, erreicht aber nicht seine Dicke, was die Qualität des Kandidaten
bestätigt. Zweitens suggeriert die numerische Simulation der idealen Kleeblattschlinge in
R3, dass ein bestimmter, geschlossener Zykel von Kontaktstäben existiert, der die Klee-
blattschlinge in zwei zu bestimmende Grundkurven zerlegt. Diese stehen wechselseitig
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im Kontakt und mit Hilfe der Symmetrien lässt sich aus ihnen die ganze Kurve erzeugen.

Schlagworte: Ideale Knoten, Tubenpackung, Dicke Kurven, Simulierte Abkühlung,
Fourier-Knoten, Kurvensymmetrien.
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Chapter 1

Introduction

This thesis concerns the mathematical analysis of optimal packing problems for tubes,
including the particular problem of ideal knot shapes, both in R3 and S3. Tube packings
arise in a variety of real world contexts. How are long strands of viral DNA packed into
the tiny volume of the phage head of a bacteriophage [KAB06]? How much hose-pipe
can be stored in a given box? While we believe that a physical understanding of optimal
tube packings is important in these and other applications, we here focus on rigorous
mathematical results available for some rather idealised and specific problems.

Due to the absence of any externally imposed conditions or domains, one of the
mathematically most elegant tube packing problems is to consider the shortest length of
tube of given diameter that can be tied in a given knot type, where it is understood that
the tube must be sealed on itself to form a closed loop, and the tube is self-avoiding. Such
questions concern geometric knot theory and ideal knot shapes [SKK98]. Apparently
[LSDR99] the first question of this type was posed by L. Siebenmann in 1985: Can you
tie a knot in a one-foot length of one-inch rope? It is now known that the answer is
no [Di03], but it is not known precisely what the shortest possible length is, although
computations have revealed that 16.4 times the diameter is sufficient to tie a trefoil knot,
and presumably this is close to optimal.

In R3 a curve minimizing the quotient of arc-length and thickness in a given knot
class is called an ideal knot [SKK98]. The existence of ideal knots in the class of C1,1

curves has been proven by [GMSvdM02, GdlL03] and [CKS02]. Around the same time
Kusner considered thickness maximising knots in the three-sphere [K02].

Only a few optimal shapes are known. So far, no explicit solution of an ideal knot
is known, except that the ideal unknot is the circle. Cantarella, Kusner, and Sullivan
were able to construct explicit ideal links [CKS02] from circular arcs and straight lines.
For example the ideal Hopf-link is two circles of the same radius in orthogonal planes,
one running through the centre of the other. They also constructed a chain consisting
of a stadium curve and two circles perpendicular to the stadium curve. This example
demonstrates that ideal links do not need to have either unique or isolated solutions.
Starostin [Sta03] and Cantarella et al. [CFKSW04] studied the shape of the tight clasp
and the ideal Borromean rings and derived various semi-explicit shapes. Note however
that all of these examples are component-wise planar.

Of course there exist various numerical codes to approximate ideal shapes: For piece-
wise linear polygonal C0,1 knots there are Pieranski’s Shrink On No Overlap (SONO)
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CHAPTER 1. INTRODUCTION

algorithm [P98], and the RidgeRunner algorithm of Cantarella, Piatek and Rawdon
[CPR05, ACPR05]. An estimate of how to inscribe small circular arcs into a polygon
to get a thick C1,1 curve [BPR05] gives rigorous bounds from such computations. In
contrast Carlen et al. used simulated annealing [KGV83] directly on a C1,1 numerical
discretisation called biarcs [S04, CLMS05] which revealed previously unobserved fea-
tures, such as local curvature being extremely close to achieve thickness. All of these
simulations concerned ideal shapes in R3. To our knowledge no ideal knots in S3 have
previously been computed analytically or numerically, except for the ideal unknot which
is again a circle.

We remark that ideality based on thickness is only one special case of many possible
knot energies leading to optimal shapes as discussed for example by O’Hara [O’H03].
Other examples are the Möbius energy, an ‘electrostatic energy’ defined by O’Hara
[O’H91], and studied by Freedman, He and Wang [FHW94] with recent results by Reiter
[Rt09]. Langevin and Moniot studied integral energies of links in S3 [M04, LM05].

Different and surprisingly complex, but equivalent, mathematical definitions of thick-
ness of a tube have emerged [LSDR99]. This thesis is based on that of global radius
of curvature, which was introduced for R3 in [GM99] and generalised to RN in [Ge04]:
Through three points in general position in RN there is a unique circle. The thickness ∆
of a curve is the infimal radius of all circles through distinct point-triples on the curve.
A curve with positive thickness is the centreline of a non self intersecting tubular neigh-
bourhood of the same thickness. We show in this thesis that this notion also carries
over naturally to S3.

The structure of this thesis is as follows. In Chapter 2 we first collect known facts
about thick curves. For example that thick curves have a C1,1 arc-length parametri-
sation. We present different equivalent notions of thickness in RN . In Section 2.2 we
find that thickness in SN can be expressed as thickness in RN , and that this notion of
thickness coincides with the normal injectivity radius of a curve in SN . In Section 2.3
we briefly describe what we mean by a knot, and when two knots are equivalent. In
Section 2.4 we present known results of how sequences of thick curves behave, and adapt
them to our needs. We conclude this chapter in Section 2.5 with two cautionary exam-
ples of sequences of curves converging to their limits both in C1 and in thickness, but
not in C1,1. As a consequence it is possible that the curvature of the sequence members
may be very different from the curvature of the limit curve.

Chapter 3 is joint work with H. von der Mosel [GevdM09]. We consider the following
optimal packing problem:

Problem (P). Find the longest closed curves of prescribed minimal thickness which fit
onto the 2-sphere S2 := {x ∈ R3 : |x| = 1}.
It is trivial to see that the maximal thickness of a curve on S2 is only attained by great
circles which have thickness one in R3 (see Example 2.17). We show that Problem (P)
has a solution for all positive thicknesses Θ smaller than the thickness of a great circle
(Theorem 3.1). For certain thicknesses Θn := sin( π2n) we then construct explicit solutions
from stacked semicircles (see Figure 3.1 on page 26 and Figure 3.3 on page 29) and count
them by an algebraic argument. Then we show that they are the unique solutions for
the respective thickness in the sense that there are no others. As a byproduct we find
that thick curves can be approximated by C∞ curves (Corollary 3.12). Finally we sketch
the construction of similar solutions for open curves, and how to show their uniqueness.

2



In Chapter 4 we study different optimisations problems of thick curves in S3. Namely
one can

(a) maximise thickness, with length left free,

(b) fix length and maximise thickness,

(c) fix thickness and minimise length, and

(d) fix thickness and maximise length.

For all four notions we show that solutions exist. As in the RN case their arc-length
parametrisation is C1,1. We consider (a) to be the most natural question (as did [K02])
and call its solutions ideal knots in S3. We show that we can dilate curves by conformal
dilations if they are contained in a small part of the sphere. Consequently we conjecture
that ideal knot shapes can not be contained in a hemisphere of S3. We link ideal shapes
in S3 and R3 by the following observation: If we consider a sequence of solutions of (b)
i.e. fix the length and maximise thickness – with the prescribed length going to zero,
then as the solutions approach the tangent space R3 of S3, some subsequence of S3 ideal
shapes converges to an ideal shape in R3. In Section 4.3 we give a specific trefoil knot
located on a flat Clifford torus that is a strong candidate for the thickness maximising
trefoil in the three-sphere, and we study its interesting geometric properties.

Chapter 5 is joint work with M. Carlen (see also [C10]). We briefly introduce the
biarc discretisation following [S04] that was used as a basis of our computations. We
then reintroduce Fourier knots [T98, K98]

γ(t) :=
k∑
i=1

(ai cos(2πit) + bisin(2πit)) , t ∈ S := R/Z,

for some coefficients ai, bi ∈ R3, and show that ideal knots can be approximated by
them. We briefly study symmetries of curves from an abstract viewpoint, and apply
this to find what dependencies symmetry groups impose on the Fourier coefficients.

Section 5.5 presents our numeric results. Notably in S3, and starting from initial
trefoils far away from the competitor mentioned previously, our numerical algorithm
maximising thickness yielded a shape close to it, but did not achieve its thickness.

It has been observed that the tubular neighbourhood of maximal thickness of ‘the
ideal trefoil’ in R3 touches itself along a contact curve [PP02, CLMS05]. In Section 5.6
we give a precise description of this conjecture, and with hypotheses inspired from
numerical experiments, prove that the contact curve is itself a trefoil.

Finally in Section 5.7 we describe a closed contact cycle on the R3 trefoil: A curve
is in contact with itself at the points p, q if the distance between p and q is precisely two
times the thickness of the curve and the line segment between them is orthogonal to the
curve at both ends. Numerics suggest that each point on the ideal trefoil in R3 is in
contact with two other points. Starting from a point p1, it is in contact with a point p2

that itself is again in contact with a point p3 6= p1 and so on. Does this sequence close to
a cycle? Our numeric results suggest that there is indeed a closed 9-cycle on the trefoil.
The existence of this cycle is significant because it partitions the trefoil in such a way
that, using the symmetries, it can be re-constructed from two unknown small pieces of
curves mutually in contact.

3
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Chapter 2

Thick Curves in RN and SN

2.1 Thickness in RN

Throughout this thesis we consider closed curves that are at least continuous, i.e. γ ∈
C0(I,M). The parameter interval I is typically S := [0, 1]/(0 ∼ 1) ∼= R/Z, the unit
interval with the endpoints identified. In some cases I is the unit circle S1 or the
interval [0, L] with the endpoints identified, where L is the arc-length of the curve. The
set M is either RN or SN ⊂ RN+1 for some N ∈ N. Here SN := {x ∈ RN+1 : |x| = 1}
is the N -dimensional unit sphere, and | · | is the Euclidean norm.

There exist several ways to assign a thickness to a curve, namely reach, normal
injectivity radius and variants of global radius of curvature [GM99]. We base our work
on the latter and generalise it to curves in RN (see also [Ge04]):

Definition 2.1 (Global radius of curvature). For a C0-curve γ : I −→ RN the global
radius of curvature at s ∈ I is

ρG[γ](s) := inf
σ,τ∈I,σ 6=τ,σ 6=s,τ 6=s

R(γ(s), γ(σ), γ(τ)). (2.1)

Here R(x, y, z) ≥ 0 is the radius of the smallest circle through the points x, y, z ∈ RN ,
i.e.

R(x, y, z) :=


|x−z|

2 sin ](x−y,y−z) x, y, z not collinear,
∞ x, y, z collinear, pairwise distinct,

diam({x,y,z})
2 otherwise.

where ](x − y, y − z) ∈ [0, π/2] is the smaller angle between the vectors (x − y) and
(y − z) ∈ RN , and

diam(M) := sup
x,y∈M

|x− y| for M ⊂ RN

is the diameter of the set M . The thickness of γ denoted as

∆[γ] := inf
s∈I

ρG[γ](s) = inf
s,σ,τ∈I,σ 6=τ,σ 6=s,τ 6=s

R(γ(s), γ(σ), γ(τ)), (2.2)

is defined as the infimum of ρG.

A curve γ is called thick if ∆[γ] > 0. Note that for a homeomorphism h : I −→ I we
have ∆[γ] = ∆[γ ◦ h] and ∆ is positive homogeneous degree one: ∆[λγ] = |λ|∆[γ] for
λ ∈ R.
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CHAPTER 2. THICK CURVES IN RN AND SN

(a) (b)

Figure 2.1: The thickness ∆ of a curve is bounded by the local radius of curvature (a)
and the global self distance (b). The circle is the limit circle approached by the circles
through the triples of a minimal sequence of (2.2).

The thickness of a curve is bounded by two typical cases (see Figure 2.1): The
local radius of curvature that is approached by R(x, y, z) as x, y and z converge to a
single point and the global self distance 2R(x, y, z) as two points – say x, y – converge
such that x − z is orthogonal to the curve in x and z. In fact, it can be shown that
a minimal sequence of (2.2) can always be chosen such that at least two arguments
converge [GM99, SvdM04].

If a curve γ is rectifiable it can be parametrised by arc-length, if γ is also thick then
it is C1,1-smooth:

Lemma 2.2. [GMSvdM02, Lemma 2], [SvdM03a, Theorem 1 (iii)]
Let γ ∈ C0(I,RN ) be rectifiable and parametrised by arc-length, then the following is
equivalent:

(i) ∆[γ] > 0

(ii) γ ∈ C1,1(I,RN ) and γ injective.

Here C1,1(I,RN ) is the space of C1-functions γ whose derivative γ′ is Lipschitz conti-
nous, i.e. the norm

‖γ‖C1,1(I,RN ) := sup
s∈I
|γ(s)|+ sup

s∈I
|γ′(s)|+ sup

s,t∈I,s 6=t
|γ′(s)− γ′(t)|
|s− t|

is finite [E98].

Consequently the curves we consider are usually regular, i.e. |γ′(t)| > 0 for all t, and
parametrised by arc-length or equivalently by constant speed.

Carefully studying the limit of R(γ(s), γ(σ), γ(τ)) as τ and σ converge to some t ∈ I
revealed [GM99, GMS02, SvdM04] that instead of the circle through three points one
can also consider the circle going through γ(s) and γ(t) while being tangent to γ′(t) in
γ(t). Because the radius of this circle depends on a point and a tangent in a point we
call it pt (we could call R the point-point-point function ppp accordingly):

Definition 2.3 (pt-function). [GMS02] Let γ ∈ C1(I,RN ) be a closed and regular
curve, i.e. |γ′(t)| > 0 for all t. For s, t ∈ I let pt[γ](s, t) be the radius of the smallest

6



2.1. THICKNESS IN RN

circle going through γ(s) and γ(t), tangent to γ′(t) in γ(t), i.e.

pt[γ](s, t) :=


∞ if γ(s)− γ(t) parallel to γ′(t), γ(s) 6= γ(t),
0 if γ(s) = γ(t),

|γ(s)−γ(t)|
2 sin ](γ(s)−γ(t),γ′(t)) otherwise.

If γ is clear from the context we may drop it as an explicit argument to pt.

Remark 2.4. If Γ is parametrised by arc-length, the formula in the general case can be
written as

pt[Γ](s, t) =
|Γ(s)− Γ(t)|2

2|(Γ(s)− Γ(t)) ∧ Γ′(t)|
with |u ∧ v| the area of the parallelogram spanned by u and v, since we have

|u ∧ v| = |u||v| sin ](u, v)

and |Γ′| = 1.

We will see later in this chapter that taking the infimum over pt for regular curves yields
the same thickness as taking the infimum over ρG.

Next we may consider two point-tangent pairs on the curve. They define a minimal
sphere passing through the points and tangent to the curve at those points:

Definition 2.5 (tt-function). [GMS02] Let γ ∈ C1(I,RN ) be a closed and regular
curve. For s, t ∈ I let tt[γ](s, t) be the radius of the smallest sphere through γ(s) and
γ(t), tangent to γ′(s) in γ(s) and tangent to γ′(t) in γ(t). If N > 3 then the involved
vectors (γ(s) − γ(t)), γ′(s) and γ′(t) span a 3-dimensional subspace and we take the
radius of the smallest sphere in this subspace. For explicit formulae see [GMS02, C10].

Before we continue we fix some notation:

Definition 2.6 (Distances). Let

distRN (X,Y ) := inf
x∈X,y∈Y

|x− y| for X,Y ⊂ RN ,

denote the Euclidean distance in RN between two sets X and Y . We denote the analogous
distance in SN by

distSN (X,Y ) := inf
x∈X,y∈Y

 inf
γ∈C1([0,1],SN )
γ(0)=x,γ(1)=y

∫ 1

0
|γ′(s)|ds

 ,

where X and Y may be single points.

Definition 2.7 (Balls). For r > 0, x ∈ RN we define the ball in RN as

Br(x) := {y ∈ RN : distRN (x, y) < r} ⊂ RN .

For r > 0, x ∈ SN we define the spherical ball in SN as

Br(x) := {y ∈ SN : distSN (x, y) < r} ⊂ SN .

The dimension N is usually implied by the centre x.

7



CHAPTER 2. THICK CURVES IN RN AND SN

A useful characterisation of thick curves is that around every point on the curve
there exists an open horn torus – an open full torus with both radii equal leaving only a
single point as ‘hole’ through which the curve passes – that does not intersect the curve.
[Ge04] is based on this idea, but the fact shows up earlier [GMSvdM02, GdlL03].

Definition 2.8 (Torus Property). Consider a regular curve γ ∈ C1(I,RN ). For Θ >
0, s ∈ I define

M(s,Θ) :=
⋃

z∈C(s,Θ)

BΘ(z) ⊂ RN ,

where
C(s,Θ) := {Θv + γ(s) : v ∈ SN−1 and v ⊥ γ′(s)} ∼= SN−2

is the centre-set. We say γ has the torus property with respect to Θ iff γ(I)∩M(s,Θ) = ∅
for all s ∈ I.

For completeness we also define the classic notion of normal injectivity radius (ac-
cording to [LSDR99]):

Definition 2.9 (Normal injectivity radius). Let γ ∈ C1(I,M) be a regular curve and
M ⊂ RN an embedded manifold. Define the normal bundle of γ by

E := {(γ(s), v) ∈ TM : s ∈ I, v ∈ Tγ(s)M, 〈v, γ′(s)〉 = 0},
where TM is the tangent bundle of M and 〈·, ·〉 is the scalar product in RN . For r > 0
we define

Er := {(x, v) ∈ E : |v| ≤ r}.
Let exp : TM −→M be the exponential map (as defined for example in [dC92, pp. 64]).
We then define the normal injectivity radius of γ by

NIR[γ] :=
{

sup({r > 0 : exp is injective on Er} ∪ {0}) if γ is injective,
0 otherwise.

(2.3)

If the manifold M is not clear from the context, we write NIRM to emphasize it.

Remark 2.10. (i) The normal injectivity radius is invariant under monotonic reparametri-
sations of the curve.

(ii) Since E is defined on the image of γ, whenever the mapping γ is not injective, for
example double coverings, the normal injectivity radius NIR[γ] is explicitly defined
to vanish.

Definition 2.11 (Tubular neighbourhood in RN ). Let γ ∈ C1(I,RN ) be a closed, regular
curve. Then we define the tubular neighbourhood of γ with radius Θ as

TΘ(γ) := {x ∈ R3 : distRN (x, γ(I)) < Θ} (2.4)

=
⋃
s∈I

DΘ(γ(s), γ′(s)), (2.5)

where

DΘ(γ(s), γ′(s)) := {x ∈ RN : |γ(s)− x| < Θ and 〈γ(s)− x, γ′(s)〉 = 0}
is the normal disk in γ(s).

8



2.1. THICKNESS IN RN

The equivalence between (2.4) and (2.5) is easy to see by using closest point projec-
tion.

All of the above notions lead to the same notion of thickness in RN :

Theorem 2.12 (Big equivalence). Let γ ∈ C1(I,RN ) be a closed, regular curve and
Θ > 0 some constant. Then the following statements are equivalent:

(i) ∆[γ] > Θ.

(ii) γ is injective and has the torus property with constant Θ.

(iii) ∆pt[γ] := infs,t∈I,s 6=t pt[γ](s, t) > Θ.

(iv) ∆tt[γ] := infs,t∈I,s 6=t tt[γ](s, t) > Θ.

(v) NIRRN [γ] > Θ.

(vi) The tubular neighbourhood TΘ(γ) is the disjoint union
⋃̇
s∈IDΘ(γ(s), γ′(s)) of nor-

mal disks.

(vii) For each x in the tubular neighbourhood TΘ(γ) there exists a unique closest point
y ∈ γ(I) and γ is injective.

Proof. (i),(ii),(iii): These equivalences are proved in [Ge04, Satz 3.25] but have been
known before (see e.g. [GdlL03, S04, SvdM04]).

(iii)⇔(iv): This was shown in [GMS02].
(v)⇔(i): This is proven by combining facts from [LSDR99] and [GM99] and gener-

alising to RN (cf. proof of Theorem 2.19 for an idea).
(vi),(vii)⇔(i): Statement (vi) is proved in [GMSvdM02, Lemma 3] and (vii) is a

direct consequence of this.

As a direct consequence of the above and the torus property we have:

Lemma 2.13. [GdlL03, Lemma 2] Let γ ∈ C1(I,RN ) be a closed, regular curve with
∆[γ] > 0. Then diam(γ(I)) ≥ 2∆[γ].

One of the ingredients in the proof of Theorem 2.12 is the following lemma which
we will use on other occasions too.

Lemma 2.14 (Lipschitz constant for γ′). Consider a curve γ ∈ C1(S,RN ) with constant
speed L := |γ′(s)| for all s ∈ S, and suppose ∆[γ] ≥ Θ > 0. Then

(i) the curve γ has a Lipschitz continuous tangent γ′ with Lipschitz constant LΘ−1.
That is γ ∈ C1,1(S,R3) and

|γ′(s)− γ′(σ)| ≤ LΘ−1|s− σ|, ∀s, σ ∈ S; (2.6)

(ii) there exists a constant C ∈ (0, 1) dependent only on Θ, such that

C|s− σ| ≤ |γ(s)− γ(σ)|/L ≤ |s− σ|, (2.7)

for all s, σ ∈ S with |s− σ| ≤ Θ/(2L).

9



CHAPTER 2. THICK CURVES IN RN AND SN

Proof. For the proof of part (i) see [GMSvdM02, Lemma 2], [GdlL03, Lemma 3] or
[Ge04, Satz 2.13]. Part (ii) is a rescaling to non-unit speed of [GdlL03, Lemma 4].

If a curve touches itself globally, as in Figure 2.1(b), we may consider the points of
closest approach, i.e. the antipodal points where the circle touches. The dashed line
connecting the two points is called a contact chord.

Definition 2.15 (Contact Chord). Let γ ∈ C1(S,RN ) be a regular curve with ∆[γ] > 0
and let s, t ∈ S be such that c(s, t) := γ(t)− γ(s) has length

|c(s, t)| = 2∆[γ],

and γ(s)− γ(t) is orthogonal to γ, i.e.

〈γ′(s), γ(s)− γ(t)〉 = 0 and 〈γ′(t), γ(s)− γ(t)〉 = 0,

then we call c(s, t) a contact chord. If such s and t exist, we say γ has a contact chord
connecting γ(s) and γ(t) or the parameters s and t are globally in contact. The set

{γ(s) + hc(s, t) : h ∈ [0, 1]} ⊂ RN

will also be called a contact chord.

Obviously being in contact is a symmetric relation.

2.2 Thickness in SN

In Chapters 3 and 4 we want to consider thick curves on the unit sphere SN ⊂ RN+1.
Since SN is a subset of RN+1 we can use the same Definition 2.1 of ∆ with some remarks:

Remark 2.16.

(i) The collinear case R(x, y, z) = ∞ cannot arise for x, y, z ∈ SN . In fact ρG[γ] ∈
[0, 1] for all curves γ : I −→ SN (see Example 2.17 and [Ge04, Lemma 3.4]).

(ii) Because three distinct points define a two-dimensional plane in RN+1, and because
any non-trivial intersection of a 2-plane with SN is a circle we note that for curves
on SN all circles arising in Definition 2.1 lie completely in SN , so the surrounding
space RN+1 is not needed to define the global radius of curvature ρG. Instead of
using the radius of the circle in RN+1, we could use the spherical radius R̃(x, y, z)
in SN which equals arcsinR(x, y, z) (see Figure 2.2(a)), and define ∆̃[·] ∈ [0, π/2]
accordingly.

The following example is well known [K02]:

Example 2.17 (Great circles on spheres). Let ∂Br(0) := {x ∈ RN : |x| = r} be a sphere
of radius r > 0. Then the thickest curves on the sphere ∂Br(0) are great circles with
radius r.

Obviously great circles have thickness r. Now let γ ∈ C1(S, ∂Br(0)) be some thick
curve on ∂Br(0) and let x and y be distinct points in the image γ(S). The points x, y
and 0 span a plane E ⊂ RN which intersects the sphere in a great circle with radius r.

10
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1

R̃

1

R

1

BA

α

α(c)

C
1

(a) (b)

Figure 2.2: (a) The relation of the radius R of a circle in RN and the spherical radius
R̃ = arcsinR in SN . (b) For any secant AB of length shorter than 2 there is a unique
geodesic α on the unit sphere.

If there is a point z in the image of γ, but not in the plane E, then R(x, y, z) < r so a
curve with thickness ∆[γ] ≥ r must be contained in the plane E. Since ∆[γ] > 0 implies
injectivity, great circles are the only curves in the one-dimensional set E ∩ ∂Br(0) and
have maximal thickness r.

In fact the distance in SN is related to the distance in the surrounding RN+1 by the
arcsin (see Figure 2.2(b)).

Lemma 2.18 (Great arcs and secants). (i) Let A,B ∈ SN , with |A − B| < 2. Then
the secant AB joining A and B is associated with a unique unit-speed great arc
α : [a, b] −→ SN with endpoints A and B and length 2 arcsin(AB/2) < π.

(ii) Define C := (A + B)/2 ∈ RN+1 and c := (a + b)/2. Then α|[a,c] has length
arcsin(AC). 2

Finally, we prove the equivalence of NIR and ∆ in S3 similar to the RN case in
Theorem 2.12 (v).

Theorem 2.19 (NIR and ∆). Let γ ∈ C1(I, SN ) be a regular curve. Then

∆[γ] = sin(NIRS3 [γ]).

Remark 2.20. (i) Note that if we had decided to use R̃(·, ·, ·) as proposed in remark
2.16 the conclusion in the above theorem would be NIR[γ] = ∆̃[γ]. But we prefer
∆ to keep the notation simpler.

(ii) Theorem 2.19 implies that C1-curves that are nicely parametrised (e.g. constant
speed) and have a positive normal injectivity radius, also have positive thickness,
and so are in fact C1,1-curves by Lemma 2.2.

Proof of Theorem 2.19. We prove that positive ∆[γ] implies NIR[γ] ≥ arcsin ∆[γ], and
positive NIR[γ] implies ∆[γ] ≥ sin NIR[γ].

(i) Let ∆[γ] =: Θ > 0 and assume NIR[γ] < ϑ := arcsin Θ. Note that Θ > 0 implies
injectivity of γ. Then there exist two distinct points x0, x1 ∈ γ(I) such that

(x0, v0), (x1, v1) ∈ E,

11
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γ(s0)

γ(s1)

γ(V0)

α p
z

γ(s2)

γ(V1)

γ(V1)

Figure 2.3: Schematic picture of the construction in part (ii) of the proof of Theorem
2.19.

0 < |v1|, |v0| ≤ |v1| < ϑ, (2.8)

and exp(x0, v0) = exp(x1, v1) =: y ∈ SN . Define z := exp(x1, ϑ
v1
|v1|), which corre-

sponds to

Z :=
y + exp(x1, 2ϑ v1

|v1|)

2
∈ RN+1,

as in Lemma 2.18. The point Z is the centre of a ball of radius Θ tangent to γ at
x1.

We claim
distSN (x0, z) < ϑ. (2.9)

First, if x1, y, z and x0 are all on the same geodesic arc, the claim holds since x0

lying inside the short arc connecting x1 and y implies |v0| < |v1|, which leads to
distSN (x0, z) ≤ distSN (x0, y) + distSN (y, z) < distSN (x1, y) + distSN (y, z) = ϑ. If
x0 does not lie inside the short arc connecting x1 and y, we have distSN (x0, z) =
|distSN (x0, y)− distSN (y, z)| < ϑ.

Suppose now x0, x1 and y are not on a geodesic arc. From (2.8) we get

distSN (x0, y)︸ ︷︷ ︸
=|v0|

+distSN (y, z) ≤ distSN (x1, y)︸ ︷︷ ︸
=|v1|

+distSN (y, z) = distSN (x1, z) = ϑ,

and together with the strict triangle inequality we find

distSN (x0, z) < distSN (x0, y) + distSN (y, z) ≤ ϑ.
But this implies distRN+1(x0, Z) = |x0 − Z| < Θ, which is a contradiction to the
torus property in Theorem 2.12 (ii). Therefore NIR[γ] ≥ ϑ as claimed.

(ii) To prove the converse, we adapt the proof of [GMSvdM02, Lemma 3]. Let NIR[γ] =:
ϑ > 0 and assume ∆[γ] < Θ̄ := sinϑ which implies there exist parameters
s0, s1, s2 ∈ I such that R(γ(s0), γ(s1), γ(s2)) =: δ̄ < Θ̄. Let Z ∈ RN+1 be the

12



2.2. THICKNESS IN SN

centre of the circle through the points γ(s0), γ(s1), γ(s2), and let z ∈ SN be the
corresponding point on the sphere, which satisfies

distSN (z, γ(si)) = δ̃ := arcsin δ̄ for i = 1, 2, 3. (2.10)

Because of (2.10), and since arcsin is strictly monotonic on the interval under
consideration, we find distSN (z, γ(I)) ≤ δ̃ = arcsin δ̄ < ϑ. Since γ(I) is compact,
we find a point p ∈ γ(I) such that distSN (z, γ(I)) = distSN (z, p), and since γ ∈
C1(I, SN ), we find γ′(γ−1(p)) ⊥ (p − z), which implies that z ∈ im exp(Eδ). By
assumption the pre-image of z under exp : Eδ −→ SN contains the single point p.

We have distSN (z, p) < distSN (z, γ(si)) = δ̃, i = 1, 2, 3, since (z − γ(si)) 6⊥ γ′(si)
implies the existence of some p′ ∈ SN with distSN (z, p′) < distSN (z, γ(si)), and
(z− γ(si)) ⊥ γ′(si) for i = 0, 1, 2 implies the γ(si) are all in the pre-image of exp :
Eδ −→ SN which is a contradiction. Without loss of generality, the parameters
si, partition I ∼= S in three disjoint open sub-arcs, defined by V0 := (s0, s1),W1 :=
(s1, s2) and W2 := (s2, s0) and we may assume p ∈ γ(V0).

Next consider the sub-arc V1 := W1 ∪ {s2} ∪W2, and the shortest great arc α :
[0, 1] −→ SN joining z and γ(s2). This great arc has the following properties:

α(0) = z, α(1) = γ(s2),
distSN (α(s), γ(s2)) < distSN (α(s), γ(si)), 0 < s ≤ 1 (i = 0, 1), (2.11)

and α(s) is in the image of exp : Eδ −→ SN . Since exp : Eδ −→ SN is an injective
continuous function on a compact set, it is in fact a homeomorphism. From (2.11)
we deduce that neither γ(s0) nor γ(s1) are in the pre-image exp−1 ◦α([0, 1]). This
means that the pre-image of α([0, 1]) is not connected, which is a contradiction to
the continuity of exp−1 and α. Therefore we have ∆[γ] ≥ Θ̄.

The spaces RN and SN are related by stereographic projection.

Definition 2.21 (Stereographic projection). Let N∞ ∈ SN be some distinguished point,
that we call the north pole of SN , and let E ⊂ RN+1 be the N -dimensional tangent
plane to SN at S0 := −N∞, i.e. south pole. We define the stereographic projection
P : SN\{N∞} −→ RN by the following rule: Every point x ∈ SN\{N∞} is mapped to
x′, the unique intersection point of the plane E ∼= RN and the ray from N∞ passing
through x (see Figure 2.4 for the N = 1 case). If N∞ = (1, 0, · · · , 0) then for x =
(x1, · · · , xN+1) ∈ SN ⊂ RN+1 the stereographic projection is

P (x) :=
(

2x2

1− x1
, · · · , 2xN+1

1− x1

)
∈ RN .

Lemma 2.22 (Estimates on stereographic projection from SN to RN ).
Let P : SN \ {N∞} −→ RN be the stereographic projection of Definition 2.21. Then

R(x, y, z) ≤ R(P (x), P (y), P (z))

for x, y, z ∈ SN \ {N∞}, and
∆[γ] ≤ ∆[P (γ)].
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A

B

R

R

α

̺

̺

A′

B′

2R′

11 C S0

α+̺
2 α−̺

2

E

N∞

Figure 2.4: The stereographic projection P of Definition 2.21 increases the radius of
every circle on S3.

Proof. Fix x, y, z ∈ SN\{N∞}. Let

% := arcsinR(x, y, z) (2.12)

be the angular radius of the circle C through x, y, z (see Figure 2.4). The stereographic
projection maps circles C to circles C ′ (see [CG67]). If the circle through x, y, z passes
through the north pole N∞, R(P (x), P (y), P (z)) =∞ follows and we are finished. More
generally, if we want to calculate the radius of the projected circle C ′, we may not do so
using the projection of the centre of the original circle C, since centres of circles are not
mapped to centres of the projected circles. Instead we consider the longitude through
the circle centre which is mapped to (the extension of) the diameter of the image circle.
Thus the distance between the images A′, B′ of the two points A,B where the circle C
intersects this longitude, immediately provide the new radius. Specifically1

R(P (x), P (y), P (z)) =

∣∣∣∣∣S0B′ − S0A′

2

∣∣∣∣∣
=

∣∣∣∣tan
(
α+ %

2

)
− tan

(
α− %

2

)∣∣∣∣
=

∣∣∣∣∣ sin %
cos
(α+%

2

)
cos
(α−%

2

)∣∣∣∣∣
=

∣∣∣∣ 2 sin %
cosα+ cos %

∣∣∣∣
=

∣∣∣∣ 2
cosα+ cos %

∣∣∣∣R(x, y, z), (2.13)

1Aide mémoire: tanx+ tan y = sin(x+ y)/(cosx cos y), and cosx cos y = [cos(x+ y) + cos(x− y)]/2.
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2.3. KNOTTED CURVES

where α ∈ [0, π] is the angle between the south-pole S0 = −N∞, and the centre of the
circle through x, y, z. Finally

R(P (x), P (y), P (z)) =
∣∣∣∣ 2 sin %
cosα+ cos %

∣∣∣∣ ≥ sin % = R(x, y, z).

Lemma 2.23 (Free spot). Let γ : S −→ SN , N ≥ 2, be a curve with ∆[γ] ≥ Θ > 0.
Then there exists a point N∞ ∈ SN such that

distRN ({N∞}, γ(S)) ≥ Θ.

Proof. Let s ∈ S be arbitrary and let C(s,∆[γ]) be the centre-set of the torus around
γ(s), as defined in Definition 2.8. Then N∞ ∈ C ∩ SN 6= ∅ does not lie on the curve,
and we have dRN ({N∞}, γ(S)) = Θ.

2.3 Knotted Curves

Thick curves can be knotted. Traditionally, few authors in the field of ideal knots cared
about topological subtleties of knot theory and we will not break with this tradition.
We follow the proceeding of [S04]:

Definition 2.24 (Knots). Let M = R3 or M = S3.

(i) A knot or knot shape K ⊂M is the image of a closed, injective, continuous curve
γ ∈ C0(I,M).

(ii) An ambient isotopy is a continuous map h : M × [0, 1] → M with h(·, 0) = idM
and h(·, t) a homeomorphism for all t ∈ [0, 1].

(iii) Two knots K1 and K2 are ambient isotopic (notation: K1 'M K2) if an ambient
isotopy h : M × [0, 1]→ R3 exists with h(K1, 1) = K2.

Usually we also call γ a knot, not just the set γ(I). The subtleties are discussed for
example in [BZ03]. We drop the M from 'M if it is clear from the context.

Remark 2.25. Note that all thick knots are tame in the sense of [BZ03, p. 3]. This was
proved in [LSDR99, Theorem 2] for the R3-case. By using the stereographic projection
the result lifts to S3. Accordingly we hereafter consider only tame knots.

Apart from N∞ the spaces SN and RN are topologically the same. By Lemma 2.23
we may always assume that the thick knot does not pass through N∞ and we can lift
certain topological properties to SN :

Lemma 2.26 (Ambient isotopies under stereographic projection). Let P : S3\{N∞} −→
R3 be the stereographic projection of Definition 2.21 and let γ0 and γ1 ∈ C0(I,R3) be
two injective curves such that

γ0(I) 'R3 γ1(I).

Then
P−1 ◦ γ0(I) 'S3 P−1 ◦ γ1(I).
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Proof. Since γ0(I) 'R3 γ1(I) there exists an ambient isotopy h : R3 × [0, 1] −→ R3 with
γ1(I) = h(γ0, 1). Define h̃ : S3 × [0, 1] −→ S3 by

h̃(x, t) := P−1 ◦ h(P (x), t),

h̃(N∞, t) := N∞ for all t ∈ [0, 1].

Note that h̃(·, t) is one-to-one and maps compact sets to compact sets and therefore
neighbourhoods of N∞ to neighbourhoods of N∞, so the extended map is in fact a
homeomorphism for each t. Hence we showed P−1 ◦ γ0(I) 'S3 P−1 ◦ γ1(I) by the
ambient isotopy h̃.

The following lemma will be useful to prove that the limit of a sequence is in the
same knot class.

Lemma 2.27. [Rt05] Let η ∈ C1(S1,R3) be a regular, injective, closed curve. Then
there exists a constant ε∗ > 0 depending on η such that all ζ ∈ C1(S1,R3) with
||ζ ′ − η′||C0(S1,R3) ≤ ε∗ are ambient isotopic to η.

We have now approached a convenient function space2 for problems concerning thick
curves

K := {γ ∈ C1(I,M) : ∆[γ] > 0, |γ′(t)| ≡ const ∀t ∈ I}, (2.14)

and are able to define ideal knots:

Definition 2.28 (Ideal Knot in R3). Let k ∈ C1(S,R3) be regular curve representing a
knot class. We call γ∗ ∈ C1(I,R3) ideal iff

L[γ∗]
∆[γ∗]

= inf
γ∈C1(S,R3),γ'k

L[γ]
∆[γ]

,

where L[γ] :=
∫
I |γ′| is the arc-length of γ. The functional

R[·] :=
L[·]
∆[·]

is called ropelength [CKS02].

2.4 Convergence Analysis of Curves in RN

So far we only considered a fixed curve and its thickness. This section deals with
sequences of thick curves and their limits. Many results in this section have been proved
before for R3 and most of the time the generalisation to RN is straight forward.

To prove the existence of solutions to optimisation problems, one needs first to
identify a good solution space K which we have done in equation (2.14) above. Next,
one typically picks an extremal sequence {γn} and finds a convergent subsequence which
is done in the next two lemmata.

2 By Lemma 2.2 we know K ⊂ C1,1. Considering only constant speed curves reflects the fact that
we are more interested in shapes, than in parametrisations. For some arguments constant speed is
technically difficult to achieve, but we can later reparametrise the curve.
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Lemma 2.29 (Speed limit I). Let {γn}n ⊂ C1(S,RN ) be a sequence of curves with
constant speed |γ′n(s)| = Ln, ∆[γn] ≥ Θ > 0, and γn(S) ⊂ Br(0) for some constant
r > 0 for all n ∈ N. Then there exist two constants c1, c2 > 0 which bound the speed

0 < c1 ≤ |γ′n(s)| ≤ c2 <∞, ∀n ∈ N, and ∀s ∈ S.

Proof. By Lemma 2.13 there is a lower bound c1 > 0. The upper bound c2 < ∞ is
proven in [StvdM04, proof of theorem 6.4, Step 2].

We will quantify the constants later in Lemma 3.13. The next lemma distills methods
from [GdlL03].

Lemma 2.30 (Adapted Ascoli). Let {γi}i ⊂ C1(S,RN ) be a sequence of curves with
the following properties:

(i) Each γi has constant speed |γ′i(s)| ≡ Li > 0 for all s ∈ S,

(ii) There exists a constant Θ > 0 such that ∆[γi] ≥ Θ for all i ∈ N,

(iii) There exists a constant r > 0 such that γi(S) ⊂ Br(0) for all i ∈ N.

Then there exists a subsequence {γij}j ⊂ {γi}i, and a limit γ ∈ C1(S,RN ) such that
γij → γ in C1(S,RN ), i.e.

γij → γ in C0(S,RN ),

and
γ′ij → γ′ in C0(S,RN ).

Furthermore |γ′ij | → |γ′| = const > 0.

Proof. By Lemma 2.29 there exist positive constants c1, and c2 such that c1 ≤ |γ′i(t)| =
Li ≤ c2 for all i ∈ N, t ∈ S. This bound implies equicontinuity:

γi(s)− γi(σ) =
∫ s

σ
γ′i(τ)dτ,

|γi(s)− γi(σ)| ≤
∫ s

σ
|γ′i(τ)|︸ ︷︷ ︸
≤c2

dτ ≤ c2|s− σ|,

|γi(s)− γi(σ)|/c2 ≤ |s− σ|, (2.15)

for all s, σ ∈ S. Since, by (iii), the sequence {γi}i is also bounded, Ascoli’s theorem
implies existence of a C0-convergent subsequence {γik} and a limit γ.

Define
fik := γ′ik ∈ C0(S,RN ).

The sequence {fk}k is equicontinuous by (2.6), and uniformly bounded so, again by As-
coli’s theorem, there exists a subsequence fij that converges to some limit f ∈ C0(S,RN ).
By uniqueness of limits we still have γij → γ. It remains to show that γ′ = f . Consider

γij (t) = γij (1) +
∫ t

1
fij (τ)dτ, (2.16)
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which implies

γ(t) = γ(1) +
∫ t

1
f(τ)dτ (2.17)

since we can exchange the limit and integration by equicontinuity. Thus f = γ′, γij → γ
in C1(S,RN ), and since |γ′ij (s)| = Lij ≥ c1 for all s ∈ S, we also have for the limit
|γ′(s)| = const ≥ c1 > 0.

Now that we found an accumulation point γ we need to verify that it is itself in the
class K;

Lemma 2.31 (Upper semicontinuity of ∆). [GdlL03, Lemma 5] Let {γn}n ⊂ C1(S,RN )
be a sequence of curves such that

(i) ∆[γn] ≥ Θ > 0 for all n ∈ N,

(ii) |γ′n(s)| ≡ Ln for all n ∈ N, s ∈ S,

(iii) γn → γ in C0(S,RN ).

Then the limit γ is a simple curve in C1(S,RN ) and ∆[γ] ≥ Θ. Consequently, if ∆[γn]→
η, then ∆[γ] ≥ η.

Proof. We know that γ(S) ⊂ Br(0) for r ∈ R sufficiently large because the curve is
compact. We conclude γn(S) ⊂ B2r(0) for n sufficiently large by C0-convergence. From
Lemma 2.30 we deduce that a subsequence converges γni → γ in C1(S,RN ). The rest
of the proof then follows that of [GdlL03, Lemma 5] (see also [GMSvdM02, Lemma 4],
[SvdM03a, Lemma 4]).

The above lemma also shows for example that an accumulation point γ of a thickness
maximising sequence has maximal thickness. Since we deal with knots we also want to
make sure that γ is still in the same knot class as the extremal sequence.

Lemma 2.32 (Knot invariance in R3). [GMSvdM02, Lemma 5], [GdlL03, Lemma 6]
Let {γn}n ⊂ C1(S,R3) be a sequence of curves such that

(i) |γ′n(s)| ≡ Ln, ∀s ∈ S,

(ii) ∆[γn] ≥ Θ > 0, ∀n ∈ N,

(iii) γn → γ in C0(S,R3) as n→∞.

Then γ 'R3 γn for all n sufficiently large.

Proof. By Lemma 2.31 the curve γ is embedded, and by Lemma 2.30 and the sub-
sequence principle we have in fact C1-convergence. By Lemma 2.27 all curves in a
C1-neighbourhood of γ are ambient isotopic, so we have γ 'R3 γn for n sufficiently
large.

The following lemma looks similar to Lemma 2.31 but with reversed roles. This
time we know that the limit curve γ is thick and approximate it with a C1,1 sequence

18
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{γj}j . If the curvature of each γj is bounded3 with respect to the thickness of γ then
the thickness of γj at least approaches the thickness of γ for j → ∞. We will use this
to show that small variations of a curve, at worst, only slightly reduce its thickness.

Lemma 2.33 (Smooth approximation with positive thickness I). Let γ ∈ C1(S,RN )
be a closed and regular curve with positive thickness ∆[γ] > 0. Then for any sequence
{γj} ⊂ C1,1(S,RN ) satisfying

(i) γj → γ in C1(S,RN ) as j →∞,
(ii) lim supj→∞ ‖κj‖L∞(S) ≤ 1

∆[γ] , where κj denotes the local curvature4 of γj for j ∈ N,

one has
lim inf
j→∞

∆[γj ] ≥ ∆[γ]. (2.18)

Proof. Notice that the C1-convergence we assume in (i) implies

Lj := L[γj ] −→ L[γ] = L and
(2.19)

|γ′j | −→ |γ′| > 0 on S as j →∞,
and the arc-length parametrisations Γj : [0, Lj ]→ RN satisfy by assumption (ii)

lim sup
j→∞

‖Γ′′j ‖L∞((0,Lj),RN ) = lim sup
j→∞

‖κj‖L∞(S) ≤
1

∆[γ]
. (2.20)

In order to establish (2.18) it suffices to show that for any given ε > 0 there is some
j0 = j0(ε) ∈ N such that

∆[γj ] = ∆[Γj ] ≥ (1− ε)∆[γ], for all j ≥ j0.
We argue by contradiction. If we assume on the contrary that there exists an ε0 > 0
such that

∆[Γj ] < (1− ε0)∆[γ] for a subsequence j →∞,

then for each member j of this subsequence we can find an arc-length parameter sj ∈
[0, Lj ] such that by definition of thickness (see (2.2))

ρG[γj ](sj) <
(

1− ε0

2

)
∆[γ]. (2.21)

It was shown in [StvdM07, Lemma 5] that

ρG[γj ](sj) = ρpt[γj ](sj) := inf
τ∈[0,Lj ]\{sj}

pt[γj ](sj , τ),

with pt as in Definition 2.3. Therefore we can find for each j some arc-length parameter
σj ∈ [0, Lj ] \ {sj} such that by (2.21)

pt[γj ](sj , σj) <
(

1− ε0

4

)
∆[γ]. (2.22)

3 In Examples 2.34 and 2.35 below we will see that the actual curvature of κj does not have to
converge to the curvature of γ.

4By assumption (i) we can assume that all γj are regular curves, and recall that C1,1((0, 1),RN ) ∼=
W 2,∞((0, 1),RN ) so that κj exists and is bounded a.e. on (0, 1) for each j ∈ N. [E98, p. 279]
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CHAPTER 2. THICK CURVES IN RN AND SN

Going back to the original parametrisation γj : S → RN we find parameters tj , τj ∈ S1

given by ∫ tj

0
|γ′j(z)| dz = sj 6= σj =

∫ τj

0
|γ′j(z)| dz,

and by choice of an appropriate subsequence we may assume that

(tj , τj)→ (t, τ) ∈ S× S as j →∞.
Two cases may occur: either these limit parameters t and τ are distinct or they coincide.

Case I. If t 6= τ then γ(t) 6= γ(τ) since γ is simple, and therefore also Γ(s) 6= Γ(σ)
for s :=

∫ t
0 |γ′(z)| dz and σ :=

∫ τ
0 |γ′(z)| dz. (Notice that we assumed that γ is a regular

curve, i.e., |γ′| > 0 so that a double point γ(t) = γ(τ) for t 6= τ would imply a double
point for the arc-length parametrisation Γ(s) = Γ(σ) which is impossible because ∆[γ]
is positive.) We arrive at

Γj(sj) = γ(tj) −→ γ(t) = Γ(s) and
(2.23)

Γj(σj) = γ(τj) −→ γ(τ) = Γ(σ) as j →∞.
In addition, one has for the derivatives by the C1-convergence and in particular by (2.19)

Γ′j(σj) =
γ′j(τj)
|γ′j(τj)|

−→ γ′(τ)
|γ′(τ)| = Γ′(σ) as j →∞, (2.24)

so that we can use an explicit formula for the pt-radius and Theorem 2.12 to obtain
from (2.22)(

1− ε0

4

)
∆[γ] >

(2.22)
pt[γj ](sj , σj) =

|Γj(sj)− Γj(σj)|
2 sin ](Γj(sj)− Γj(σj),Γ′j(σj)

j→∞−→ |Γ(s)− Γj(σ)|
2 sin ](Γ(s)− Γ(σ),Γ′(σ))

= pt[γ](s, σ)

≥ ρpt[γ](s) ≥
Theorem 2.12

∆[γ],

which is a contradiction.

Case II. If t = τ we find |tj − τj | → 0 as j →∞, so that by (2.19) for j � 1

|sj − σj | =
∣∣∣∣∣
∫ tj

τj

|γ′j(z)| dz
∣∣∣∣∣ ≤ 2‖γ′‖C0(S,R3)|tj − τj | → 0 as j →∞. (2.25)

We apply (2.20) to the Taylor expansion (cf. [StvdM07, (2.20)])

pt[γj ](sj , σj) =

∣∣∣Γ′j(σj) +
∫

[σj ,sj ]

∫ u
σj

Γ′′j (z) dzdu
∣∣∣2

2
∣∣∣Γ′j(σj) ∧ 1

σj−sj
∫ 1

0

∫ σj
σj−u(σj−sj) Γ′′j (z) dzdu

∣∣∣ (2.26)

to find for given δ > 0 some j1 = j1(δ) such that for all j ≥ j1∣∣∣∣∣
∫ u

σj

Γ′′j (z) dz

∣∣∣∣∣ ≤
∫

[σj ,sj ]
|Γ′′j (z)| dz ≤

(2.20)
(1 + δ)|sj − σj | 1

∆[γ]
for all u ∈ [σj , sj ],
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2.5. EXAMPLES ON HIGHER ORDER INFORMATION

1
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1− ε1− ε

2ε

cε,r(t
∗)

(a) (b) (c)

Figure 2.5: The curve shown in (a) approximates the ropelength of a circle for ε → 0
but always contains a straight segment. By replacing the straight part with the curve
displayed in (b), the curve in (c) approximates the ropelength of a circle for r ≥ 1 but
the curvature at parameter t∗ is 1/r. Note that the radius r depicted in (b) is too small
but allows a better visualisation.

and ∣∣∣∣∣
∫ σj

σj−u(σj−sj)
Γ′′j (z) dz

∣∣∣∣∣ ≤(2.20)
(1 + δ)|u||sj − σj | 1

∆[γ]
for all u ∈ [0, 1].

This together with (2.24) and (2.25) allows us to estimate the numerator in (2.26) by
1 − δ from below, and the denominator by (1 + δ)/∆[γ] from above for all j ≥ j2 for
some j2 = j2(δ) ≥ j1. We infer from (2.22)(

1− ε0

4

)
∆[γ] > pt[γj ](sj , σj) ≥ 1− δ

1 + δ
∆[γ] for all j ≥ j2,

which is absurd for any δ ≤ ε0/(8− ε0).

2.5 Examples on Higher Order Information

We expect ideal shapes to be piecewise C∞ and all known shapes are of this class. Hence
it is reasonable to look at higher order information such as curvature or torsion, as has
been done for example in [S04]. As recently stated: ‘The differences in the ropelength
are very small, but numerical simulations indicate that essential details of the curvature
and torsion profiles appear only at the final stage of the tightening process.’ [BPP08]
This section gives two examples demonstrating that in fact we can be arbitrarly close
to the optimal thickness without seeing a reliable curvature plot.

Example 2.34 (Approximation of circle). A circle of radius 1 can be approximated by
the following construction: Start with a semicircle of radius 1 and attach a quarter circle
of radius 1−ε for some small ε > 0 at each end of the half-circle such that the ends face
each other. Finally close the curve with a straight line (see Figure 2.5a). The resulting
curve cε has the following properties:

L[cε] = 2π − (π − 2)ε,
∆[cε] = 1− ε,
L[cε]
∆[cε]

→ 2π for ε→ 0.
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2εn

1

2

Figure 2.6: This curve converges to a stadium curve in C1 and its thickness also converges
to the thickness of the stadium curve. But it does not converge in C1,1 and its curvature
does not converge to the curvature of the stadium curve.

Let ε < ε̄ < 1 for some ε̄ > 0. For r ∈ (ε̄,∞) the straight 2ε part of cε can be replaced
by three arcs of radius r of length αr, 2αr and αr with angle α := arcsin ε

2r (see Figure
2.5 b and c). The resulting curve cε,r has the following properties:

α := arcsin
ε

2r
≈ ε

2r
for ε << 1,

L[cε,r] = 2π − πε+ 4αr,
∆[cε,r] = min(1− ε, r),
L[cε,r]
∆[cε,r]

→ 2π
min(1, r)

for ε→ 0.

Consider the curvature at the parameter t∗ in the middle of the gap between the two
quarter circles (see Figure 2.5). Depending on r ∈ [1,∞] any value between 0 and 1 can
be achieved, no matter how close to the optimal ropelength the curve cε,r is. Note that
cε,r only converges to a circle in C1 and not in C1,1.

Even ‘worse’ is the next example:

Example 2.35 (Approximation of stadium curve). We can approximate the stadium
curve by the curve in Figure 2.6. Let εn := 1/n for n ∈ N and fix r ∈ (1,∞). We
describe the curve in Figure 2.6 clockwise: Start with a half-circle of radius 1 then
attach a straight segment of length 2 and again a half circle of radius 1. Then close
the curve with n copies of Figure 2.5 (b). The curve Sn,r constructed this way has the
following properties:

αn := arcsin
εn
2r
≈ εn

2r
for εn << 1,

L[Sn,r] = 2π + 2 + 4nαnr → 2π + 4 for n→∞,
∆[Sn,r] = 1.

Although the length and the thickness of Sn,r converges to the length and thickness of
the stadium curve, the curvature is 1/r on a whole interval.

Remark 2.36. Examples 2.34 and 2.35 are cautionary examples, when considering
curvature plots of approximations. Even though both curves converge in C1 to their limit
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and the thickness converges to the thickness of the limit they do not converge in C1,1.
In other words we can not expect to have an estimation of C1,1-closeness in terms of
thickness. It is quite possible that the ropelength of an ideal shape γ may be approximated
by some γε with arbitrary curvature between 0 and ∆[γ]. On the other hand, we do not
expect an actual ropelength minimiser to show such an oscillating curvature since it
would increase its lenght.
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Chapter 3

Packing Tubes on S2

This chapter is joint work with Heiko von der Mosel and has been published as a preprint
[GevdM09]. At an early stage of this thesis, we wanted to check how well our numerics
work in S3. The code inherited from [CLMS05] was not yet ready to compute in R4 so
we looked for a problem in the two-sphere S2. In S2 there is no knot and only a unique
maximiser of thickness – great circles as seen in Example 2.17. Instead we considered
the following problem:

Problem (P). Find the longest closed curves of prescribed minimal thickness which fit
onto the 2-sphere S2 := {x ∈ R3 : |x| = 1}.

In the event we found an analytic solution for some cases of this problem.
For a precise mathematical formulation of this maximisation problem we recall first

that the length functional L defined on rectifiable continuous closed curves γ : S1 → R3

is given by

L[γ] :=
∫

S1

|γ′(t)| dt,

where S1 denotes the unit circle S1 ∼= R/2πZ.
With the notation of Chapter 2 we state problem (P) precisely as:

Problem (P). Given a constant Θ ∈ (0, 1] find a closed curve γΘ in the class

CΘ := {γ ∈ C1,1(S1,R3) : |γ| = 1 and |γ′| > 0 on S1,∆[γ] ≥ Θ}

such that L[γΘ] = supCΘ L.
We will show existence of solutions for any Θ and make an extra effort to show that

the minimal prescribed thickness is in fact attained by any solution.

Theorem 3.1 (Existence of solutions of (P)). For each prescribed minimal thickness
Θ ∈ (0, 1] Problem (P) possesses (at least) one solution γΘ ∈ CΘ. In addition, every such
solution has minimal thickness, i.e., ∆[γΘ] = Θ.

The focus of the present chapter is to construct explicit and unique solutions of
(P) taking advantage of the symmetry of the target manifold S2. We have seen in
Example 2.17 that for given minimal thickness Θ = 1 any great circle on S2 provides
the unique length maximising closed curve (up to congruence). Any closed curve γ in
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3D view:

Front view:

Θ3

Θ3

ϑ3

ϑ3

C1

C2

β3,0
β3,1

C0

Figure 3.1: Construction of β3,1 starting from β3,0.

S2 different from a great circle has thickness ∆[γ] less than 1. The great circle happens
to be the first (and “simplest”) member of an infinite family of solutions corresponding
to the decreasing sequence of prescribed values of thickness

Θn := sinϑn for ϑn :=
π

2n
, n ∈ N. (3.1)

The building blocks of these explicit solutions will be semicircles of the n latitudes

Ci : S1 → S2, i = 0, . . . , n− 1.

Here, C0 is a circle of spherical radius ϑn around the north pole, and all latitudinal
circles Ci have spherical distance

distS2(Ci, Ci−1) = 2ϑn for i = 1, . . . , n− 1,

such that the last latitude Cn−1 is a circle of spherical radius ϑn around the south pole;
see Figure 3.1.

We may view the union C0 ∪ . . . ∪ Cn−1 as one (discontinuous) curve βn,0 : S1 →
S2, where the n connected components Ci of βn,0 possess mutually disjoint tubular
neighbourhoods of uniform radius Θn in R3 so that βn,0 has thickness ∆[βn,0] = Θn.
In order to construct from βn,0 continuous closed curves βn,k consisting of only one
component for suitable k ∈ {1, . . . , n− 1}, we cut the 2-sphere S2 into two hemispheres
along a longitude such that βn,0 is cut orthogonally into a collection of 2n semicircles.

Now, we keep one hemisphere fixed while turning the other by an angle of 2kϑn (see
Figure 3.1) such that the n semicircles of the original curve βn,0 on the fixed hemisphere
together with the now turned semicircles form a closed continuous curve

βn,k : S1 → S2. (3.2)
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That this is indeed possible under the additional algebraic condition1 that the greatest
common divisor gcd(k, n) of k and n equals 1, and that this construction leads to distinct
solutions of (P) is the content of

Theorem 3.2 (Explicit solutions of (P)). For each n ∈ N and k ∈ {1, . . . , n− 1} with
gcd(k, n) = 1 the curves βn,k are (up to rigid motions and re-parametrisations) mutually
distinct members of the class CΘ. They provide explicit piecewise circular solutions of the
variational problem (P) for prescribed minimal thickness Θ := Θn ∈ (0, 1]. In addition,
∆[βn,k] = Θn. For n = 1 the equator β1,0 provides the only solution with thickness
Θ1 = 1.

Interestingly, the solution curves βn,k, of which some are depicted in Figure 3.3 (a),
(b) on page 29, resemble to a striking extent certain so-called Turing patterns which
arise in chemistry and biology as characteristic concentration distributions of different
substances as a result of a diffusion-driven instability; see e.g. [VAB99].

For our variational problem (P) we can prove that the explicit solutions for given
thickness Θ := Θn, n ∈ N, are in fact unique.

Theorem 3.3 (Uniqueness of solutions of (P) for Θ = Θn). Any closed curve γΘ ∈ CΘ

which is a solution of (P) for given minimal thickness Θ = Θn, n ∈ N, coincides (up to
congruence and re-parametrisations) with one of the curves βn,k for k ∈ {1, . . . , n − 1}
with gcd(k, n) = 1. For n = 1, i.e. Θ1 = 1 the equator β1,0 is the unique solution. In
particular, for Θ = Θn we have exactly ϕ(n) solutions for Problem (P) where ϕ denotes
Euler’s totient function [BaSh96] (cf. Table 3.1).

This uniqueness theorem is a consequence of the following stronger result which em-
ploys the two-dimensional volume V(Tϑ(γ)) := H2(Tϑ(γ)) of the tubular neighbourhood

Tϑ(γ) := {ξ ∈ S2 : distS2(ξ, γ(S1)) < ϑ}
on S2, to identify sphere filling curves as precisely those explicit solutions βn,k for Θ =
Θn.

Remark 3.4 (Sphere filling curves). Note that the tubular neighbourhood in R3 of a
thick curve on S2 cannot cover the whole sphere since it touches in the interior (see
Figure 3.2). Instead, consider a pointlike light source being placed in the origin 0, then
for any closed curve γ ⊂ S2 its spherical tubular neighbourhood Tϑ(γ) may be seen on
S2 as the shadow of the spatial tubular neighbourhood BΘ(γ) ⊂ R3 for Θ = sinϑ. In
that sense the spatial thickness ∆[γ] = Θ corresponds to a spherical thickness ϑ =
arcsin Θ (see Lemma 2.18 and Lemma 3.10). Even the equator β1,0 together with its
spherical tubular neighbourhood Tπ/2(β1,0) is sphere filling although the spatial tubular
neighbourhood BΘ(β1,0) covers only the considerably smaller equatorial collar Tπ/3(β1,0).

Theorem 3.5 (Sphere filling thick curves). If V(Tϑ(γ)) = 4π for ϑ ∈ (0, π/2] and
some closed curve γ ∈ CΘ with Θ = sinϑ ∈ (0, 1], then there is some n ∈ N and
k ∈ {1, . . . , n− 1} with gcd(k, n) = 1, or n = 1 and k = 0, such that

(i) ϑ = ϑn,
1 Such a construction was used for a bead puzzle called the orb or orb it [WT83] in the 1980s and

the involved algebra was presumably known to its inventors.
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Figure 3.2: A cut through β2,1 reveals that the tubular neighbourhood in R3 of a curve
on the two-sphere cannot cover the sphere. It touches itself in the interior and a small
part of S2 remains uncovered. The spherical tubular neighbourhood can be seen as the
shadow of the spatial tubular neighbourhood. Here, the origin casts the shadow of the
hatched circle with radius Θ = 1/

√
2 onto the thick black line on the sphere. This line is

the spherical tubular neighbourhood with radius ϑ = arcsin Θ = π/4 around the black
dot. The spherical tubular neighbourhood may cover the sphere in this sense.

(ii) ∆[γ] = Θn, where Θn = sinϑn,

(iii) γ = βn,k.

Notice that this theorem also provides insights about intermediate values Θ ∈ (0, 1]
of prescribed minimal thickness for arbitrary competitors γ ∈ CΘ: Either γ is not a
sphere filling curve, i.e.

V(Tϑ(γ)) < 4π for ϑ = arcsin Θ,

or ϑ = ϑn, ∆[γ] = Θn, and γ = βn,k. In particular, neither the maximiser γΘ nor any
competing closed curve γ ∈ CΘ is a sphere filling curve if Θ 6= Θn.

Our additional analysis of the relation between length, volume, and thickness reveals
among other things an oscillatory behaviour of the volume V (Θ) := V(Tϑ(γΘ)) as a
function of the given minimal thickness Θ. In Figure 3.6 on page 46 the black zig-zag
curve serves as a lower bound for V (Θ) which is attained precisely at each Θn, n ∈ N;
see Lemma 3.18 for the details.

Similar results as described above are available for the problem corresponding to (P)
on open curves γ : [0, 1]→ S2. For the details we ask the reader to consult Section 3.4,
we refer in particular to Figure 3.7 on page 60 for a first impression of the shapes of
length maximising open curves on the 2-sphere.

3.1 Explicit solutions

We recall from the previous section that we obtain the curves βn,k for n ∈ N and
k ∈ {0, . . . , n−1} by cutting the 2-sphere S2 into two hemispheres from now on referred
to as the western hemisphere Sw and the eastern hemisphere Se such that the latitudes
Ci : S1 → S2 for i = 0, . . . , n− 1, perpendicular to the longitudinal cutting plane satisfy
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(a) (b) (c)

Figure 3.3: (a),(b) Solutions that maximise length for prescribed thickness. (a) β4,1 has
thickness Θ4 = sin π

2·4 with one hemisphere turned by 1 · Θ4. (b) β12,5 has thickness
Θ12 = sin π

2·12 with one hemisphere turned by 5 ·Θ12. (c) βΘ is a good competitor for a
thickness Θ ∈ (Θ2,Θ1). None of the curves is depicted with its full spatial thickness.

(i) C0 is a circle of spherical radius ϑn = π/(2n) about the north pole,

(ii) distS2(Ci, Ci−1) = 2ϑn for i = 1, . . . , n− 1,

which implies that Cn−1 is a circle of spherical radius ϑn about the south pole, see
Figure 3.1. Keeping the western hemisphere Sw fixed and turning Se by an angle of
2kϑn leads to a collection of 2n semicircles whose (generally disconnected) union we
may parametrise with constant speed to obtain our candidates

βn,k : S1 → S2 for k = 1, . . . , n− 1.

Lemma 3.6. For every n ∈ N and k ∈ {1, . . . , n−1} with gcd(k, n) = 1 the appropriately
re-parametrised curve βn,k : S1 → S2 is a closed piecewise circular curve whose constant
speed parametrisation is of class C1,1(S1,R3) satisfying

∆[βn,k] = Θn = sinϑn = sin
π

2n
.

Moreover, for distinct k1, k2 ∈ {0, . . . , n−1} the curves βn,k1 and βn,k2 are not equivalent,
i.e., there is no rigid motion M with M(βn,k1) = βn,k2.

Proof. The main issue will be to check, whether or not the resulting curve forms a single
closed embedded loop, and we postpone this task and instead analyse its consequences.

Notice that by our choice of the turning angle 2kϑn every endpoint of a semicircle on
Sw meets exactly one endpoint of a semicircle on Se, so ∂βn,k = ∅, which means that all
connected components of βn,k are embedded closed loops. Moreover, our construction
connects semicircles in a C1-fashion, that is, the tangent lines of the respective semicir-
cles coincide at the common endpoints. Once we are certain that we have obtained one
single closed simple curve we can rearrange the sub-arcs of the domain S1 correspond-
ing to the various semicircles in the right order to obtain the desired constant speed
parametrisation βn,k : S1 → S2.

To show then, in addition, that ∆[βn,k] = Θn, we recall that the original curve βn,0

consisting of the stack of n disjoint latitudinal circles with mutual spherical distance
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2ϑn satisfies ∆[βn,0] = Θn. According to Theorem 2.12 this implies that the tubular
neighbourhood BΘn(βn,0) in R3 can be expressed as the disjoint union of normal disks,
i.e.,

BΘn(βn,0) =
⋃̇

s∈S1
DΘn(βn,0(s), (βn,0)′(s)),

where Dθ(ξ, η) denotes the two-dimensional disk of radius θ centred at ξ ∈ R3 and
perpendicular to η ∈ R3 \ {0}. Moreover, after cutting the S2 along a longitudinal plane
into the hemispheres Sw and Se one observes that these normal disks centred in Sw do
not intersect Se, and vice versa. Therefore also

BΘn(βn,k) =
⋃̇

s∈S1
DΘn(βn,k(s), (βn,k)′(s)) for all k = 0, . . . , n− 1, (3.3)

since the βn,k are obtained by simply turning Se against Sw leading to a piecewise
circular closed C1,1-curve.

We claim that for each x ∈ BΘn(βn,k) there is exactly one point p ∈ βn,k(S1) such
that

distR3(x, βn,k) = |x− p|, (3.4)

which again by Theorem 2.12 implies ∆[βn,k] ≥ Θn, and since the local radius of curva-
ture of the semicircles C0 ∩ βn,k equals Θn we arrive at ∆[βn,k] = Θn.

In order to prove the claim we use (3.3) to find a unique parameter s = s(x) ∈ S1

such that x ∈ DΘn(βn,k(s), (βn,k)′(s)). Since βn,k is of class C1 we know that the
segment x− p is perpendicular to the curve βn,k at all points p ∈ βn,k satisfying (3.4).
If there were one point p := βn,k(t) satisfying (3.4) for t 6= s, then we would have
x ∈ DΘn(βn,k(t), (βn,k)′(t)), hence

x ∈ DΘn(βn,k(s), (βn,k)′(s)) ∩DΘn(βn,k(t), (βn,k)′(t)) 6= ∅
contradicting the fact that the sets on the right-hand side of (3.3) are disjoint. So the
only point satisfying (3.4) is the point p := βn,k(s), which proves the claim.

It remains to be shown that each of the βn,k with gcd(k, n) = 1 forms one single
closed loop. For that purpose we introduce certain checkpoints and study if and how
the curve βn,k passes through these points. We consider the fixed western hemisphere
Sw and label the 2n endpoints of the semicircles counter-clockwise from 0 to 2n − 1,
such that checkpoints number i and 2n− 1− i correspond to the i-th semicircle on Sw
for i = 0, . . . , n− 1; see Figure 3.4. The n semicircles on Sw connect the checkpoints to
n pairs which may be viewed as a permutation

c := (0 2n− 1)(1 2n− 2) · · · (n− 1 n)

consisting of n cycles of length 2, or alternatively,

c(i) ≡ −1− i mod 2n, i = 0, . . . , 2n− 1.

So if we pass through checkpoint i along the corresponding semicircle contained in
βn,k ∩ Sw we will next pass through checkpoint c(i) as the endpoint of this semicircle
upon entering the eastern hemisphere Se. To model the turn of the other hemisphere Se
by an angle of 2ϑn against Sw we use the permutation

t := (0 1 · · · 2n− 2 2n− 1)
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0

1

· · ·

2n − 1

2n − 2

· · ·

n + 1

2ϑ 2ϑ

2ϑ 2ϑ

2ϑ

2ϑ

n − 2

n − 1 n

Figure 3.4: Labelling 2n checkpoint on a hemisphere for Lemma 3.6

consisting of 1 cycle of length 2n, so that the turning angle of 2kϑn corresponds to

tk(i) ≡ i+ k mod 2n for k = 1, . . . , n− 1.

As we proceed along the curve βn,k we pass alternately through the semicircles on Sw
and the semicircles on the rotated hemisphere Se, respectively. It can easily be checked
that if we enter Sw through checkpoint i then we enter Sw the next time at checkpoint

q(i) := t−k ◦ c ◦ tk ◦ c(i) mod 2n, i = 0, . . . , 2n− 1.

We enter through n distinct checkpoints and therefore pass through all semicircles on
Sw and Se, respectively, if and only if the permutation q = t−k ◦ c ◦ tk ◦ c consists of
exactly two cycles of common length n. In order to determine under which condition
this happens we calculate

q(i) ≡ t−k ◦ c ◦ tk ◦ c(i) mod 2n
≡ t−k ◦ c ◦ tk(−1− i) mod 2n
≡ t−k ◦ c(−1− i+ k) mod 2n
≡ t−k(−1− [−1− i+ k]) mod 2n
≡ t−k(i− k) mod 2n
≡ i− 2k mod 2n,

hence
ql(i) ≡ i− 2kl mod 2n.

This relation shows in particular that the reentry after an even checkpoint is again an
even checkpoint ensuring that no semicircle on Sw and for symmetry reasons also on Se
is left out in the process.

By Lemma 3.7 below, that will also be applied in the construction of open curve
solutions in Section 3.4, we conclude that q consists of two cycles of common length
n if and only if (2n)/ gcd(2k, 2n) = n which is equivalent to gcd(k, n) = 1, otherwise
it consists of 2 gcd(k, n) cycles of length n/ gcd(k, n). To see the latter we note that
the cyclic group 〈q〉 := {id, q, q2, q3, . . .} operates freely on the set of checkpoints. The
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number of algebraically disjoint orbits, i.e. cycles in our situation, is given by the well-
known orbit formula [A91]

]
{

orbits of 〈q〉} =
]
{

checkpoints
}

|〈q〉| =
2n

n/ gcd(k, n)
= 2 gcd(k, n).

Switching the roles of the entry and exit checkpoints on the western hemisphere Sw will
produce the opposite orientation of the constructed curves. Since each algebraic orbit
corresponds to one of the two opposite orientations we end up with gcd(k, n) closed
loops, in particular with one closed curve if gcd(k, n) = 1.

To see that for k1 6= k2 the curve βn,k1 cannot be mapped by a rigid motion to βn,k2

we consider the oriented angle between the polar axes connecting the respective north
and south poles on Sw and the tilted Se measured counterclockwise in the cutting plane
as seen from Sw. This invariant under rigid motions is in fact different for k1 6= k2. This
finishes the proof of Lemma 3.6.

Lemma 3.7. For given r, v ∈ N let the permutation q : {0, · · · , r−1} −→ {0, · · · , r−1}
be defined as q(i) := i− v mod r. Then the orbit length of i under the cyclic group 〈q〉
is ]{q0(i), · · · , qr(i)} = r/ gcd(v, r).

Proof. For l = r/ gcd(v, r) we find

ql(i) ≡ i− v r

gcd(v, r)
≡ i− r v

gcd(v, r)
≡ i mod r for all i = 0, . . . , r − 1,

which proves that no cycle in q is longer than r/ gcd(v, r). Now let m > 0 be the smallest
integer such that

qm(i) ≡ i− vm ≡ i mod r (3.5)

for some i ∈ {0, . . . , r − 1}. By (3.5) vm is a multiple of r, i.e. there exists j ∈ N such
that

vm = j lcm(v, r) = j
vr

gcd(v, r)
,

where lcm(v, r) denotes the least common multiple of v and r. Cancelling v yields

m = j
r

gcd(v, r)
,

which implies m ≥ r/ gcd(r, v) and consequently, for r/ gcd(v, r) is the upper bound on
the length of any cycle as shown above,

m =
r

gcd(v, r)
.

Remark 3.8. (i) Since we are only interested in different shapes we do not have to
take into account any integer k ≥ n since the corresponding arcs βn,k ∩ Se are
equivalent with βn,k−n ∩ Se for2 k ≥ n. Therefore the number of distinct closed
curves βn,k for given n ∈ N is identical with the cardinality of the set

An := {k ∈ {1, . . . , n} : gcd(k, n) = 1}, n ∈ N,
2For algebraic reasons we do count the case k = n instead of k = 0.
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n ]An n ]An n ]An n ]An n ]An n ]An
1 1 8 4 15 8 22 10 29 28 36 12
2 1 9 6 16 8 23 22 30 8 37 36
3 2 10 4 17 16 24 8 31 30 38 18
4 2 11 10 18 6 25 20 32 16 39 24
5 4 12 4 19 18 26 12 33 20 40 16
6 2 13 12 20 8 27 18 34 16 41 40
7 6 14 6 21 12 28 12 35 24 42 12

Table 3.1: The set An := {k ∈ {1, . . . , n} : gcd(k, n) = 1} for n ∈ N, consists of
the values k, such that βn,k is a closed curve. By the uniqueness result, Theorem 3.3,
]An = ϕ(n) is the number of distinct solutions of Problem (P) for the thickness values
Θn = sin π

2n . Moreover, ϕ(n) counts all sphere filling curves according to Theorem 3.5.

which equals Euler’s totient function ϕ(n) (see e.g. [BaSh96, p. 21]). In Table 3.1
we have listed the number of distinct closed curves of type βn,k for n ≤ 42.

(ii) If we turn the hemisphere Se in Lemma 3.6 by the angle k · 2ϑn for some k with
gcd(k, n) > 1 the curve splits into gcd(k, n) connected components. This configu-
ration is a solution to an optimisation problem similar to (P), namely maximising
the length of collections of precisely gcd(n, k) closed curves on S2 subject to the
prescribed minimal thickness Θn.

(iii) Recall from Lemma 2.13 the torus property (T): Let ∆[γ] ≥ Θ > 0. Then the union
of all open balls BΘ of radius Θ which are tangent to the curve γ at any fixed point
p ∈ γ has no point in common with γ. This readily implies the

Spherical torus property (ST): Any closed spherical curve γ : S1 → S2 with
spatial thickness ∆[γ] = Θ satisfies

γ(S1) ∩ Bϑ(ξ) = ∅ for ϑ = arcsin Θ

for any geodesic open ball

Bϑ(ξ) := {η ∈ S2 : distS2(η, ξ) < ϑ},

whose boundary ∂Bϑ(ξ) is tangent to γ in at least one point of γ.

Definition 3.9 (Tubes without self-overlap). Let γ : S1 → S2 be a spherical closed curve
which possesses a tangent at every point. The spherical tubular neighbourhood

Tφ(γ) = {x ∈ S2 : distS2(x, γ) < φ}

is said to be non-self-overlapping if two geodesic arcs of length φ emanating from two
distinct curve points in a direction perpendicular to γ have at most common endpoints,
but otherwise do not intersect.

As a direct consequence of Theorem 2.19 we have
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Lemma 3.10 (Thick curves and non-self-overlapping tubes). All spherical tubular neigh-
bourhoods

Tφ(γ) = {x ∈ S2 : distS2(x, γ) < φ}, φ ∈ (0, ϑ],

of a spherical closed curve γ : S1 → S2 with spatial thickness ∆[γ] ≥ Θ = sinϑ for
ϑ ∈ (0, π/2] are non-self-overlapping.

Proof of Theorem 3.2. According to Lemma 3.6 and Remark 3.8 (i) we find for each
n ∈ N exactly ϕ(n) distinct closed curves βn,k ∈ CΘn with ∆[βn,k] = Θn. By construction
the spherical tubular neighbourhood Tϑn(βn,k) covers the 2-sphere except for a set of
two-dimensional measure zero:

V(Tϑn(βn,k)) = H2(Tϑn(βn,k)) = 4π = H2(S2). (3.6)

Moreover, Tϑn(βn,k) is non-self-overlapping in the sense of Definition 3.9. Hence by
virtue of the well-known theorem of Hotelling [H39] (see also [W39], [Gr90]), which we
are going to adapt to the present context of thick loops in Proposition 3.11, one has

L[γ] =
V(Tϑn(βn,k))

2 sinϑn
≤ 4π

2Θn
=

2π
Θn

for all γ ∈ CΘn .

This estimate produces a sharp uniform upper bound on the length functional on the
class CΘn . Regarding (3.6) this bound is attained by the curves βn,k, which means that
they are length maximising in the class CΘn , i.e. their smooth and regular parametrisa-
tions are solutions of Problem (P).

3.2 Existence, and Properties of Thickness, Length and
Volume of General Solutions

For the volume V(Tϑ(γ)) of the tube

Tϑ(γ) = {x ∈ S2 : distS2(x, γ) < ϑ}
on the sphere S2 we are going to prove the following version of the theorem of Hotelling
[H39] for continuous thick curves:

Proposition 3.11 (Hotelling). Let γ : S1 → S2 be a closed rectifiable continuous curve
with thickness ∆[γ] > 0 and length L[γ]. Then for all ϑ ∈ [0, arcsin(∆[γ])] one has

V(Tϑ(γ)) = 2 sin(ϑ)L[γ]. (3.7)

In particular, the tubular neighbourhood Tarcsin Θ(γΘ) of any solution γΘ ∈ CΘ of Problem
(P) for given thickness Θ ∈ (0, 1] covers the same amount of area on S2.

The obvious idea to prove this result is to approximate such thick curves by smooth
ones with controlled minimal thickness for which the classic result of Hotelling is appli-
cable and then go to the limit. That this is indeed possible is guaranteed by Lemma 2.33,
which we will also use for a variational argument later on in this section to show that
length maximisers attain the prescribed minimal thickness; see Theorem 3.14.
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Proof. The length L := L[γ] is positive since ∆[γ] > 0. Recall from Lemma 2.2 that
the arc-length parametrisation Γ : [0, L] → S2 is injective and of class C1,1([0, L],R3)
satisfying the local curvature bound (deduced from Lemma 2.14(i))

‖Γ′′‖L∞([0,L],R3) ≤
1

∆[γ]
. (3.8)

We extend the components Γi, i = 1, 2, 3, as L-periodic functions onto all of R. Then we
choose a sequence εj → 0 as j →∞, a standard nonnegative mollifier φ ∈ C∞0 ((−1, 1)),
φε(s) := ε−1φ(s/ε), and define the smooth L-periodic convolutions

ηij := φεj ∗ Γi ∈ C∞(R) ⊂ C∞([0, L]) for i = 1, 2, 3,

so that ηj := (η1
j , η

2
j , η

3
j ) are smooth closed curves in R3 approximating Γ in C1([0, L],R3),

such that

|η′j | −→ 1 uniformly on [0, L], and also

(3.9)

‖η′′j ‖L∞([0,L],R3) ≤ ‖Γ′′‖L∞([0,L],R3) ≤
1

∆[γ]
for all j ∈ N.

Furthermore, we can assume that |ηj | > 0 for all j, such that the projected curves

γj :=
ηj
|ηj | : [0, L]→ S2

are well-defined and of class C∞([0, L],R3) for all j ∈ N. For all j � 1 these curves
satisfy

|γj(t)− Γ(t)| ≤
∣∣∣∣ ηj|ηj | − Γ(t)

|ηj |
∣∣∣∣+
( |1− |ηj ||
|ηj | |Γ(t)|

)
≤ 2‖ηj − Γ‖C0([0,L],R3) + 2‖1− |ηj |‖C0([0,L],R3),

and

|γ′j(t)− Γ′(t)| =

∣∣∣∣∣∣∣∣∣
η′j(t)
|ηj | −

ηj(t) · η′j(t)
|ηj(t)|3 ηj(t) +

Γ(t) · Γ′(t)
|ηj(t)|3 ηj(t)︸ ︷︷ ︸

=0

−Γ′(t)

∣∣∣∣∣∣∣∣∣
≤ 2‖η′j − Γ′‖C0([0,L],R3) + 2|ηj(t) · η′j(t)− Γ(t) · Γ′(t)|

≤ 2‖η′j − Γ′‖C0([0,L],R3) + 4‖η′j − Γ′‖C0([0,L],R3) + 4‖ηj − Γ‖C0([0,L],R3);

hence
γj −→ Γ in C1([0, L],R3) as j →∞. (3.10)

In addition we compute

γ′′j =
[
η′j
|ηj | −

ηj · η′j
|ηj |3 ηj

]′
(3.11)

=
η′′j
|ηj | −

ηj · η′j
|ηj |3 η

′
j −

[|η′j |2 + ηj · η′′j ]
|ηj |3 ηj −

3(ηj · η′j)2

|ηj |5 ηj −
ηj · η′j
|ηj |3 η

′
j .
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Since ηj → Γ in C1([0, L],R3) and Γ · Γ′ ≡ 0 we find

− ηj · η′j
|ηj |3 η

′
j −

3(ηj · η′j)2

|ηj |5 ηj −
ηj · η′j
|ηj |3 η

′
j −→ 0 in C0([0, L],R3) as j →∞. (3.12)

Moreover, one has for any common Lebesgue point s ∈ [0, L] of Γ′′ and γ′′j for all j ∈ N
(i.e. for a.e. s ∈ [0, L]):

|ηj(s) · η′′j (s)− Γ(s) · Γ′′(s)|

=
∣∣∣∣∫

R
φεj (s− t)Γ(t) dt ·

∫
R
φ′′εj (s− t)Γ(t) dt− Γ(s) · Γ′′(s)

∣∣∣∣
=

∣∣∣∣∫
R
φεj (s− t)Γ(t) dt ·

∫
R
φεj (s− t)Γ′′(t) dt− Γ(s) · Γ′′(s)

∣∣∣∣
=

∣∣∣∣∫
R
φεj (z)Γ(s− z) dz ·

∫
R
φεj (z)Γ

′′(s− z) dz − Γ(s) · Γ′′(s)
∣∣∣∣

≤
∣∣∣∣∫

R
φεj (z)[Γ(s− z)− Γ(s)] dz ·

∫
R
φεj (z)Γ

′′(s− z) dz
∣∣∣∣

+
∣∣∣∣∫

R
φεj (z)Γ(s) dz ·

∫
R
φεj (z)Γ

′′(s− z) dz − Γ(s) · Γ′′(s)
∣∣∣∣

≤
(3.8)

‖Γ(s− ·)− Γ(s)‖
C0(Bεj (0),R3)

1
∆[γ]

+
∣∣∣∣∫

R
φεj (z) dz

∫
R
φεj (z)[Γ(s)− Γ(s− z)] · Γ′′(s− z) dz

∣∣∣∣
+
∣∣∣∣∫

R
φεj (z) dz

∫
R
φεj (z)Γ(s− z) · Γ′′(s− z) dz − Γ(s) · Γ′′(s)

∣∣∣∣
≤ 2‖Γ(s− ·)− Γ(s)‖

C0(Bεj (0),R3)

1
∆[γ]

−→ 0 as j →∞,

using for the last inequality that the normal curvature of Γ : [0, L]→ S2 equals −1 a.e.
on [0, L] (see e.g. [doC76, Chapter 3.2]), so that in particular

Γ′′(s) · Γ(s) = −1 and
Γ′′(s− z) · Γ(s− z) = −1 for a.e. z ∈ R.

Hence we obtain
‖ηj · η′′j − Γ · Γ′′‖L∞((0,L)) −→ 0 as j →∞, (3.13)

which we combine with (3.12) and the fact that ηj → Γ in C1([0, L],R3) in (3.11) to
obtain by (3.9)

lim sup
j→∞

‖γ′′j ‖L∞((0,L),R3) = lim sup
j→∞

‖η′′j ‖L∞((0,L),R3) ≤
(3.9)

1
∆[γ]

.

This together with (3.10) implies for the arc-length parametrisations Γj : [0,L[γj ]]→ S2

the estimate

lim sup
j→∞

‖Γ′′j ‖L∞((0,L),R3) = lim sup
j→∞

∥∥∥∥∥ |γ′′j ∧ γ′j ||γ′j |3
∥∥∥∥∥
L∞((0,L),R3)

≤ 1
∆[γ]

.
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With this inequality and with (3.10) we have verified assumptions (i) and (ii) of Lemma 2.33
for the curve Γ ∈ C1,1([0, L],R3) and the approximating curves γj : [0, L] → S2 each of
class C∞([0, L],R3), so that by (2.18)

lim inf
j→∞

∆[γj ] ≥ ∆[Γ] = ∆[γ].

If we we take an appropriate subsequence and relabel we obtain a sequence {γj} ⊂
C∞([0, L],R3), γj : [0, L]→ S2 for all j ∈ N such that

‖γj − Γ‖C1([0,L],R3) <
1
j

and ∆[γj ] > ∆[γ]− 1
j
. (3.14)

In particular, we find for arbitrary given ϑ ∈ (0, arcsin(∆[γ])] and ε > 0 some J0 =
J0(ε, ϑ) such that

Tϑ−ε−(2/j)(γj) ⊂ Tϑ−ε−(1/j)(γ) ⊂ Tϑ−ε(γj) for all j ≥ J0, (3.15)

and according to Lemma 3.10 these nested spherical tubular neighbourhoods are non-
self-overlapping in the sense of Definition 3.9. Since the γj are smooth with image on
S2 for all j we may apply the theorem of Hotelling [H39] twice for j ≥ J1 for some
J1 = J1(ε, ϑ) ≥ J0 with

∆[γj ] >
(3.14)

∆[γ]− 1
j
≥ sin(ϑ− ε),

to obtain

2 sin(ϑ− ε− (2/j))L[γj ] =
[H39]

V(Tϑ−ε−(2/j)(γj))

≤
(3.15)

V(Tϑ−ε−(1/j)(γ))

≤
(3.15)

V(Tϑ−ε(γj))

=
[H39]

2 sin(ϑ− ε)L[γj ] for all j ≥ J1.

Since (3.14) implies L[γj ]→ L[γ] as j →∞ we arrive at

2 sin(ϑ− ε)L[γ] = V(Tϑ−ε(γ))

for the arbitrarily chosen ε > 0, which implies (3.7).

We actually established within the previous proof the following approximation result
which is of independent interest.

Corollary 3.12 (Smooth approximation with positive thickness II). For any closed
continuous, rectifiable, and regular curve γ : S1 → RN with positive thickness ∆[γ] > 0
and length L := L[γ] there is a sequence of regular closed curves ηj ∈ C∞([0, L],RN )
such that

ηj → Γ in C1 as j →∞ and lim inf
j→∞

∆[ηj ] ≥ ∆[γ], (3.16)

where Γ : [0, L] → RN denotes the arc-length parametrisation of γ. If, in addition,
γ(S1) ⊂ SN−1, then there is a sequence of regular closed curves γj ∈ C∞([0, L],RN )
with γj([0, L]) ⊂ SN−1 such that (3.16) holds for γj instead of ηj.
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As a prerequisite for the proof of the existence result, Theorem 3.1, we show that the
velocities of constant speed parametrisations of admissible curves γ ∈ CΘ are controlled
solely in terms of the given thickness Θ:

Lemma 3.13 (Speed limit II). (cf. Lemma 2.29) For all γ ∈ CΘ with |γ′| ≡ const. on
S1 one has

Θ ≤ |γ′| ≤ 1
Θ

on S1. (3.17)

Proof. The upper bound in (3.17) follows from (3.7) in Proposition 3.11 for ϑ = arcsin Θ:

2π|γ′| = L[γ] =
(3.7)

1
2 sinϑ

V(Tϑ(γ)) ≤ 4π
2Θ

,

and the lower bound follows from the torus property (see Remark 3.8(iii)), which implies
that γ as a closed curve of positive length has to be at least as long as a great circle on
one of the spheres ∂BΘ touching γ in, say γ(0), so that

2π|γ′| = L[γ] ≥ 2πΘ.

Proof of Theorem 3.1. We consider the case of closed curves3. The class CΘ is not empty
for any Θ ∈ (0, 1], since any great circle cg smoothly parametrised with constant speed
has thickness ∆[cg] = 1 ≥ Θ. So there is a maximising sequence {ηj} ⊂ CΘ such that

Lj := L[ηj ] −→ sup
CΘ
L[·] as j →∞.

Let us point out a shortcut here: Assume the ηj to be parametrised with constant
speed, so they satisfy Lemma 2.30 and a sub-sequence converges to some closed ηΘ in
C1. From Lemma 2.31 we infer ∆[ηΘ] ≥ Θ. Thus we have shown that ηΘ ∈ CΘ is a
solution.

But we have to elaborate the previous step, since we want to reuse some of the
inequalities later on. The corresponding arc-length parametrisations Γj : [0, Lj ] → S2

satisfy the uniform estimate (cf. [GMSvdM02, Lemma 2])

‖Γj‖C1,1([0,Lj ],R3) = ‖Γj‖C0([0,Lj ],R3) + ‖Γ′j‖C0([0,Lj ],R3) + ‖Γ′′j ‖L∞((0,Lj),R3)

≤ 2 +
1
Θ

for all j ∈ N, (3.18)

so that the constant speed re-parametrisations γj : S1 → S2 with vj := |γ′j | > 0 still
yield a maximising sequence in CΘ and satisfy

γj(t) = Γj(tvj), γ′j(t) = Γ′j(tvj)vj .

Therefore by (3.17) in Lemma 3.13

|γ′j(t)− γ′j(τ)| = vj |Γ′j(tvj)− Γ′j(τvj)|

≤ v2
j

Θ
|t− τ | ≤

(3.17)

1
Θ3
|t− τ | for all t, τ ∈ S1.

3For open curves we will indicate the necessary modifications in Section 3.4.
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Consequently, we obtain the uniform bound

‖γj‖C1,1(S1,R3) ≤ ‖γj‖C0(S1,R3) + vj‖Γ′j‖C0([0,Lj ],R3) +
1

Θ3

≤ 1 +
1
Θ

+
1

Θ3
for all j ∈ N, (3.19)

which implies by the theorem of Arzelà-Ascoli the existence of a closed curve γΘ ∈
C1,1(S1,R3) and a subsequence {γj} such that

γj −→ γΘ in C1(S1,R3) as j →∞.
Hence γΘ maps S1 into S2 and has constant speed |γ′Θ| ≥ Θ because4 |γ′j | ≥ Θ for all j
by Lemma 3.13. In addition, ∆[γΘ] ≥ Θ, since it was proved in [SvdM03a, Lemma 4]
and [GdlL03, Lemma 5] that the thickness ∆[·] is upper semicontinuous with respect to
convergence in C0(S1,R3) subject to a uniform upper bound on length. Thus we have
shown that γΘ ∈ CΘ.

Since the length functional L[·] is continuous with respect to C1-convergence we
conclude

sup
CΘ
L[·] ≥ L[γΘ] = lim

j→∞
L[γj ] = sup

CΘ
L[·],

i.e., γΘ is a length maximising curve. That the prescribed thickness is attained by any
solution γΘ of Problem (P), i.e. ∆[γΘ] = Θ, is the content of the next theorem, which
then concludes the proof of Theorem 3.1.

Theorem 3.14 (Solutions of (P) attain thickness). For any solution γΘ ∈ CΘ of Problem
(P) for Θ ∈ (0, 1] one has ∆[γΘ] = Θ.

Proof. There is nothing to prove for Θ = 1 since then the great circle with thickness
1 is the unique solution (up to congruence). Assuming ∆[γΘ] > Θ for some Θ ∈ (0, 1)
we will first use Lemma 2.33 to show that variations of the type (γΘ + εψ)/|γΘ + εψ|
are admissible for ε sufficiently small, to conclude with a variational argument that
γΘ must be a great circle. Then we construct a suitable comparison curve βΘ∗ with
L[βΘ∗ ] > L[γΘ], which contradicts the maximality of γΘ.

For brevity we set γ := γΘ for fixed Θ ∈ (0, 1) and L := L[γ], and we may assume
w.l.o.g. that |γ′| ≡ const =: v on S1; hence v = L/(2π).

We claim that for any ψ ∈ C∞0 (S1,R3) there is some ε0 = ε0(ψ,∆[γ]) > 0 such that
for the curves

ηε :=
γ + εψ

|γ + εψ| ∈ C1,1(S1,R3)

we have ∆[ηε] > Θ for all ε ∈ [−ε0, ε0].

For the proof of this claim we notice that |γ| = 1 so that γ · γ′ = 0 on S1, which
implies

ηε −→ γ in C0(S1,R3) as ε→ 0, and

η′ε =
γ′ + εψ′

|γ + εψ| −
(γ + εψ) · (γ′ + εψ′)

|γ + εψ|3 (γ + εψ)

−→ γ′ in C0(S1,R3) as ε→ 0.
4It is also possible to prove |γ′Θ| ≥ 1 by comparing the length of the maximiser γΘ to that of a great

circle which has thickness 1 and is henceforth an admissible comparison curve in CΘ for any Θ ∈ (0, 1].
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As in the proof of Proposition 3.11 we use the fact that γ as a spherical curve has normal
curvature equal to −1, in other words, the arc-length parametrisation Γ : [0, L]→ S2 of
γ satisfies

Γ · Γ′′ = −1 a.e. on [0, L]

so that we obtain with

Γ′(s) =
γ′

|γ′|(t(s)) =
γ′(t(s))

v

and

Γ′′ =
γ′′(t(s))

v

dt

ds
(s) =

γ′′(t(s))
v2

for the arc-length parameters s :=
∫ t(s)

0 |γ′(τ)| dτ = vt(s). It follows that

−1 = Γ · Γ′′ = γ · γ′′
v2

,

or
γ · γ′′ = −v2, (3.20)

which can be used to show the boundedness of η′′ε :

η′′ε =
γ′′ + εψ′′

|γ + εψ| −
(γ′ + εψ′) · (γ + εψ)

|γ + εψ|3 (γ′ + εψ′)

−|γ
′ + εψ′|2 + (γ + εψ) · (γ′′ + εψ′′)

|γ + εψ|3 (γ + εψ)

−3[(γ + εψ) · (γ′ + εψ′)]2

|γ + εψ|5 (γ + εψ)− (γ + εψ) · (γ′ + εψ′)
|γ + εψ|3 (γ′ + εψ′).

Since ‖γ‖C1,1(S1,R3) is bounded, γ · γ′ = 0 and by (3.20) we deduce for the curvature κε
of ηε

lim sup
ε→0

‖κε‖L∞((0,2π)) = lim sup
ε→0

∥∥∥∥ |η′′ε ∧ η′ε||η′ε|3
∥∥∥∥
L∞((0,2π))

≤ ‖Γ′′‖L∞((0,2π),R3) ≤
1

∆[γ]
.

Lemma 2.33 applied to γ = γΘ and γj := ηεj for any subsequence εj → 0 gives

lim inf
j→∞

∆[ηεj ] ≥ ∆[γ] > Θ,

so that we indeed find ε0 = ε0(ψ,∆[γ]) > 0 such that

∆[ηε] > Θ for all ε ∈ [−ε0, ε0],

which proves the claim.
Therefore we have ηε ∈ CΘ for all ε ∈ [−ε0, ε0] and

L[γ] ≥ L[ηε] for all ε ∈ [−ε0, ε0].
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Since |γ + εψ| > 0 for all |ε| � 1 and |γ| = 1 on S1 we can calculate the vanishing first
variation of L at γ:

0 =
d

dε

[
L[ηε]

]
ε=0

=
∫ 2π

0

d

dε

[
|η′ε|
]
ε=0

dt

=
∫ 2π

0

η′ε
|η′ε|
·
[
d

dε
η′ε

]
ε=0

dt =
∫ 2π

0

γ′

v
· d
dε

[
η′ε
]
ε=0

dt

= v−1

∫ 2π

0

[
γ′ · ψ′ − |γ′|2(γ · ψ)− (ψ · γ′ + γ · ψ′)(γ′ · γ)

−(γ′ · ψ)(γ · γ′) + 3(γ · γ′)2(γ · ψ)
]
dt

= v−1

∫ 2π

0

[
γ′ · ψ′ − v2(γ · ψ)

]
dt.

Integrating by parts and applying the Fundamental Lemma in the calculus of variations
we obtain

γ′′ + v2γ = 0 a.e. on S1.

Since γ ∈ C1,1 we obtain immediately γ′′ ∈ C1,1 and by the standard bootstrap argument
finally γ ∈ C∞(S1,R3). Transforming the equation into the arc-length formulation we
obtain

Γ′′ = −Γ on [0, L],

which has the great circles as their only solutions; see e.g. [doC76, p. 246]. Hence we
have shown that if ∆[γ] > Θ for the solution γ = γΘ then γΘ is a great circle.

For each τ ∈ [Θ2, 1), Θ2 as in (3.1), we will construct in Lemma 3.15 below a
competitor βτ ∈ Cτ with

L[βτ ] > 2π = L[γΘ]

so that we obtain for the special choice τ = Θ∗ := max{Θ2,Θ} a competitor βτ ∈ CΘ∗ ⊂
CΘ, which leads to the desired contradiction against the maximality of L[γΘ] in CΘ.

Lemma 3.15 (Explicit competitors βτ for τ ∈ [Θ2,Θ1]). For every τ ∈ [Θ2,Θ1] =
[sin(π/4), 1] there is a closed curve βτ ∈ Cτ with

∆[βτ ] = τ,

L[βτ ] = 8τ arccos

√
1− 1

2τ2
,

V(βτ ) = 2τL[βτ ] = 16τ2 arccos

√
1− 1

2τ2
.

In particular, L[βτ ] ≥ 2π with equality if and only if βτ is a great circle, i.e. if τ =
Θ1 = 1.

Remark 3.16. Our construction will reveal a one-parameter family {βτ} (parametrised
by the prescribed thickness τ) continuously joining the unique solutions for τ = Θ1 = 1
and τ = Θ2 (see Figure 3.6).

We strongly believe that these βτ provide the unique (but not sphere-filling) solutions
for every τ ∈ (Θ2,Θ1), which would extend our uniqueness result, Theorem 3.3 to this
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Figure 3.5: (a)–(c) Determining the thickness of βτ as described in Lemma 3.15. (d)
The volume V of the tubular neighbourhood of βτ .

continuous range of given thickness values. Up to now, however, we have no proof for
this conjecture. We only would like to remark that the curves βτ are good candidates for
the maximisers for τ ∈ (Θ2,Θ1). See also Section 5.5.7.

Proof of Lemma 3.15. To construct βτ for given τ ∈ [Θ2,Θ1] we equipartition the equa-
tor of the S2 by four distinct points Pi, i = 1, 2, 3, 4, such that these four points are the
vertices of a square of edge length 2H := 2 · 1√

2
in the plane E containing the equator.

Now we take the plane vertical to E which contains the straight segment P1P2 and
rotate that plane about the rotation axis through P1 and P2 until this rotated plane F
intersected with S2 is a circle ∂Bτ of radius τ ; see Figure 3.5(a). Let α = α(τ) be the
angle between F and E, and we refer to the side-view in Figure 3.5(b) where E is seen
as a horizontal line, to obtain the geometric identities

a = H cosα, h = H sinα,

τ =
√

1− h2 =
√

1−H2 sin2 α.

In Figure 3.5(c) the plane F coincides with the drawing plane, and one can read off the
relation

L = 2τβ = 2τ arccos(a/τ),
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where L denotes the length of the shorter circular arc on ∂Bτ with endpoints P1 and P2.
Repeating this process for the other edges P2P3, P3P4, and P4P1, we obtain four such
circular arcs each of length L. Reflecting two opposite of these arcs across the equatorial
plane E and taking the union of these reflections with the two remaining arcs we obtain
the desired C1,1-curve βτ which by construction5 has length

4L = 8τ arccos(a/τ) = 8τ arccos

√
1− 1

2τ2
.

The thickness of βτ is realized exclusively by the local radius of curvature τ of each
circular arc, since neighbouring arcs are separated by the plane S containing the normal
disk of radius τ at the common endpoint. All normal disks or radius τ centred on one
of these arcs are not only mutually disjoint but also completely contained in the half-
space bounded by S that contains the arc itself. (Compare with our argument to prove
(3.3) in Section 3.1 in the construction of the explicit solutions βn,k whose circular arcs
were full semicircles whereas the arcs to build βτ for τ ∈ (Θ2,Θ1) are strict subsets of
semicircles.) And the normal disks of opposite arcs can not intersect if√

1−H2 sin2 α = τ ≤ d :=
H

sinα
;

see Figure 3.5(b), which is true since the function

f(α) :=
1
2
− sin2 α+

1
2

sin4 α

satisfies f(π/2) = 0 and is monotonically decreasing on [0, π/2].
Thus we have shown ∆[βτ ] = τ and that a smooth and regular parametrisation of βτ

is actually contained in the class Cτ . The formula for the volume in the statement of the
lemma is a direct consequence of Hotelling’s theorem, see Proposition 3.11. The four arcs
on the great circle each of length π/2 connecting neighbouring points in {P1, P2, P3, P4}
are the shortest possible connections on S2 so that L ≥ π

2 ; hence L[βτ ] = 4L ≥ 2π with
equality if and only if βτ is the great circle, i.e. τ = Θ1 = 1.

We conclude this section by analysing how length and tube volume of solutions
depend on the given thickness.

Lemma 3.17 (Length and volume as function of Θ). For given minimal thickness
Θ ∈ (0, 1] let γΘ be a solution of Problem (P), and define the function L : (0, 1]→ [2π,∞)
by L(Θ) := L[γΘ] and V : (0, 1]→ (0, 4π] by V (Θ) := V(Tarcsin Θ(γΘ)). Then

(i) L is a strictly decreasing function on (0, 1].

(ii) L(1) = 2π, and L(Θ)→∞ as Θ→ +0.

(iii) limh→+0 L(Θ− h) = L(Θ) for Θ ∈ (0, 1].

(iv) L(Θ) = V (Θ)/(2Θ) is differentiable at almost every Θ ∈ (0, 1].
5The circular arcs indeed have common tangent lines at the concatenation points Pi, i = 1, 2, 3, 4,

since the tangent vectors of the two arcs meeting at, say endpoint P1 are both contained in the tangent
plane TP1S2 both enclosing the same angle with E ∩ TP1S2, such that the reflection across the line
E ∩ TP1S2 produces the common tangent line through P1 in TP1S2.
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(v) 2π ≤ L(Θ) ≤ 2π/Θ and 4πΘ ≤ V (Θ) ≤ 4π for all Θ ∈ (0, 1].

(vi) The functions L and V are upper semicontinuous on (0, 1].

Proof. (i) For 0 < Θ < Θ′ ≤ 1 and the corresponding solutions γΘ ∈ CΘ and γΘ′ ∈ CΘ′

for Problem (P) we have
∆[γΘ′ ] ≥ Θ′ > Θ (3.21)

so that γΘ′ ∈ CΘ as well. Hence

L(Θ) = L[γΘ] ≥ L[γΘ′ ] = L(Θ′),

which proves that L is a decreasing function. If 0 < Θ < Θ′ < 1 we know that γΘ′

is not the great circle, and we may assume that γΘ′ has constant speed v = |γΘ′ | on
S1. Recalling the arguments in the proof of Theorem 3.14, there must be a function
ψ ∈ C∞0 (S1,R3) such that

δL[γΘ′ , ψ] :=
d

dε

[
L
(
γΘ′ + εψ

|γΘ′ + εψ|
)]

ε=0

6= 0,

and since the first variation δL[γΘ′ , ·] is a linear functional we may assume that

δL[γΘ′ , ψ] = 1. (3.22)

Notice that (3.21) and the claim established in the proof of Theorem 3.14 imply

∆
[
γΘ′ + εψ

|γΘ′ + εψ|
]
> Θ, hence

γΘ′ + εψ

|γΘ′ + εψ| ∈ CΘ (3.23)

for ε sufficiently small. One can check that there is an ε0 = ε0(ψ) > 0 such that

d2

dε2

[
L
(
γΘ′ + εψ

|γΘ′ + εψ|
)]

is bounded uniformly in ε ∈ [−ε0, ε0], so that

L
(
γΘ′ + εψ

|γΘ′ + εψ|
)

= L[γΘ′ ] + εδL[γΘ′ , ψ] +O(ε2).

Hence by virtue of (3.22)

L
(
γΘ′ + εψ

|γΘ′ + εψ|
)
> L[γΘ′ ] for 0 < ε� 1,

which implies by (3.23)

L(Θ) = L[γΘ] ≥
(3.23)

L
[
γΘ′ + εψ

|γΘ′ + εψ|
]
> L[γΘ′ ] = L(Θ′)

for all 0 < Θ < Θ′ < 1. If Θ < Θ′ = 1 we find Θ′′ ∈ (Θ,Θ′) so that according to what
we have just proved and the monotonicity observed in the beginning

L(Θ) > L(Θ′′) ≥ L(Θ′),
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which finishes the proof of Part (i).

(ii) For the explicit solutions βn,k ∈ CΘn constructed in Theorem 3.2 we have
V(Tarcsin Θn(βn,k)) = 4π, and therefore by Proposition 3.11

L(Θn) = L[βn,k] =
V(Tarcsin Θn(βn,k))

2Θn
=

2π
Θn

=
2π

sin π
2n

→∞ as n→∞.

This together with the strict monotonicity shown in Part (i) establishes L(Θ) → ∞ as
Θ→ +0.

(iii) We consider the set of solutions {γΘ−h ∈ CΘ−h}h for 0 < h < Θ/2 and assume
that all these curves have constant speed vh := |γ′Θ−h| > 0. Take an arbitrary sequence
hj → 0. By Lemma 2.30 a subsequence γhjk converges in C1 to a curve γ that by
Lemma 2.31 has thickness ∆[γ] ≥ Θ . We have further L[γ] = limk→∞ L[γΘ−hjk ] by C1

convergence. The curve γ is a competitor to any optimiser γΘ ∈ CΘ and consequently

lim
j→∞

L(Θ− hj) ≥
(i)
L(Θ) ≥ L[γ] = lim

j→∞
L(Θ− hj).

Since the sequence hj was arbitrary we finally conclude by the subsequence principle

lim
h→+0

L(Θ− h) = L(Θ).

(iv) Proposition 3.11 applied to the solution γΘ ∈ CΘ of Problem (P) gives

L(Θ) = L[γΘ] =
Prop. 3.11

V(Tarcsin Θ(γΘ))
2Θ

=
V (Θ)
2Θ

.

Since L : (0, 1]→ [2π,∞) is (strictly) monotone, it is differentiable a.e. on (0, 1].

(v) By Proposition 3.11 we have

L(Θ) = L[γΘ] =
Prop. 3.11

V(Tarcsin Θ(γΘ))
2Θ

≤ 4π
2Θ

=
2π
Θ

for all Θ ∈ (0, 1].

On the other hand, the great circle cg ∈ C1 ⊂ CΘ has length

2π = L[cg] ≤ L[γΘ] = L(Θ) for all Θ ∈ (0, 1].

The corresponding inequality for the volume V (Θ) follows now from Part (iv).

(vi) For Θi → Θ ∈ (0, 1] as i→∞ consider a subsequence {Θj} ⊂ {Θi} such that

L(Θj)→ lim sup
i→∞

L(Θi) as j →∞.

If there are infinitely many j such that Θj ≤ Θ then we obtain from Part (iii)

lim sup
i→∞

L(Θi) = lim
j→∞

L(Θj) = L(Θ).
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Figure 3.6: A lower bound for V (Θ) as established by Lemma 3.18. The
low peaks are located at (Θn+1, 4πΘn+1/Θn). The dotted hull-curve h(t) :=(

sin( π
2t+2), 4π sin( π

2t+2)/ sin( π2t)
)
, t ∈ [1,∞) reveals that the spikes are not on a

straight line. The values of V (Θ2) and V (Θ3) happen to be equal. For Θ ∈ (Θ2,Θ1)
the volume of V(Tϑ(βΘ)) indicates (dashed line) that the curves βΘ serve as good com-
petitors for Problem (P), see also Figure 3.5(d).

On the other hand, for all j with Θj > Θ we have by Part (i) L(Θ) > L(Θj) such that

L(Θ) ≥ lim
j→∞

L(Θj) = lim sup
i→∞

L(Θi).

Part (iv) implies

lim sup
i→∞

V (Θi) =
(iv)

lim sup
i→∞

2ΘiL(Θi) ≤ 2ΘL(Θ) =
(iv)

V (Θ).

The lower bound for the volume V (Θ) = V(Tarcsin Θ(γΘ)) depicted in Figure 3.6
improves the lower estimate in Lemma 3.17 (v) considerably, and is established next.

Lemma 3.18 (Lower volume bound for solutions). The function V : (0, 1]→ (0, 4π] is
differentiable a.e. on (0, 1] and satisfies the estimate

4π
Θn

Θ ≤ V (Θ) ≤ 4π for all Θ ≤ Θn = sin
π

2n
, n ∈ N.

In particular, 4π ≥ V (Θ) ≥ 4πΘ/Θn for Θ ∈ (Θn+1,Θn], n ∈ N.
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Notice that we can use Proposition 3.11 twice to interpret the lower bound for V (Θ)
as the volume of the tube Tarcsin Θ(βn,k). In fact, for ϑ := arcsin Θ one has

V(Tϑ(βn,k)) =
Prop.3.11

2ΘL[βn,k] =
Prop.3.11

2Θ
V(Tϑn(βn,k))

2Θn
=

4πΘ
Θn

.

Proof. Combining Parts (i) and (iv) of Lemma 3.17 we obtain that V is differentiable
a.e. and satisfies

0 ≥ L′(Θ) =
(
V (Θ)
2Θ

)′
= − 1

2Θ2
V (Θ) +

1
2Θ

V ′(Θ) for a.e. Θ ∈ (0, 1],

i.e.,
1

2Θ
V ′(Θ) ≤ 1

2Θ2
V (Θ) for a.e. Θ ∈ (0, 1].

Since V (Θ) ≥ 4πΘ > 0 for all Θ ∈ (0, 1] by Lemma 3.17 (v), we conclude

(log V (Θ))′ =
V ′(Θ)
V (Θ)

≤ 1
Θ

for a.e. Θ ∈ (0, 1].

Integrating this inequality on [Θ,Θn] for Θ ∈ (0,Θn), n ∈ N, we obtain with V (Θn) = 4π

log 4π − log V (Θ) = log V (Θn)− log V (Θ) ≤
∫ Θn

Θ

1
Θ
dΘ = log Θn − log Θ,

hence

4πe− log V (Θ) =
4π
V (Θ)

≤ Θne
− log Θ =

Θn

Θ
,

or
4π
Θn

Θ ≤ V (Θ).

Corollary 3.19. V (Θ)→ 4π as Θ→ +0.

Proof. For Θ ∈ (Θn+1,Θn] we have

V (Θ) ≥ 4πΘ
Θn

>
4πΘn+1

Θn
= 4π

sin π
2n+2

sin π
2n

n→∞−→ 4π.

This asymptotic behaviour of the volume confirms our intuition that it is easier to
cover the sphere with thin ropes than with thick ones – there is simply more freedom
with long and thin ropes to “fill” the gaps on the surface of the unit sphere.
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3.3 Uniqueness

In the following we are going to work with geodesic balls

Bϑ(ξ) := {η ∈ S2 : distS2(η, ξ) < ϑ}.
on the unit sphere. Furthermore, we will use the notation

Bϑ(ξ) := {η ∈ S2 : distS2(η, ξ) ≤ ϑ},
∂Bϑ(ξ) := {η ∈ S2 : distS2(η, ξ) = ϑ}.

Proposition 3.20 (Double touching ball). [Ge04, Satz 3.27] Let γ : S → RN be a
closed, rectifiable and continuous curve with positive thickness Θ := ∆[γ] > 0, and
x ∈ RN such that

γ(S) ∩BΘ(x) = ∅. (3.24)

If there are two points P,Q ∈ ∂BΘ(x) ∩ γ(S) with 0 < distRN (P,Q) < 2Θ, then the
shorter circular sub-arc of the geodesic circle connecting P and Q is contained in γ(S).

Since we only consider the special case for closed curves we present a new, more
intuitive proof than in the diploma thesis [Ge04].

Proof. Recall from Lemma 2.2 that the arc-length parametrisation Γ : [0, L]→ RN of γ
(with length L := L[γ] > 0) is of class C1,1([0, 1],R3), which allows us in the following
to speak of tangential properties of γ.

We set

Θ0 := Θ, Θ1 :=
1
2

distRN (P,Q) < Θ0,

x0 := x, x1 :=
P +Q

2
,

Thus P and Q are antipodal points on the sphere ∂BΘ1(x1). Since by (3.24) γ is tangent
to the sphere ∂BΘ0(x0) at P and Q it cannot be tangent to ∂BΘ1(x1) at either P or
Q. For if it were ∆leΘ1 < Θ0 = ∆ a contradiction. Hence BΘ1(x1) ∩ γ(S) 6= ∅, and we
consider the family of balls BΘs(xs) defined by

xs := x0 + s(x1 − x0) and Θs := |P − xs| for s ∈ [0, 1],

We notice that Θs < Θ0 for all s ∈ (0, 1], and claim that

∂BΘs(xs) ∩ γ(S1) = {P,Q} for all s ∈ (0, 1]. (3.25)

Indeed, otherwise we would have (at least) three points of the curve on a circle on
∂BΘs∗ (xs∗) for some s∗ ∈ (0, 1], with radius less or equal than Θs∗ < Θ0 = Θ = ∆[γ].
This, however, contradicts the definition of ∆[γ] in (2.2).

By (3.24) the curve γ is tangent to ∂BΘ0(x0) at P and Q, and since the ∂BΘs(xs)
sweep out the open region BΘ1(x1) \BΘ0(x0), i.e.,

BΘ1(x1) \BΘ0(x0) ⊂
⋃

s∈(0,1]

∂BΘs(xs) \BΘ0(x0),

we conclude from (3.25) that the shorter sub-arc γ1 ⊂ γ connecting P and Q must be
on ∂BΘ0(x0). Since every curve but a great circle on a sphere has thickness less than
the radius of the sphere, γ1 is equal to the shorter great arc connecting P and Q.
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Lemma 3.21 (Characterisation of sphere filling curves). For a closed rectifiable con-
tinuous curve γ : S1 → S2 with positive thickness Θ := ∆[γ] > 0, ϑ := arcsin Θ ≤ π/2,
the following two statements are equivalent:

(i) V(Tϑ(γ)) = 4π;

(ii) For any ξ ∈ S2 such that Bϑ(ξ) ∩ γ(S1) = ∅ one of the following is true:

(a) ∂Bϑ(ξ) ∩ γ(S1) = {P,Q} with distS2(P,Q) = 2ϑ (antipodal points);

(b) ∂Bϑ(ξ) ∩ γ(S1) = {semicircle of spherical radius ϑ};
(c) ∂Bϑ(ξ) ∩ γ(S1) = ∂Bϑ(ξ).

Proof. (i) ⇒ (ii). Let ξ ∈ S2 be a point such that the open geodesic ball Bϑ(ξ) has
empty intersection with the curve γ(S1). We claim that

S := ∂Bϑ(ξ) ∩ γ(S1) 6= ∅.
Indeed, otherwise we could infer δ := distS2(ξ, γ(S1))− ϑ > 0, so that

Tϑ(γ) ∩ Bδ(ξ) = ∅,
which implies

V(Tϑ(γ)) ≤ V(S2 \ Bδ(ξ)) < 4π

contradicting Assumption (i).
If the closed set S is contained in an open semicircle on ∂Bϑ(ξ) then we find two

points η, ζ ∈ S such that6

0 ≤ distS2(η, ζ) = max
S×S

distS2(·, ·) < 2ϑ. (3.26)

Applying Proposition 3.20 we infer that the whole shorter sub-arc of ∂Bϑ(ξ) connecting
η and ζ is contained in S , and is (by (3.26)) consequently equal to S . On this circular
arc we find a point q ∈ S with distS2(q, η) = distS2(q, ζ), which can be joined with the
centre ξ by the unique unit speed geodesic given by the great circle cg : [0, 2π] → S2

with cg(0) = q, c′g(0) ⊥ S , and cg(ϑ) = ξ.
We claim that there is a small number ε > 0, such that

δ := distS2(cg(ϑ+ ε), γ(S1))− ϑ > 0,

which would imply that
Tϑ(γ) ∩ Bδ(cg(ϑ+ ε)) = ∅,

hence
V(Tϑ(γ)) ≤ V(S2 \ Bδ(cg(ϑ+ ε))) < 4π

contradicting Assumption (i) and therefore ruling out the situation that S is contained
in any open semicircle.

To prove the claim we suppose to the contrary that there is a sequence of curve
points pn ∈ γ(S1) such that

distS2(cg(ϑ+ 1/n), γ(S1)) = distS2(cg(ϑ+ 1/n), pn) ≤ ϑ ∀n ∈ N. (3.27)
6We also allow the coincidence η = ζ (in which case S = {η}) at this stage.
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Since γ(S1) is compact we may assume that pn → p ∈ γ(S1) as n → ∞. From Bϑ(ξ) ∩
γ(S1) = ∅ we infer from (3.27) as n→∞

ϑ ≤ distS2(ξ, p) = distS2(cg(ϑ), p) = lim
n→∞ distS2(cg(ϑ+ 1/n), pn) ≤ ϑ,

i.e.,
p ∈ ∂Bϑ(ξ) ∩ γ(S1) = S . (3.28)

On the other hand, one has

distS2(x,S ) ≥
∣∣∣∣η + ζ

2
− ξ
∣∣∣∣ =: c(η, ζ) > 0

for all x ∈ Bϑ(cg(ϑ+ 1/n)) \Bϑ(ξ), since the circular arc S (with endpoints η and ζ) is
strictly shorter than πϑ. Consequently,

distS2(pn,S ) ≥ c(η, ζ) > 0 for all n ∈ N,

and hence
distS2(p,S ) ≥ c(η, ζ) > 0

contradicting (3.28), which proves the claim.
Since we now know that S is not contained in any open semicircle on ∂Bϑ(ξ) we

know that ]S ≥ 3 unless S consists precisely of two antipodal points, which is case
(a).

If S is contained in a closed semicircle it must contain the endpoints p1, p2 of that
semicircle (otherwise it would be contained in a different open semicircle, which was
excluded above). Since ]S ≥ 3 we find (at least) one point q ∈ S \ {p1, p2} so that

distS2(p1, q) < 2ϑ and distS2(q, p2) < 2ϑ.

Consequently, we can apply Proposition 3.20 to find that S equals the closed semicircle
with endpoints p1 and p2 which is case (b).

Finally we have to deal with the situation that S is not contained in any closed
semicircle. Consider q ∈ S and its antipodal point q′ ∈ ∂Bϑ(ξ).

If q′ ∈ S then we find on each of the two open semicircles C1, C2 ⊂ ∂Bϑ(ξ) bounded
by q and q′ (at least) one point of S , say p1 ∈ S ∩C1 and p2 ∈ S ∩C2. Otherwise S
would be contained in one of the two closed semicircles Ci ∪ {q, q′}, i = 1, 2.

Since p1 and p2 are not antipodal to q or q′ we can apply Proposition 3.20 to connect
q and q′ with p1 and p2 by circular arcs contained in S , which proves S = ∂Bϑ(ξ), i.e.
we are in situation (c).

If, on the other hand, q′ 6∈ S we have distS2(q′,S ) > 0, and we can take the largest
open circular arc C on ∂Bϑ(ξ) \S containing q′. By definition this arc has endpoints
p1, p2 ∈ S , and C is strictly shorter than a semicircle, since otherwise S would be
contained in a closed semicircle. Thus we can apply Proposition 3.20 to p1 and p2, to p1

and q, and to p2 and q, respectively, to find that the circular arcs on ∂Bϑ(ξ) connecting
p1 and p2, p1 and q, and p2 and q, are contained in S , which proves S = ∂Bϑ(ξ) also
in this case. So we are in situation (c) again.
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(ii) ⇒ (i). For any ξ ∈ S2 with distS2(ξ, γ(S1)) ≥ ϑ and with (a), or (b), or (c) we
infer the existence of a point pξ ∈ γ(S1) with distS2(ξ, pξ) = ϑ. Hence

S2 ⊂ Tϑ(γ) ⊂ S2,

which implies
4π = V(Tϑ(γ)) = V(Tϑ(γ)).

Lemma 3.22 (Characteristic patterns of sphere filling curves I). Let γ : S1 → S2 be a
closed rectifiable continuous curve with positive thickness Θ := ∆[γ] > 0, ϑ := arcsin Θ ≤
π/2 such that V(Tϑ(γ)) = 4π. Suppose that there is a plane E ⊂ R3 containing 0 ∈ R3

such that
k := ](E ∩ γ(S1)) <∞.

Moreover, assume that the intersection

{p1, . . . , pk} := E ∩ γ(S1)

satisfies

(i) distS2(pl, pl+1) = 2ϑ for all l = 1, . . . , k, where we set pk+1 := p1,

(ii) γ intersects E orthogonally at each point pl, l = 1, . . . , k.

Then k = 2n for some n ∈ N, and γ(S1) contains a semicircle of (Euclidean) radius Θ
in each of the two half-spaces bounded by E.

Proof. The positive thickness Θ guarantees that γ is simple, and since γ is also closed,
we find that k is even and write k =: 2n for some n ∈ N.

E cuts the sphere S2 into two hemispheres Sw and Se (both taken to be relatively
closed in S2). It suffices to give the argument for Sw.

Every intersection point pl ∈ E ∩ γ(S1) is connected by the curve γ within Sw
to some other intersection point pm ∈ E ∩ γ(S1), l 6= m. Since Sw is homeomorphic
to a flat disk and γ is simple, we find two distinct points pi, pj ∈ E ∩ γ(S1) with
distS2(pi, pj) = 2ϑ such that the closed sub-arc γ̃ ⊂ Sw ∩ γ connecting pi and pj within
Sw satisfies γ̃ ∩ E = {pi, pj}.

We consider the geodesic ball Bϑ(ξ) that contains pi and pj as antipodal points in its
boundary ∂Bϑ(ξ). Since γ intersects E orthogonally in pi and pj it is tangent to ∂Bϑ(ξ)
in pi and pj . The spherical torus property (ST) (see Remark 3.8) implies that

γ(S1) ∩ Bϑ(ξ) = ∅. (3.29)

If γ̃ ∩ ∂Bϑ(ξ) \ {pi, pj} 6= ∅ then there is (at least) one point q ∈ γ̃ ∩ ∂Bϑ(ξ) with

0 < distS2(q, pi) < 2ϑ and 0 < distS2(q, pj) < 2ϑ,

so that we can apply Proposition 3.20 to pi and q, and to pj and q, to find that γ(S1)
contains the closed semicircle ∂Bϑ(ξ) ∩ Sw, which has Euclidean radius Θ = sinϑ, and
we are done.
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If γ̃ ∩ ∂Bϑ(ξ) = {pi, pj} we argue as follows. For an arbitrary q ∈ γ̃ we consider the
unit speed geodesic ηq : [0, 2π]→ S2 starting in q perpendicularly to γ̃, i.e. with

ηq(0) = q, η′q(0) ⊥ γ at q, |η′q| ≡ 1 on [0, 2π],

so that for 0 < ε � 1 the point ηq(ε) is contained in the open spherical region R ⊂ S2

bounded by the curve γ̃ ∪ (∂Bϑ(ξ) ∩ Se). Notice first that ηpi(2ϑ) = pj , ηpj (2ϑ) = pi,
and also that R ∩ γ(S1) = ∅ by our choice of the points pi, pj , and by (3.29).

We infer from the spherical torus property (ST) as before that for q ∈ γ̃ we have

γ(S1) ∩ Bϑ(ηq(ϑ)) = ∅. (3.30)

Relation (3.30) readily implies

Bϑ(ηq(ϑ)) ⊂ R for all q ∈ γ̃. (3.31)

Since V(Tϑ(γ)) = 4π, we obtain by Lemma 3.21 either

∂Bϑ(ηq(ϑ)) ∩ γ(S1) = {q, ηq(2ϑ)} (antipodal points), (3.32)

a case which will be excluded later, or (in case (b) or (c) of Lemma 3.21) γ(S1) contains
a semicircle

Sq := ∂Bϑ(ηq(ϑ)) ∩ γ(S1) 3 q
of spherical radius ϑ and therefore of Euclidean radius Θ = sinϑ.

In that case we have
Sq ∩ Sw ⊂ γ̃ (3.33)

because γ̃ is the connected sub-arc of γ ∩ Sw containing the point q.
We claim that

Sq ∩ (Se \ E) = ∅, (3.34)

which means Sq ⊂ Sw, i.e. the conclusion of the proof.
To show (3.34) we assume that there is some point q̃ ∈ Sq ∩ (Se \ E), which implies

that pi ∈ Sq or pj ∈ Sq by (3.33) and by connectivity of Sq and γ̃ whose endpoints are
pi and pj . Relation (3.29) implies that Sq is tangent to ∂Bϑ(ξ) at pi or pj . For Sq is a
semicircle of spherical radius ϑ we have either Sq ⊂ ∂Bϑ(ξ) contradicting the fact that
q 6∈ ∂Bϑ(ξ), or

∂Bϑ(ξ) ∩ ∂Bϑ(ηq(ϑ)) = {pi} or = {pj}.
In that case we conclude with (3.30) that ηq(ϑ) 6∈ R contradicting (3.31), which proves
(3.34).

Finally we need to exclude option (3.32) to finish the whole proof. Since positive
thickness Θ = ∆[γ] implies that the arc-length parametrisation of γ is of class C1,1, in
particular that the tangent vector is continuous, we infer that the antipodal mapping

f : γ̃ −→ S2, q 7→ f(q) := ηq(2ϑ)

is continuous. Moreover, f(q) ∈ γ̃ for all q ∈ γ̃, which can be seen as follows. According
to (3.32) we have f(q) ∈ γ(S1) which yields by (3.29) the relation f(q) 6∈ Bϑ(ξ). This
together with (3.31) implies that

f(q) ∈
[
∂Bϑ(ξ) ∩ Se

]
∪
[
Sw ∩R

]
,
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where R denotes the relative closure of R as a subset of S2. If, however, f(q) were
contained in ∂Bϑ(ξ) ∩ Se then we could conclude by (3.29) that γ is tangent to ∂Bϑ(ξ)
in f(q), which implies that q as the antipodal point of f(q) is also contained in ∂Bϑ(ξ),
a contradiction.

Therefore f(q) ∈ Sw ∩R. Since f(q) ∈ γ(S1) and since

γ(S1) ∩
[
Sw ∩R

]
= γ̃

we have shown that f is a continuous mapping from γ̃ to γ̃, and we may apply Brouwer’s
fixed point theorem to infer the existence of a point q∗ ∈ γ̃ with

ηq∗(2ϑ) = f(q∗) = q∗ = ηq∗(0),

which would imply
2ϑ = 2π (3.35)

because ηq∗ parametrises a great circle on S2 with unit speed. But (3.35) is absurd since
we assumed ϑ ≤ π/2.

Lemma 3.23 (Characteristic patterns of sphere filling curves II). Let γ : S1 → S2

be a closed rectifiable continuous curve with positive thickness Θ := ∆[γ] > 0, ϑ :=
arcsin Θ ≤ π/2 such that V(Tϑ(γ)) = 4π. Suppose that there is a point ξ ∈ S2 such
that the intersection ∂Bϑ(ξ) ∩ γ(S1) contains an open semicircle S, and let Sw ⊂ S2 be
the hemisphere containing S such that ∂Sw intersects ∂Bϑ(ξ) orthogonally. Then there
exists an n ∈ N such that ϑ = π/(2n), and

γ(S1) ∩ Sw =
n⋃
i=1

∂B(2i−1)ϑ(ξ) ∩ Sw. (3.36)

In other words, if γ contains one semicircle S = Sw∩∂Bϑ(ξ), then γ(S1)∩Sw consists
of a whole stack of latitudinal semicircles with mutual spherical distance 2ϑ.

Proof. If ϑ = π/2 we find n = 1 and γ(S1) = ∂Bϑ(ξ) is the only admissible curve, and
(3.36) follows.

For ϑ ∈ (0, π/2) there exists n = n(ϑ) ∈ N \ {1} so that

ϑ ∈
[
π

2n
,

π

2(n− 1)

)
.

We will show that ϑ = π/(2n) and that (3.36) holds. Notice first that the spherical
torus property (ST) (see Remark 3.4) applied to any point q ∈ S1 := S implies

γ(S1) ∩ Bϑ(ξ) = ∅. (3.37)

For an arbitrary point p ∈ S1 consider the unit speed geodesic ηp : [0, 2π]→ S2 starting
in p in the direction orthogonal to S1, i.e. with

ηp(0) = p, η′p(0) ⊥ S1 at p, |η′p| ≡ 1 on [0, 2π],
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so that for all s ∈ (0, 2π− 2ϑ) the point ηp(s) is contained in the open region S2 \Bϑ(ξ).
Hence S1 and therefore γ is tangent to the geodesic circle ∂Bϑ(ηp(ϑ)) in the point p.
This implies by means of the spherical torus property (ST)

Bϑ(ηp(ϑ)) ∩ γ(S1) = ∅ for all p ∈ S1. (3.38)

According to Lemma 3.21 there is at least one point

p̃ ∈ ∂Bϑ(ηp(ϑ)) ∩ γ(S1) \ {p}.

If p̃ is not antipodal to p on ∂Bϑ(ηp(ϑ)), i.e. if p̃ 6= ηp(2ϑ), then p and p̃ are contained
in a closed semicircle by virtue of options (b) and (c) in Lemma 3.21. Therefore we find
a point

q ∈ ∂Bϑ(ηp(ϑ)) ∩ γ(S1) \ {p}
sufficiently close to p such that the unit speed geodesic τq : [0, 2π]→ S2 with τq(0) = q,

τ ′q(0) ⊥ ∂Bϑ(ηp(ϑ)) at q, τq(s) ∈ S2 \ Bϑ(ηp(ϑ)) for all s ∈ (0, 2π − 2ϑ), intersects S1

sufficiently early, i.e., such that

τq(σ) ∈ S1 ⊂ γ(S1) for some σ ∈ (0, ϑ).

But this implies
γ(S1) ∩ Bϑ(τq(ϑ)) 6= ∅

contradicting the spherical torus property (ST) at the point q ∈ γ(S1). Hence we have
shown that

∂Bϑ(ηp(ϑ)) ∩ γ(S1) = {p, ηp(2ϑ)} for all p ∈ S1.

Since S1 is a semicircle contained in ∂Bϑ(ξ) the set

S2 :=
⋃
p∈S1

ηp(2ϑ) ⊂ γ(S1)

is an open semicircle contained in ∂B3ϑ(ξ) unless ϑ = π/3 (hence n = 2) in which case
S2 degenerates to a single point, namely the antipodal point ξ̄ of ξ. But this is absurd
taking (3.38) into account, since γ is a closed curve with a continuous tangent.

We proceed with this construction by setting

Si :=
⋃
p∈S1

ηp(2(i− 1)ϑ) for i = 3, . . . , n,

and we have

η′p(2(i− 2)ϑ) ⊥ Si−1 at the points ηp(2(i− 2)ϑ) for i = 3, . . . , n,

so that for all s ∈ (2(i−2)ϑ, 2π−2(i−2)ϑ) the point ηp(s) is contained in S2\B2(i−2)ϑ(ξ).
Hence Si−1 and therefore γ is tangent to each of the geodesic circles ∂Bϑ(ηp((2i− 3)ϑ))
in the point ηp(2(i− 2)ϑ) for i = 3, . . . , n, which implies by means of the spherical torus
property (ST)

Bϑ(ηp((2i− 3)ϑ)) ∩ γ(S1) = ∅ for all p ∈ S1, i = 3, . . . , n. (3.39)
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Using Lemma 3.21 as before we can prove for each p ∈ S1 that

∂Bϑ(ηp((2i− 3)ϑ)) ∩ γ(S1) = {ηp(2(i− 2)ϑ), ηp((2i− 2)ϑ)} for i = 3, . . . , n.

Each of the sets Si, is an open semicircle contained in ∂B(2i−1)ϑ(ξ)∩Sw, i = 1, . . . , n−1,
since

ϑ+ (2i− 2)ϑ ≤ (2n− 3)ϑ <
2n− 3
2n− 2

π < π for all i = 1, . . . , n− 1.

If ϑ = π/(2n− 1) then Sn degenerates to a single point (since ϑ+ (2n− 2)ϑ = π) which
contradicts (3.39) for i = n in combination with the fact that γ is closed and has a
continuous tangent.

If ϑ ∈ (π/(2n− 1), π/(2n− 2)) then ϑ+ (2n− 2)ϑ = (2n− 1)ϑ > π, so that Sn ⊂ Se
is an open semicircle of spherical radius (2n− 1)ϑ− π < ϑ about the antipodal point ξ̄
of ξ, contradicting the definition of thickness Θ = ∆[γ] = sinϑ.

If ϑ ∈ (π/(2n), π/(2n − 1)) then ϑ + (2n − 2)ϑ < π, hence Sn ⊂ Sw is an open
semicircle of spherical radius π−(2n−1)ϑ < ϑ about ξ̄, again contradicting the definition
of thickness.

The only remaining angle is ϑ = π/(2n), so that Sn ⊂ Sw is an open semicircle of
spherical radius π− (2n− 1)ϑ = π/(2n) about ξ̄, and we have (3.36) in virtue of (3.39),
if we add the endpoints of the open semicircles Si, i = 1, . . . , n, using the continuity of
γ.

Finally we conclude this section with the

Proof of Theorem 3.5. If ϑ = π/2 we find n = 1, and the only possible solution is the
equator β1,0, and we are done.

For ϑ ∈ (0, π/2) there is k = k(ϑ) ∈ N \ {1, 2} such that 2(k − 1)ϑ < 2π ≤ 2kϑ.
First we are going to prove that there is a closed semicircle S contained in γ(S1). For

this purpose we fix p ∈ γ(S1) and define ηp : [0, 2π]→ S2 to be the unit speed geodesic
starting in p in a direction orthogonal to γ, i.e. with

ηp(0) = p, η′p(0) ⊥ γ at p, |η′p| ≡ 1 on [0, 2π].

The torus property (T) applied to p implies

γ(S1) ∩ Bϑ(ηp(ϑ)) = ∅. (3.40)

According to Lemma 3.21 either ηp(2ϑ) 6∈ γ(S1) in which case p is contained in a closed
semicircle S ⊂ Bϑ(ηp(ϑ)) with

S ⊂ γ(S1), (3.41)

or ηp(2ϑ) ∈ γ(S1). In the latter case (3.40) implies that γ is tangent to ∂Bϑ(ηp(ϑ)), i.e.

η′p(2ϑ) ⊥ γ at ηp(2ϑ).

In this way we investigate the whole collection of balls

Bϑ(ηp((2i− 1)ϑ)) for i = 1, . . . , k,
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and we claim that either we find a closed semicircle S on one of the geodesic circles
∂Bϑ(ηp((2i− 1)ϑ)), i = 1, . . . , k, or ϑ = π/k, and

ηp(2iϑ) ∈ γ(S1), ηp(2kϑ) = p, η′p(2iϑ) ⊥ γ at ηp(2iϑ) (3.42)

for i = 1, . . . , k. But (3.42) describes exactly the situation assumed in Lemma 3.22 so
that we can conclude the existence of a closed semicircle S of spherical radius ϑ in each
of the two hemispheres bounded by ηp([0, 2π]).

To prove the claim we assume that none of the circles ∂Bϑ(ηp((2i−1)ϑ)), i = 1, . . . , k,
contains a closed semicircle S ⊂ γ(S1). Then we can apply Lemma 3.25 and the torus
property successively – as demonstrated once above for i = 1 – to conclude that

γ(S1) ∩
k⋃
i=1

Bϑ(ηp((2i− 1)ϑ)) = ∅. (3.43)

This implies that 2π = 2kϑ since the inequality

(2k − 2)ϑ < 2π < 2kϑ

leads to a contradiction: If (2k − 1)ϑ ≥ 2π then (2k − 1)ϑ− 2π < ϑ which implies

p ∈ Bϑ((2k − 1)ϑ) (3.44)

contradicting (3.43). If (2k − 1)ϑ < 2π then 2π − (2k − 1)ϑ < ϑ which leads to (3.44)
as well, again contradicting (3.43). Hence we have shown ϑ = π/k and the properties
(3.42) follows from our construction. As in the proof of Lemma 3.22 we find k = 2n for
some n ∈ N \ {1} since γ is simple and closed.

Having established the existence of a closed semicircle S contained in the set γ(S1)∩
Bϑ(ηp((2j − 1)ϑ)) for (at least) one j ∈ {1, . . . , 2n} we can use Lemma 3.23 to conclude
that

γ(S1) ∩ Sw =
n⋃
i=1

∂B(2i−1)ϑ(ηp((2j − 1)ϑ)) ∩ Sw,

where Sw denotes the closed hemisphere containing S such that ∂Sw intersects the circle
∂Bϑ(ηp((2j − 1)ϑ)) orthogonally.

With that knowledge we observe that the intersection γ(S1) ∩ ∂Sw consists of 2n
equidistant points in which γ intersects the plane containing Sw orthogonally. Therefore
Lemma 3.22 is applicable to conclude the existence of an open semicircle S∗ of spherical
radius ϑ contained in γ(S1) ∩ Se, where Se := S2 \ Sw. Again by Lemma 3.23 one finds
that also

γ(S1) ∩ Se =
n⋃
i=1

∂B(2i−1)ϑξ) ∩ Se for some ξ ∈ Se.

But we have shown in Section 3.1 that the only possible closed and simple curves made
of two stacks of equidistant latitudinal semicircles are the curves βn,k.
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3.4 Open Curves

We now indicate that a similar construction is also possible for open curves. A tubular
neighbourhood of an open curve γ in R3 consists of three parts: A half-ball cap at the
beginning and end of the curve and a middle part, consisting of the disjoint union of
normal discs of given radius centred at the curve.

Problem (P′). Given a constant Ω ∈ (0, 1] find a curve γΩ in the class

C′Ω := {γ ∈ C1,1(I,R3) : |γ| = 1 & |γ′| > 0 on I,∆[γ] ≥ Ω, |γ(1)− γ(0)| ≥ 2Ω}
with I = [0, 1] such that L[γΩ] = supC′Ω L.

With only slight modifications using the additional assumption on the endpoints of
the curves in competition, one can prove as in Theorem 3.1 the existence of solutions for
Problem (P′) for any given Ω ∈ (0, 1]. Here, the crucial C1,1-estimate from [GMSvdM02,
Lemma 2] for closed curves leading to (3.18) in the proof of Theorem 3.1 is replaced by
the corresponding C1,1-estimate proved in [Ge04, Satz 2.14] for open curves.

A variant of Proposition 3.11 (Hotelling’s theorem) for open curves implies that the
volume of the middle part is again proportional to the length of the curve, while the
volume of the caps stays fixed for fixed radius.

For certain values ωm = π/m, 2 ≤ m ∈ N, of spherical thickness one can perform
a similar construction as in the case of closed curves. There are in fact two slightly
different situations, depending on whether m is even or odd (see Figure 3.7 on page 60
for examples).

(i) For m even, consider m/2 semicircles with spherical distance 2ωm stacked up on
the western hemisphere as described in the introduction. For the eastern hemi-
sphere we take the north pole as a single point, together with m/2 − 1 stacked
up semicircles with spherical distance 2ωm, and finally the south pole as a second
single point. After turning the eastern hemisphere by the angle ωm all endpoints
of the western semicircles match with the semicircle endpoints and the two sin-
gle points on the eastern hemisphere. Turning further by the amount of k · 2ωm,
k ∈ {0, . . . ,m/2−1}, one can try to construct a single open connected curve αm,k.
Note that the first member of this family (for m = 2, k = 0) is a semi great circle,
which is easily seen to be the unique solution for thickness ω2 = π/2.

(ii) For m odd, start with a single point C0 in the north pole, then stack up (m−1)/2
circles Ci of spherical radius 2ωm around the north pole with the last circle Cm−1

around the south pole of spherical radius ωm. The discontinuous curve has a
tubular neighbourhood of spherical thickness ωm (note that the neighbourhood
about the point C0 is just a geodesic ball). Next cut the sphere along a longitude
(cutting C0 in two ‘half-points’) and turn by k · 2ωm. We denote this possibly
discontinuous curve again by αm,k.

As in the proof of Lemma 3.6 one can show that the tubular neighbourhood remains
a tubular neighbourhood of the same spherical radius after the turning process and the
neighbourhoods of the ‘half-points’ form the spherical caps about the endpoints of the
curve. To investigate under which circumstances the resulting curves αm,k constitute
one open connected arc we use the same algebraic methods as in Section 3.1.
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Lemma 3.24. For every even m ∈ N and k ∈ {0, . . . ,m/2−1} with gcd(2k−1,m) = 1
the appropriately re-parametrised curve αm,k : I → S2 is a connected open, piecewise
circular curve whose constant speed parametrisation is of class C1,1(I,R3) satisfying

∆[αn,k] = Ωm = sinωm = sin
π

m
.

Moreover, for distinct k1, k2 ∈ {0, . . . ,m/2 − 1} the curves αm,k1 and αm,k2 are not
congruent. There are ϕ(m) distinct open connected curves for each m.

Proof. As mentioned above only the algebraic arguments need to be adjusted to the
present situation of open curves. Set n := m/2 ∈ N. First consider the western hemi-
sphere Sw and number the 2n endpoints of the (all proper) semicircles counter-clockwise
from 0 to 2n− 1, such that checkpoint number i and 2n− i− 1 correspond to the i-th
semicircle (i = 0, · · · , n− 1); see Figure 3.4. For the eastern hemisphere Se number the
points from 0 to 2n−1, where 0 and n correspond to the single points, while i and 2n− i
correspond to the endpoints of the i-th semicircle (i = 1, · · · , n− 1). When turning the
hemisphere Se by multiples of 2ω2n the curve closes again in a nice C1-fashion (note
that Se was already turned once by ω2n to align the endpoints during construction).
Since there are only two endpoints, we will arrive at one open curve and possible several
closed curves.

The semicircles on Sw connect the checkpoints to n pairs, which is a permutation on
the checkpoints

w(i) ≡ −i− 1 mod 2n,

so if we pass through checkpoint i along the curve we will next pass through checkpoint
w(i). Similarly the eastern hemisphere defines

e(i) ≡ −i mod 2n.

The twist by k · 2ωn is again described by

tk(i) ≡ i+ k mod 2n.

As we pass along the curve αm,k we run alternately through the semicircles on each
hemisphere. If we just entered a hemisphere through checkpoint i we will enter it the
next time at the checkpoint q(i) := t−k ◦ e ◦ tk ◦ w(i). For q we find the formula

q(i) ≡ t−k ◦ e ◦ tk ◦ w(i) ≡ −((−i− 1) + k)− k ≡ i− (2k − 1) mod 2n

and after l steps
ql(i) ≡ i− (2k − 1)l mod 2n.

In order to see whether αm,k is one connected open curve, we start at checkpoint 0 (which
is one end) and note through which checkpoints we pass. The run has to be reflected at
the other endpoint, so that we pass through the curve in two directions, passing each
checkpoint on the component, not only even or odd ones like in Lemma 3.6. So αm,k

is one connected open curve if and only if q consists of one cycle of length 2n. By
Lemma 3.7 this is the case if and only if gcd(2k − 1, 2n) = 1.

To count the solutions, note that gcd(2k, 2n) ≥ 2 and therefore

#{k ∈ {1, · · · , n} : gcd(2k − 1, 2n) = 1} =
#{k ∈ {1, · · · , 2n− 1} : gcd(k, 2n) = 1} = ϕ(m). (3.45)

Each of the αm,k is easily seen to be unique up to rigid motions.

58



3.4. OPEN CURVES

Lemma 3.25. For every odd m ∈ N and k ∈ {0, . . . ,m − 1} with gcd(2k,m) = 1
the appropriately re-parametrised curve αm,k : I → S2 is a connected open, piecewise
circular curve whose constant speed parametrisation is of class C1,1(I,R3) satisfying

∆[αn,k] = Ωm = sinωm = sin
π

m
.

Moreover, for distinct k1, k2 ∈ {0, . . . ,m − 1} the curves αm,k1 and αm,k2 are not con-
gruent. There are ϕ(m) distinct open connected curves for each m.

Proof. Set n := (m− 1)/2 ∈ N. Like in the proof of Lemma 3.24 we check the order in
which the curve passes certain checkpoints and if we can reach every checkpoint in one
run.

First consider the western hemisphere Sw and number the 2n + 1 endpoints of the
semicircles counter-clockwise from 0 to 2n, such that the checkpoint numbers i and
2n+ 1− i correspond to the i-th semicircle (i = 1, · · · , n− 1) and i = 0 corresponds to
the single point. When turning the hemisphere Se by multiples of 2ωn the curve closes
again in a nice C1-fashion. Since there are only two endpoints, we will end up with at
most one open connected curve and possibly several closed curves. In the extreme case
k = 0 the open curve degenerates to a point and we have n closed circles.

The semicircles and the single point on the western hemisphere act again as a permu-
tation c(i) ≡ −i mod 2n+ 1 on the checkpoints. The turn by k · 2ωn is again described
by tk(i) ≡ i+k mod 2n+1. As we pass along the curve αm,k we run alternately through
the semicircles on each hemisphere. If we just entered a hemisphere through checkpoint
i we will enter it the next time at the checkpoint q(i) := t−k ◦ c ◦ tk ◦ c(i). For q we find
the formula

q(i) ≡ t−k ◦ c ◦ tk ◦ c(i) ≡ −((−i) + k)− k ≡ i− 2k mod 2n+ 1

and after l-steps
ql(i) ≡ i− 2kl mod 2n+ 1.

As in the proof of Lemma 3.24 we find that αm,k is one connected open curve if and
only if q consists of one cycle of length m = 2n + 1. By Lemma 3.7 this is the case if
and only if gcd(2k, 2n + 1) = gcd(2k,m) = 1. To count the number of solutions, note
that gcd(2k, 2n+ 1) = gcd(k, 2n+ 1) since 2n+ 1 is odd and therefore

#{k ∈ {1, · · · ,m− 1} : gcd(2k,m) = 1} =
#{k ∈ {1, · · · ,m− 1} : gcd(k,m) = 1} = ϕ(m). (3.46)

Again we can use the fact, that the tubular neighbourhood of αm,k covers the whole
sphere to prove that they are the unique solutions:

Lemma 3.26 (Characterisation of open sphere filling curves). For an open rectifiable
continuous curve γ : I → S2 with positive thickness Ω := ∆[γ] ∈ (0, 1), ω := arcsin Ω ∈
(0, π/2), and with |γ(0)− γ(1)| ≥ 2Ω the following two statements are equivalent:

(i) V(Tω(γ)) = 4π;
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Open curves αm,k that maximise length for prescribed thicknesses ωm =
π/m: (a) m = 3, k = 1; (b) m = 5, k = 1; (c) m = 25, k = 6; (d) m = 4, k = 0; (e)
m = 6, k = 0; (f) m = 26, k = 6. Note that the endpoints of the curve are always
antipodal for m even. Only the curves (c) and (f) are depicted with full thickness.

(ii) For any ξ ∈ S2 such that Bω(ξ) ∩ γ(I) = ∅ one of the following is true:

(a) ∂Bω(ξ) ∩ γ(I) = {P,Q} with distS2(P,Q) = 2ω (antipodal points); γ is tan-
gential to ∂Bω(ξ) in at least one of the points P or Q;

(b) ∂Bω(ξ) ∩ γ(S1) = {semicircle of spherical radius ω}.
Proof. The situation for open curves γ differs from that in Proposition 3.20 only in the
possibility that apart from γ connecting two points along ∂Bω(ξ) these two points could
both be two endpoints of great arcs on γ (cf. [Ge04, Satz 3.27]). However this case can
not happen here since we have |γ(1)− γ(0)| ≥ 2Ω.

The cases (ii) ⇒ (i) and (i) ⇒ (b) and the first part of (a) are proved as in
Lemma 3.21. If P or Q is an inner point of γ the tangency is evident. Assume that P
and Q are the endpoints of γ both not tangential. Then we could consider the great
circle η : (−π, π)→ S2, η(0) = ρ intersecting the shorter great arc from P to Q orthog-
onally in ρ and Bω+ε(η(ε)) would not intersect γ for small ε > 0 which would contradict
Part (i).

Theorem 3.27 (Sphere filling open thick curves). If V(Tω(γ)) = 4π for ω ∈ (0, π/2]
and some open curve γ ∈ C′Ω with Ω = sinω ∈ (0, 1], then there is some m ∈ N and
k ∈ {0, . . . ,m/2} with gcd(2k − 1,m) = 1 if m is even, or k ∈ {0, . . . ,m − 1} with
gcd(2k,m) = 1 if m is odd, such that
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(i) ω = ωm,

(ii) ∆[γ] = Ωm, where Ωm = sinωm,

(iii) γ = αm,k.

Proof. We will only sketch the proof since for open curves it is slightly easier than for
closed curves. Indeed, we have two natural points to start our construction if we equip
γ with an orientation, namely the start- and endpoints of the curve. Let ηp,t be the unit
speed great circle going through ηp,t(0) = p ∈ S2 with η′p,t = t ∈ S2. By Lemma 3.26
we have ηγ(0),t(2ω) ∈ γ(I) for t · γ′(0) ≤ 0. If ω = π/2 then ηγ(0),t(2ω) = γ(1) is the
other endpoint, and γ = α1,0 (otherwise we would have |γ(0)− γ(1)| < Ω contradicting
the fact that γ ∈ C′Ω). If ω < π/2 the set {ηγ(0),t(2ω) : t · γ′(0) ≤ 0, t ∈ S2} will be a
semicircle. As in Lemma 3.23 we can continue this process stacking up semicircles until
we either arrive at

(i) a semicircle of spherical radius ω, which implies ω = π/m for some odd m ∈ N.

(ii) or a single point, which has to be γ(1). This implies ω = π/m for some even
m ∈ N.

In case (i) we can redo the construction with the endpoint and find the two hemispheres
each filled with (m−1)/2 stacked up semicircles and one single point. Therefore γ must
be congruent to αm,k for some odd m and some k ∈ N. In case (ii) both end caps
are contained in one hemisphere, and in the boundary of this hemisphere we find the
characteristic pattern, so we can apply Lemma 3.22 and then 3.23 to see that the other
hemisphere must consist of stacked up semicircles, so γ is again equivalent to αm,k for
an even m and some k ∈ N. In both cases (i) and (ii) the additional restrictions on k
depending on whether m is even or odd are derived in Lemmata 3.24 and 3.25.
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Chapter 4

Ideal Knots in S3

Topological notions concerning knots are largely the same in either R3 or S3. However,
unlike the R3 case, due to its compactness there are multiple natural and different
notions of the geometrical idea of ideal knot shape in S3:

(a) maximise thickness, with length left free,

(b) fix length and maximise thickness,

(c) fix thickness and minimise length, and

(d) fix thickness and maximise length.

In R3 due to dilations the notions (a) and (d) are never achieved, and the notions (b)
and (c) lead to similar shapes again due to dilations. In S3 all notions make sense due to
compactness and are (at least in principle) different i.e. can be expected to have different
optimal shapes. We did not investigate notion (d) in S3 since we dealt extensively with
this question in S2 in the previous chapter. The most natural notion (a) was considered
first in [K02]. We now define the above notions more precisely. Recall from (2.14) on
page 16 our choice of admissible curves

K := {γ ∈ C1(S,M) : ∆[γ] > 0, |γ′(t)| ≡ const ∀t ∈ I}.

Definition 4.1 (Different notions of ideal knots in S3). Let k ∈ K be a representative
of a tame1 knot. Define

Qk := {γ ∈ C1(S,S3) : ∆[γ] > 0, |γ′(t)| ≡ const > 0 ∀t ∈ S, γ 'S3 k},

Q∗k,L := {γ ∈ Qk : |γ′(t)| ≡ L ∀t ∈ S}
and

Q+
k,Θ := {γ ∈ Qk : ∆[γ] ≥ Θ}.

(i) We call γ† ideal if
∆[γ†] = sup

γ∈Qk
∆[γ].

1In the whole thesis we only consider tame knots. As noted in Remark 2.25 thick knots are necessarily
tame.
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(ii) Let L > 0 be fixed, |k′(s)| = L for all s ∈ S. We call γ∗ ∈ Q∗k,L L-ideal if

∆[γ∗] = sup
γ∈Q∗k,L

∆[γ].

(iii) Let Θ ∈ (0, 1] be fixed, ∆[k] ≥ Θ, and L[γ] =
∫

S |γ′(s)|ds be the length functional.
We call γ+ ∈ Q+

k,Θ Θ-ideal if

L[γ+] = inf
γ∈Q+

k,Θ

L[γ].

In general ideal, L-ideal and Θ-ideal are not the same:

Example 4.2 (L-ideal and Θ-ideal are not the same). In S3 great circles maximise
thickness ∆ = 1. Any three points not on a great circle lie on on a circle of radius less
than 1. Let k be a parametrisation of a great circle of S3, and let L > 2π, then the
L-ideal knot γ∗ in Q∗k,L is not Θ-ideal in Q+

k,Θ,Θ := ∆[γ∗] because γ∗ is longer than the
great circle k and strictly thinner.

In S3 there are no dilations as in R3. The best we can achieve is a conformal dilation
that expands one hemisphere and contracts the other.

Definition 4.3 (Conformal dilation). For x ∈ S3 define

CDr(x) := P−1(rP (x)),

where P is the stereographic projection of Definition 2.21.

Lemma 4.4. For an arbitrary knot type, and given length L > 0 there exists a repre-
sentative k : S −→ S3 with ∆[k] > 0 and constant speed |γ′| = L, i.e. Qk and Q∗k,L are
non empty.

Proof. For a given knot type pick a polygonal representative and round off its corners
by inscribing small circles without generating self intersections. After constant speed
parametrisation it is C1,1 and therefore has positive thickness by Lemma 2.2. We call
the result k. This shows that Qk is non-empty.

To construct a representative of a given length L, first construct some thick repre-
sentative k of the knot type as above. If k is longer than the prescribed L, we project
it to R3, scale it down and project it back to S3

kα := CDα(k).

If we take care that k does not pass through the north pole N∞, we have the following
estimate for the speed (and therefore the length) as α→ 0

|k′α| ≤ |α| |DP−1(αP (k))|︸ ︷︷ ︸
→const

|DP (k)|︸ ︷︷ ︸
≤const

|k′|︸︷︷︸
≤const

→ 0,

which implies L[kα] → 0 as α → 0, so kα attains all lengths between L[k] and 0. But
we can also arbitrarily prolong the curve by gluing in a small patch of a finite step in
the generation of the space filling Hilbert curve [Sa94, p. 11] with rounded edges (which
become arbitrarily long). By these two steps we find a thick representative k of any
length L so Q∗k,L is not empty.
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Theorem 4.5 (Existence of ideal knots in S3). For any given knot type k ∈ K:

(i) There exists an ideal γ† ∈ Qk, i.e.

∆[γ†] = sup
γ∈Qk

∆[γ].

(ii) For any L > 0 there exists an L-ideal γ∗ ∈ Q∗k,L, i.e.

∆[γ∗] = sup
γ∈Q∗k,L

∆[γ].

(iii) And for any Θ ∈ (0,∆[γ†]], where γ† is a solution of (i), there exists a Θ-ideal
γ+ ∈ Q+

k,Θ, i.e.

L[γ+] = inf
γ∈Q+

k,Θ

L[γ].

Proof. (i) By Lemma 4.4 the set Qk is non empty. We define

η† := sup
γ∈Qk

∆[γ].

By Remark 2.16(i), 1 ≥ η† ≥ ∆[k] > 0. Let {γn}n ⊂ Qk be any maximising
sequence such that ∆[γn] → η†. We may assume ∆[γn] ≥ ∆[k] > 0 for all n. By
Lemma 2.30 there exists a subsequence {γni}i such that γni → γ† in C1(S,R4)
for some limit γ† ∈ C1(S,S3). Note that the image of γ† must lie in S3 since
S3 is compact. We have |γ†′(s)| = const > 0 for all s ∈ S and by Lemma 2.31
∆[γ†] ≥ η†.
It remains to prove that k 'S3 γ†. There exists N∞ ∈ S3 with dRN (N∞, γ†(S)) =
η† (see Lemma 2.23). Without loss of generality we may assume N∞ to be the
north-pole of S3. Because of convergence we know that N∞ 6∈ γ†ni(S) for n suf-
ficiently large. Let P : S3\N∞ −→ R3 be our stereographic projection. By
Lemma 2.22 we have ∆[P (γni)] ≥ ∆[γni ] ≥ ∆[k] > 0 and, because P is a dif-
feomorphism, we have P (γni) → P (γ†) in C1(S,R3). After reparametrisation we
deduce, by Lemma 2.32, that P (γni) 'R3 P (γ†) and therefore, by Lemma 2.26,
that γni 'S3 γ†. Together we have γ† ∈ Qk. So γ† is an ideal shape.

(ii) By Lemma 4.4 the set Q∗k,L is non empty. We define

η∗ := sup
γ∈Q∗k,L

∆[γ].

By Remark 2.16(i) we have 1 ≥ η∗ ≥ ∆[k] > 0. Let {γn}n ⊂ Q∗k,L be any
maximising sequence such that ∆[γn] → η∗. We may assume ∆[γn] ≥ ∆[k] > 0
for all n. By Lemma 2.30 we find a subsequence {γni}i such that γni → γ∗ in
C1(S,R4) for some limit γ∗ ∈ C1(S,S3), and by Lemma 2.31 we have ∆[γ∗] ≥ η∗.
To prove that k 'S3 γ∗ we proceed as in (i). Together we have γ∗ ∈ Q∗k,L. So γ∗

is an L-ideal knot.
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(iii) We have γ† ∈ Q+
k,Θ, so Q+

k,Θ is non empty. As above we define

η+ := inf
γ∈Q+

k,Θ

L[γ].

By Lemma 2.13 we have η+ ≥ 4Θ > 0. We can therefore chose a minimising
sequence {γn}n ⊂ Q+

k,Θ such that L[γn] → η+. As above, we find a convergent
subsequence γni → γ+ in C1(S,RN ), γ+ ∈ Q+

k,Θ and L[γ+] = |γ+′| = η+. So γ+ is
Θ-ideal.

Remark 4.6. (i) The condition Θ ∈ (0,∆[γ†]] in Theorem 4.5 (iii) is sharp, since
any curve in Q+

k,Θ is a competitor to γ†.

(ii) Fix some knot type. Define L† as the supremum of all lengths of ideal shapes. By
same methods used in the proof above, we can show that the maximum length is
indeed attained. For L > L† we still find an L-ideal knot γ∗, but it can not be
ideal, since it must have ∆[γ∗] < ∆[γ†] by the definition of L†.

We can apply the above techniques to compact subsets of R3 as well:

Theorem 4.7. Let C ⊂ R3 be a compact set and let k ∈ C1(S, C) be a knot in C with
∆[k] ≥ Θ > 0. Then there exists a thickness (length) maximiser γ ∈ C1(S, C) (with
∆[γ] ≥ ∆[k]), such that γ 'R3 k.

Proof. Let γi ∈ C1(S, C) with constant speed |γ′i| ≡ Li, ∆[γi] ≥ ∆[k] and γi 'R3 k be a
maximising sequence of ∆ (L). By Lemma 2.30 there exists a convergent subsequence
{γij}j and a limit γ, such that γij → γ in C1(S,R3). By compactness of C we have
indeed γ ∈ C1(S, C). By Lemma 2.31 we have ∆[γ] ≥ ∆[γi] for all i since it is a thickness
maximising sequence. Since the convergence is in C1 we have

lim
j→∞

L[γij ] = L[γ]

and L[γ] ≥ L[γi] since it is a length maximising sequence. So γ is indeed a maximiser.
By Lemma 2.32 we also have γ 'R3 k as claimed.

But for applications open curves are more common, so more work has to be done to
treat this case.

Remark 4.8. In R3 many authors consider the ropelength R[γ] = L[γ]/∆[γ], since it
reflects the scale-invariance of the shape. We consider it a less natural energy in S3 but
want to discuss it briefly for completeness.

In S3 scaling is more difficult and we expect the family of circles with radius r ∈ (0, 1],
which are the ropelength minimisers of the unknot, to be an exception. Since a lower
bound on ropelength does not easily imply a lower bound on thickness, the methods used
in this chapter do not carry over.

In fact, it might be possible that while minimising ropelength, the curve contracts to
a point and approaches an ideal knot in the tangent space R3. But if such a contraction
does not happen, i.e. we are able to show that a ropelength minimiser has at least a
certain arc-length, then we get a lower bound on the thickness and we can apply the

66



4.1. ANALYSIS OF NECESSARY CONDITIONS

methods of this chapter. In this case each ropelength minimiser γ is also L-ideal with
L = L[γ] and Θ-ideal with Θ = ∆[γ]. So if we understand the other shapes, we will also
understand the shapes of the ropelength minimisers.

4.1 Analysis of Necessary Conditions

Using conformal dilations we derive a necessary condition for ideality of knots in S3.

Theorem 4.9. Let γ : S −→ S3 be a thickness-maximising ideal knot. Then γ is
not contained in any open geodesic ball Br(x) := {z ∈ S3 : distS3(x, z) < r}, with
r := π/2− arcsin∆[γ] and x ∈ S3.

Proof. Assume a ball Br(x) exists, such that γ(S) ⊂ Br(x). Without loss of generality
x = S0. Set ε := distS3(γ(S), ∂Br(x)) > 0. Then the centres of all circles through three
points on γ(S) of radius smaller than (∆[γ] + ε/2) lie in Bπ/2(S0). Therefore, for each
such circle C, the image under the conformal dilation (Definition 4.3) CD1+δ(C) has a
bigger radius for δ < ε/2, and consequently ∆[CD1+δ(γ)] > ∆[γ] for δ sufficiently small,
contradicting the maximal thickness of γ.

We consider it unlikely that the small circles approaching the thickness of an ideal
knot are not completely contained in the spherical ball of above theorem and therefore
expect a slightly stronger version to be true:

Conjecture 4.10 (Not contained in hemisphere). Let γ : S −→ S3 be a thickness-
maximising ideal knot. Then γ is not contained in any ball Bπ/2(x) with x ∈ S3.

4.2 From S3 to R3

Consider a series of L-ideal shapes as L goes to 0. The shapes will be contained in a
smaller and smaller area of S3 that more and more resembles R3. Do the L-ideal shapes
approach an ideal shape in the tangent space R3? The answer is yes as the following
theorem shows. Of course we can only expect the convergence of a subsequence since
we do not know whether L-ideal shapes are unique.

Theorem 4.11 (Shrinking into the tangent space). For each L > 0, let γL : S −→ S3

be a thickness maximising, constant speed curve with length |γ′L| = L and γL(S) ⊂
BL(S0). Define γL : S −→ R3 as P (γL)/L re-parametrised with constant speed, where
P : S3 −→ R3 is the stereographic projection from Definition 2.21. Then for any sequence
Li ↘ 0 as i → ∞ a subsequence of {γLi}i converges to an ideal knot (i.e. ropelength-
maximiser) γ : S −→ R3 in R3.

Proof. We first prove
L∆[γL]/∆[γL]→ 1 for L→ 0. (4.1)

Recall (2.13):

R(P (x), P (y), P (z)) =
∣∣∣∣ 2
cosα+ cos %

∣∣∣∣R(x, y, z).

Since L is an upper bound on the thickness of γL we only need to consider small circles
close to S0 and for those the angles α and % go to zero for L→ 0. Therefore the quotient
R/(R ◦ P ) goes to 1, which implies (4.1).
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Next, we show
LL[γL]/L[γL]→ 1 for L→ 0. (4.2)

L[γL] =
∫

S
|γL(s)′|ds

=
∫

S
|(P ◦ γL(s))′|/L ds

=
∫

S
|DP (γL(s))

γL(s)′

L
|︸ ︷︷ ︸

≈
˛̨̨
γL(s)′
L

˛̨̨
ds→ 1 for L→ 0,

which proves the above statement. Note that we did not use the optimality of γL so
far. The above claims rely only on positive thickness and being close enough to S0.
Combining (4.1) and (4.2) yields

∆[γL]
L[γL]

/
∆[γL]
L[γL]

→ 1 for L→ 0. (4.3)

Let γ∗ : S −→ R3 be an ideal knot in R3 with L[γ∗] = 1. Then for each L > 0
small enough there exists a constant m(L) such that the curve γ∗L : S −→ S3 defined
as γ∗L(s) := P−1(m(L)γ∗(s)) is a competitor to γL with length L = L[γ∗L] and therefore

∆[γL] ≥ ∆[γ∗L] by optimality of γL. Dividing by L∆[γ∗L]

L[γ∗L]
yields

∆[γL]
L

/
∆[γ∗L]
L[γ∗L]

≥ ∆[γ∗L]
L

/
∆[γ∗L]
L[γ∗L]

(4.3)→ 1.

Since γ∗L is also a ropelength maximiser we have ∆[γ∗L]

L[γ∗L]
= ∆[γ∗], which implies with the

above
lim inf
L→0

∆[γL]
L
≥ ∆[γ∗].

We continue

∆[γ∗] ≤ lim inf
L→0

∆[γL]
L

(4.3)
= lim inf

L→0
∆[γL]/L[γL]︸ ︷︷ ︸

→1

= lim inf
L→0

∆[γL]

≤ lim sup
L→0

∆[γL]

optimality
≤ ∆[γ∗],

and conclude limL→0 ∆[γL] = ∆[γ∗].
By Lemma 2.30 a subsequence of γL converges in C1(S,R3) to a limit γ : S −→ R3.

The upper semicontinuity of ∆[·] (Lemma 2.31) guarantees that the limit γ is indeed a
ropelength maximiser.
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4.3 A Competitor for the Ideal Trefoil

So far very few ideal shapes are known analytically. In R3 the circle is known to be the
ideal unknot [SDKP98]. In [CKS02] the Hopf-link and other simple links are shown to
be ideal. The most complex known shapes are the tight clasp and the Borromean rings
[Sta03, CFKSW04] (both based on some natural assumptions). In S3 the great circle
and the Hopf-Link are known ideal shapes [K02]. All these solutions are component-wise
planar.

In this section we want to present a competitor for the ideal trefoil in S3 along with
its properties. Since the trefoil is a torus knot, it is natural to consider trefoils on tori
embedded in the three-sphere ([BPP08] considered trefoils on a torus in R3). To define
these we use the well-known Hopf coordinates:

Lemma 4.12 (Hopf coordinates). Consider S3 ⊂ C2. We can then parametrise (z1, z2) ∈
S3 ⊂ C2 by

z1 = eiξ1 sin η,
z2 = eiξ2 cos η,

for η ∈ [0, π/2], ξ1, ξ2 ∈ [0, 2π].
The metric is given by

ds2 = dη2 + sin2 ηdξ2
1 + cos2 ηdξ2

2 . (4.4)

For fixed η ∈ (0, π/2) we get a torus

Tη := {(eiξ1 sin η, eiξ2 cos η) : ξ1, ξ2 ∈ [0, 2π]} ⊂ S3

with a flat metric. For η = π/4 this is the famous Clifford torus [Be87] that splits the
three-sphere in two equal parts. We will call the whole flat family Clifford tori. The
parameter η controls the ‘aspect ratio’ of the torus Tη. For η = 0 and η = π/2 the torus
collapses to single circles that together form the Hopf-link. The Clifford tori inherit
another nice property from the Hopf coordinates: They are a union of unit-circles – the
fibres of the Hopf-fibration [Be87].

A straight line g(t) in the parameter set R2/2πZ2 with a carefully chosen slope will
give an infinite cover of a torus knot. For g(t) = 3

2 t we get a trefoil (see Figure 4.1) that
we lift to Tη:

γη(t) :=
(
eit sin η, eig(t) cos η

)
(4.5)

=
(
eit sin η, ei3t/2 cos η

)
=

[
sin η cos t, sin η sin t, cos η cos

3t
2
, cos η sin

3t
2

]
∈ Tη ⊂ S3

for t ∈ [0, 4π). The curves γη are smooth and have constant torsion and curvature, so
they are helices that close in S3. A similar construction was considered by Banchoff
studying self-linking numbers of curves in [B01].

Meanwhile Kusner was ‘tempted to conjecture’:
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Figure 4.1: (a) The canonical trefoil on a torus in parameter space R2/(2πZ)2. The
short green dotted line shows an example of a self-distance. For some aspect ratio it
forms a right angle with the trefoil in the corresponding metric realizing the thickness
of the trefoil. The red dashed line and its parallels are always Villarceau-circles on the
torus-surface. For the special aspect ratio η∗ the red dashed line and the short green
dotted line would be parallel. (b) The thickness ∆ of the trefoil γη. Maximum at

η∗ = arctan
(√

3√
2

)
≈ 0.886, ∆[γη∗ ] = sin(π/5) ≈ 0.588.

Conjecture 4.13. [K02, p. 177] Ideal torus knots T2,m in S3 are on a flat Clifford
torus with optimised aspect ratio.2

In Remark 4.16 and Section 5.5.5 we will see that the conjecture does not hold for
m = 5. But the case m = 3 is interesting:

Lemma 4.14. Let γη be defined as in (4.5). Then within the family of Clifford trefoils,
∆[γη] is maximal for

η∗ = arctan(

√
3
2

) ≈ 0.886 with ∆[γη∗ ] = sin(π/5) ≈ 0.588.

Proof. We consider the squared distance between (0, 0) ∈ R2 and a point on the straight
line (t, g(t)− π) in the metric defined in (4.4), and denote it by

d(t, η) := cos2(η) (3t− π)2 + 4 sin2(η)t2.

To find the parameter tmin of the closest point we differentiate by t and find

dt(t, η) = 6 cos2(η) (3t− π) + 8 sin2(η)t.

Solving dt(tmin, η) = 0 yields

tmin =
3π cos2(η)

4 sin2(η) + 9 cos2(η)
.

2 R. Langevin made a similar conjecture in a private communication for the trefoil T2,3.
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Now calculate the squared distance from the line to the origin as a function of η:

dmin(η) := d(tmin, η)

= cos2(η)
(

9π cos2(η)
4 sin2(η) + 9 cos2(η)

− π
)2

+
36π2 cos4(η) sin2(η)(

4 sin2(η) + 9 cos2(η)
)2

and maximise it. We compute

dminη(η) = 2 cos2(η)
(

9π cos2(η)
4 sin2(η) + 9 cos2(η)

− π
)

·
(

90π cos3(η) sin(η)(
4 sin2(η) + 9 cos2(η)

)2 − 18π cos(η) sin(η)
4 sin2(η) + 9 cos2(η)

)

− 2 cos(η) sin(η)
(

9π cos2(η)
4 sin2(η) + 9 cos2(η)

− π
)2

− 144π2 cos3(η) sin3(η)(
4 sin2(η) + 9 cos2(η)

)2
+

72π2 cos5(η) sin(η)(
4 sin2(η) + 9 cos2(η)

)2 +
720π2 cos5(η) sin3 η(

4 sin2(η) + 9 cos2(η)
)3 ,

and solving dminη(η) = 0 in [0, π/2] yields

η0 = 0,

η1 =
π

2
,

η∗ = arctan

(√
3√
2

)
≈ 0.886,

where dmin(η∗) = 4π2

25 is the maximum. This is also the squared distance in S3 since all
points in Tη have the same η-value and the metric is induced from S3. Calculating the
curvature of γη∗ we find 1/κ =

√
6/7 ≈ 0.926 > sin(

√
dmin(η∗)/2) = sin(π/5) ≈ 0.588

so we have indeed ∆[γη∗ ] = sin(π/5).

Definition 4.15 (g-Trefoil). We denote the above curve g : [0, 4π] −→ S3 defined as

g(t) := γη =

[√
3
5

cos t,

√
3
5

sin t,

√
2
5

cos
(

3
2
t

)
,

√
2
5

sin
(

3
2
t

)]
.

and call it the g-trefoil.3 In Hopf coordinates:

g(t) =

[
arctan

√
3
2
, t,

3
2
t

]
∈ [0, π/2]× R/2πZ× R/2πZ.

3 The name was proposed by J. Maddocks to reflect the conjecture that it maximises global radius
of curvature.
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Figure 4.2: The green Villarceau circle intersects the red competitor g five times in
equidistant points. The stereographic projection was chosen such that the green Vil-
larceau circle was not distorted and the distance along it corresponds to distances in S3.
Note that the symmetry of g is lost in this projection. The grey, transparent sphere is
a great sphere in S3 and separates it in two equal parts: Its inside and its outside.

Remark 4.16. A similar calculation as in Lemma 4.14 for the T2,5 knot with

g(t) :=
5
2
t

yields

η∗ = arctan(

√
5
2

) ≈ 1.007 and ∆[γη∗ ] = sin(π/7) ≈ 0.434.

As we will see in Section 5.5.5 this thickness is bettered by a non-Clifford T2,5 knot.

One easily calculates various properties of g:

Lemma 4.17 (Properties of g).

Thickness ∆[g] sin(π/5)

Length L[g] 4π
√

3
2

Volume of maximal thickness tube V[Tπ/5(g)] 2
√

6π2 sin2
(
π
5

)
The trefoil g has the following geometric properties:

(i) For all t ∈ [0, 4π] g(t) is in self contact with g(t+ 8π
5 ) and g(t+ 12π

5 ), these 3 points
lie on the same great circle

ct(s) :=

[√
3
5

cos(t+ s),

√
3
5

sin(t+ s),

√
2
5

cos(
3
2
t− s),

√
2
5

sin(
3
2
t− s)

]

with ct(0) = g(t).

(ii) This great circle ct(s) intersects g five times (at g(4nπ
5 ), n = 0, 1, 2, 3, 4), always

realizing the self contact. It is a Villarceau circle [Be87] on the Clifford torus Tη∗
(depicted as a red dashed line in Figure 4.1(a)).
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(iii) The vectors ∂
∂tg(t), ∂

2

∂t2
g(t) and ∂

∂sct(0) are pairwise orthogonal. Thus ∂
∂sct(0) is

orthogonal to the tangent and principal normal and so points in the direction of
the ‘binormal’ to g(t) in S3.

(iv) The curve g is a helix, i.e. has constant curvature and torsion and has a ‘transla-
tional and rotational’ symmetry:

hs ◦ g(t+ s) = g(t) ∀t, s ∈ R,

with the homeomorphism hs : S3 −→ S3 in Hopf coordinates

hs(η, ξ1, ξ2) =
[
η, ξ1 − s, ξ2 − 3

2
s

]
.

(See Section 5.3 for a more abstract definition of symmetry.)

Assuming that g is indeed ideal, what can be expected for other thickness maximis-
ers? We make a conjecture with some heuristic justifications. If for each parameter r of
γ there are at most two other parameters s, t in contact, i.e.

|γ(r)− γ(t)| = |γ(r)− γ(s)| = 2∆[γ]

and both (γ(r) − γ(t)) and (γ(r) − γ(s)) are orthogonal to γ (Definition 2.15), we can
try to locally improve the thickness as follows:

If γ(r), γ(s) and γ(t) are not on a common great circle we can move γ(r) away
from γ(s) and γ(t) so that that the self distance of the curve around γ(r) increases
(linearly). Hence we could expect to find some parameters r∗, s∗ and t∗ such that
|γ(r∗) − γ(t∗)| = |γ(r∗) − γ(s∗)| = 2∆[γ] and γ(r∗), γ(t∗) and γ(s∗) are located on a
common great circle. We call such an parameter r∗ locked since we can not move it in
order to increase thickness quickly (ρG could still be increased in second order).

If s∗ or t∗ are not locked themselves, we could move one of them aside thus unlocking
r∗, so we could expect to find a sequence of locked parameters one in contact with the
next. All of them are on the same great circle thus partitioning the circle in arcs of
length π/n. Therefore we conjecture:

Conjecture 4.18 (Quantised thickness). Some ideal knots γ in S3 have thickness

∆[γ] ∈ {sin(π/n) : n ∈ N}.

4.4 Is the Competitor g at Least a Local Maximum?

We would like to know whether the trefoil has maximal thickness or whether it is at
least a local maximiser. In Lemma 4.19 we show that the g is at least a saddle point in
the sense that it satisfies first-order necessary conditions for maximality.

Since thickness is defined as the infimum of pt for pairwise distinct parameters,
we have to study the minima of that function. Since the curvature of g is smaller than
1/∆[g] we know that a small neighbourhood of the diagonal is bigger than the minimum.
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Furthermore it was shown in [GMS02] that away from the diagonal the local minima of
pt and the point point function

pp[γ](s, σ) := |γ(s)− γ(σ)| (4.6)

coincide.
Hence we want to study the minima of the pp-function that for curves γ on S3 has

the simple form
1
2

pp2[γ](s, σ) = 1− γ(s) · γ(σ). (4.7)

For a variation h ∈ C∞(R/4πZ,R4) of γ : R/4πZ −→ S3 with

‖h‖C0 < 1, (4.8)
h(s) · γ(s) = 0, ∀s ∈ R/4πZ, (4.9)

the perturbed curve

γε(s) := (1− ε2|h(s)|2)1/2γ(s) + εh(s) ∈ S3, (4.10)

will be in S3 for all sufficiently small ε. Expanding the square root yields

γε(s) = γ(s) + εh(s)− 1
2
ε2|h(s)|2γ(s) +O(ε4). (4.11)

Substituting (4.11) into (4.7) and expanding gives

1
2

pp2
ε(s, σ) :=

1
2

pp2[γε](s, σ)

= (1− γ(s) · γ(σ))− ε(h(s) · γ(σ) + h(σ) · γ(s)) (4.12)

+
1
2
ε2γ(s) · γ(σ)(|h(s)|2 + |h(σ)|2)− ε2h(s) · h(σ)

+O(ε3).

So far the development has been for a generic curve γ on S3. Now we assume that γ is
the g-trefoil. In particular we know that each parameter s of the curve g is in contact
(see Definition 2.15) with σ(s) = s + 8π

5 , and the parameter set (s, σ(s)) is a known
curve or valley of local minima of pp, i.e. g(s) · g(σ(s)) = 1− 2∆[g]. Also note that this
local minimum is non-degenerate (see Section 5.5.3), in the sense that perpendicular to
the valley floor the function increases.

How does the minimum change when perturbing σ? The perturbed minimum σε will
satisfy

∂

∂σ

1
2

pp2
ε(s, σ)

∣∣∣∣
σ=σε(s)

= 0 or gε(s) · g′ε(σε(s)) = 0, (4.13)

otherwise it would not be a local minimum around σε. And we expand the unknown
σε(s) to

σε(s) = σ(s) + εσ1(s) + ε2σ2(s) + · · · . (4.14)

Calculating ∂
∂σ of (4.12) yields:

∂

∂σ

1
2
pp2
ε(s, σ) = −g(s) · g′(σ)− ε [h(s) · g′(σ) + h′(σ) · g(s)

]
(4.15)

+O(ε2).
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Using this expression in (4.13) and expanding around σ(s) yields:

0 =
∂

∂σ

1
2

pp2
ε(s, σ)

∣∣∣∣
σ=σε(s)

(4.16)

= −g(s) ·
[
g′(σ(s)) + (εσ1(s) + ε2σ2(s))g′′(σ(s)) +

1
2
ε2σ2

1(s)g′′′(σ(s))
]

+ε
[−h(s) · (g′(σ(s)) + εσ1(s)g′′(σ(s)))− g(s) · (h′(σ(s)) + εσ1(s)h′′(σ(s)))

]
+O(ε2)

= −g(s) · g′(σ(s))
+ε
[−g(s) · σ1(s)g′′(σ(s))− h(s) · g′(σ(s))− g(s) · h′(σ(s))

]
+O(ε2)

As this equality should hold for all small ε the coefficient of each power of ε should
vanish:

ε0: −g(s) · g′(σ(s)) = 0 which is a property of the g-trefoil.

ε1: −σ1(s)g(s) · g′′(σ(s))− h(s) · g(σ(s))− g(s) · h′(σ(s)) = 0 which yields

σ1(s) = −h(s) · g′(σ(s)) + g(s) · h′(σ(s))
g(s) · g′′(σ(s))

(4.17)

where g(s) · g′′(σ(s)) = −(3/2) cos(2π/5) ≈ 0.46.

Now use the expansion of σε in (4.12):

1
2
pp2
ε(s, σε(s)) = 1− g(s) ·

[
g(σ(s)) + (εσ1(s) + ε2σ2(s) + ε3σ3(s)) g′(σ(s))︸ ︷︷ ︸

⊥g(s)

(4.18)

+(
1
2
ε2σ2

1(s) + ε3σ1(s)σ2(s))g′′(σ(s)) +
1
6
ε3σ3

1(s)g′′′(σ(s))
]

+ε
[
− h(s) · (g(σ(s)) + (εσ1(s) + ε2σ2(s))g′(σ(s)) +

1
2
ε2σ2

1(s)g′′(σ(s)))

−g(s) · (h(σ(s)) + (εσ1(s) + ε2σ2(s))h′(σ(s)) +
1
2
ε2σ2

1(s)h′′(σ(s)))
]

= 1− g(s) · g(σ(s))
−ε [h(s) · g(σ(s)) + g(s) · h(σ(s))]
+O(ε2)

Again, consider the coefficients of the ε-powers:

ε0: 1− g(s) · g(σ(s)) = 2∆2[g]

ε1:

c1(s) := (h(s) · g(σ(s)) + g(s) · h(σ(s))) (4.19)
= (h(s) + h(σ(s))) · (g(s) + g(σ(s)))

Then we have:
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Lemma 4.19. Let gε be a perturbation of g for all sufficiently small ε as defined in
(4.10) and let σε be the corresponding perturbation of the contact function satisfying
(4.13). Then in the expansion (4.18)

1
2

pp2[gε](s, σε(s)) = 2∆2[g]− εc1(s) +O(ε2)

it is necessary that the function c1(s) vanishes identically, otherwise the thickness of the
perturbation decreases to the first order in ε.

Proof. Since the valley of the pp-function around (s, σ) is non-degenerate, σε(s) defined
as the local minima of fs(t) := pt[gε](s, t) close to σ(s), satisfies (4.13). We have

∆[gε] ≤
√

1
4

pp2[gε](s, σε(s)) = ∆[g]− εc1(s)/(4∆[g]) +O(ε2), ∀s (4.20)

as an upper bound for the thickness. If c1 is not sign definite, there exist parameters
s+, s− such that c(s+) > 0 and c(s−) < 0 and by (4.20) thickness decreases to first order
for all sufficiently small ε at one of them. Now assume c1 is definite, for example

c1(s) ≤ 0, ∀s, (4.21)

but c1 does not vanish identically. If the above inequality was valid and strict, then we
could have a first order thickness increasing perturbation for ε > 0.

However, we will show that the existence of a perturbation satisfying (4.21) leads to
a contradiction.

Let s0 be a parameter, such that the first order coefficient

c1(s0) = h(s0) · g(σ(s0)) + g(s0) · h(σ(s0)) < 0 (4.22)

is negative. Define si := σ(si−1) = s0 + 8π
5 i for i = −2,−1, 0, 1, 2 with s−2 = s3.

Note that all g(si) lie on the same great circle and are in contact with each other (see
Lemma 4.17(ii)). Now define

ai := h(si) · g(si+1), bi := h(si+1) · g(si),

and note c1(si) = ai + bi. Furthermore we have αg(si+1) = g(si) + g(si+2) for some
α ∈ R. Multiplying above by h(si+1) and using (4.9) yields:

0 = h(si+1) · g(si) + h(si+1) · g(si+2) = bi + ai+1,

i.e. bi = −ai+1. By (4.21) we derive for i = −2, · · · , 2
c1(si) = ai − ai+1 ≤ 0,

which implies
a0 <

(4.22)
a1 ≤ a2 ≤ · · · ≤ a5 = a0

which is absurd. Therefore c1 must vanish identically.

Remark 4.20. Lemma 4.19 excludes all perturbation except those for which c1(s) van-
ishes identically as possible improvements of gε. For these variations leading to vanishing
c1(s), further necessary conditions could in principle be derived by computing second and
higher variations. Lemma 4.19 is an unusual first order necessary condition because it
is non local in character.
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Chapter 5

Computations and Deductions

5.1 Biarc Curves

Since the work of J. Smutny [S04] the Maddocks group has been computing ideal knot
shapes using the biarc representation of curves. In this section we will sketch how this
is done so the reader may understand what has been computed. For the details we refer
to [S04, CLMS05] and [C10].

We can interpolate a curve γ ∈ C1(S,RN ) in C1-fashion in some parameters t0 <
· · · < tn. We prescribe the interpolation points pi := γ(ti) and tangents ti := γ′(ti)/|γ′(ti)|.
Conversely starting from a set of point tangent pairs (pi, ti) ∈ RN × SN , under certain
conditions, we are able to construct an approximation of γ.

Consider two point-tangent pairs

(p0, t0), (p1, t1) ∈ RN × SN .

When t0, t1 and p1 − p0 point approximately in the same direction, more precisely

〈p1 − p0, t0〉 > 0 and 〈p1 − p0, t1〉 > 0,

we call the point-tangent pairs proper. Note that the sequence of the pairs is crucial
since the curve goes from p0 to p1.

Now let (p0, t0), (p1, t1) be proper. The vectors t0, t1 and (p1 − p0) in general span a
three dimensional space in which the following construction will take place, so we can
safely assume N = 3. The pairs define a sphere ∂Br(x) ⊂ R3 such that p0 and p1 lie on
∂Br(x) and t0, t1 are tangent to it at p0, p1 respectively. If t0, t1 and (p1−p0) are linearly
dependent, we set the sphere’s radius r =∞, and it degenerates to a plane. T.J. Sharock
showed [Sh87] that there exists a family of pairs (aλ, bλ) ∈ C∞([0, 1],R3)×C∞([0, 1],R3)
(with λ ∈ (0, 1)) of circular arcs1 that lie on ∂Br(x) joining the pair (p0, t0), (p1, t1) in
C1-fashion, i.e.

p0 = aλ(0), t0 = a′λ(0)/|a′λ(0)|,
aλ(1) = bλ(0), a′λ(1)/|a′λ(1)| = b′λ(0)/|b′λ(0)|,

p1 = bλ(1) and t1 = b′λ(1)/|b′λ(1)|.
1 If t0, t1 and (p1 − p0) are collinear, the arcs degenerate to straight lines.
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Figure 5.1: Proper point tangent data (p0, t0), (p1, t1) interpolated by biarcs.

We call such a pair of arcs (aλ, bλ) a biarc (see Figure 5.1). The point m := aλ(1) = bλ(0)
where both arcs meet is called the matching point. The parameter λ ∈ (0, 1) controls
the position of the matching point m by the ratio of the distances |m−p0| and |m−p1|.
Therefore we call λ the matching rule. For our purpose we chose a matching rule
λ = 1/2 such that |m − p0| = |m − p1|. For fixed λ a proper point-tangent data pair
defines a unique (arc-length parametrised) biarc, hence we call a proper point-tangent
data pair also a proper biarc. One can prove [S04, Theorem 6.13] that a C1,1 curve can
be approximated in C1 by an interpolating biarc curve with enough point-tangent pairs
which justifies our use of them.

Instead of interpolating a curve, we can start with a sequence of n point-tangent
(pi, ti) pairs such that (pi, ti), (pi+1, ti+1) and (pn, tn), (p0, t0) are proper and they define
an arc-length parametrised biarc curve.

Also note that the three-dimensional affine subspace spanned by t0, t1 and (p1 − p0)
going through p0 intersects S3 in a two-sphere. Since the points p0, p1 are on that two-
sphere and t0, t1 are tangent as well, the above ∂Br(x) is a subset of S3. Consequently
the biarc (aλ, bλ) is contained in S3. Thus point-tanget data on S3 yields biarc curves
on S3, making it easy to model curves on S3.

5.2 Fourier Representation of Knots

In the previous section we saw that we can represent curves with point-tangent data.
This has the advantage that an efficient numerical library exists to deal with such curves
[C10]. In particular we can easily manipulate such a curve, compute its arc-length and
thickness ∆. On the other hand this representation has some drawbacks. It is difficult
to take advantage of a presumed symmetry of the curve, and while applying numerical
algorithms such as gradient flow or simulated annealing it tended to non-proper point
tangent pairs and the computation got stuck. To tackle those issues we reintroduce the
Fourier representation of curves into ideal knot shapes (it was first introduced in [K98];
see also [T98]).

Definition 5.1 (Fourier knot). Let C be a finite sequence of pairs of R3-vectors:

C = {(ai, bi)}i=1,··· ,k ai, bi ∈ R3.
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We use such a sequence as Fourier coefficients and define

γ(t) :=
k∑
i=1

(ai cos(fit) + bi sin(fit)) , t ∈ S,

as a curve in C∞(S,R3) with frequencies fi := 2πi. If it is injective, we call γ a Fourier
knot.

Remark 5.2. Note that Fourier knots lack a constant term, since we are not interested
in translations of the curve.

The use of a Fourier representation in pursuit of ideal knots is justified by the
following lemma.

Lemma 5.3 (Approximation with Fourier knots). Let γ ∈ C1,1(S) be an ideal shape.
Then for every ε > 0 there exist a finite set of coefficients {(ai, bi)}i such that the Fourier
knot

γε(t) :=
∑
i

(ai cos(fit) + bi sin(fit))

satisfies
‖γ − γε‖C1(S) < ε and ∆[γ]− ε < ∆[γε].

Proof. By Corollary 3.12 there exists a curve γ∞,ε ∈ C∞(S,R3) such that

‖γ − γ∞,ε‖C1(S,R3) < ε/2 and ∆[γ]− ε/2 < ∆[γ∞,ε].

By standard Fourier theory there exists a sequence {γ̃i}i of Fourier curves – each repre-
sented by finite coefficients – that approximate γ∞,ε in a C2-fashion. This approximation
satisfies Lemma 2.33 and for some large enough index i∗ we have

‖γ∞,ε − γ̃i∗‖C1,1(S) < ε/2, ∆[γ∞,ε]− ε/2 < ∆[γ̃i∗ ].

Now γε := γ̃i∗ is the sought Fourier knot. Ideality of γ and C1-convergence imply that
indeed L[γε]

∆[γε]
→ L[γ]

∆[γ] for ε→ 0.

The use of the Fourier representation in simulated annealing to approach ideal shapes
has several advantages over the direct use of the biarc point data pairs used previously
[S04, CLMS05]:

(i) They make it easy to inherently model symmetry (see Section 5.4) and by that
improve computation speed.

(ii) Any sequence of coefficients yield a valid Fourier knot while point biarc data needs
to be proper which is sometimes difficult to ensure.

(iii) It is trivial to improve the approximation by adding further coefficient pairs.

(iv) Fourier knots are C∞ approximation of the ideal shape, so higher derivatives can
be computed (even though the ideal shape might not be as smooth).

The main disadvantage is, that no computer-code exists to evaluate the thickness of
Fourier knots. We work around this problem, by interpolating the Fourier knot with a
sufficiently fine biarc knot and evaluating thickness on the latter. There is also no easy
way to refine a shape locally. If further coefficients are added then usually all coefficients
have to change for a better approximation while in the point tangent pair representation
only closeby points are involved.
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5.3 Symmetry of Curves

This section will give a precise definition for what we mean when we say a curve γ has
a certain symmetry.

Definition 5.4 (G-Symmetry). Let γ ∈ C0(S,R3) be a curve and G ⊂ Aut(C0(S,R3))
a group acting on C0(S,R3).2 We call γ G-symmetric iff

g.γ = γ ∀g ∈ G.

If a curve γ is G-symmetric then we call G a symmetry-group of γ.

If G is maximal in some respect, we may call it ‘the’ symmetry-group of γ. Just
taking the maximal subgroup G of Aut(C0(S,R3)) such that γ is G symmetric is not
what we want since it is too large. For example it would include all H defined for each
homeomorphism h : R3 −→ R3 with h ◦ γ = γ as H[α] := h ◦ α for α ∈ C0(S,R3).

Definition 5.5 (Symmetrised curve). Let γ ∈ C0(S,R3) be a curve and G ⊂ Aut(C0(S,R3))
a finite group. Then

γG :=

∑
g∈G g.γ
|G|

is the G-symmetrisation of γ.

Obviously γG is G-symmetric.

Definition 5.6 (Group of parameter shifts and reflections). For x ∈ R we define the
parameter shift Sx : C0(S,R3) −→ C0(S,R3) by x of a curve γ as

Sx[γ](t) := γ(t+ x)

and the parameter reflection Rx : C0(S,R3) −→ C0(S,R3) around x as

Rx[γ](t) := γ(2x− t).

Shifts and reflections form a group.

Note that a symmetry-group of a curve is usually not just a subgroup of the orthog-
onal group O(3), but a subgroup of the product H × P of a subgroup H ⊂ O(3) and a
subgroup P of parameter shifts and reflections.

Example 5.7. Consider an egg-shaped curve γ as in Figure 5.2. The point-set γ(S)
is invariant under mirroring along the dashed line m. But the curve is not, because
γ(0) 6= m.γ(0). Chose a t∗ such that γ(t∗) = m.γ(t∗) and define G := {id,m ◦Rt∗} then
γ will be G-symmetric.

2 Here Aut(C0(S,R3)) is the group of automorphisms of C0(S,R3), i.e. all functors F that map
γ ∈ C0(S,R3) one-to-one to F [γ] ∈ C0(S,R3). [A91]
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γ(0)

m.γ(0)

mm

γ(t∗) m.γ(t∗)

Figure 5.2: The symmetry-group of a curve must take not only the shape into ac-
count, but also the parametrisation: The above egg-shaped curve is mirror symmetric
to the dashed line as a point-set, but applying the reflection m does not yield the same
parametrisation.

5.4 Symmetry of Fourier Knots in R3

We will apply the previous section to Fourier knots and determine patterns of the Fourier
coefficients representing knots with certain symmetries. We first fix our notation for
generators of O(3):

Definition 5.8 (Rotation and Reflection Matrices). Let v ∈ R3, ||v|| = 1. We call
Mv(w) := w− 2〈v, w〉v a reflection matrix. Mv mirrors on the hyperplane orthogonal to
v. We call

Dv,α :=
(

cosα + v21 (1− cosα) v1v2 (1− cosα)− v3 sinα v1v3 (1− cosα) + v2 sinα

v2v1 (1− cosα) + v3 sinα cosα + v22 (1− cosα) v2v3 (1− cosα)− v1 sinα

v3v1 (1− cosα)− v2 sinα v3v2 (1− cosα) + v1 sinα cosα + v23 (1− cosα)

)
a rotation around v by α ∈ R.

Next we describe the assumed symmetries of some ideal shapes (which have been
conjectured since early numeric simulations).

Conjecture 5.9 (Assumed symmetries of ideal 31, 41 and 51 knots.). After a reparametri-
sation, a translation and a rotation the following symmetry-groups seem plausible from
numerical data (see Figure 5.3):

• Trefoil3 31:

G31 :=
〈
D(0 0 1)t,2/3π ◦ S1/3, D(1 0 0)t,π ◦R0

〉
= {(D(0 0 1)t,2/3π ◦ S1/3)i ◦ (D(1 0 0)t,π ◦R0)j : i = 0, 1, 2, j = 0, 1};

|G31 | = 6.

• 41-knot:

G41 :=
〈
D(0 1 0)t,π ◦ S1/2,M(0 1 0)t ◦D(0 1 0)t,π/2 ◦ S1/4

〉
= {(D(0 1 0)t,π ◦ S1/2)i ◦ (M(0 1 0)t ◦D(0 1 0)t,π/2 ◦ S1/4)j : i, j = 0, 1};

|G41 | = 4.
3The group G31 is isomorphic to the symmetric group of degree 3. This becomes evident observing

the action on the parameter set {s0, s3, s3} in Figure 5.12 on page 107.
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• 51-knot:

G51 :=
〈
D(0 1 0)t,π ◦R0

〉
= {(D(0 1 0)t,π ◦R0)j : j = 0, 1};

|G51 | = 2.

Next we need to determine how the group elements described so far act on the
Fourier coefficients.

Lemma 5.10 (Actions on Fourier knots). Let γ(t) =
∑n

i (ai cos(fit) + bi sin(fit)) be a
Fourier knot with ai, bi, āi, b̄i ∈ R3 for i = 1, · · · , n.

• Let M ∈ O(3) be an orthogonal matrix. Then

(M.γ)(t) =
∑
i

(
āi cos(fit) + b̄i sin(fit)

)
with

āi := Mai, b̄i := Mbi,

or (
āi
b̄i

)
=
(
M 0
0 M

)(
ai
bi

)
• Let Sx be a parameter shift by some x ∈ R. Then

(Sx.γ)(t) =
∑
i

(
āi cos(fit) + b̄i sin(fit)

)
with

āi := cos(fix)ai + sin(fix)bi, b̄i := − sin(fix)ai + cos(fix)bi,

or (
āi
b̄i

)
=
(
cos(fix)I sin(fix)I
−sin(fix)I cos(fix)I

)(
ai
bi

)
• Let Rx be a parameter reflection around x ∈ R. Then

(Rx.γ)(t) =
∑
i

(
āi cos(fit) + b̄i sin(fit)

)
with

āi := cos(2fix)ai + sin(2fix)bi, b̄i := sin(2fix)ai − cos(2fix)bi,

or (
āi
b̄i

)
=
(
cos(2fix)I sin(2fix)I
sin(2fix)I −cos(2fix)I

)(
ai
bi

)

Now we can deduce patterns of the Fourier coefficients for curves with these sym-
metries.
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31

41 51

Figure 5.3: Presumed symmetries of the ideal 31, 41 and 51 knots. The ideal trefoil 31

seems to have a 120 degree rotational symmetry around the red axis with the prism
and three 180 degree symmetries around the blue axes with the ellipsoids. The ideal 41

knot seems to have a 180 degree symmetry around the red axis and a 90 degree rotation
around the same axis after a reflection on the grey plane. The ideal 51 seems to be
symmetric under 180 degree rotations around the red axis. See Conjecture 5.9.
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Lemma 5.11 (Fourier coefficients of symmetric 31, 41 and 51). Assume that Conjecture
5.9 is true. Then the Fourier-coefficients must fulfil the following identities:

• Trefoil: For i ∈ N:

a3i+1,1 = −b3i+1,2 ∈ R , a3i+1,2 = a3i+1,3 = b3i+1,1 = b3i+1,3 = 0
a3i+2,1 = b3i+2,2 ∈ R , a3i+2,2 = a3i+2,3 = b3i+2,1 = b3i+2,3 = 0

b3i+3,3 ∈ R , a3i+3,1 = a3i+3,2 = a3i+3,3 = b3i+3,1 = b3i+3,2 = 0

• 41: For i ∈ N:

a4i+1,1 = b4i+1,3, a4i+1,3 = −b4i+1,1 ∈ R , a4i+1,2 = b4i+1,2 = 0
a4i+2,2, b4i+2,2 ∈ R , a4i+2,1 = a4i+2,3 = b4i+2,1 = b4i+2,3 = 0

a4i+3,1 = −b4i+3,3, a4i+3,3 = b4i+3,1 ∈ R , a4i+3,2 = b4i+3,2 = 0
a4i+4 = b4i+4 = 0

• 51: For i ∈ N:

ai,1 = ai,3 = bi,2 = 0
ai,2, bi,1, bi,3 ∈ R

Conversely if the coefficients fulfil the identities, the curve has the corresponding sym-
metry.

Proof. Note that two Fourier knots describe the same curve iff all coefficients coincide,
since sin(fit) and cos(fit) form an orthogonal basis. Furthermore, a curve γ is G-
symmetric iff γ = γG.

• Trefoil: Let γ be a G31-symmetric curve. By Lemma 5.10 there exists for each g ∈
G31 and each frequency fi a 6-dimensional matrix M i

g that acts on the coefficient

vector such that M i
g

(
ai
bi

)
is the i-th coefficient vector of g.γ.

Computing

Mi :=

∑
g∈G31

M i
g

|G31 |
yields:

M3i+1 =

 1/2 0 0 0 −1/2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1/2 0 0 0 1/2 0

0 0 0 0 0 0



M3i+2 =

1/2 0 0 0 1/2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1/2 0 0 0 1/2 0
0 0 0 0 0 0



M3i+3 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


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Note that Mi

(
ai
bi

)
is the i-th coefficient vector of γG31

and by the above reasoning

we have (
ai
bi

)
= Mi

(
ai
bi

)
which yields the desired relations.

• 41 : For this knot the matrices are

M4i+1 =

1/2 0 0 0 0 1/2
0 0 0 0 0 0
0 0 1/2 −1/2 0 0
0 0 −1/2 1/2 0 0
0 0 0 0 0 0

1/2 0 0 0 0 1/2



M4i+2 =

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0



M4i+3 =

 1/2 0 0 0 0 −1/2
0 0 0 0 0 0
0 0 1/2 1/2 0 0
0 0 1/2 1/2 0 0
0 0 0 0 0 0
−1/2 0 0 0 0 1/2



M4i+4 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


and we can deduce the relations.

• 51 : Similarly we compute

Mi :=

∑
g∈G51

M i
g

|G51 |
and obtain

Mi =

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1


which immediately implies the relations.

5.5 Knot Computations

In this section, we want to present our numeric results. All numbers have been com-
puted with libbiarc4. For optimising the trefoil 31 in R3 we used simulated annealing
[KGV83] of Fourier coefficients enforcing the symmetry as in Lemma 5.11. The energy
we are minimising in R3 is ropelength R[·] (see Definition 2.28). For evaluating the
energy we interpolated the Fourier knot with a biarc curve, resolving the high-curvature
regions much more finely than the outer loops of the trefoil. Annealing the Fourier

4libbiarc version 96c4cef03910, see [C10].
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coefficients with symmetry enforced turned out to be much faster than annealing the
point-tangent pairs as it was done in [S04, CLMS05] with localized moves. In less than
a week of computations starting from an arbitrary trefoil we reached a better thickness
than Laurie and Smutny after month long computations. There are two reasons for
this performance boost. First and foremost by enforcing the symmetry of the trefoil as
in Lemma 5.11 we reduce the degrees of freedom to one sixth of the original number.
Second, simulated annealing on Fourier coefficients can be regarded as non-local coordi-
nated moves on biarcs while [S04, CLMS05] only considered local moves. Nevertheless
annealing remains a very slow algorithm compared to the piecewise linear simulations
of SONO [P98] and RidgeRunner [CPR05] in R3. But adapting these algorithms to find
maximisers of thickness in S3 would at least require some work.

For shapes in S3 we optimise their Fourier coefficients as R3 knots then interpolate
with biarcs in R3 and finally project those point-tangent pairs to S3 by the stereographic
projection from Definition 2.21 to compute the energy of the biarc-curve in S3. Here
the energy is 1/∆[·], since we want to maximise thickness in S3. The advantage of this
approach is that we can use the Fourier representation and thus do not get stuck in
non-proper configurations. The price we have to pay is that the sampling of the biarc
curve in S3 is non-uniform in a way that we do not control.

It is remarkable that SONO, RidgeRunner and our implementation of Fourier knots
all ultimately rely on interpolation with arc-curves to get true lower bounds. SONO
and RidgeRunner both work on piecewise linear polygonal knots that can be turned
into arc-curves by inscribing small circular arcs which yields a lower bound on thickness
[BPR05]. Arc curves are a natural choice since they are C1,1.

For each biarc curve γ we state the degrees of freedom used for the Fourier coeffi-
cients,5 the number of point-tangent data pairs used to compute the biarc approxima-
tion, and finally the arc-length and thickness of the biarc approximation.6

Next we show a picture of each knot in R3 with the orientation and γ(0) indicated by
an arrow. For this purpose we project the S3 knots to R3 using stereographic projection.
Note that the knot gets distorted and distances in S3 are difficult to estimate from their
R3 projections. Also symmetries may get destroyed. As a small visual help to the reader
we included a transparent sphere of radius 1 that divides S3 in two equal sized balls –
the interior and the exterior of the sphere.

We continue with plots of the point to point distance function (already mentioned
on page 74)

pp[γ](s, t) := |γ(s)− γ(t)| (5.1)

and the ∆/pt and ∆/tt functions from Definition 2.3 and 2.5 respectively. Along the
horizontal from left to right we sample s ∈ [0,L[γ]]. Along the vertical we sample from
top to bottom t ∈ [0,L[γ]]. The biarc-curve γ is parametrised by arc-length. We use
the colour gradient shown in Figure 5.4 from the minimum to the maximum of each
function, except that the rainbow part is shrunk to only 1% of the whole scale. We
chose such an oscillating colour gradient to make the fine details of the surface plots
more visible.

5 A Fourier knot has 3 degrees of freedom for each coefficient ai, bi ∈ R3 of frequency fi, but this
number is reduced when symmetries are enforced.

6 We also included MD5-checksums of the used files. The MD5sums enable the reader to uniquely
link data files to the plotted graphs and avoid confusion with their previous or future versions. Or even
search for the data on the internet.
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Figure 5.4: The colour gradient that was used for the plots in this section. The last
rainbow part is shrunk to only 1% instead of the displayed 8% of the total scale in order
to reveal the fine details.

Further, we plot the curvature of γ as solid line, i.e. ∆/ri where ri is the radius of
arc i and ∆/ρpt. In the same graph we also plot ∆/ρpt as dotted line, usually close to
1. Recall, that ρpt and ri are upper bounds for ∆. And finally we zoom in on ∆/ρpt.

5.5.1 Reading the Plots

While reading this section the reader is advised to consult Section 5.5.2 on page 88
showing the corresponding plots for the trefoil in R3. The pp, pt and tt plots are at
first not so easy to understand. First notice that they are invariant under rigid body
motions, i.e. for any curve γ : S −→ RN and any orthogonal matrix M ∈ O(N) we have

pp[M.γ] = pp[γ], (5.2)
pt[M.γ] = pt[γ], (5.3)
tt[M.γ] = tt[γ]. (5.4)

Apart from these orthogonal transformations the functions are believed but not known
to characterise the curve. Furthermore, pp and tt are symmetric about the diagonal,

pp(s, t) = pp(t, s), tt(s, t) = tt(t, s), ∀s, t ∈ S,

but pt generally is not.
What features can be discovered in those plots? Most beautifully, symmetry groups

manifest themselves in all three plots. Recall from Section 5.3 that a symmetry group
of a curve can usually be factorised into a subgroup of the orthogonal group O(N) and
a group P acting on the parameter. Now let γ be G-symmetric and assume that G can
be factorised, i.e. each g ∈ G can be written as g = m ◦ p with m ∈ O(N) and p acting
only on the parameter. This yields for each g = m ◦ p ∈ G

pp[γ](s, t) = pp[g.γ](s, t) = pp[m.γ](p(s), p(t)) = pp[γ](p(s), p(t)),

and similarly

pt[γ](s, t) = pt[γ](p(s), p(t)) and tt[γ](s, t) = tt[γ](p(s), p(t)).

The plots of the trefoil in Section 5.5.2 show the (enforced) symmetry shifting one third
along the diagonal stemming from the parameter shift S1/3 (see Conjecture 5.9) and the
point symmetry in the points (0, 0), (1/3, 1/3) and (2/3, 2/3) stemming from the param-
eter reflection R0. The careful reader will notice that there is another point symmetry
in (1/6, 1/6), (1/2, 1/2) and (5/6, 5/6). This is due to the fact that the symmetry axis
of the 180 degree rotations intersect the knot a second time (see Figure 5.3) so in the
generator, we may replace R0 by R1/2.
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We are particularly interested in the (absolute) maxima of the 1/pt plots (i.e. the
minima of the pt-function), as they correspond to parameters where the thickness is
attained. The red sinuous line in the 1/pt-plot of the trefoil in R3 is very close to these
local minima. Remember that the rainbow part of the colour-gradient is only 1% of the
total scale such that this area is finely resolved.

Another phenomenon is 1/pt dropping to 0 at isolated points (i.e. pt becomes
infinity). This happens in the blue spots surrounded by green circles e.g. close to the
points (1/6, 1/6) and (1/5, 2/3). Such a hole appears, when the line tangent to the knot
in t intersects the knot another time in s.

Finally there are the three big green-purple squares along the diagonal, that corre-
spond to the almost circular outer loops of the trefoil. Since pt is constant on circles,
circular parts of a curve produce those squares. As a consequence of using biarc-curves,
you would see squares close to the diagonal if you would zoom in enough (see Sec-
tion 5.5.7 for an example).

The same phenomenon is visible in the 1/tt-plots, but otherwise we use them mainly
to see if there is still a lot of noise, since they are most sensitive to that.

5.5.2 31 in R3

The trefoil in R3 was computed using simulated annealing of Fourier coefficients with
the conjectured symmetry enforced. The interpolation with biarcs is non-uniform and
resolves the highly curved parts more finely (see [C10] for details). It looks well con-
verged, as there is only a little noise in the 1/tt-plot. See also Figure 5.6 on page 99 for
a 3D-plot of the pp-function.

The ropelength is slightly worse than the 32.74318 reported in [BPP08]. The cur-
vature looks similar to [BPP08] but it does not touch 1 which is possibly difficult to
achieve with Fourier knots. Although it is quite different from the curvature found in
[S04, CLMS05], which drops to 0 at a few points, and with respect to Example 2.34 we
do not feel safe enough to claim what the curvature of the real ideal trefoil would look
like. The ρpt function is very close to constant, which is necessary for an ideal shape
without straight segments [GM99].

Name k3_1
Degrees of freedom 165
Biarc nodes 333
Arc-length L 1
Thickness ∆ 0.030539753
Ropelength L/∆ 32.744208
MD5sums cf5e2f8550c4c1e91a2fd7f5e9830343 k3_1.3

531492b73b2ec4be2829f6ab2239d4d5 k3_1.pkf
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5.5.3 31 in S3

We tried in various ways to find the maximal thickness trefoil in S3. Local annealing of
point-tangent data pairs of biarcs, annealing Fourier coefficients and annealing Fourier
coefficients with symmetry (of the R3 trefoil) enforced. Each time we ended up close to
the g-trefoil described in Section 4.3, but never beat its thickness. Below is the thickest
trefoil we found by annealing starting from an arbitrary trefoil.

The 1/pp-plot looks well converged, 1/pt and 1/tt show some noise.
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Name k3_1_on_s3_numeric
Degrees of freedom 45
Biarc nodes 300
Arclength L 15.409271
Thickness ∆ 0.58778345
MD5sums 3721b716825117d1f4774c08f4946106 k3.1_on_s3_numeric.3

c3df748259b71b19e8e2c49ee955d70a k3.1_on_s3_numeric.pkf
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Compare this to the generated g-trefoil below. Since the plots are constant on lines
parallel to the diagonal we also look at a vertical cross-section.

Name k3_1_on_s3_generated
Biarc nodes 200
Arclength L 15.390598
Thickness ∆ 0.5877851 ≈ sin π

5
MD5sums a31a98545743150090221d7640ea28dc k3.1_on_s3_generated.pkf
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5.5.4 41 in S3

This simulation is considerably less well-converged. It seems to have similar symmetries
to the R3 ideal 41 knot (see Conjecture 5.9) visible by the 1/4L shift-symmetry along
the diagonal (and the projection to R3). Unlike R3 there may also be a point symmetry
at (1/2L, 1/2L) corresponding to a new 180 degree rotation. The curve’s thickness is
very close to sin(π/6), supporting Conjecture 4.18.

But there could be another explanation for the knot being so ‘ugly’. If the ideal
shape is not unique and the thickness is attained only in a few points (e.g. on a circle
as in Conjecture 4.18) then other parts of the curve with ρpt < ∆ could wander around
freely.

Name k4_1_on_s3
Degrees of freedom 534
Biarc nodes 200
Arclength L 18.234058
Thickness ∆ 0.49999257 ≈ sin π

6
MD5sums 228162264519e0351c6f55713b21274a k4.1_on_s3.coeff

c3ebdf677ba7168a4f90afbfa6f7d5bd k4.1_on_s3.pkf

k4_1_on_s3 pp
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5.5.5 51 in S3

This knot seems to be reasonable converged. During the optimisation no symmetry was
enforced, but the results show, as in R3, a 180 degree rotational symmetry. Accordingly
the plots show a point symmetry to a point close to (1/2L, 1/2L). The point is slightly
shifted since the parametrisation of the curve does not start on the symmetry axis. The
curve’s thickness is close to sin(π/6), again supporting Conjecture 4.18. The ρpt function
is close to ∆ except around 1 which corresponds to the first “knee” in the projection
to R3. Considering that the knot looks well converged it may really not be in contact
around this point. Something similar happened in the tight clasp [Sta03, CFKSW04]
and the argument from [GM99] does not work in S3 since there are no dilations. Also
note that this knot is thicker than the thickest T2,5 Clifford torus knot described in
Remark 4.16 that only has thickness sin π

7 ≈ 0.434.

Name k5_1_on_s3
Degrees of freedom 210
Biarc nodes 300
Arclength L 20.414732
Thickness ∆ 0.49993744 ≈ sin π

6
MD5sums 0050085e41865d57a2408b0a7ed2c113 k5.1_on_s3.coeff

ec2eb6c8c49f83a1199f57ae0fe0ae2b k5.1_on_s3.pkf
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5.5.6 3.1p3.1 in S3

Again this knot is badly converged. Maybe there is a point symmetry. The ρpt function
is comparatively close to ∆.
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Name kp31p31_on_s3
Degrees of freedom 294
Biarc nodes 300
Arclength L 24.04607
Thickness ∆ 0.45782474
MD5sums 8f20ccec30d668e200840473ff2d1721 kp31p31_on_s3.coeff

6f244dd0adce7cec5d011785e0c8cc7a kp31p31_on_s3.pkf

kp31p31_on_s3 pp
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5.5.7 Competitor βτ with α = 0.8 on S2

For completeness and comparison we include a generated βτ from Lemma 3.15 with
α = 0.8, i.e. τ ≈ 0.86.

Name beta_tau_0_8
Biarc nodes 100
Arclength L 6.6343751
Thickness ∆ 0.8618005
MD5sums cdf199e0372f0da2425a6c6bb92a51f1 beta_tau_0_8.pkf
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5.6. AMBIENT ISOTOPY OF THE IDEAL TREFOIL AND CONTACT CURVE

5.6 Ambient Isotopy of the Ideal Trefoil and its Contact
Curve

The goal of this section is to explain why the contact curve of ‘the’ ideal trefoil, i.e. the
set where the tubular neighbourhood touches itself, is also a trefoil.

Recall from Definition 2.15 that we call

c(s, t) := γ(t)− γ(s)

a contact chord of a curve γ if |c(s, t)| = 2∆[γ] and γ(s) − γ(t) is orthogonal to γ. We
then say s and t are (globally) in contact.

For the rest of this section we fix γ := k31 ∈ C1(S,R3) to be ‘the’ ideal trefoil with
constant speed and arc length |γ′| ≡ 1. Numerical approximations of the ideal trefoil γ
suggest [S04, CLMS05, ACPR05] that

Hypothesis 5.12.

(H1) Every parameter r of the trefoil is globally in contact with precisely two distinct
parameters that we denote by σ(r) and τ(r), such that the contact chords c(r, σ(r))
and c(r, τ(r)) are continuous functions in r.

(H2) There is some s ∈ S, such that σ(σ(s)) 6= s,

(H3) The angle between the contact chords ∠ (c(r, σ(r)), c(r, τ(r))) is bounded away from
zero.

Lemma 5.13. Assuming Hypothesis 5.12, the functions σ : S −→ S and τ : S −→ S
defined above are

(a) continuous,

(b) (locally) strictly monotone7,

(c) surjective,

(d) fix-point free,

(e) injective,

(f) orientation preserving.

Therefore σ and τ are homeomorphisms. Furthermore we have

(g) σ(s) 6= σ−1(s) ∀s ∈ S,

(h) τ = σ−1.

Proof. The proofs (a)-(f) are the same for τ and σ.

(a) The curve γ is a homeomorphism on its image and (H1) implies that σ(r) =
γ−1(c(r, σ(r)) + γ(r)) ∈ C0. Similarly for τ .

7We consider σ as a function from [0, 1] to [σ(0), σ(0) + 1].
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(b) If σ was locally constant, this would imply more than two contact chords con-
tradicting (H1). Next we show, that it cannot have a local extremum and must
therefore be strictly monotone.

Assume the contrary. By restriction to a small interval, we may treat σ as a
continuous real function. W.l.o.g. σ has a local maximum in x. Then there exists
an ε ∈ (0, 1/8) and two sequences ai, bi ∈ (x − ε, x + ε), ai < x < bi, such that
σ(ai) = σ(bi) → σ(x) for i → ∞. This implies that the two different contact
chords c(ai, σ(ai), c(bi, σ(bi)) converge to the single c(x, σ(x)) contradicting (H3).

(c) Assuming the contrary implies a local maximum contradicting (b).

(d) A fix-point s contradicts the definition of a contact chord: c(s, σ(s)) = c(s, s) = 0.

(e) With respect to (b), we have to rule out that σ covers S multiple times. But this
would imply a fixed point contradicting (d).

(f) Assume σ was orientation reversing. We show that there exists a fixed point:
Define f(h) := σ(0 + h). Obviously 0 < f(0) by (d). The function f is monotone
decreasing by assumption, while 0+h is increasing. Therefore there exists h∗ with
0 + h∗ = f(h∗) and h∗ is a fix-point of σ contradicting (d).

(g) Define S := {s ∈ S : σ(s) 6= σ−1(s)}. Notice, that S is open and by (H2) non-
empty. Let si ∈ S be some sequence with si → s and consider the contact chords
c(si, σ(si)) and c(si, σ−1(si)). By (H3) we deduce σ(s) 6= σ−1(s), i.e. S is closed
as well and therefore S = S.

(h) At any given s ∈ S consider the three potential contact chords c(s, σ(s)), c(s, τ(s))
and c(s, σ−1(s)), the first two are different by (H1), c(s, σ(s)) = c(s, σ−1(s)) is
impossible by (g). Thus c(s, σ−1(s)) = c(s, τ(s)), which resolves to τ = σ−1.

We may parametrise the union of all contact chords as the contact surface

Σ(s, h) := γ(s) + h · c(s, σ(s)) = γ(s) + h(γ(σ(s))− γ(s)),

for s ∈ S, h ∈ [0, 1]. This defines a ruled surface with boundary γ(S). Furthermore we
define the contact curve

γ1/2(s) := Σ(s, 1/2) =
γ(s) + γ(σ(s))

2
,

where the tubular neighbourhood of γ touches itself.
Here, we have to make a stronger assumption on the smoothness of σ and on the

angles between the tangents along a contact chord (see Figure 5.5) :

Hypothesis 5.14.

(H4) σ ∈ C1(S,S),

(H5) γ′(s) · γ′(σ(s)) ≥ 0 ∀s ∈ S.
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Figure 5.5: The left plot shows the periodic function σ̃(s) for a numeric approximation
of an ideal trefoil. It seems to be a C1-function. On the right we plot the dot product
between the tangents at s and σ̃(s) to verify that it is bounded away from zero.

Figure 5.6: The distance function fs(t) := pp(s, t) for s, t ∈ S. The dashed lines in the
valleys indicate the two local minima, i.e. σ̃(s) and τ̃(s).
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Figure 5.7: Graph of the local minima fs(σ̃(s)) and fs(τ̃(s)) (solid lines at bottom),
which are smaller than the local maximum fs(µ̃(s)) (dashed line) that separates them
in the valley.

At this point we want to look at the numerical ’evidence‘:

Remark 5.15. The curve γ̃ is the approximation of an ideal trefoil from Section 5.5.2.
Since (H1) can only be approximately satisfied, and similar to [CLMS05, S04] we approx-
imate σ by a function σ̃ computed as follows : fix s = 0 and consider fs(t) := pp(s, t) =
|γ̃(s) − γ̃(t)|. Numerics indicate that fs(t) has three local minima, especially fs(s) = 0
(see Figure 5.6). Pick the local minimum of fs(t) closest to 2∆ and set σ̃(s) = t for
the corresponding t value. Sampling s up to L[γ̃] and restricting the minimisation to a
small neighbourhood close to the previously found minimum yields σ̃(s).

If the numerical shape satisfies (H1)-(H5), then σ̃(s) = σ(s). By picking the other
minimum close to 2∆[γ̃] we can extract τ̃ and compare it to σ̃−1 using linear interpo-
lation. They coincide up to an error of 10−3. Further we have that for all s, the local
minima fs(σ̃(s)) and fs(τ̃(s)) in the valley are separated by a local maximum fs(µ̃(s)),
which is always larger by at least 2 · 10−5 than either of the local minima as depicted in
Figure 5.7.

We take this as a hint that (H1)-(H5) are reasonable. In particular for (H1),
c(s, σ̃(s)) deviates from 2∆ by less than 3 · 10−6, the dot product between the contact
chords and the tangents are less than 4 · 10−5. Assumption (H4) and (H5) are suggested
by Figure 5.5.

Fix h ∈ [0, 1] and consider the curve

γh(s) := Σ(s, h).

Lemma 5.16. Assuming Hypothesises 5.12 and 5.14 for h ∈ [0, 1) the curve

γh(s) = γ(s) + h(γ(σ(s))− γ(s))

is

(a) a regular C1-curve,
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1

2 3

Figure 5.8: The trefoil homotopy visualised with the contact curve γ1/2 (1-3), the chords
c(s, σ(s)) (2) and the surface Σ(s, h) (3). Note that the tube radius of the trefoil and
the contact curve is smaller than ∆.

(b) simple.

(c) There exists some constant C <∞ such that ||γh − γh+ε||C1(S,R3) < |ε|C.

Proof. (a) Since γ ∈ C1 and σ ∈ C1 by (H4) its composition γh is also C1. Further
we compute

|γ′h(s)|2 = γ′(s)2︸ ︷︷ ︸
=1

+h γ′(s)γ′(σ(s))︸ ︷︷ ︸
≥0 by (H5)

σ′(s)︸ ︷︷ ︸
≥0

−h γ′(s)2︸ ︷︷ ︸
=1

+h2(γ′(σ(s))σ′(s)− γ′(s))2︸ ︷︷ ︸
≥0

> 0 for h ∈ [0, 1).

(b) We have to distinguish between the two cases h 6= 1/2 and h = 1/2. For the
former, assume that there were distinct s1, s2 ∈ S with Σ(s1, h) = Σ(s2, h), i.e.
γ(s1) + h c(s1, σ(s1)) = γ(s2) + h c(s2, σ(s2)). This would imply that the normal
disks of radius ∆ around γ(s1) and γ(s2) (for h < 1/2) or γ(σ(s1)) and γ(σ(s2)) (for
h > 1/2) would intersect contradicting the assumed thickness by Theorem 2.12.

For the latter, a double point of γ1/2 would imply that the original γ touches a
ball of radius ∆ in four coplanar points from which we infer by Proposition 3.20
that it is a circle contradicting the fact that γ was assumed to be a trefoil.

(c) We compute γh−γh+ε(s) = −ε(γ(σ(s))−γ(s)) and set C := ||γ(σ(s))−γ(s)||C1(S,R3)

which yields the desired inequality.
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We are about to prove that γ and γ1/2 are ambient isotopic. To that end we need a
corollary to Lemma 2.27:

Corollary 5.17. Let H : [0, 1] × S −→ R3 be a homotopy joining two simple, regular
curves γ : S −→ R3 and η : S −→ R3, such that

(a) each fibre H(h, ·) is a simple, regular C1-curve (h ∈ [0, 1]) and

(b) Φ : [0, 1] −→ C1(S1,R3),Φ(h) = H(h, ·) is a continuous map (in the C1(S1,R3)-
topology).

Then each fibre H(h, ·) is ambient isotopic to all other fibres. In particular γ is ambient
isotopic to η, i.e. they have the same knot type.

Proof. For each h ∈ [0, 1] the curve H(h, ·) satisfies the prerequisites of Lemma 2.27,
therefore there exists an open environment Uh ⊂ C1(S1,R3) with H(h, ·) ∈ Uh. Then
Bh := Φ−1(Uh) ⊂ [0, 1] is an open neighbourhood of h. Now choose εh > 0 such that
Ch := (h − εh, h + εh) ∩ [0, 1] ⊂ Bh. Each environment Ch is connected and all curves
Φ(Ch) are ambient isotopic by construction. The sets Ch(h ∈ [0, 1]) form an open cover
of [0, 1]. By compactness a finite subset {Chi}i already covers [0, 1]. Since all curves
Φ(Chi) are ambient isotopic for each i and the sets Chi overlap using the transivity of
ambient isotopy yields that all curves in Φ([0, 1]) are isotopic.

By Lemma 5.16 γh = Σ(h, ·) satisfies the prequisites of 5.17 for h ∈ [0, 1] so we
conclude the section with the following

Proposition 5.18. Assuming Hypotheses 5.12 and 5.14 the curve

γ1/2(s) =
γ(s) + γ(σ(s))

2

has the same knot type as γ.

A similar construction may work for other torus knots8 T2,2n+1 as well since the ones
we computed seem to fulfil Hypothesis 5.12 except for some additional isolated struts in
the contact set (see Figure 5.9).

5.7 Closed Cycles

This section deals only with ‘the’ ideal trefoil k31 . While some ideas may carry over
to 51 and other torus knots the available numerics are not sufficiently converged to be
compelling. Recall from Section 5.6 that numerics suggests that every point on the ideal
trefoil k31 is in contact with two other points (we assume Hypothesis 5.12 to hold for
this section). Is there a finite tuple of points such that each parameter is in contact with
its cyclic predecessor and successor? Inspired by Birkhoff’s Dynamical Systems [B27]
we call a sequence of parameters, that are in contact with each predecessor, a billiard.
If it closes, we call it cycle:

8 A Tp,q torus knot is a knot on the surface of a torus winding p times around the hole of the torus
and q times around the solid part of the torus. The 31 trefoil and 51 are torus knots.
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Figure 5.9: The contact surface and contact chords for the trefoil 31, 51, 71 and 91 (from
upper left to lower right). Note the isolated contact chords for the higher knots.

Definition 5.19 (Cycle). For n ∈ N let b := (t1, · · · , tn) ∈ S×· · ·×S be an n-tuple. We
call b an n-cycle iff σ(ti) = ti+1 for i = 1, · · · , n− 1 and σ(tn) = t1, where σ is defined
as in Hypothesis 5.12. The cycle b is called minimal iff all ti are pairwise distinct.

Each cyclic permutation of a cycle is of course again a cycle. Basing the definition
of cycles on the continuous function σ makes it easier to find them numerically:

Lemma 5.20. The k31 has an n-cycle iff there exists some t ∈ S such that

σn(t) := σ ◦ · · · ◦ σ︸ ︷︷ ︸
n times

(t) = t.

The cycle is then b := (t, σ1(t), · · · , σn−1(t)). 2

All parameters of a minimal n-cycle are pairwise distinct so each minimal n-cycle
corresponds to n points in the set {t ∈ S : σn(t) = t}. Since there are n cyclic permu-
tations of an n-cycle and since minimal n-cycles that are not cyclic permutations must
be point-wise distinct this leads to

Lemma 5.21 (Counting Cycles). Define the set of intersections of σn with the diagonal
I := {t ∈ S : σn(t) = t}. If there is a positive finite number of minimal n-cycles then

#I ≥ (Number of distinct minimal n-cycles) · n
= (Number of minimal n-cycles).

The symmetry conjectured in Section 5.2 easily implies:
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Lemma 5.22 (Symmetry of σ, τ). Assume Conjecture 5.9 about the symmetry of the
constant speed parametrised trefoil k31 : S −→ R3 is true. Then the contact functions
σ, τ : S −→ S have the following properties:

σ(s∗ + t) in S= −τ(s∗ − t) ∀t ∈ S (5.5)

σ(t+ 1/3) in S= σ(t) + 1/3 ∀t ∈ S (5.6)

τ(s∗ + t) in S= −σ(s∗ − t) ∀t ∈ S (5.7)

τ(t+ 1/3) in S= τ(t) + 1/3 ∀t ∈ S (5.8)

where s∗ ∈ S is a parameter such that k31(s∗) is on a 180 degree rotation axis.

In Figure 5.10 we compiled small plots of σn for n = 1, · · · , 34, 144. The σ-function
was computed as in Remark 5.15. For n = 2 the function σ2 comes the first time close
to the diagonal, but it can not touch in less than three points by Lemma 5.22. If it
would touch it had to touch at least 6 times by Lemma 5.21. It does not seem that this
is the case.

By similar arguments, we exclude the possibility of cycles for n = 7, 11, 13, 16, 20,
25, 29 and 34. On the other hand the case n = 9 looks promising (see Figure 5.11). It
seems to touch the diagonal precisely 9 times which suggests the existence of a single
minimal cycle b9 and its cyclic permutations. With our parametrisation the cycle b9
happens to start at 0 and we compute a numerical error of only σ9(0) = 0.0007 ≈ 0.
Consequently the cases n = 18, 27 would also touch the diagonal but the corresponding
cycle would not be minimal. We studied the plots till n = 100 but did not find any
other promising candidates (apart from n = k · 9 for k ∈ N). Keep in mind that the
numerical error increases with n, but even for n = 144 the graphs look reasonable.

We believe that b9 is indeed a cycle (see Figure 5.12):

Conjecture 5.23 (Existence of nine-cycle). Let k31 : S −→ R3 be the ideal trefoil,
parametrised with constant speed such that k31(0) is the outer point of the trefoil on a
symmetry axis. Then b9 = (s0, · · · , s8) with si := σi(0) is a nine-cycle. Numerics suggest
that k31 passes from 0 to 1 through si in the sequence: s0, s7, s5, s3, s1, s8, s6, s4, s2.

For the rest of the chapter we assume the previous conjecture to be true.
Note that b9 partitions the trefoil in 9 parts (see Figure 5.12): Three curves

β1 := k31 |[s0,s7],

β2 := k31 |[s6,s4],

β3 := k31 |[s3,s1],

or βi := k31 |[s6(i−1),s6(i−1)−2] with sk = sk+9,

which are congruent by 120 degree rotations around the z-axis. Three curves

β̃1 := k31 |[s2,s0],

β̃2 := k31 |[s8,s6],

β̃3 := k31 |[s5,s3],

or β̃i := k31 |[s6(i−1)+2,s6(i−1)] with sk = sk+9,
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Figure 5.10: Plots of σn : S −→ S. In plot 09 the function σ9 seems to touch the diagonal
(see also Figure 5.11 for an enlarged plot). Accordingly σi touches the diagonal in plot
i for i ∈ {9, 18, 27, . . . }. Note that in plot 144 the numerical errors have added up so
that σ144 no longer touches the diagonal.

105



CHAPTER 5. COMPUTATIONS AND DEDUCTIONS

09

Figure 5.11: The plot shows σ9 : S −→ S. It seems to touch the the diagonal 9 times
in the points 0, 0.159, 0.175, 0.334 ≈ 1/3, 0.492, 0.508, 0.667 ≈ 2/3, 0.826, 0.841. This
indicates the existence of a nine-cycle b9 = (0, σ1(0), · · · , σ8(0)).
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s0

s3

s4

s6

s5

s7

s8 s1

s2

α1

α2 α3

β1

β2

β3

β̃1

β̃3

β̃2

Figure 5.12: The parameters si := σi(0) of the nine-cycle b9 partition the trefoil in 9
curves: βi and β̃i are all congruent as are αi (i = 1, 2, 3). The contact function σ maps
the parameter interval of each curve bijectively to the parameter interval of another
curve (see Figure 5.13).

which are again congruent by 120 degree rotations and each β̃i is congruent to βi by a
180 degree rotation. And finally three curves

α1 := k31 |[s1,s8],

α2 := k31 |[s7,s5],

α3 := k31 |[s4,s2],

or αi := k31 |[s6(i−1)+1,s6(i−1)−1] with sk = sk+9,

which are congruent by rotations of 120 degrees and self congruent by a rotation of 180
degrees.

Because b9 is a cycle, each piece of the curve gets mapped one-to-one to another
piece of the curve.
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α3

α3

β2
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β̃2

β̃2

α1

α1

β3
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β̃3

β̃3

α2
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β1 β̃1

β1

β̃1

s0

s3

s0

s0 s3 s6 s0

s6

s8
s1

s7

s5

s4

s2

s1 s8 s4 s2s7s5

Figure 5.13: Plotting the σ function with a grid of the partition points si we can read
off which piece of the curve is in contact (in the σ direction) with which other piece.
For example starting at the top with α1 we see that σ maps its parameter-interval to
the parameter-interval of β̃1 on the right, which itself gets mapped from top β̃1 to β3 on
the right and so on (see Lemma 5.24).

Lemma 5.24 (Piece to piece). Assume Hypothesis 5.12 about the nature of the contact
function σ and Conjectures 5.9 about symmetry and 5.23 about the existence of a nine
cycle b9 = (s0, · · · , s8) hold. Then σ maps each parameter interval [si, sj ] to [si+1, sj+1].
In particular: Following the contact in σ direction we get the sequence α1 → β̃1 → β3 →
α3 → β̃3 → β2 → α2 → β̃2 → β1(→ α1). Each piece is in one-to-one contact with the
next in the sequence (see also Figure 5.13).

Proof. By definition si is mapped to si+1 and by Lemma 5.13 σ is continuous, mono-
tone and orientation preserving so the interval [si, sj ] gets mapped to [σ(si), σ(sj)] =
[si+1, sj+1].

Taking a second look at Figure 5.10 it looks like σn is approaching a step function.
What are the accumulation points of the sequence {σi(t)}i as a function of t ∈ S?
Looking at (σi(t), σi+1(t), · · · , σi+8(t)) for arbitrary t ∈ S it seems to converge to b9 up to
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-0.01

0

0.1

0 s6 1
s

σ1 − σ10

σ51 − σ60

Figure 5.14: Since numerical experiments find σi+9 − σi converges pointwise
to 0 for i → ∞ we conjecture that the cycle b9 acts as an attractor, i.e.
(σ9i(s), σ9i+1(s), · · · , σ9i+8(s)) converges to b9 up to a cyclic permutation. Notice that
the convergence is only point wise; with enough samples we would see spikes after each
si as behind s6 above.

a cyclic permutation for i large enough. This would imply that b9 are the accumulation-
points of the above sequence. Figure 5.14 shows some numeric values of σi+9−σi which
seems to converge pointwise to 0 for i→∞. The cycle b9 seems to attract any infinite
sequence.9 We conclude the paragraph with the

Conjecture 5.25 (Attractor). For any t ∈ S and fixed k ∈ {0, · · · , 9} the 9-tuple
(σi(t), σi+1(t), · · · , σi+8(t)) converges to a cyclic permutation of b9 for j → ∞ with
i = 9j + k.

9We would like to thank Eugene Starostin for encouraging us to take a closer look at this issue.
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Chapter 6

Conclusion and Discussion

Chapter 2 introduced necessary background material for the thesis, along with two new
observations. First, we described how thickness in RN induces thickness in SN , and
how it is related to the normal radius of injectivity. Second, two examples of curves
converging in C1 and in thickness, but not in C1,1, were introduced. Consequently care
must be taken when considering curvature graphs of approximations of ideal shapes.

In Chapter 3 we found simple solutions to the packing problem (P) on the sphere
(as stated on page 25) and were even able to count their multiplicity, and to show their
uniqueness, in the sense that there are no others for the respective thicknesses. Since the
two-sphere is only two-dimensional, it is another essentially two-dimensional solution to
an optimisation problem of tubes, similar to the tight clasp or the Borromean rings
[Sta03, CFKSW04]. But unlike the latter, the solutions do not rely on any unproven –
though natural – symmetry assumption. Nevertheless the solution of (P) is incomplete
because explicit solutions are known only for a certain discrete series of thicknesses.
Natural remaining questions for other optimal but non-sphere-filling curves are:

• Is the competitor βτ from Lemma 3.15 really optimal?

• Are all solutions to Problem (P) arc curves, i.e. curves that piecewise consist of
arcs of circles?

• Is there always a discrete number of solutions?

• What are the shapes of optimal solutions whose tubular neighbourhood does not
fill the sphere?

• How are the solutions connected as thickness varies? For example, do they form
continuous families? A complete answer to Problem (P) should include a branch
diagram, which might look like Figure 6.1.

While these questions are for the moment unanswered they appear to be approachable.
In Chapter 4 we gave divers possible notions of ideal knots in S3 and showed their

existence in C1,1. Maximising the thickness of a knot seems to be the most natural
notion. We connected solutions in S3 with the established notion of ideal knots in R3

via the problem of maximising thickness for shorter and shorter prescribed arc-length.
Finally we gave an explicit competitor g for the thickness maximising trefoil in the three-
sphere. Being located on a “flat” Clifford torus, this shape could be again considered as
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Θ2 Θ3 Θ4 Θ5 Θ6

β1,0

β5,1

β6,1

βτ

β3,2 β4,3

β5,4

β5,3

β5,2

β6,5

Θ1

β2,1

β3,1 β4,1

Figure 6.1: A complete solution of Problem (P) should answer how the solutions branch.
For each Θn the number of solutions and their shapes are now known. There are perhaps
branches of solutions linking the known ones for intermediate thicknesses. If βτ from
Lemma 3.15 is indeed optimal, it links the solutions of Θ1 and Θ2. Since the number of
solutions ϕ(n) fluctuates, branches have to both appear, or split, and vanish or merge.

essentially two-dimensional. We showed that g satisfies first order necessary conditions
to be maximal. The rather special geometric properties of particular Clifford torus
trefoil curve make it noteworthy, even if it turns out not to be thickness maximising.
Remaining questions of this chapter are:

• How to prove maximality of g?

• Or, can a better competitor than g be found numerically?

In another direction and assuming that g is indeed the thickness maximising trefoil on
the three-sphere, consider all thickness maximisers γL : S −→ S3 with prescribed length
L[γL] = L for L ∈ (0,L[g]]. This family of curves (assuming a unique solution for each
L) connects g with the ideal trefoil in R3.

• How do the symmetry-groups of γL evolve, starting from the infinite group of g

and ending at the rather small group G31 for the ideal R3 trefoil?

• Is there a closed formula for the family, such that the limit L→ L[g] yields g and
the other end is the long sought ideal trefoil in R3?

In Chapter 5 we reintroduced Fourier knots and demonstrated the advantages of
combining them with a biarc discretisation in simulated annealing. We showed how
to exploit the (assumed) symmetry of knots to reduce the degrees of freedom in the
Fourier representation. Next we examined the computed knot shapes and discussed
various implications. In particular, we found that the thickness maximising 51 knot in
S3 does not fit on a Clifford torus. Concerning the computations in S3 there certainly
remains much room for improvement. For example:
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• How can we apply initially more efficient algorithms like SONO or RidgeRunner
in S3?

• Might there be simple expressions for ideal knots other than 31 in S3? In particu-
lar do other ideal knots orthogonally interesct great circles realizing self distance
2 sin π

n as suggested in Conjecture 4.18 and Sections 5.5.4 and 5.5.5?

This might mean giving up biarcs and going back to piecewise linear line segments (in
R4) connecting points on S3 and later inscribing circular arcs (in S3) with some estimate
that length and thickness only change slightly. [BPR05] might inspire how to do this.

In Section 5.6 we gave an intuitive ‘proof’ that the contact-curve of the ideal trefoil
is a trefoil itself, based on some rather strong hypotheses that appear to be satisfied on
numerical approximations. In Section 5.7 we saw that a closed contact cycle partitions
the ideal trefoil in two basic curves α and β that are in contact with each other. Open
questions in this direction include.

• Are there similar closed cycles in other ideal knots?

• Can the existence of such cycles be ‘proved’ by arguments based on hypotheses
used in Section 5.6?

• Numerics suggest that the junction between α and β curves in the ideal trefoil
is at points where local curvature is active in achieving thickness. Moreover the
Frenet frame appears to be discontinuous at these matching points. Are these
properties in fact true for the ideal trefoil? Are they typical features of other ideal
knot shapes?
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arc curves, 86

biarc, 78
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Clifford torus, 69
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contact chord, 10
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regular, 6
thick, 5
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Fourier knot, 79–86

global radius of curvature, 5
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Hotelling, 34
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knot in R3, 16
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[E98] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19,
American Mathematical Society (1998).

[C10] M. Carlen, Computation and Visualization of Ideal Knot Shapes, PhD thesis no.
4621, EPFL Lausanne (to appear 2010).
http://library.epfl.ch/theses/?nr=4621

[CFKSW04] J. Cantarella, J.H.G. Fu, R.B. Kusner,J.M. Sullivan, N.C. Wrinkle, Criti-
cality for the Gehring link problem, Geom. Topol. 10 (2006), 2055–2116.

117

http://www.arxiv.org/abs/math.DG/0508248
http://library.epfl.ch/theses/?nr=4621


BIBLIOGRAPHY

[CG67] H.S.M. Coxeter, S.L. Greitzer, Geometry Revisited, The Mathematical Associ-
ation of America, Washington (1967).

[CKS02] J. Cantarella, R.B. Kusner, J.M. Sullivan, On the minimum ropelength of
knots and links, Inv. math. 150 (2002), 257–286.

[CMR02] J.A. Calvo, K.C. Millett, E.J. Rawdon (eds.), Physical Knots: Knotting, Link-
ing, and Folding Geometric Objects in R3, Contemporary Mathematics, 304, Amer-
ican Mathematical Society, Providence (2002).

[CMRS05] J.A. Calvo, K.C. Millett, E.J. Rawdon, A. Stasiak (eds.) Physical and Nu-
merical Models in Knot Theory, Ser. on Knots and Everything 36, World Scientific,
Singapore (2005).

[CPR05] J. Cantarella, M. Piatek, E.J. Rawdon, Visualizing the tightening of knots.
In: VIS’05: Proc. of the 16th IEEE Visualization 2005, 575–582, IEEE Computer
Society, Washington DC (2005).

[CLMS05] M. Carlen, B. Laurie, J.H. Maddocks, J. Smutny, Biarcs, global radius of
curvature, and the computation of ideal knot shapes in [CMRS05], 75–108.

[doC76] M.P. Do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall,
New Jersey (1976).

[D02] O.C. Durumeric, Local Structure of Ideal Shapes of Knots, Top. Appl. 154 (2007),
3070–3089.

[Di03] Y. Diao, The lower bounds of the lengths of thick knots, Journal of Knot Theory
and Its Ramifications, Vol. 12, Issue. 1 (2003), 1–16.

[FHW94] M. Freedman, Z.-X. He, Z. Wang, Möbius energies of knots and unknots, Ann.
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