
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. S. Süsstrunk, présidente du jury
Prof. M. Grossglauser , directeur de thèse

Prof. E. M. Belding, rapporteur 
Prof. J.-Y. Le Boudec, rapporteur 

Dr C. Mascolo, rapporteur

Collaborative Routing in Mobile Partitioned Networks

THÈSE NO 4599 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 23 FÉVRIER 2010

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE POUR LES COMMUNICATIONS INFORMATIQUES ET LEURS APPLICATIONS 4

SECTION DES SYSTÈMES DE COMMUNICATION

Suisse
2010

PAR

Natasa SARAFIJANOVIC-DJUKIC





In memory of my dear sister Vasa

i



ii



Acknowledgments

First of all, I would like to thank my advisor, Professor Matthias Grossglauser. I am
grateful to him for all his time he spent guiding and contributing to this work and
for interesting teaching-assistant tasks I did for his courses. In addition, I want to
thank other LCA professors, Jean-Yves Le Boudec, Patrick Thiran, and Jean-Pierre
Hubaux, for their advice and courses. I would also like to thank the members of my
thesis committee, Cecilia Mascolo, Elizabeth Belding, andJean-Yves Le Boudec,
for their time, availability and helpful feedback, and Sabine Süsstrunk for presiding
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Abstract

Embedded wireless networks find a broad spectrum of applications in transporta-
tion, environmental monitoring, logistics, supply chain management, and ”pocket-
switched” communication. The node mobility patterns in these applications tend to
give rise to spatially heterogeneous node distributions, which may cause network
partitions. In this thesis, we consider the problem of routing in mobile networks
under such challenging conditions. More specifically, we endeavor to identify fea-
tures of mobility common to different applications, in order to devise routing meth-
ods that are tailored to exploit these features. We explore two features in particular,
(i) predictability and (ii) stable and heterogeneous spatial node distribution.

A mobility process is predictable if the future location of anode can be well
estimated, given knowledge of its current and past locations and possibly other
statistics. We show how the performance of routing can be improved by explicitly
incorporating mobility prediction. Specifically, we consider the performance of
Last Encounter Routing (LER) under a simple synthetic random waypoint (RWP)
mobility model. We extend the LER algorithm so that it takes into account pre-
dicted node trajectories when making routing decisions, and we show that this
significantly improves its performance.

A mobility process has a stable spatial node distribution if, informally, the
node density remains the same over time, even though individual nodes are not
constrained in space. This is a common feature of many mobility patterns because
the spatial distribution is determined by the natural or constructed environment,
regardless of the behavior of individual nodes. This typically leads to heteroge-
neous connectivity and to network partition, where highly connected clusters are
interspersed with low-connectivity regions. We model sucha situation with a set
of stable concentration points (CPs) characterized by highnode density, and with
a mobility process that describes how nodes move between these islands of con-
nectivity. We study two instances of this model: the G-model, where the CPs and
the flow of nodes are abstracted as a graph, and the H-model, where nodes perform
heterogeneous random walks on the plane.

We exploit the presence of this stable CP topology in order todevelop an effi-
cient routing algorithm under these two mobility models. Our routing algorithm,
Island Hopping (IH), exploits knowledge of the CP topology to make routing deci-
sions. IH achieves a very good delay-throughput trade-off compared with several
other existing routing algorithms, and it scales well with the network size.

v



In many situations, it would be unrealistic to assume that CPs and the flows
of mobile nodes among them are known a-priori. We develop methods, collec-
tively called Collaborative Graph Discovery (COGRAD), that allow the nodes to
discover the CP graph without any explicit signals from the environment (such as
GPS coordinates or fixed beacons). We show that COGRAD can replace an oracle
with knowledge of the CP topology after a sufficient warm-up period, allowing IH
to operate even in scenarios without any cues from the environment.

Keywords

Mobile ad-hoc networks, partitioned networks, routing protocols, mobility model-
ing
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Résuḿe

Il existe une large palette d’applications pour les réseaux sans fil embarqués, no-
tamment dans la surveillance environnementale, la logistique, la gestion des chaı̂nes
d’approvisionnement et les communications pocket switched.

La mobilité des noeuds dans ce type de scénario engendre des distributions
hétérogènes, et peut causer des partitions dans le réseau. Dans cette thèse, nous
nous intéressons au routage dans ces conditions difficiles. Plus précisément, afin
de développer des méthodes de routage adaptées à ces sp´ecificités, nous tentons
d’identifier des spécificités propres à toutes les différentes applications ci-dessus.
Nous étudions deux propriétés plus particulièrement :(i) la prédictibilité et (ii) la
distribution spatiale stable et hétérogène des noeuds.

Un processus de mobilité est prédictible s’il est possible d’estimer une position
future en se basant sur la position actuelle, les positions passées et potentiellement
d’autres statistiques. Nous démontrons que la performance du routage peut être
améliorée en incorporant la prédiction de mobilité. Spécifiquement, nous nous
intéressons à la performance de Last Encounter Routing (LER) sous un modèle de
mobilité random waypoint (RWP) synthétique simple. Nousmodifions LER pour
prendre en compte la prédiction des trajectoires des noeuds et démontrons que cela
améliore considérablement la performance.

De manière informelle, l’on peut décrire un processus de mobilité spatialement
stable comme un processus dont la densité de noeuds reste stable avec le temps,
malgré qu’individuellement les noeuds se déplacent et n’ont pas de contraintes
spatiales. C’est là une spécificité commune à de nombreux types de mobilité, étant
donné que la distribution des noeuds est déterminée par l’environnement et les con-
structions, et non pas par les déplacements individuels. Cela amène typiquement
des distributions hétérogènes et des partitions, où des régions très concentrées et
connectées succèdent à des régions très peu peuplées, avec peu de connectivité.
Nous modélisons cette situation avec un ensemble de pointsde concentration (CP)
caractérisés par une grande densité de noeuds et un processus de mobilité décrivant
les déplacements entre ces ı̂lots de connectivité. Nous ´etudions deux instances de
ce modèle : le modèle G, où les CP et les flux de noeuds sont représentés de
manière abstraite dans un graphe, et le modèle H, où les noeuds effectuent des
marches aléatoires en deux dimensions.

Nous exploitons la présence de ces CP stables afin de développer un algo-
rithme de routage efficace pour les deux modèles de mobilit´e. Notre algorithme de
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routage, Island Hopping (IH), exploite la connaissance de la topologie des CP afin
de prendre des décisions de routage. IH offre un excellent compromis entre le délai
et la bande passante en comparaison d’autres algorithmes deroutage, et s’adapte
bien à de grands réseaux. Dans beaucoup de cas, il ne seraitpas réaliste de faire
l’hypothèse que les CP et les flux de noeuds sont connus à l’avance.

Nous développons des méthodes, regroupées sous l’appellation Collaborative
Graph Discovery (COGRAD) qui permettent aux noeuds de découvrir le graphe
de CP, sans signaux extérieurs (tels des coordonnées GPS ou des émetteurs fixes).
Nous montrons que COGRAD peut remplacer un oracle connaissant les CP après
une période d’échauffement suffisante, permettant ainsià l’algorithme IH de fonc-
tionner indépendamment de tout signal extérieur.

Mots clés

Réseaux mobiles ad-hoc sans fil, réseaux partitionnés, protocoles de routage, modélisation
de la mobilité
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Chapter 1

Introduction

In the 20th century, mankind have witnessed a development ofworld-wide com-
munication networks that connect both people and machines.Today we have ra-
dio, television, fixed wired telephony, mobile wireless telephony, Internet, wireless
LAN. They have become an important part of our everyday lives. Further devel-
opments of the technology (such as increasing processing power, extended battery
life, and miniaturization) have opened great possibilities for a vast array of new
applications. For example, these technological advances make it feasible and af-
fordable to embed wireless communication devices into various other objects. The
added communication and networking capabilities to these objects extend their pur-
pose and their usability. So, the embedded wireless networks have a broad spec-
trum of applications such as transportation, environmental monitoring, wild-life
tracking, logistics, supply-chain management, and “pocket-switched” communica-
tions.

In these applications, contrary to the conventional globalcommunication net-
works that are infrastructure-based, an ad-hoc infrastructureless communication
paradigm is more suitable. In the conventional networks, infrastructure (such as
base stations, access points, switches, routers, etc.) allows devices to communicate
over large distances. Whereas, an ad-hoc network is a self-organized network of
wireless nodes that may be mobile, where every node can be a router that forwards
traffic for other nodes, without (necessarily) using a pre-existing infrastructure. In
the above mentioned applications it is often a local communication between nearby
devices that matters; thus making an ad-hoc paradigm feasible in such applications.
Moreover, a lack of infrastructure allows for relatively low-cost and quick deploy-
ment, as well as more flexibility in communication capabilities.

Although ad-hoc networks have received much attention fromthe research
community recently, the idea of ad-hoc networking is not new. In the 1970s the
U.S. Defense Advanced Research Projects Agency (DARPA), sponsored the PR-
NET (Packet Radio Network) project in 1972 [JT87]. This was followed by the
SURAN (Survivable Adaptive Radio Network) project in the 1980s [SW87]. These
projects dealt with automatic call set-up and maintenance in packet radio networks
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2 CHAPTER 1. INTRODUCTION

with moderate mobility. However, interest in this area grewrapidly in the 1990s
due to the advances in wireless communication technology. Since then, ad-hoc
networks have been extensively studied.

Real-world implementations are mostly in the research phase. Hence, there
are just a few examples in industrial and commercial use. These are mainly in
the settings where nodes are static, such as wireless sensornetworks and wireless
mesh networks. Recently, there have also appeared some practical uses in mobile
settings. One Laptop per Child program [lap00] developed aninexpensive laptop
computer designed to be distributed to children in developing countries as an edu-
cational device. This laptop makes use of an IEEE 802.11s based ad-hoc wireless
mesh networking chip. In September 2007, the Swedish company TerraNet AB
[ter00] presented a mesh network of mobile phones that allowed calls and data to
be routed between participating handsets, without cell sites. Vehicular ad-hoc net-
works (VANETs) [TML08] are one of the most promising applications of mobile
ad-hoc networks, and though not yet in commercial use they are in a very advanced
test-field phase.

One of the key network services that needs to be available to applications is
routing. This service needs to be able to deliver data from a source node to a desti-
nation node, where nodes are identified by their addresses. The design of the rout-
ing service in ad-hoc networks faces challenges not presentin the infrastructure-
based networks. The main challenge is coping with mobility of the nodes. In
this thesis, we consider the problem of routing in ad-hoc networks with realistic
mobility patterns in possible applications.

The design of routing protocols usually relies on a set of assumptions on the
network topology and dynamics. For example, a particular mobility model (ran-
dom waypoint, random walk, etc.) or a class of network topologies is postulated.
If such assumptions are too strong, there is a danger of tailoring the algorithm to
these assumptions, instead of designing a robust algorithmwhich is effective over
a wide range of settings. Therefore, we need to carefully check these assumptions,
and test candidates against different models to assess their robustness. To do this,
we first review the state of the art of both mobility models andrealistic mobility
traces. Then, we review existing routing mechanisms for mobile ad-hoc networks.
Finally, we define our assumptions and modeling of the network topology and dy-
namics, and we desribe our routing methods designed for these assumptions; thus
summarizing contributions of the thesis. We also discuss how our work relates with
the state of the art.

1.1 Models of Mobility and Connectivity

Next, we review the existing models of mobility and network connectivity.
Researchers in ad-hoc networking first used random mobilitymodels, such as

random walk (RW) [CBD02] and random waypoint (RWP) [JM96a].In these mod-
els, nodes move in a simulation area (e.g., a plane or a disk ora torus) identically
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and independently of each other in a random fashion. A node moves all over the
simulation area, and its movement is independent both of thenode’s position and
time. Thus, these models lead to homogenous (or close to homogenous) spatial
distribution in space.

In order to have a more realistic mobility model, the researchers introduced
some diversities in the nodes’ movement. We distinguish diversities through space,
time and nodes.

The space diversity means that a node’s movement depends on its own lo-
cation. So, there are models where nodes move only in constrained areas, such
as roads. They are a city section model [Dav00], Manhattan model, a freeway
model[BSH03], and a graph-based model [THB+02]. In an area graph-based
model [BRS05], besides the constrained areas, nodes also have different speeds
and staying times in different areas. There are also models where a node has pre-
ferred locations that it visits more frequently than others. Examples are a weighted
waypoint model [HMS+05], a community model [LDS03a], and a clustered model
[LYD06]. The work of [JBRAS03] introduces obstacles for thenodes movements.

The time diversity means that a node changes either its mobility model or the
parameters of the model periodically through time. An example is [HSPH07]. Note
that this model captures all three kinds of the aforementioned diversities.

The node diversity means that nodes move differently among each other (dif-
ferent model or parameters), or that a node’s movement depends on other nodes. In
this class of models, we have group models (e.g., [HGPC99, SM01]), and social-
based models (e.g., [MM07]).

All these models, with the appropriate set-up of their parameters, lead to a
heterogenous spatial distribution of nodes. This type of distribution can give rise
to heterogeneous connectivity between nodes, where highlyconnected clusters are
interspersed with low-connectivity regions. This is contrary to the homogenous
distribution where connectivity is evenly distributed through the whole area.

A network being connected or partitioned is an important property of connec-
tivity for routing design. All the mobility models mentioned above could lead to a
partitioned network if the transmission range is small enough. But, different mod-
els lead to different types of partitioned connectivity. The random models lead
to sparsenetworks, whereas these “heterogenous” models often lead to clustered
networks. What distinguishes a clustered network from a sparse network is the
number and size of its (connected) components. Due to this qualitative difference
in component size, in sparse networks it is typically sufficient networks to restrict
communication between nodes to single hops, as this does notsacrifice many re-
lay opportunities. For this reason, many existing routing algorithms for partitioned
networks exploit only one-hop communication. In contrast,in clustered networks,
restricting communication to single hop relaying would be very limiting, given the
larger clusters and the presence of longer paths.

Beside mobility models that describe the connectivity of the nodes indirectly,
there have appeared recently models that define directly theconnectivity of the
nodes through a distribution of inter-contact and contact times for node pairs [CHD+07].
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These models appear to be useful in the context of partitioned networks.
A more detailed survey of mobility models can be found in [CBD02], [FH04]

and [MM09].
So, we see that there are many proposed mobility models. The question is

which one to use. To answer this question we need to know what mobility of
people in reality is like.

1.2 Real Mobility

We survey efforts to collect mobility data in settings of thepossible realistic ap-
plications. We distinguish three types of collected mobility data sets: AP-based
(Access Point based), contact-based, and position-based.

Most of the available data sets are AP-based. These data are collected in wire-
less LANs on university campuses or business premises. There is also one data
set available from a metropolitan wireless network. In these data, the locations of
nodes are shown to the granularity of access points (APs). APs in these networks
are similar to base stations in conventional cellular networks. These data are more
useful for the analysis of the usage of a network than for the analysis of the mo-
bility of users. The reason is that the used devices are laptops or PDAs that are
usually turned on when a node uses the network, otherwise they are turned off.
Hence, these data captures just a small part of real mobility. Also, as mentioned
above the granularity of locations is in scale with the APs.

However, there are some general conclusions about real mobility that the re-
searchers found in these data-sets. First, there exists a node diversity where most of
the nodes do not move much, but some nodes are highly mobile ([TB00],[BC03]).
Second, a space diversity is also present, where users spendmost of their time in
their homelocations ([BC03],[KE05]). Third, a heterogenous spatialdistribution
of users appears in many traces, i.e., there are some APs withon average a larger
number of users than in others APs ([TB02],[SB04]).

Contact-based mobility data sets are those sets that give information for every
node pair if the two nodes are connected ([SCP+04], [CHD+07], [LWM06]). Thus,
there is no space information here. From this information, researchers characterize
mobility through a distribution of contact and intercontact times of nodes’ pairs
(times that two nodes are connected and time between two contacts). These data
are of relatively small scale (20 nodes in [SCP+04] and [LWM06]), and 54 nodes
in [CHD+07]), so we did not find them satisfying enough for our analysis.

Ideal mobility data would be a large-scale position-based data that give us the
geographic coordinates of nodes frequently enough (say about every 10s) [KWSB04].
When we started our investigation and when we looked at realistic mobility, there
was only one position-based data set available. But, this data set consisted of only
two users. From these data we could see an obvious clusteringof the users’ move-
ments in specific locations, hence the space diversity was very prevalent.

Therefore, at the time we started our research there were no good enough mo-
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bility data available through which we could validate mobility models. This is still
a very open research area.

1.3 Routing Mechanisms

Depending on the application, the requirements of routing can be different. Many
applications require a unicast routing service, where a source nodes wants to de-
liver a message to a destination noded. Social applications and content spreading
ones require a broadcast or multicast routing service, where a node wants to deliver
a message to all nodes or to a group of nodes in the network. And, some applica-
tions require a more specific routing service, such as a geocast routing, where a
node wants to deliver a message to nodes located in a specific area.

Furthermore, applications have a different requirements regarding performance
metrics of routing. The most important performance metricsfor the design of any
routing protocol are: delivery rate, delay, and throughput. Delivery rate is the per-
centage of messages delivered to their destinations. Delayis the time from when a
source sends a message until the destination receives it forthe first time. Through-
put represents how much data transfer in total can be sustained by a network.

What is desirable depends on the application, but what is achievable depends on
the environment where a network operates. According to the delay, we distinguish
an instantaneous and delay tolerant routing service. In theinstantaneous service,
we expect that a message is delivered in a relatively short time (of order ofms
or s), whereas in the delay tolerant service, we can tolerate very large delays (of
order of even days). The instantaneous service is possible only in environments
where an assumption about an end-to-end connectivity holds. This assumption
means that between any pair of nodes in the network there is a communication path
(possible multi-hop through other nodes) at all times. Networks can be partitioned
(i.e, the end-to-end connectivity assumption does not hold) either because of a
nodes’ mobility pattern or radio channel conditions. Networks where only delay
tolerant service is possible are often called Delay Tolerant Networks (DTNs).

In this work, we consider the problem of providing an efficient unicast rout-
ing service into realistic challenging environments wherethe assumption about the
end-to-end connectivity may not hold. Therefore, we next review existing mecha-
nisms for the unicast routing in mobile ad-hoc networks. These mechanisms differ
depending on the assumption about the end-to-end connectivity in a network. We
first review routing algorithms for the end-to-end connected networks and then for
the partitioned ones.

1.3.1 Connected Networks

Routing algorithms for connected ad hoc networks can be classified as proactive
(or table driven), reactive (or on-demand), hybrid (or cluster-based), and position-
based (or location-aware) ([BK07], [CDB+07]).
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Proactive algorithms are based on conventional link-stateor distance-vector
routing algorithms. They try to maintain shortest-path routes by using periodically
updated views of the network topology. Two examples are DSDVand OLSR.

DSDV [PB94] is based on the classical Bellman-Ford algorithm. Every node
has a routing table with the “next hop” for every reachable destination and the
minimum distance (number of hops) to the destination. Whenever any change
in the table happens, it is reported to neighboring nodes andthus the tables are
updated.

OLSR [CJ03] is based on the link state routing. Every node maintains infor-
mation about the network topology, which is then used to determine the shortest-
path routes. Each node determines the link costs to its neighbors by broadcasting
“hello” messages periodically. Whenever any change in the costs appears, the node
broadcasts this information to all other nodes.

Reactive algorithms determine routes only when necessary,typically when a
source needs to sends a packet and the source does not know anyroute to the
destination. Two examples are DSR and AODV.

DSR [JM96b] uses a source routing, where a source node includes a route to
be followed by a packet in the packet’s header. The source discovers this route
on-demand when the source does not know it. This is done by broadcasting a route
“request” packet.

AODV [PBRD03] is an on-demand extension of DSDV. Like DSDV, every
node has a routing table with the next hop and the minimum distance to each des-
tination. However, the routes are created on-demand, that is only when there is
no “fresh” entry in the table. AODV determines the freshnessof information by
maintaining the time that an entry was last utilized. An entry in the table is deleted
after a certain threshold of time.

Hybrid algorithms are a combination of the reactive and proactive principles.
For example, ZRP [Haa97] divides the network into zones or clusters of nodes. The
nodes within a zone use a proactive algorithm. Every zone hasa set of peripheral
nodes. When a node send a packet to the destination for which it does not have an
entry in its routing table, it requests the peripheral nodesto reactively discover the
route. More advanced proposals are [KSH07], [WCYZ07].

Division of the network into zones or clusters is called clustering. There are
many proposed algorithms for this problem [CLL04], [CR09].

Position-based algorithms use geographical positions of nodes in the network
to make routing decisions. These positions can be obtained by using GPS receivers.

For example, GPSR [KK00] uses only neighbor locations in forwarding data
packets. In its greedy forwarding scheme a node forwards a packet to a neighbor
that is geographically closest to the destination. This procedure is repeated until
the destination is reached. If the packet ends in a dead-lock, i.e., if all neighbors
are farther from the destination than the node itself, then the node performs another
procedure called a perimeter forwarding.

GPSR and similar algorithms (e.g., [BLBG05], [GS07]) require a location ser-
vice in order to find out a position of the destination. This location service may in-
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cur a large transmission cost. There are different proposals for eliminating the cost
due to the location service , e.g., GLS [LJDC+00], GRSS [Hsi01], LER [GV06]),
where an approximate location service is used.

1.3.2 Partitioned Networks

Routing mechanisms for connected networks described abovecannot work in mo-
bility environments where the assumption about the end-to-end connectivity does
not hold. That is to say, if a destination of a packet is not in the same portion
of a network as the packet’s source then the packet would not be delivered to the
destination but the packet would be dropped. This is becausein the reactive and
proactive algorithms it would not be possible to find a route towards the packet’s
destination. And, in the position-based algorithms the packet would end in a dead-
lock.

A different mechanism, calledstore-carry-forwardor mobility-assisted for-
warding, must be used in such networks. In this mechanism, a node needs to
store and carry a message with itself, until a better opportunity to forward the mes-
sage arises. Thus, nodes use their own mobility to move a message towards the
destination and this could be the only possible way to deliver a message to the
destination. Finding such routes through space and time is obviously a complex
problem in general and depends heavily on the joint statistics of link availability
[JFP04]. The delay incurred may be large and thus in such networks only the delay
tolerant routing service is possible.

One of the simplest possible store-carry-forward mechanisms is adirect for-
warding, where a source forwards a packet only to the packet’s destination. Thus,
the source stores and carries a packet until it meets the destination, and then it
forwards the packet to the destination. This algorithm has the minimum possible
transmission cost, i.e., only one transmission per message. But the delay is large,
and the delivery probability may be low, depending on the mobility pattern.

Another simple mechanism is anepidemicrouting (ER) [VB00]. Here, a source
node gives a copy of a message to every node it meets (that did not already receive
the message). Also, nodes with a copy of the message disseminate the message
further to other nodes they meet. This algorithm has the minimum possible delay
and the maximum possible delivery probability (under the assumption of infinite
buffers), but it incurs a very large transmission overhead (in the network ofn nodes
ER incurres(n − 1) transmissions per message).

There are proposed mechanisms in between these two. They areall heuristic-
based mechanisms that try to achieve a better trade-off between delay and through-
put. They try to limit flooding of ER, but still to have delay close to ER and also a
good delivery probability. Next, we review these mechanisms.

First, we could limit a number of hops a message can traverse [VB00] in ER.
Second, we could add an ack mechanism in ER where a destination sends an ack
when it receives a message. This ack is then broadcasted in order to delete other
copies in the network [VB00], [HABR05]. Third, we could limit the time that a
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message lives (i.e., we could add a time-to-live mechanism)[HABR05].
Fourth, an algorithm Spray and Wait [SPR05] limits a total number of copies

made. Initially, when a message is originated, a numberL of copies are sprayed,
and then each of these copies is further routed only by means of the direct for-
warding. There could be different mechanisms of the initialspraying. The authors
in [SPR05] consider two: a source and a binary spraying. In the source spraying,
a message’s source forwards allL copies by itself to the firstL distinct nodes it
meets. In the binary spraying the source of a message initially starts withL copies
(tokens), and then any node that hasn > 1 copies hands over⌊n/2⌋ to another
node it meets (with no copies) and keeps⌈n/2⌉ for itself. It is shown that this
binary spraying mechanism is the optimal one.

Fifth, there are proposals to make more clever routing decisions based on the
mobility history of nodes. We call these mobility-based approaches. The idea is
to copy a message only to the nodes that are more likely to meetthe destination
in the future or to meet nodes that will meet the destination.This probability is
determined based on a mobility history. In PROPHET [LDS03b], this probability is
calculated based on how recently and how frequently a node meets the destination
or nodes that meet the destination frequently or recently. Whenever two nodes
meet, they exchange and update their delivery predictability, which are then used
to decide whether to exchange messages or not.

Sixth, there aresingle-copyproposals, contrary to the multi-copy ones de-
scribed above. In the single-copy algorithms, a node does not copy a message
to other nodes, rather it forwards a message to a better node.Thus, only one copy
of a message exists at all times. The advantage of forwardingand not copying is a
savings in the buffer space as well as a smaller delay or a larger delivery probability.

Hence, in these single-copy algorithms, when a node with a message meets
another node, then that node decides whether to forward the message or not, by
using a mobility-based approach similarly as in PROPHET. A node is suitable for
forwarding a message if the delay of a message is smaller and/or the delivery prob-
ability is larger if the message is forwarded to that node. There are different pro-
posals of how to make decisions about whether to forward the message or not.

Thus, in Shortest Path Routing [TZZ03] a basis of the decisions is an estimation
of the probability that two nodes will meet. This probability is calculated as a
time that two nodes stay connected dividing by an observing time window, i.e.,
pij = T imeconnection/T imewindow is a probability that nodei meets nodej. In
Practical Routing [JLS07] a basis of the decisions is an estimation of an expected
delay for a message to go from one node to another. The calculated metric is∑n

i=1 d2
i /2t, wheredi is the duration of a disconnected periodi, andt is a total

observed period. Then, in both of these algorithms when two nodes meet they
update these metrics. Moreover, a network topology graph ismaintained. This
graph shows the described metrics between all nodes in the network. Then, the
forwarding decisions are made by finding the shortest path routes in this graph.

In a MobySpace algorithm [LFC07], the idea is that two nodes are more likely
to meet each other if they have similar mobility patterns. Hence, they propose
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to use the formalism of an Euclidean virtual space (called MobySpace) as a tool
to make forwarding decisions. Routing is done by forwardingmessages towards
nodes that are increasingly similar to the mobility patternof the destination. [CM01,
MHM05] Seventh, DTC [CM01] and CAR [MHM05] use amulti-hopmechanism
that differs from all others mentioned. They do not consideronly one-hop neigh-
bors as candidates to forward a message, but also all reachable multi-hop neigh-
bors. Also, they differ in that a node with a message periodically makes routing
decisions at everyrediscoveryinterval, and not upon an encounter of a new one-
hop neighbor as in other algorithms. Beside these differences, they use a similar
mobility-based single-copy approach as others.

DTC proposes to use also some other metrics (the authors callthem utilities)
besides these mobility-based metrics. Thus, DTC uses mobility-based metrics (last
encounter timers, frequencies of encounters and future plans) and other metrics
(a nodes’ power and the rediscovery interval). CAR generalizes this concept of
using utilities by using a general mathematical framework for the evaluation and
prediction of these utilities.

Eight, BUBBLE [HCY08] uses social structures (communities) in human mo-
bility to make routing decisions. In particular, BUBBLE uses heterogeneity in
human interaction, both in terms of hubs (popular individuals) and groups or com-
munities.

Ninth, network coding and erasure coding techniques are also proposed for
routing in DTNs. In both of these works they show that this could improve network
throughput. In network coding [WLB05] intermediate nodes can combine, instead
of simply forwarding, packets received so far, and send themas new packets. In
erasure coding [WJMF05] a message ofk blocks is encoded inton > k blocks
in such a way that ifk or more of then blocks are received, the message can be
successfully decoded. In both ways, network throughput is improved.

In some scenarios of DTNs, important considerations are a limited transfer du-
ration, transfer rate and storage space. As a consequence ofthis, an important
problem is buffer management (i.e., what to do when a buffer is full and a new
message comes and how to order messages to be transferred upon a transfer oppor-
tunity). There are several proposals for the buffer management [DFL01, BBL05,
RHB+07, BLV07, WHAB09], and this is still an active area of research. In the
design of our routing algorithm, we do not explicitly address these limitations and
we assume that transfer duration, transfer rate and storagespace are not scarce re-
sources. Thus, the buffer management is out of the scope of our work. But note
that we do take implicitly these into account, by designing ascheme with small
transmission overhead in total and with a mechanism for discarding unnecessary
copies of messages.
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1.4 Contribution

In this thesis, we endeavor to identify features of mobilitycommon to different
applications, in order to devise routing methods that are tailored to exploit these
features. We explore two features in particular, (i) predictability and (ii) stable and
heterogeneous spatial node distribution.

1.4.1 Exploiting Predictability

A mobility process is predictable if the future location of anode can be well esti-
mated given knowledge of its current and past locations, andpossibly other statis-
tics. We show how the performance of routing can be improved by explicitly in-
corporating mobility prediction. Specifically, we consider the performance of Last
Encounter Routing (LER) under a simple synthetic random waypoint (RWP) mo-
bility model. We extend the LER algorithm so that it takes into account predicted
node trajectories when making routing decisions, and we show that this signifi-
cantly improves its performance.

Last Encounter Routing (LER) [GV03, DFGV03a, DFGV03b] refers to a type
of routing algorithm where the destination of a packet is located without the help
of a location service and without any control traffic to tracktopology changes due
to node mobility. Rather, a packet is routed using only the encounter histories at
nodes it is forwarded through. In its basic form, the encounter history consists of
the time and location when a node was directly connected to another node.

It is clear that the performance of LER algorithms is closelytied to the mobility
pattern of the nodes in the network. To see this, consider an extreme scenario where
there is no dependence between a node’s position at different times, i.e., nodes
“jump around” randomly in the network domain. In this case, history information
is of no use, and any LER algorithm would perform as poorly as an exhaustive
search.

We look at the RWP mobility model in the context of LER for several reasons.
First, the model is well studied and is very prominent in simulation studies of
mobile ad hoc networks. Second, as shown in [GV03], a good performance for the
RWP model is harder to achieve than for another prominent mobility model, the
random walk. Third, in contrast to the random walk, the RWP model is predictable.
This provides us with an opportunity to exploit additional information collected in
an encounter (such as speed, direction, etc.) to improve routing.

We compute optimal predictors for the RWP model under different observa-
tion information by using the minimum mean square error as the criterion. Then,
we incorporate these predictors into GREASE, an instance ofLER algorithms
[GV03], by making prediction of nodes’ locations in the encounter history. We
show through simulations that this GREASE-RWP algorithm achieves a drastically
better performance than the “non-RWP” version reported in [GV03]. Specifically,
the total average route cost is slightly more than twice as many hops as the shortest
path. This is quite remarkable, given that no resources wereinvested to track the
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rapid change in the network topology due to RWP mobility. Moreover, the cost of
GREASE-RWP routes, relative to the shortest path, does not seem to increase as
we scale up the network size.

Predictability is a mobility feature recognized in many realistic scenarios. For
example, the limitation of the speed of nodes makes a mobility process predictable
over at least a short time scale. Another example is that nodes may have some lo-
cations that they visit more often than others, as mentionedin Section 1.2. Hence,
the predictability is exploited by many routing mechanismsdesigned for the par-
titioned networks, as we see in Section 1.3. The novelty of our work is that we
consider the prediction in the RWP model, and how to incorporate this prediction
into LER, both of which have not been previously considered.

1.4.2 Stable and Heterogenous Spatial Node Distribution

The next step we perform in our thesis is to study realistic mobility data-sets in
order to possibly identify other features common in many applications that could
be exploited to help routing. As mentioned in Section 1.2, atthe time we began
this investigation, there was no suitable large-scale mobility data-sets with enough
frequent location updates. Hence, we made a special effort to find such suitable
data-sets. The results of this effort were two distinct large-scale data-sets of taxis
in the city of Warsaw, Poland and in the city of San Francisco,USA 1. The Warsaw
data-set consists of∼ 800 taxis over a three-month period, and the San Francisco
data-set consists of∼ 600 taxis over a month period.

We distinguish the following properties:

• spatial distribution of nodes is heterogenous rather than homogenous

• there exist regions of the dense connectivity, which we callconcentration
points (CPs); these are regions where the node density is much higher than
average, and where nodes have therefore a much better chancethan on aver-
age of being connected to other nodes;

• a network is often partitioned with heterogenous connectivity, where the
highly connected CPs are interspersed with low-connectivity regions;

• spatial node distribution typically remains stable over time; this is because
it is determined by natural or constructed environment, which change over
relatively long time-scale.

Although heterogenous spatial node distribution and existence of CPs has been
observed by others (as mentioned in Section 1.2), their stability over time appears
to be a novel one.

1The credit for the collection as well as data mining of these data-sets goes to Michal
Piorkowski[Pio09]
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Modeling

We model a network that possesses these observed propertieswith a set of stable
concentration points (CPs) characterized by high node density, with a mobility
process that describes how nodes move between these islandsof connectivity. We
study two instances of this model: the G-model and the H-model.

In the G model, we view the network as amobility graphG(V,E), where the
vertex setV represents the CPs, and the edge setE represents flows of mobile
nodes between the CPs. Two nodes can communicate with each other only if they
are at the same vertex; and if a node is at an edge, then it can not communicate with
any other node. This assumption of a “sharp” connectivity helps us to first concen-
trate on an essence of the problem by abstracting away all other complexities of a
real mobility.

In the H-model, contrary to the G-model, nodes move in a geographic space
with two nodes being connected if they are within a certain transmission range.
Thus, the H-model relaxes the sharp connectivity assumption. In the H-model,
every node performs an independent random walk on a plane, with heterogenous
speeds in different areas of the plane. Specifically, in the plane we randomly place
disks that represent CPs. A node moves faster in the area of the disks than outside
of the disks. Because of this difference in the speeds in different regions, the node
density is higher in the CPs than outside of the CPs. The H-model therefore results
in a high connectivity inside the CPs and a low connectivity outside of them.

Compared to the other existing mobility models that could lead to a temporally
stable and spatially heterogenous node density with an appropriate set-up of their
parameters, we find the H-model more interesting for the following reasons. First,
the H-model is parsimonious, requiring only a small number of parameters to con-
trol the macroscopic properties of the model. We avoid over-specialization in the
model design and we propose a generic mobility model, that can be further closely
tuned to a specific real-life mobility scenario. Nevertheless, the model captures
clustering and spatial heterogeneity. It is easier than in other existing models to
tune parameters properly in order to get the desired spatialheterogeneity. More-
over, it is easy to tune the parameters to set-up the desired nodes’ density in a
stationary regime inside and outside of the clusters.

Second, another interesting macroscopic property of the H-model is the dy-
namics of connectivity, i.e., the stability of cluster locations. As we will see later
in our work, for DTN routing protocols, it is not only an instantaneous appearance
of clusters that matters; how these clusters evolve over time is also important. In
reality, cluster formation can often be attributed to features of the natural or con-
structed environment (e.g., railway station, warehouse, parking lot, watering hole).
For DTN routing, this is an important feature that can be exploited for designing
efficient schemes.

Third, although other models rely on similar mobility processes, e.g., random
waypoint or random direction, they assume that each node hasa set of so-called
preferred locations. Such locations are visited by nodes more often than other lo-
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cations. In other words, nodes are not statistically equivalent, and their individual
mobility can be well predicted. This is a strong assumption,with important im-
plications for the design of robust routing protocols. Thisis not the case in the
H mobility model, where nodes move independently followingthe same law. We
also provide evidence that in some realistic scenarios, themobility patterns of dif-
ferent nodes can be almost indistinguishable. This may be problematic for DTN
routing protocols that assume a-priori that the movement patterns of nodes are very
different and predictable.

Forth, there is also one interesting aspect of the H-model that differs from other
models. The H-model captures an interesting relationship between speed and den-
sity. In the model, differences in node density (and hence connectivity) in different
regions can be viewed as a consequence of different average speeds in these re-
gions. We observe such an inverse relationship between speed and density in at
least one realistic mobility scenario, but we suspect that it may be quite universal.

1.4.3 Island Hopping through Stable Concentration Points

We develop a routing algorithm assuming the mobility model described in the pre-
vious subsection. Our Island Hopping (IH) algorithm is a novel approach to routing
for mobile partitioned networks; it explicitly exploits the assumed stable CP topol-
ogy in the nodes’ mobility.

More specifically, nodes make routing decisions for a message using:

• a CP graphĜ(V,E), a node’s representation of the CP topology withV
representing the CPs andE representing possible flow of nodes between the
CPs;

• the nodes’ locations in the CP topology;

• a location of the message’s destination node of the message.

Based on this, nodes decide on a sequence of CPs through whichthe message is
forwarded to its destination, rather than deciding to whichnodes to give a message
as in other compared algorithms.

The key question is how to pass a message from one CP to the nextCP through
nodes whose future movements are random and unpredictable.If the future move-
ments of nodes were known, we could pass the message to a single node that would
move in the right direction, i.e., to a CP closer to the destination inĜ(V,E). How-
ever, given that future movements are unpredictable, our algorithm makes a small
number of copies of a message at each CP, in the hope that at least one copy will
move to the intended next CP and the other copies will be discarded. The process
repeats at the next CP, until the message reaches its destination.

Therefore, we view our algorithm as a spraying of a small number of copies at
CPs along the shortest path in the CP topology graph. In this way our algorithm
achieves a very good delay-throughput trade-off , i.e., it achieves delays of the order
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of much more aggressive flooding-based schemes and requiresa much smaller
number of copies of each message.

We compare the performance of our algorithm through simulations with Direct
Forwarding, ER, PROPHET, SW, and SF. We assume infinite buffers in all algo-
rithms. We see that our protocol achieves a delay of the orderof ER and PROPHET
(which is much less than in the direct forwarding), while itstransmission cost is
much smaller (in some scenarios about ten times less). Compared with SW and SF,
our IH achieves about 35% less delay for the same transmission cost. Moreover,
the scalability with the network size appears to be more favorable for IH than other
compared algorithms. The delivery probability is similar in all algorithms.

Our IH algorithm differs in several aspects from other proposed approaches
of routing in partitioned networks. First, an assumed mobility model is explicitly
different than other models. A distinguishable property ofour model is the cluster-
ing and the stability of cluster locations. In reality, cluster formation can often be
attributed to features of the natural or constructed environment (e.g., railway sta-
tion, warehouse, parking lot, watering hole). For DTN routing, this is an important
feature that can be exploited to design efficient schemes. Although other proposed
models [HMS+05, LDS03a, LYD06, HSPH07] can lead to the clustered networks,
they differ in the following. They assume that each node has aset of so-called
preferred locations. Such locations are visited by a node more often than other lo-
cations. In other words, nodes are not statistically equivalent, and their individual
mobility can be well predicted. This is a strong assumption,with important impli-
cations for the design of robust routing protocols. This is not the case in the G and
H mobility models, where nodes move independently following the same law. This
may be problematic for DTN routing protocols that assume a-priori that the move-
ment patterns of nodes are very different and predictable, e.g., [LDS03b, LFC07].
Furthermore, in the context of DTN routing, the mobility is usually modeled by
considering pairwise contact duration and inter-contact times. In contrast, we ar-
gue that it is also important to consider the collective mobility characteristics and
resulting patterns that may not be captured by pairwise statistics. Second, most
of other routing proposals [VB00, SPR05, LDS03b, TZZ03, JLS07, LFC07], with
the exception of [CM01, MHM05], exploit only the one-hop communication be-
tween directly connected neighboring nodes. Our algorithmexploits in addition
a multi-hop communication through a connected component, both for forward-
ing/copying messages and for exchange of control information. This is important
for learning the collective mobility patterns that are thenexploited to make efficient
routing decisions. In this respect, the closest approach toours is the social-based
routing algorithm BUBBLE [HCY08]. It collectively learns anetwork clustered
structure that arises due to social human interactions. Thedeference is that in our
model there is no preference in meetings between specific nodes, rather all nodes
pairs are statistically the same. Hence, under our model it would be impossible for
BUBBLE to find social communities and to make efficient routing decisions.
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1.4.4 COllaborative GRAph Discovery (COGRAD)

In many applications, it is unrealistic to assume that the graph of CPs and the flows
of mobile nodes between CPs is known a-priori (though this could be the case in
some applications). Instead, we assume that the only information that nodes have
available is the set of other nodes that they can reach (either directly or over mul-
tiple hops), which can be discovered in a straightforward manner (hello messages,
flooding, etc). Therefore, a large part of this thesis is dedicated to devising a dis-
tributed algorithm that allows the nodes to collaboratively discover the CP graph,
in the absence of any signal from the environment, such as GPS coordinates or
fixed beacons. This problem is a novel one, i.e., to the best ofour knowledge
there is nothing similar in the research literature. We calla class of algorithms
for this problem by COllaborative GRAph Discovery (COGRAD). Our COGRAD
algorithm divides the problem into two phases: vertex labeling and edge discovery.

Vertex Labeling. The goal of this phase is to generate a label, i.e., a unique iden-
tifier for each vertex ofV , which will remain stable over time, even though nodes
move in and out of each vertex. Suppose that at a given time thenodes currently
located at the same CP agree on a label for this vertex. Now another nodei arrives
at this vertex. Nodei has not received any explicit clue from the environment thatit
has moved, and the other nodes have not received a clue that they have not moved.
However, nodei’s set of neighbors has changed rather markedly, whereas theother
nodes’ neighbor set has only seen the addition ofi. These nodes can therefore
decide jointly that it is likely that nodei has moved, and the other nodes have not;
nodei therefore accepts the label of this vertex.

Edge Discovery. Once we have associated a label with each CP, a node can dis-
cover the edges of the CP graph as it moves from one CP to the other CP. To ensure
that each node learns the entire graph, even though it may only visit part of the
graph, it is necessary that nodes exchange edges they have discovered. This also
accelerates the learning process of the nodes, and moreoverthis allows for outdated
information (e.g., a label that does not exist any more) to beflushed out.
We first develop a COGRAD algorithm under the G-model. We showthat it suc-
cessfully replaces a COGRAD “oracle” in IH under the G-model. As mentioned
in the previous subsection, the G-model makes the sharp connectivity assumption
(i.e., the nodes at the same vertex are connected to each other, whereas a node at
an edge is not connected to any other node). In addition to this, we make one more
assumption in the design of COGRAD in the G-model. We assume that a node
sees momentarily any change in its neighborhood. This implies that at one time in-
stant only one node can leave or join a vertex. These assumptions make the design
problem of COGRAD easier. Though in many applications unrealistic, they were
helpful to make first steps towards the design of COGRAD undermore realistic
assumptions. Moreover, having a simple COGRAD scheme made it also easier to
focus on the design of the main principles of IH.
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Then, we develop a COGRAD algorithm under the H-model. This model re-
laxes the sharp connectivity assumption, i.e., nodes move in a geographic space
with two nodes connected if they are within a certain distance of each other. We
also relax the assumption about the continuous neighborhood discovery. Instead,
we assume that a node sees changes in its neighborhood periodically every δt,
where this could be implemented simply through physical-layer broadcast or through
flooding algorithms. These relaxed assumptions led us to a different design of the
vertex labeling algorithm, whereas the edge discovery partcan stay the same. Inte-
gration of this COGRAD into the IH algorithm designed for theG-model requires
minor modifications in IH in order for IH to successfully operate under the H-
model.

How successfully the COGRAD algorithm operates, for both the G-model and
the H-model, depends on control parameters of the algorithms. For the G-model we
set-up the parameters by using our knowledge about the model, hence COGRAD
for the G-model is model-dependent. For the H-model, we estimate the param-
eters in order to obtain model-independent COGRAD. Therefore, we design an
adaptive COGRAD algorithm where nodes estimate the necessary parameters by
themselves in a distributed way adaptively over time. We show through simulations
that IH with adaptive COGRAD operates successfully. Although the self-adaptive
COGRAD is designed for the H-model, we believe that it is alsoapplicable in other
mobility models that have the observed property of a stable CP topology.

Through evaluation of the adaptive COGRAD, we find that in some cases it
performs poorly, giving unstable labels. This happens, forexample, when two
CPs are too close to each other and if they become disconnected and reconnected
often. The main reason behind this is that the designed COGRAD algorithms are
component-based, associating a label with a component, i.e., there can be only one
label per a component. Therefore, we design a newsoft labeling algorithm that
allows several labels to coexist in the same component. We show that the soft
labeling algorithm performs in a wider range of the H-model parameters than the
component-based algorithm does. For the purpose of the comparison, we use a
metric that shows how close a labeling algorithm is close to the idealistic one (i.e.,
when each CP has only one unique label). Simulation results show clearly that
the soft labeling approach is a promising one for making labeling more robust to
mobility conditions possible in reality.

1.4.5 Summary of Contributions

The main contributions of this dissertation are:

• An improved LER algorithm under the RWP model: exploiting the pre-
dictability of the model.

• Observations of common properties of realistic mobility processes: tempo-
rally stable and spatially heterogenous node distributionthat leads to the
partitioned connectivity with the stable CP topology.



1.5. DISSERTATION OVERVIEW 17

• Two novel mobility models that possess the above mentioned properties: the
G-model and the H-model.

• Island Hopping (IH): a novel mobility-assisted routing algorithm for net-
works with the observed properties.

• COllaborative GRAph Discovery (COGRAD): a distributed algorithm for
discovering the CP topology.

• Evaluation: We evaluated IH both under an assumption that there is an oracle
that reveals the CP graph to nodes and under our COGRAD algorithm in our
two mobility models. We compared it with several DTN routingalgorithms
and we have shown a very good delay-throughput trade-off comparing to
others.

1.5 Dissertation Overview

This dissertation is organized as follows. In Chapter 2, we show how the perfor-
mance of LER under the RWP model can be improved by explicitlyincorporating
mobility prediction. In Chapter 3, we show how we model realistic mobility with
the G and H mobility models. In Chapters 4 and 5, we design and evaluate our
routing algorithm, Island Hopping, under the simplifying G-model and the more
realistic H-model, respectively. Chapter 6 concludes the dissertation.
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Chapter 2

Last Encounter Routing under
Random Waypoint Mobility

In this chapter we show how the performance of routing in mobile ad hoc networks
can be improved by explicitly incorporating mobility prediction. Specifically, we
consider the performance of Last Encounter Routing (LER) under a simple syn-
thetic random waypoint (RWP) mobility model. We extend the LER algorithm so
that it takes into account predicted node trajectories whenmaking routing deci-
sions, and we show that this significantly improves its performance.

Last Encounter Routing (LER) [GV03, GV06, DFGV03a, DFGV03b] refers to
a type of routing algorithm where the destination of a packetis located without the
help of a location service, and without any control traffic totrack topology changes
due to node mobility. Rather, a packet is routed using only the encounter histories
at nodes it is forwarded through. In its basic form, the encounter history consists
of the time and location when a node was a directly connected neighbor of another
node.

In [GV03], the following model was considered. A set of nodesperform in-
dependent random walks on a square lattice. Two nodes are directly connected
neighbors if they reside at the same lattice point. Every node remembers when
and where it has encountered every other node, in alast encounter table. A very
simple algorithm called EASE was introduced in [GV03] to compute a route from
a source node to a destination node, based only on LE history at every node. It
was shown that the expected total cost of EASE routes is a small multiple of the
expected shortest path length between a random source and destination. In other
words, EASE is a scalable LER algorithm for the random walk mobility model, as
the cost of routes relative to the shortest path does not blowup as the network size
increases.

It is clear that the performance of LER algorithms is closelytied to the mobility
pattern of the nodes in the network. To see this, consider an extreme scenario where
there is no dependence between a node’s position at different times, i.e., nodes
“jump around” randomly in the network domain. In this case, history information
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is of no use, and any LER algorithm would perform as poorly as an exhaustive
search.

An important question, then, is the interplay between the mobility model and
the performance of LER algorithms. A complete answer to thisquestion remains
elusive, but it is possible to develop some intuition about features of the mobil-
ity model that are favorable to LER algorithms. In particular, we argue that the
following three features of a mobility model help LER: locality, frequent intersec-
tions, and homogeneity.Localitymeans that a node’s position at a timet correlates
with its position at a certain time in the future; this ensures that information about
past encounters is actually useful in locating a node.Frequent intersectionsmean
that a node over a given time interval tends to encounter a large number of other
nodes. This ensures that information about that node’s location is refreshed fre-
quently. Homogeneitymeans that the statistical properties of each node mobility
are similar. This ensures that the speed of diffusion of encounter histories due to
movements of other nodes is matched to that of a destination node. In this paper,
all the scenarios we consider are homogeneous.

Based on these three features, we can see that the random walkmobility model
is quite advantageous to LER. First, as a node performs independent steps over
time, the dependence between the current and a future position of the node de-
creases only slowly with time. Specifically, it follows fromthe central limit the-
orem that the difference between the two positionst seconds apart is a random
variable with variance proportional to

√
t. Second, despite the locality, a node en-

counters other nodes frequently. Specifically, it was shownin [GV03] that over a
time interval of lengtht, a node encountersΘ(t/ log t) other nodes. As a result, in
the random walk mobility model, we observe that (i) a node’s past location con-
tains information about its current location over a relaxation time ofΘ(n), where
n is the network size, and (ii) when a node moves by a distanced, it encoun-
ters approximatelyΘ(d2/ log d) other nodes. This means that information about
a destination node’s movement is quite dense around this node, which helps LER
algorithms, and that such an algorithm can rely on fairly oldinformation to locate
a destination.

In this chapter, we consider LER under the random waypoint (RWP) model.
There are several reasons why we are interested in LER for theRWP model. First,
the model is well studied and is very prominent in simulationstudies of mobile ad
hoc networks. Second, it was shown in [GV03] that the LER algorithms EASE
and GREASE did not perform well with this model. Third, giventhe discussion
of helpful features above, the RWP model is much less favorable to LER than the
random walk.

To see this, let us perform a back-of-the-envelope comparison with the random
walk. The random waypoint model is is defined (informally) asfollows. Every
node moves independently of any other node. A node selects a random waypoint
uniformly in the area of the network, and moves towards this waypoint in a straight
line and at constant speed. Once it reaches this waypoint, itselects a new way-
point independently of the previous one, and starts moving towards it (possibly
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after some pause time), and so forth. So, in this model the average transition time
between waypoints isΘ(

√
n), proportional to the diameter of the network. Once a

node has gone through a waypoint, the dependence with its current position drops
very rapidly. A past position of a node is therefore only useful for Θ(

√
n) time.

Furthermore, when a node moves by a distanced, it encounters onlyΘ(d) other
nodes. This means that information about a destination node’s movement is much
less dense around this node, and that an LER algorithm must rely on fairly recent
information to catch up with a destination.

On the upside, the RWP model has a feature that is in our favor:the node
movement is highly predictable over a short time-scale, because a node moves at
constant speed on a straight line between waypoints. This provides us with an op-
portunity to route a packet towards the predicted current position of its destination,
rather than simply towards the location of the encounter with the destination. This
is not possible in the random walk case, where the best predictor for a node’s future
position is simply its current position.

We devise a version of the GREASE algorithm (in [GV03]) that is tuned to the
specific features of the RWP mobility model. GREASE-RWP takes into account
the short relaxation time by reducing the encounter age it searches for initially to
obtain a first estimate of the destination’s location. It then uses mobility prediction
as the packet approaches the destination in order to move towards the destination
in “shortcuts”. We evaluate GREASE-RWP through simulationin networks with
up to1000 nodes, and we find that GREASE-RWP has a significantly better per-
formance than the original GREASE, and seems to scale with network size.

The chapter is structured as follows. In Section 2.1, we formally define the
RWP model and discuss some of its properties that matter in the context of LER.
In Section 2.2, we present a LER algorithm specifically designed for the RWP
model. We present simulation results in Section 2.3. Section 2.4 concludes the
chapter.

2.1 The Random Waypoint Mobility Model

In this section we formally define the RWP model, and discuss the properties that
play an important role in the performance of LER.

Nodes move on a square torus of sidea. The origin is in the center of the square,
and the axes are parallel to the sides of the square. The vector c − b is the vector
on the torus surface such that‖c− b‖ ≡ d(b, c) is the shortest distance between the
pointsb andc. Nodes move independently of each other, so it is enough to define
the movement of one node.

The RWP model, with constant speed and no pause time, in the torus of sidea,
is completely described by:

• the value of the node’s speedv

• the sequence of independently and identically distributed(i.i.d.) random
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variables{Pw}w∈N, uniformly distributed in the torus.

The Pw is thew-th waypoint. If the node moves between thew-th andw + 1-
st waypoints we say that it is on thew-th segment. The distance between these
waypointsLw = d(Pw, Pw+1) is thew-th segment length. The time for the node
to traverse thew-th segment is thew-th segment duration. The time instantSw

when the node is at thew-th waypoint is equal to:

Sw =

w−1∑

j=1

Lj

v
,

whereS1 = 0. The speed vector between thew-th andw +1-st waypoints is equal
to:

Vw = v
Pw+1 − Pw

Lw
.

Therefore, the node’s position at timet can be formally expressed as:

X(t) = Pw(t) + Vw(t)(t − Sw(t)),

wherew(t) is an index such thatt ∈ [Sw(t), Sw(t)+1).
Note that theLws are i.i.d, thus the random process{Sw}w∈N is a renewal

process. This property comes from the fact that torus represents isotropic space
where all points are equivalent.

In the remainder of this section, we assume that timet = 0 is the beginning of
the observation period for the renewal process{Sw}w∈N that has been operating
long enough to be in steady state1. We enumerate the points of the renewal process
as{Sw}w∈Z with the convention thatS0 ≤ 0 < S1.

2.1.1 Relaxation Time

The key property of realistic mobility processes that LER exploits is that the lo-
cation of a node at a timet and a timet + τ are dependent, and that therefore
information collected through an encounter at timet can be useful for a packet
looking for its destination at timet + τ .

More specifically, consider a realistic mobility scenario where nodes have lim-
ited speed. Suppose that a source knows the destination position X(t) and wants
to route a packet to the destination at timet + τ . If τ is relatively small, then the
destination is in the small area aroundX(t). Thus, informationX(t) is useful. If
τ increases, then the area where the destination may be becomes larger and infor-
mationX(t) is less useful. For some largeτ , the destination may be anywhere in
the network area and informationX(t) is useless.

The relaxation timeTr is the minimumτ for whichX(t + τ) does not depend
on X(t) any more (note that as we assume homogeneity, all nodes have the same

1The RWP model with random speed does not possess a steady state in terms of average speed
[YLN03]. Here, this problem does not arise because of constant speed.
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relaxation time). The relaxation time is the maximum time after its observation
that past information about a node’s movement is still of use. It is therefore crucial
to ensure that a LER algorithm does not rely on observations older thanTr, as this
would lead to poor routes.

Let us consider the relaxation time in the RWP model. LetYt = Sw(t)+1 − t
be the time the node travels to the next waypoint. After timeYt + L/v (L denotes
the distribution of the segment lengthsLws) the node will reach the second next
waypoint. Hence,X(t + τ) for τ > Yt + L/v depends only onPws, where
w ≥ w(t) + 2. The X(t) depends only onPw(t) and Pw(t)+1. Therefore, the
positionsX(t) andX(t + τ) are independent forτ > Yt + L/v.

2.1.2 Prediction

In the RWP model, a node moves in long straight lines. This results in fewer en-
counters with other nodes relative to the traveled distance, which is unfavorable to
LER. But, this also implies predictability of a node’s position in the future. Mobil-
ity prediction means prediction of a node’s future positiongiven the node’s current
position and additional observations about the node’s mobility (e.g., the current
speed, direction, . . . ). Our goal is to use prediction of the destination position in
order to decrease the routing cost of LER.

The observations available to a node on its own mobility process depend on
the scenario. At one extreme, a node might be able to determine only some ba-
sic parameters about its instantaneous movement, such as its direction and speed.
This might arise when a node’s movement is subject to external influences, and if
the node lacks the capability to identify waypoints. At the other extreme, a node
might be able to know its precise movements a long time into the future. This
might arise when a node’s movement is predetermined by the node itself (e.g., a
person running errands in a city, or a doctor visiting patients). Obviously, the pre-
dictability improves as the observation set increases. As our focus here is on the
“tough” cases, we only consider observation sets that do notlook beyond the next
waypoint. Specifically, we calculate mobility predictors for the following three
different observation setsθ:

1. the node’s current position and speed vector;

2. the node’s current position, speed vector and previous waypoint;

3. the node’s current position, speed vector and next waypoint.

The optimal mobility predictor is the one that minimizes in some sense the
error between the node’s predicted and true positions. We use the minimum mean
square error criterion.

Definition 2.1 The optimal mobility predictor of the node’s positionX(t + τ),
given the set of observationsθ(t) is the valueX̂(t + τ) that minimize:

E[(X(t + τ) − X̂(t + τ))2 | θ(t)]. (2.1)
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Our predictors are optimal under the following assumptions. First, we assume
that we make the observation at a random timet. Second, we neglect the torus
structure of the simulation area. Instead we consider Euclidian distance by rep-
resenting the torus with a square inR

2 of the side lengtha with the origin is in
the center of the square. The origin is fixed at an arbitrary point of the torus. We
justify this assumption by the fact that our goal is to find local predictors within a
short time-scale (more precisely within one segment length). Hence, the distance
traveled by a node during this short time scale becomes in most cases equal to the
Euclidian distance.

Theorem 2.1 The optimal mobility predictor ofX(t+τ) in the defined RWP model
if we know the following observations:

• the node’s current positionX(t) = x(t)

• the node’s current speed vectorV (t) = v(t)

is given by:

x̂(t + τ) = x(t) +
v(t)

v
(P (Z ≥ vτ)vτ + E[Z1{Z<vτ}]), (2.2)

whereZ is a random variable with the pdf equal to:

fZ(z) =






c(1 − z2π
a2 ) if 0 ≤ z ≤ a

2

c(1 − z2π
a2 + 4z2

a2 arccos a
2z − 2

a

√
z2 − a2

4 ) if a
2 ≤ z ≤ a

√
2

2

0 otherwise

,

(2.3)
wherec = 6(a

√
2 + a ln(1 +

√
2))−1.

Theorem 2.2 The optimal mobility predictor ofX(t+τ) in the defined RWP model
if we know the following observations:

• the node’s current positionX(t) = x(t)

• the node’s current speed vectorV (t) = v(t)

• the node’s previous waypointPw(t) = p

is given by:

x̂(t + τ) = x(t) +
v(t)

v
(P (Z ≥ vτ)vτ + E[Z1{Z<vτ}]), (2.4)

whereZ is a random variable with the pdf equal to:

fZ(z) =
fL(z + l0)

1 − FL(l0)
, (2.5)

wherel0 = d(p, x(t)), andfL(l) andFL(l) are the pdf and the cdf of the segment
length (see Lemma 2.1 in the Appendix).
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Theorem 2.3 The optimal mobility predictor ofX(t+τ) in the defined RWP model
if we know the following observations:

• the node’s current positionX(t) = x(t)

• the node’s current speed vectorV (t) = v(t)

• the node’s next waypointPw(t)+1 = pnext

is given by:

x̂(t + τ) =

{
x(t) + v(t)τ if vτ ≤ d(x(t), pnext)
pnext if vτ > d(x(t), pnext)

. (2.6)

Next, we give main ideas how we calculate these mobility predictors. The
details can be found in the Appendix.

According to the well known result from statistics [GD04], the valueX̂(t + τ)
that minimizes (2.1) is equal to:

X̂(t + τ) = E[X(t + τ) | θ(t)]. (2.7)

Hence, we calculate the conditional expectation of theX(t + τ) given the obser-
vation setθ(t). TheX(t + τ) can be expressed as:

X(t + τ) = X(t) + 1{τ≤Yt}V (t)τ + 1{τ>Yt}(V (t)Yt + △P (τ − Yt)), (2.8)

whereYt = Sw(t)+1 − t is the time until the node hits the next waypoint, and
△P (τ − Yt) is the displacement of the node after reaching the next waypoint until
time t+ τ . Figure 2.1 explains (2.8). Expected value of the△P (τ −Yt) is equal to
zero (Lemma 2.2 in the Appendix). Thus, we need to calculate only the conditional
expectation of theYt given theθ(t). Since we observe the system at a random point
in time, theYt is the residual time of the renewal process{Sw}w∈N. Note that the
segment duration on which the node is at a random timet is not distributed accord-
ing to the distribution of the intervalsSw+1 − Sw. This is because a long segment
is more likely to be ”intercepted” by our observation than a short one [Kle75]. We
use Palm calculus (Chapter 12,[Bou]) to relate these different viewpoints and to
calculate the distribution of the residual time in the concrete case. Since the cal-
culation for Theorem 2.3 is trivial, we give further calculations only for Theorems
2.1 and 2.2 in the Appendix.

We were unable to calculate mobility predictors in Theorems2.1 and 2.2 in a
closed form. Instead, in the simulations we use predictors given in Approximations
1 and 2 in the Appendix.

2.2 A LER Algorithm for the Random Waypoint Model

We first describe GREASE, an existing instance of a LER algorithm presented in
[GV03]. Then we introduce GREASE-RWP, a new LER algorithm that takes into
account the features of the RWP model described in the previous section.
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Figure 2.1: Explanation of (2.8): one possible movement of anode and its positions
at timest andt + τ for different values ofτ .

2.2.1 GREASE

Algorithm 1 shows GREASE. Notation is the following. Nodes are indexed by
1, 2, ..., n wheren is the number of nodes. We focus on a single destination node
with index 1 and assume w.l.g. that a packet is sent to the destination at time
t = 0. TheXi(t) is the position of the nodei at timet. TheTi(t) is the age of last
encounter of the nodei and destination.

Initially, the packet is at its source. Then, a search is performed around the
source to find a LE entry for the packet’s destination that is two times younger
than the source’s LE entry (i.e., an entry of a nodei for which Ti(0) ≤ Ts(0)/2).
The packet is headed towards the entry’s LE locationX1(−Ti(0)). This location
is called an anchor point. When the packet comes to the anchorpoint it performs
another search to find a new anchor point. If the packet encounters a node that
has a more recent estimate of the destination’s location than the anchor point the
packet is currently headed to, then that estimate is assumedto be the new anchor
point. The procedure repeats until the packet finds its destination node. Note that
tt is not prescribed a particular routing algorithm for the packet to get from one
anchor point to the next; any position-based routing algorithm could be used for
this purpose (cf. Section 1.3).

Algorithm 1: GREASE

1 SetT0 := Ts(0), Y0 := Xs(0), k := 0.
2 Repeat
3 Search the nodes aroundYk in order of increasing distance until a nodei

is found such thatTi(0) ≤ Tk/2.
4 LetTk+1 = Ti(0), andYk+1 := X1(−Tk+1) be the new anchor point.
5 While not atYk+1
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6 Route packet: find next hopj towardsYk+1 and forward packet toj.
7 If Tj(0) ≤ Tk+1, thenTk+1 := Tj(0), Yk+1 := X1(−Tk+1).
8 End while
9 k + +.
10 Until Yk = X1(0).

2.2.2 GREASE-RWP

The notation is the same with the following additions. Theθi(t) is the observation
set of the nodei at timet. The optimal mobility predictor of the destination position
at timet is denoted bŷX1(t). Recall thatTr is the relaxation time.

Algorithm 2: GREASE-RWP

1 SetY0 := Xs(0), T0 := E[Tr], k := 0.
2 Repeat
3 Search the nodes aroundYk in the order of the increasing distance until a

nodei is found such thatTi(0) < Tk.

4 Let Tk+1 = Ti(0), andYk+1 := X̂1(0) = f(θ1(−Tk+1)) be the new
anchor point.

5 While not atYk+1

6 Route packet: find next hopj towardsYk+1 and forward packet toj.

7 If Tj(0) < Tk+1, then Tk+1 := Tj(0), Yk+1 := X̂1(0) =
f(θ1(−Tk+1)).

8 End while
9 k++.
10 Until Yk = X1(0).

The main new features in GREASE-RWP in comparison with GREASE [GV03]
are aggressive initial search and prediction.

Aggressive initial search means that a source searches for an encounter with
the destination younger than average relaxation time. As wesaw in Sect. 2.1.1
average relaxation time is of the order of a few segment times. This means that
the packet immediately goes to the few last segments of the destination movement.
Thus the packet avoids the useless walking over the network area.

Prediction means that the packet is routed to the predicted destination posi-
tion rather than to the location of an encounter. It forces the packet to go to the
predicted end of the segments. Thus the packet takes a shortcut between the seg-
ments. Prediction is incorporated into LER as follows. Every node tracks its own
mobility. When two nodes encounter, they exchange some observations about their
own mobility (e.g., their current speed and direction) along with ”hello” messages.
Each node records these observations in its LE table (cf. Fig. 2.2). They are used
to calculate the optimal mobility predictor.
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Figure 2.2: A last encounter tablein every node remembers both the location
and time of the last encounter with every other node in the network and some
observations about every other node’s movement at the time of the last encounter
(in this example, speed vector).

2.3 Simulation results

We have performed extensive simulations to evaluate the efficiency and scalability
of GREASE-RWP. By the term efficiency, we mean how much in average the rout-
ing cost is larger then the shortest route. By the term scalability, we mean how the
efficiency scales with increasing the network size.

Nodes move on a torus of surfacen according to the RWP model. Initially
the nodes are placed uniformly in the torus. We let them to move for a sufficient
warm-up period so that a fair proportion of node pairs have encountered at least
once. Then, we assume that the nodes are frozen for the time ofthe routing of the
packet.

Routing of the packet is performed through the GREASE (Algorithm 1), GREASE-
RWP (Algorithm 2 in this paper), GREASE-M and GREASE-A algorithms. GREASE-
M is GREASE with mobility prediction. We obtain it by changing the step 4 in
GREASE with the step 4 in GREASE-RWP. GREASE-A is GREASE withag-
gressive initial search. We obtain it by changing the step 1 in GREASE with the
step 1 in GREASE-RWP. The Mi (i=1,2,3) denotes respectivelythe predictors from
Theorems 2.1-2.3. If nothing is specified the predictor M2 isused.

At every timet, we assume that connectivity is given by the Delaunay graph
generated by the set of points{Xi(t)}. This is equivalent to generating the Voronoi
tessellation of the set of points{Xi(t)}, such that every nodeXi(t) is the center
of a Voronoi cell, and is connected to the center nodes of its adjacent cells. Each
node updates the entries in its LE table for its directly connected neighbors.

The advantage of this topology over other topologies (e.g.,k nearest neighbors)
is that we are guaranteed that a node always has a neighbor that is closer to the
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destination (except when that destination is already in thefirst node’s Voronoi cell).
Therefore, a packet can always make progress towards its anchor point, and we do
not have to deal with backtracking, avoiding routing loops,etc. This allows us
to focus on the main issue at hand, i.e., the quality of computed routes based on
diffused information about last encounters.

The main metric we evaluate is the relative cost of the routescompared with
the cost of the shortest path route. The cost of a route is the total number of trans-
missions (or hops) necessary to transmit a packet from a source to a destination. It
includes both transmissions of the actual packet from a sender to a receiver node
to make progress towards its destination, as well as transmissions necessary for a
“search” packet to collect information from surrounding nodes to make the next
routing decision. This metric therefore captures the relative penalty incurred for
not having the exact position of the destination available.

Figure 2.3 shows an example of a route computed by GREASE and GREASE-
RWP for the same source-destination pair. We see that GREASE-RWP achieves
the shorter route than GREASE by increasing the cost of the initial search and by
taking shortcuts with the help of mobility prediction.

In Fig. 2.4(a) and 2.4(b) we give the relative cost conditional on the distance
between the source and destination. This provides an indication whether the rela-
tive quality of the routes increases or decreases as the routes get longer.

Figure 2.4(a) shows the benefit of mobility prediction if different observation
sets are used. If more information about node mobility is available, improvement
of GREASE is better.

Figure 2.4(b) shows that the penalty of the GREASE-RWP algorithm because
of the uncertainty of the destination location is only 2.5 times greater than the
shortest route (i.e., the ideal case where the destination location is known). This is
more than 35 % better than GREASE. Also, we see that aggressive initial search
or mobility prediction alone significantly increase the efficiency.

In Fig. 2.5 we give dependence of the average relative cost ofroutes on the
number of nodesn. This provides an indication whether the relative cost of the
routes is scalable with the network size.

2.4 Conclusion

In this chapter, we have shown that efficient and scalable last encounter routing
under random waypoint mobility is possible. We have achieved this by devising a
new instance of the GREASE algorithm, which differs from theversion reported
in [GV03] in two respects. First, we have exploited the inherent predictability of
nodal movement in the RWP model over short time-scales. Whena packet looking
for its destination picks up a more recent encounter, it can compute a predicted
location for the destination that is better on average than the location of that en-
counter itself. Second, we account for the fact that the RWP model has a very short
relaxation time, by forcing a low target age for the initial search. Thus the packet
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Figure 2.3: A sample route computed by GREASE and GREASE-RWPfor the
same source-destination pair.

2 4 6 8 10 12 14
2.5

3

3.5

4

4.5

5
GREASE with integrated mobility prediction

d

E
[c

os
t|d

is
ta

nc
e 

<
=

d]

GREASE
GREASE−M1
GREASE−M2
GREASE−M3

(a)

2 4 6 8 10 12 14
1.5

2

2.5

3

3.5

4

4.5
Empirical conditional mean of cost, conditional on |X

s
−X

d
| ≤ d

E
[c

os
t|d

is
ta

nc
e<

=
d]

d

GREASE
GREASE−M
GREASE−A
GREASE−RWP

(b)

Figure 2.4: a) Impact of the different observation sets in mobility prediction on the
efficiency of GREASE. b) Efficiency of GREASE, GREASE-M (mobility predic-
tion), GREASE-A (aggressive initial search) and GREASE-RWP (mobility predic-
tion and aggressive initial search).



2.4. CONCLUSION 31

100 200 300 400 500 600 700 800 900 1000
2

2.5

3

3.5

4

4.5

N

E
[c

os
t|d

is
ta

nc
e<

=
dm

ax
]

GREASE
GREASE−RWP

Empirical mean of cost 

Figure 2.5: Scalability of the GREASE-RWP algorithm.

avoids using outdated past encounters that are independentof the destination’s ac-
tual position.

We have performed simulations that show the following results. First, the
GREASE-RWP algorithm achieves drastically better performance than the “non-
RWP” version reported in [GV03]. Specifically, the total average route cost are
slightly more than twice as long as the shortest path. This isquite remarkable,
given that no resources were invested to track the rapid change in the network
topology due to RWP mobility. Second, our results show, as wewould expect,
that the benefit of prediction depends on what observations are available about a
node’s mobility. It should be pointed out that if we extendedprediction beyond
the next waypoint, the performance would be further improved. Third, the cost of
GREASE-RWP routes relative to the shortest path does not seem to increase as we
scale up the network sizen. Therefore, we believe that a similar scaling result as
shown in [GV03] for the random walk holds for the RWP model as well.

Predictability is a mobility feature recognized in many realistic scenarios. For
example, the limitation of the speed of nodes makes a mobility process predictable
over at least a short time scale. Another example is that nodes may have some
locations that they visit more often than others, as mentioned in Section 1.2, which
is exploited by many routing mechanisms designed for the partitioned networks, as
we see in Section 1.3. The novelty of our work is that we consider the prediction
in the RWP model, and how to incorporate this prediction intoLER, both of which
have not been previously considered.

The prediction in the RWP model exploits a specific nature of the model, where
a node moves with the same speed between two waypoints, whichallows us to
precisely predict where the node can be for a short time scale. But, the fact that a
next waypoint does not depend on the previous waypoints makes it impossible to
predict future node’s movements on a longer time-scale, beyond the next waypoint.
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We argue that these properties are indeed present to some extent in some realistic
scenarios of interests, but that they are too specific. Therefore, as a next step in our
thesis, we look at realistic mobility processes in order to find common properties
in many realistic applications that we can exploit in routing.

Appendix

Auxiliary Results

Lemma 2.1 The sequence of the segment lengthsLws has the following pdf:

fL(l) =






2lπ
a2 if 0 ≤ l ≤ a

2
2lπ
a2 − 8l

a2 arccos a
2l if a

2 ≤ l ≤ a
√

2
2

0 otherwise
. (2.9)

Lemma 2.2 The expected displacement of a node from a waypoint is equal to zero,
i.e., the expectation of the random variableX(Sw +△t)−X(Sw) is equal to zero,
for everyw and△t > 0.

Optimal Predictors

Theorems 2.1 and 2.2

Proof:
Using (2.7) and (2.8), the optimal mobility predictor is:

x̂(t + τ) = E[X(t + τ) | θ(t)] =

= x(t) + v(t)τP (Yt ≥ τ | θ(t)) + v(t)E[Yt1{Yt<τ} | θ(t)] +

+E[△P (τ − Yt)1{Yt<τ} | θ(t)].

The last term of this equation is equal to 0 (Lemma 2.2). Thus,we obtain:

x̂(t + τ) = x(t) + v(t)τP (Z ≥ vτ) +
v(t)

v
E[Z1{Z>vτ}],

whereZ is the random variable with the same distribution asvYt givenθ(t). Next,
we calculate the distribution ofZ separately for Theorems 2.1 and 2.2.

In Theorem 2.1, the set of observations isθ(t) = {X(t) = x(t), V (t) = v(t)}.
The residual timeYt depends only on the renewal processSw. TheSws depend
only on the segment lengthsLws because of the constant speed. TheLws do not
depend onX(t) since every point in the torus is the same. Therefore, theYt does
not depend onX(t). As mentioned previous, we neglect that theYt depends on the
direction of the speed vector, thus theYt does not depend onV (t). Hence, theZ
has the same distribution asvYt. The pdf of residual timeYt is equal to [Kle75]:

fY (y) =
1 − FR(y)

mR
,
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whereFR(x) is the cdf of the intervalsRw = Sw+1 − Sw andmR is the mean of
Rw. SinceRw = Lw/v, the pdf ofZ is:

fZ(z) =
1 − FL(z)

mL
,

whereFL(z) is the cdf ofLws (Lemma 2.1), andmL = a/6(
√

2 + ln(1 +
√

2)) is
its expected value. We obtain the pdf ofZ given by (2.3).

In Theorem 2.2, the set of observations isθ(t) = {X(t) = x(t), V (t) =
v(t), Pw(t) = p}. As in the previous case, the residual timeYt does not depend
on X(t) andV (t). Knowing bothX(t) = x(t) andPw(t) = p we know that the
previous waypoint was at timet − d(p, x(t))/v = t − t0. This means that there is
a point at timet − t0 and that there is no point in interval(t − t0, t). This second
condition is equivalent toYt−t0 ≥ t0. If we denote the conditional probability
given that there exists a point at timet asP t then the cdf ofZ is equal to:

P (Z ≤ z) = P (vYt ≤ z | X(t) = x(t), V (t) = v(t), Pw(t) = p)

= P (vYt ≤ z | there exists a point at timet − t0, Yt−t0 ≥ t0)

= P t−t0(vYt ≤ z | Yt−t0 ≥ t0) = P 0(Y0 ≤ z

v
+ t0 | Y0 ≥ t0)

= P 0(S1 ≤ z

v
+ t0 | S1 ≥ t0).

Using the result of Palm calculus thatP 0(S1 ≤ x) = P 0(R1 ≤ x) = FR(x)
([Bou]), we obtain:

P (Z ≤ z) =
FR( z

v + t0) − FR(t0)

1 − FR(t0)
.

SinceRw = Lw/v, the cdf ofZ can be expressed as:

P (Z ≤ z) =
FL(z + d0) − FL(d0)

1 − FL(d0)
,

and we obtain the pdf ofZ given by (2.5). � �

Approximation 1

We are unable to compute in a closed form the predictor in Theorem 2.1. Therefore,
we use the following mobility predictor:

x̂(t + τ) =

{
x(t) + v(t)

v (vτ − c(vτ)2

2 + cπ(vτ)4

12a2 ) if 0 ≤ vτ ≤ a
2

x(t) + v(t)
v E[Z] if vτ > a

√
2)

2

x̂(t + τ) ≈ x(t) + v(t)
v E[Z] if a

2 ≤ vτ ≤ a
√

2
2 .

The mean value of theZ is given by:

E[Z] =
E[L]

2
+

V ar(L)

2E[L]
,
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where the meanE[L] and the varianceV ar(L) of the Lis are equal toE[L] =

a/6(
√

2 + ln(1 +
√

2)) andV ar(L) = a2

6 − E[L]2, respectively. We make an

approximation in the regiona2 < vτ < a
√

2
2 by neglecting the probability that there

is not any waypoint in the period ofvτ .

Approximation 2.

We are unable to compute in a closed form the predictor in Theorem 2.2. Therefore,
we use the following mobility predictor:

x̂(t + τ) = x(t) + v(t)
v

πl3
0
−π(vτ+l0)3+3vτa2

3(a2−l2
0
π)

if (l0, vτ + l0) ∈ [0, a
2 ]2

x̂(t + τ) ≈






x(t) + vτ if 0 ≤ l0 ≤ a
2 , a

2 − l0 ≤ vτ ≤ E[Z]
x(t) + E[Z] if 0 ≤ l0 ≤ a

2 , a
2 − l0 ≤ vτ , vτ > E[Z]

x(t) if l0 >
a
√

(2)

2

.

The mean value of theZ is given by:

E[Z] =
3a2(E[L] − l0) + πl30

3(a2 − l20)
,

where the mean value of theLis is equal toE[L] = a
6 (
√

2 + ln(1 +
√

2)). We
make an approximation in the region0 ≤ l0 ≤ a

2 , a
2 − l0 ≤ vτ ≤ E[Z] by

neglecting probability that there is a waypoint in the period of vτ . We make also
an approximation in the region0 ≤ l0 ≤ a

2 , a
2 − l0 ≤ vτ , vτ > E[Z] by neglecting

probability that there is not any waypoint in the period ofvτ . In the regionl0 > a/2
we do not make mobility prediction because we are unable to computeE[Z]. The
probability of the appearance of this last case during the operation of the LER
algorithm is small because the probability thatl0 > a/2 is small. Thus, this will
have a small effect on the predictor.



Chapter 3

Modeling Stable Clusters in
Mobility

In this chapter, we look at realistic mobility processes andask the following ques-
tions. What properties do they possess? Which ones are common in many realistic
applications? Which ones can we exploit in routing?

We observe three large-scale realistic mobility traces andwe identify the fol-
lowing properties:

• a spatial distribution of the nodes is heterogenous rather than homogenous,
i.e., there are both dense and sparse regions of connectivity;

• a network is often partitioned, which is a consequence of this heterogenous
spatial distribution;

• there exist islands (clusters) of dense connectivity, which we call concentra-
tion points (CPs);

• the CPs, and the average flows of nodes between CPs, typicallyremain stable
over relatively long time-scales.

These observations led us to devise two synthetic mobility models that posses
the above mentioned properties. We call these models: 1) a graph-based (G) model
and 2) a heterogenous random walk (H) model.

We design the G-model with the main purpose of using it for fitting data to a
model, i.e., for inferring a stable topology of CPs from mobility data by COGRAD.
Hence, the G-model is a “rich” model in a sense that it has manyparameters. More-
over, in order to capture the essence of the problem, it makessimplified assump-
tions about the nodes’ connectivity. The G-model assumes a “sharp” connectivity
inside and outside CPs, i.e., the nodes inside a CP are all connected, and the nodes
outside of CPs are not connected to any other node.

We design the H-model for the purpose of modeling the mobility of the nodes in
order to evaluate both COGRAD and IH. Our design goal is to have a parsimonious

35



36 CHAPTER 3. MODELING STABLE CLUSTERS IN MOBILITY

model with as few parameters as possible and to have a model with more realistic
connectivity assumptions than the G-model. That is to say, we want to allow that
not all nodes inside a CP are necessarily connected and that nodes outside CPs may
be connected to other nodes as well.

In our design and evaluation of IH and COGRAD, we first start modeling the
mobility of nodes by the G-model in order to concentrate on the essence of the
problem by abstracting away the complexity of real mobility. Then, we consider IH
and COGRAD under the relaxed connectivity assumptions in the H-model. Note
that in the both cases COGRAD uses the G-model to infer the CP topology.

This chapter is organized as follows. In Section 3.1 we describe realistic mo-
bility data sets and our findings of their common properties.In Section 3.2 we
define the G-model and we derive stable CPs from the data sets.In Section 3.3 we
define the H-model. We also calculate the spatial stationarydistribution of nodes
in the H-model and we discuss how to perform simulations.

3.1 Properties of Real Mobility 1

For the purpose of our study we use three large GPS-based mobility data sets.
The two data sets are mobility traces of taxi cabs from two cities: Warsaw,

Poland and San Francisco, USA. The Warsaw data set contains GPS coordinates
of 825 taxis collected over 92 days in the Warsaw agglomeration area (25x40 km).
The San Francisco data set contains GPS coordinates of approximately 500 taxis
collected over 30 days in the Bay area (14x25 km). In both cases each taxi is
equipped with a GPS receiver and sends alocation update(timestamp, identifier,
geographical coordinates) to a central server. Updates arenot periodic, rather they
are irregular. In the case of the Warsaw data set the updates are infrequent - they
can be as frequent as a few per hour or only a few per day. In the case of the
San Francisco data set the locatio-updates are quite frequent - the average time
interval between two consecutive location updates is less than 10 sec, allowing us
to accurately interpolate node positions between location-updates.

The third data set is less detailed than the taxi data sets. Itcontains GPS traces
collected by mobile-phone users subscribed to the Nokia Sports-tracker service2.
Mobile-phone users can upload workout and activity traces to the Nokia Sport-
stracker web site to store and share with others. So, the dataset provides only oc-
casional snapshots of a person’s long-term mobility, i.e.,it only consists of traces
obtained during some activities (running, walking, cycling, etc.). This data set is

1The results presented in this section as well as in Sections 3.2.1 and 3.3.2 are contributions of
Michal Piorkowski [Pio09]. These results were obtained during our joint work for the purposes of
i) observing important properties of realistic mobility, and ii) validating our modeling of the ob-
served mobility properties. More precisely, finding realistic mobility data sets, the algorithms for
the performed data analysis as well as the data analysis are all contributions of Michal Piorkowski.
However, mobility modeling is my contribution. We include the results contributed by Piorkowski
in order to help a reader in understanding better the presented material.

2http://sportstracker.nokia.com/
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larger than the taxi data sets in terms of the number of mobilenodes, and it also
covers a much larger geographical region and time period (more than one year).
For the purpose of this study we focused on subsets from Helsinki, Finland (3757
distinct GPS traces, 11x8 km), Stockholm, Sweden (1056 distinct GPS traces) and
London, UK (2488 distinct GPS traces).

Next, in these data sets we observe that the node distribution is spatially het-
erogenous and temporally stable. I.e., we observe that there exist regions where
the node density is much larger than on average which are persistent over differ-
ent days. We also observe that because of this spatially heterogenous node distri-
bution, the network becomes partitioned where many partitions contain relatively
large number of nodes.

3.1.1 Spatial Distribution

To check for the existence of stable CPs we apply the following heuristic. First,
we superimpose a grid of equal-sized cells on the area of the Warsaw and San
Francisco agglomerations. Then, for each dayd and each cell(k, l) we find the
normalized population- f(k, l; d), interpreted as the empirical probability that a
random update falls into the cell(k, l) on dayd. Our analysis shows the following:

The Spatial Distribution is Heavy Tailed

Figures 3.1(a) and 3.1(b) show the empirical complementarycumulative distribu-
tion function (CCDF) off(k, l; d) for the two data sets - from Warsaw and from
San Francisco respectively. Both distributions have heavytails, which implies that
some cells in both cities have a population density much above the average.

The Spatial Distribution is Stable Over Time

Figures 3.1(a) and 3.1(b) insets show scatter plots off(k, l; d) for one randomly
chosen pair of days(d1, d2). In both cases we observe significant clustering along
the diagonal, which means that the spatial distribution on different days tends to
be strongly correlated. Furthermore, we observe that the more densely populated
cells (upper-right quadrant) tend to be particularly closeto the diagonal, which is
a good visual confirmation of our hypothesis. We observe the same behavior for
other pairs of days.

3.1.2 Partitioned Connectivity

Let us first define theconnectivity graph. Here again we assume a (scaled) unit disk
model for connectivity. The mobile nodes and the corresponding wireless links
define theconnectivity graphG(V,E), whereV (G) is the set of mobile nodes
and E(G) is the set of radio links between mobile nodes, i.e.,E(G) = {e =
(i, j)|dij ≤ r}. We defineHk as a strongly connected component ofG, with
C(G) = {H1,H2 · · · ,HK} the set of all components, i.e.,G =

⋃k=K
k=0 Hk.
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(a) Warsaw data set

(b) San Francisco data set

Figure 3.1: Empirical CCDF off(k, l; d) for the entire period for three levels of
discretization for two data sets (a) Warsaw and (b) San Francisco. Insets in (a) and
in (b) shows the scatter plot off(k, l; d) on two random days - each point on the
plot corresponds to a density in a cell(k, l) for different days.
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Figure 3.2: Emergence of connectivity islands in the connectivity graph - each data
point represents the number of components of size larger than 10 in the connectivity
graphG(V,E) for different values ofr (scale unit is meter[m]).

To show that islands of connectivity may emerge we study how the structure
of the connectivity graph changes with increasingr. More precisely, we focus on
the size of components|Hk| present in the connectivity graphC(G) generated at a
random time instant from both the taxi cab and Nokia Sportstracker data sets.

For this experiment, wedensifyour trace in the following way. We assume that
the sampled nodes are a representative subset of the overalltraffic, and that their
movements are stationary and ergodic. Under this assumption, we can generate a
denser sample of instantaneous node locations (in our case,5000 nodes) by sam-
pling uniformly at random from the entire data set. This denser sample brings out
more detail in the connectivity graph.

In Figure 3.2 we show the results for four cities: San Francisco, Helsinki,
Stockholm and London. We observe a clear trend in all the cases. The num-
ber of components rises quickly with the communication range r towards a maxi-
mum; past this critical value, the number of components starts to decrease, because
smaller components start coalescing into larger ones. However, this decrease tends
to be slow; even whenr becomes a multiple of the critical value, we still have many
components left. This is because node locations are distributed non-uniformly in
space, which prevents percolation into a single giant cluster whenr grows. Thus,
we conclude that disconnected network topologies with a large number of com-
ponents seem to be a robust phenomenon that persists over a wide range of radio
ranges.
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3.2 Graph Based Model (G-model)

Given the observations about the presence of stable CPs in realistic data, we now
define an idealized mobility model that embodies CPs. This model is to be used
for fitting data to a model, thus it is rich with parameters andsimplistic regarding
assumptions about a detailed connectivity of nodes.

The network topology is given by a directed connected graphG(V,E) whose
vertex setV represents the CPs, and whose edgesE describe the possible move-
ments of nodes between CPs. We call this grapha CP graph. There aren nodes
that move on this graph. At every timet, every nodei is either located at one
CP, or is en route between two CPs. We denote the current position of nodei by
Xi(t) ⊂ V ∪ φ, whereφ denotes that it is en route between two CPs. We assume
that nodes located at the same CP can communicate with each other (either directly
or through multi-hop), whereas nodes at different CPs cannot. We callBi(t) the set
of neighbors of nodei at timet, i.e.,Bi(t) is the set of nodes located at the same
CP asi (including i), and if nodei is en route between two CPs thenBi(t) = {i}
(cf. Figure 3.3).

vertex1

2

3

Bi(t)

nodei

5

4

Figure 3.3: Nodes move on a graphG(V,E), which describes the network topol-
ogy in terms of its CPs and the ways nodes can move between them.

3.2.1 Inferring the CP Graph from a Mobility Trace

Our goal is to infer the CP graph from real data in order to use the G-model with
this inferred CP graph for an evaluation of our routing algorithm (Section 4.5).
We use different procedures in the Warsaw and San Francisco data sets. This is
because the San Francisco data set consists of the frequent location updates, which
is not the case for the Warsaw data set. Thus, the San Francisco data set allows us
to make a realistic analysis of dynamics of the nodes’ connectivity, i.e., to analyze
how the nodes’ connectivity evolves over time and then, based on this, to infer
CPs. This is impossible to do in the Warsaw data set, so we derive an approximate
heuristic for this. Note that in our further investigationswe use only the CP graph
inferred from the Warsaw data set, because there are only a small number of CPs
in the San Francisco data set.
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The Warsaw Data Set

In order to find CPs, we first define aclusterat dayd as a cell for whichf(x, y; d) >
5%. The reason we choose 5% as the threshold is to ensure that in every CP there
are at least 15 vehicles (see 3.1.1 ). Using such a small threshold allows us to iden-
tify clusters that would be more visible for regular and frequent location updates.
We identify 174 clusters. Here we define a CP as a cluster that is present for more
than 20 days (see 3.1.1 ). In result we find 79 CPs within the whole city (cf. Figure
3.4).

Inferring stable flows between CPs from a such data set is not trivial because of
very irregular and infrequent location updates. If the period between two succes-
sive location updates of a taxi is too long, the taxi might visit several CPs during
this time. Thus, we may miss direct flows of nodes between CPs and, because of
this, we may consider falsely a non-direct flow as direct. Forexample, a graphG′

where the edges are all observed flows between CPs over all taxis and over the en-
tire data set is an almost complete graph. In order to prune the false flows, we pro-
pose the following heuristic. For each edge(u, v) ∈ G′ we find a minimum travel
time τmin(u, v) over all taxis and over the entire data set. Then we delete an edge
(u, v) from G′ if there exists a path betweenu andv, p(u, v) = (u,w1, w2, ..., v),
such thatτmin(u, v) >

∑
e∈p(u,v) τmin(e). Instead of an almost complete graph,

we obtain a graphG for which the average vertex degree is 3.2.
The inferred CP graphG is shown in Figure 3.4. The resulting topology resem-

bles a spider net, which is consistent with the topology of the city of Warsaw, where
most of the important institutions and centers of activity are located downtown.

The San Francisco Data Set

In the San Francisco data set the location updates are frequent enough that it is pos-
sible to study how the nodes’ connectivity graphHt changes in time. StudyingHt

allows us to identify CPs, i.e., regions where node density is higher than average
and is stable over time. In order to find such regions, we couldapply one of the
well-known data clustering algorithms, e.g.k-means clustering [The03] - for every
time instant one can find such regions and then identify whichof them last for a
long time. This approach is used in the works of [KWSB04] and [AS03] to extract
significant users’ locations where the users tend to spend much more time on av-
erage than in other places. But, we take another approach - weidentify connected
components with a relative large number of nodes that last for a long time. Here
we rely on an intuition that in highly populated regions nodes should form stable
connectivity islands. The main advantage of our approach over the clustering al-
gorithms is that our approach does not require nodes’ positions. Note also that the
works of [KWSB04] and [AS03] solve a slightly different problem, they search for
significant locations of an individual user, and we search for collective significant
locations that many users visit at the same time.

As nodes are mobile and the connectivity graph changes dynamically over
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Figure 3.4: The red dots represent superimposed location updates of 825 taxis over
92 days taken from the data set. The black circles represent 79 CPs and black lines
show taxi flows between these CPs. Both CPs and flows are extracted from the data
set.
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time, the key question is how to establish a correspondence between components at
subsequent time steps. For this, we introduce the concept ofcluster labeling. This
means assigning an unique identifiery (we call it a label) to every connected com-
ponent, in such a way that the two components at the consecutive time moments
with the same label correspond to each other. To do this we devise a Centralized
Cluster Labeling (CCL) algorithm. Thus, sequences of corresponding components
over time are uniquely identified by a label.

We expect CPs to be stable over time and have a large size, thuswe seek la-
bels that last for a long time and are owned by a large (on average) number of
nodes. Note that the CCL algorithm does not use nodes’ positions - it uses only
the connectivity graph, which is one advantage over the dataclustering algorithms,
as mentioned above. Because of this, there is no informationwhatsoever about the
location of the CPs. However, given the evidence presented below, we believe that
stable clusters should appear at certain fixed locations.

In order to extract CPs from collection of connectivity graphs, by applying the
CCL algorithm, we use the part of the San Francisco traces - approximately 500
taxis over 24 hour period. The connectivity graphs are generated every∆t = 10
seconds for connectivity rangerc = 300 meters. We determine which labels can
correspond to CPs by using two threshold values, one for the lifetime and second
for the size of the label: 1800 seconds and 10 nodes respectively. We found 19 such
labels, of which several of them lived even more than 2 hours.However, these 19
labels do not specify 19 distinct CPs. This is because the same connectivity island
may re-appear at different time of the day, which cannot be captured by the CCL
algorithm.

Thus, we check if a labeled cluster appears in the same area during its lifetime.
We superimpose the locations of nodes that own the same labelfor three different
snapshots. We visualize this on Figure 3.5 where the taxis that own the same label
(marked with the same type of a marker) cover the same area at different time
instants (different colors of the same marker). This confirms our intuition that
islands of connectivity are stable in space as well. We also study the evolution
of a cluster location. More specifically we look at the diffusion of the large size
clusters’ center of mass. For every time instance, we compute the center of mass of
each large cluster (larger than 20 vehicles). We make a visual test (cf. Figure 3.6)
to see how far the center of a cluster moves in time. As can be observed, during
a cluster’s lifetime its center of mass does not diffuse far from its initial location.
We identify four locations of CPs - namely the aquatic park/shopping center, the
downtown area, the taxi company premises and the airport. These four locations
can be observed also in Figure 3.5.

As we identify only a small number of CPs in the San Francisco data set we do
not use this data set in our evaluation of IH and COGRAD, and therefore we do not
make an additional effort to identify flows of nodes in this data set. Nevertheless,
the results of our analysis justify the presence and relative stability of CPs in the
real world. However, keep in mind that the mobility pattern of taxis is very specific
and may not give sufficient evidence of other CPs located for example nearby sport
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centers, gas stations, movie theaters etc. Thus we believe that given a large set of
mobile traces for the same area, which contains GPS locationupdates of different
types of vehicles, it should provide us with more CPs. We alsobelieve that CPs
might be more easily observed at a larger scale, e.g. not at the San Francisco
agglomeration scale only, but at the whole Bay Area scale. Note also that this is
the first attempt to identify CPs where a connected componentis chosen to give the
evidence for the CP existence. The presented results show that this choice might
be too extreme for determining if a CP exists or not.

Figure 3.5: Four CPs in San Francisco identified by the CCL algorithm. Mark-
ers represent taxis that belong to CPs. Different types of markers correspond to
different CPs:triangles - the aquatic park/shopping center,balls - the downtown
area,crosses- the taxi company premises,squares- the airport. The color of each
marker represents members of a corresponding CP at different time moments.
.

3.3 The Heterogeneous Random Walk (H) Model

Next we define the H-model. The H-model is for modeling the nodes’ mobility
with stable CPs. Hence, the design goals are: a parsimoniousmodel with small
number of parameters, and more realistic connectivity assumptions than in the G-
model.

Here, we also calculate the stationary node distribution inthe H-model and
conditions for the emergence of CPs, and we discuss how to perform a simula-
tion that starts directly from the stationary distribution(i.e., “perfect simulation”
[Bou].) We first define our model as a diffusion process, then show how to correct
for boundary effects in a discrete-time approximation. In addition, we validate the
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Figure 3.6: Tracking the location of large clusters.

model by comparing its qualitative behavior with a realistic mobility scenario (the
San Francisco mobility trace).

3.3.1 Definition

There aren nodes moving independently of each other in a torus of unit side length.
We divide the torus into two regionsAl andAh, where each node performs a two-
dimensional Brownian motion with heterogeneous speeds (variances) in these two
regions, with a slower speed inAl than inAh. The regionAl can be generated, for
example, as the union ofm random disks of radiusrl, andAh its complement (cf.
Figure 3.7). The difference in variance in the two regions gives rise to different
node densities.

More formally ([KT81], Chapter 15), each node moves according to a process
Z = {Z(t), t ≥ 0} taking values in[0, 1]2 with the coordinate representation
Z(t) = (Zx(t), Zy(t)), where :

• Z(0) is an initial position in the torus;

• Zx andZy satisfies the following conditions:

ax(z, t) = lim
h→0

1

h
E[Zx(t + h) − Zx(t) | Z(t) = z] = 0 (3.1)

bx(z, t) = lim
h→0

1

h
E[(Zx(t + h) − Zx(t))2 | Z(t) = z]

= b(z) :=

{
σ2

l if z ∈ Al

σ2
h if z ∈ Ah

, σl < σh, (3.2)
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and similarly foray(z, t) andby(z, t);

axy(z, t) = lim
h→0

1

h
E[(Zx(t + h) − Zx(t))×

×(Zy(t + h) − Zy(t)) | Z(t) = z] = 0. (3.3)

Thus, infinitesimal meansax(z, t) anday(z, t) of the changes inZx andZy,
respectively, are equal to0 (3.1). Infinitesimal variancesbx(z, t) andby(z, t) of
the changes inZx andZy, respectively, are equal toσ2

l if a node is inAl or σ2
h if a

node is inAh (3.2), whereσ2
h = γσ2

l with γ > 1. Note that the variance reflects
the speed of the node. Moreover, we constrain ourselves to a process where the
infinitesimal changes inZx andZy are uncorrelated (3.3).

Ah

m = 4

Al
rl

Figure 3.7: Heterogeneous Random Walk - nodes move more slowly in regionAl

than inAh.

The following table summarizes the parameters of the model.

n # of nodes
m # of disks (clusters)
rl disk radius

γ = σ2
h/σ2

l ratio between variances inAl andAh

r connectivity range

Stationary Distribution and Connectivity

Lemma 3.1 A node’s position in the stationary regime has pdf

f(z) = β/b(z), β =
1

|Al|/σ2

l
+|Ah|/σ2

h

, (3.4)
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where|A| is the surface area of the regionA.

Proof: The diffusion process is described by a Fokker-Planck equation (or Forward
Kolmogorov equation), which in the two-dimensional case isgiven by ([Gar04],
p.145):

∂f(z,t)

∂t
= − ∂

∂x
(ax(z,t)f(z,t))− ∂

∂y
(ay(z,t)f(z,t))+

+1
2

∂2

∂x∂y
(bxy(z,t)f(z,t))+

+1
2

∂2

∂x∂y
(byx(z,t)f(z,t))+

+1
2

∂2

∂x2
(bx(z,t)f(z,t))+

+1
2

∂2

∂y2
(by(z,t)f(z,t)), (3.5)

wheref(z, t) = P (Z(t) = z|Z(t0) = z0) with Z(t) = (Zx(t), Zy(t)) denoting
the two-dimensional diffusion, and with the values of the coefficients given by
(3.1), (3.2), and (3.3).

Our goal is to find a stationary distribution given byf(z) = limt→+∞ f(z, t).
Hence,f(z) is a unique solution of (3.5) whent → +∞, in which case it holds
∂f(z,t)

∂t = 0.
To fully describe a diffusion process we also need to know theboundary con-

ditions. Here we have periodic boundary conditions (see [Gar04], p. 119 and p.
121) given by:

f(x,1)=f(x,0), f(1,y)=f(0,y); Jx(x,1)=Jx(x,0), Jy(1,y)=Jy(0,y), (3.6)

where
Jx(x,y)=−0.5 ∂

∂x
(b(x,y)f(x,y)), Jy(x,y)=−0.5 ∂

∂y
(b(x,y)f(x,y)) (3.7)

The unique solution of (3.5) with the conditions (3.6) is given by (3.4).
�

From Lemma 3.1 follows the following interesting property of the H-model.

Property 3.1 Node densitiesλl andλh in regionsAl andAh, respectively, relate
asλl = γλh (γ = σ2

h/σ2
l > 1), i.e., the density of nodes isγ times larger inside

the disks than outside of them. Thus,the heterogeneous speed gives rise to the
heterogeneous node density that is inversely proportionalto the speed.

Let us now discuss the relationship between the connectivity of nodes and the
parameters of our model. The regime of interest for our modelis when the node
density inside the disks is high enough for clusters to form,and when the node
density outside the disks is low enough for clusters not to form. We rely on results
from the continuous percolation theory [MR96]. Assume a Poisson point process
with densityλ and assume that two nodes are connected iff they are within dis-
tancer. Then, ifλr2 > (λr2)cr ≈ 1.43 (where(λr2)cr is called the percolation
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threshold), an infinite cluster appears with a positive probability. This is called the
supercritical regime. In the subcritical regimeλr2 < (λr2)cr, the clusters are al-
most surely finite. Although these results hold for the infinite plane, they are good
approximations, as long as the node density is sufficiently high ([PP96], Proposi-
tion 2).

Therefore, we choose the parameters of our model such that weare in the su-
percritical regime inAl, i.e.,λlr

2 > (λr2)cr, and such that we are in the subcritical
regime inAh, i.e.,λhr2 < (λr2)cr.

Perfect Simulation and Discrete-Time Approximation

In this subsection, we provide an algorithm allowing for a “perfect simulation”.
The algorithm initializes node positions to start the simulations immediately in a
stationary regime, thus obviating the need for a transient warm-up phase.

We begin the simulations as follows. We need to placen nodes according to
the stationary distribution given by (3.4)5. First, we find the initial numberNl of
nodes inAl, which is∼ Bin(n, πl) (andNh = n − Nl). We then need to place
Nl nodes uniformly at random in the union of disks. One straightforward way to
achieve this is by dropping nodes randomly on the torus, and retaining only those
falling into a disk, until we have enough nodes. We proceed inanalogous fashion
for theNh external nodes.

After placing the nodes, we run our simulations as follows. At every time
step each node moves for∆ = (∆x,∆y), where∆x and ∆y are independent
variables chosen independently for every node and for everytime step. Each of
these variables has a Gaussian distribution with mean0 and varianceσ2

l if a node
is in Al or σ2

h if it is in Ah.
As the H-model is a diffusion process with spatially dependent coefficientb(z),

our simulations will lead to a systematic error, as shown in [FG04]. The authors
in [FG04] propose an elegant solution to this problem in a general case whenb(z)
is a differentiable function. This solution consists in correcting every step length
∆, depending on the gradient ofb(z) during this step. As in our caseb(z) is a
step function their solution is not straightforwardly applicable. Nevertheless, using
their approach we find the correction for the step length∆ as follows.

The step length∆ has to be corrected wheneverb(z) has different values during
this step. Figures 3.8 and 3.9 show how to make the correction. We consider only
cases whenb(z) changes its value once during one step, because we assume∆ is
small enough that the cases are rare whenb(z) changes its value more than once
during one step.

We look at the projections of the step length∆ into x andy coordinates and
hence we show how to calculate the correct step length∆corr = ∆ + ǫ in one-
dimensional case (cf. Figure 3.10).

5The node positions are “almost” a Poisson process with heterogeneous intensityλ(z), except
for the condition that the total number of nodes is exactlyn instead ofPo(n).
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Figure 3.8: Case I - a node enters a disk.
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Figure 3.9: Case II - a node leaves a disk.

To calculate a correction termǫ we start from the following equation [FG04]:

ǫ=

∫
∆

−∞
g(x)dx−

∫
∆

−∞
gcorr(w)dw

gcorr(∆)
, (3.8)

where∆ is the step length for the case whenb(x) = σ2
l (i.e., b(x) is a constant

for all x), andg(x) is the distribution of the step length∆, andgcorr(w) is the
distribution of the exact step length∆corr (whenb(x) is a step function).

By the normalization technique given in [Ris89], Chapter 5,we obtain:

gcorr(w)=





g(w) if b(w) = σ2

l
σl

σh
g(w)= 1√

γ
g(w) if b(w) = σ2

h

(3.9)

We divide∆ in two parts as shown in Figure 3.10,∆′ whereb(x) = σ2
l and

∆′′ whereb(x) = σ2
h. Then, using (3.8) and (3.9) we obtainǫ = −(1 − 1/

√
γ)∆′′

which means that:

∆corr=∆′+ 1√
γ

∆′′. (3.10)

3.3.2 Validation

We now validate how well the H-model captures properties of arealistic mobility
trace. We focus on the San Francisco trace only as it is the most detailed trace of

∆

∆′′∆′

σ2
hσ2

l

Figure 3.10: One-dimensional case.
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the three considered. We check the following properties: i)statistical equivalence
of nodes’ mobility, ii) relation between speed and density,iii) cluster dynamics,
and iv) predictive power of the H-model for an epidemic dissemination algorithm.
Here, we only outline results without going into details about data analysis.

Statistical Equivalence of Nodes

We test to what extent the nodes in the San Francisco taxi trace follow distinguish-
able mobility patterns, e.g., because drivers might have location preferences. This
is an important consideration, because it measures the potential for a routing al-
gorithm for partitioned networks to make judicious decisions aboutwhich nodea
packet should forward to.

We assume a null hypothesis that all the node mobility patterns are drawn from
the same underlying distribution, and use a Pearson’sχ2 test to decide whether we
need to reject the null hypothesis, separately for each trace. More specifically, we
look at the distribution of counts of visits to a grid of square cells of equal size for
a time period of one day. This time period is a conservative upper bound of the
time scale of interest in a routing protocol. We simply take the true distribution as
the aggregate over all nodes.

We find that most of the traces (more than 60%) are statistically indistinguish-
able from the overall population. We note that over longer time scales, we would
reject the null hypothesis more frequently, because small differences in the under-
lying distributions would be amplified relative to the sampling noise. However, in
most delay-tolerant applications of interest, the time scale of interest tends to be of
the order of minutes to hours; over these time scales, for themobility trace at hand,
we have to assume that a majority of nodes follow similar mobility patterns.

Speed and Density Maps

Here we focus on the spatial distribution of vehicle speed and density. Figure 3.11
illustrates these distributions, where darker pixels indicate higher speed/density.
For the sake of visualization, we show the density distribution in a log scale (be-
cause the spatial distribution of node density is heavy tailed). The figure does
suggest that speed and density are negatively correlated, i.e., that locations of high
speed see low node density, and vice versa. We conjecture that this inverse re-
lationship may be quite universal, because the mobility of nodes may be more
“constrained” by other nodes in high-density areas, thus limiting their speed. This
is quite easy to see in vehicular settings (highway vs. downtown traffic jam).

Cluster Dynamics

We test how well the H-model captures the cluster dynamics over the real mobility
scenario. We analyze the cluster dynamics of both real clusters observed in the San
Francisco trace, as well as clusters produced in the H-modelwhose parameters
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Figure 3.11: Comparison of the speed (left) and density map (right) distribution.
Darker pixels indicate higher speed/density.

were inferred from the San Francisco trace [PSDG09]. For this we use the CCL
algorithm explained in Section 3.2.1. We analyze the following two metrics:

• Tc: cluster lifetime- the time a cluster (label) is present in the network;

• Nc: cluster size- the average number of nodes of a cluster (label) over its
lifetime.

Figure 3.12 shows the empirical complementary CDF for the cluster lifetimeTc

and the average cluster sizeNc. Figure 3.13 shows an evolution of the size of the
largest cluster in both the model and the trace.

From these figures we observe the following. First, we see - not surprisingly -
strong diurnal fluctuations in the trace but not in the model.Second, the lifetime of
clusters both as produced by the model and inferred from the trace is heavy-tailed.
However, the model produces more stable clusters, which in part results from the
absence of diurnal fluctuations in the model, and from the sharp difference between
high and low-density regions. In a real setting, the boundaries are of course more
fuzzy. Third, the cluster sizes for the model and the trace are distributed rather
differently. In the model, the size of each cluster tends to fluctuate in a narrow
range. In the trace, there is more of a continuous spectrum ofcluster sizes, again,
in part, because of fluctuations during the day. Small clusters arise more frequently
in the trace than in the model, which is a result of the subcritical region not being
uniform as stipulated in the model.
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Figure 3.12: Comparison of cluster lifetime and cluster size in both the trace and
the model.

0h 2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 0h
0

50

100

150

200

250

time

nu
m

be
r 

of
 n

od
es

 in
 th

e 
cl

us
te

r

0h 2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 0h
0

50

100

150

200

250

time

nu
m

be
r 

of
 n

od
es

 in
 th

e 
cl

us
te

r

Figure 3.13: Comparison of the size evolution of the largestlong lasting clusters in
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Figure 3.14: Performance evaluation of the simple epidemicdissemination proto-
col under different mobility processes (San Francisco trace, H, RW and RWP).
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Application to Epidemic Dissemination

In this section, we evaluate the predictive power of the H-model in the context of
epidemic dissemination, one of the prominent paradigms forrouting in partitioned
networks. We compare the H-model with the two prominent models in simulations
of mobile ad-hoc networks, a (homogenous) random walk (RW) model and the
random waypoint (RWP) model. For the purpose of our study, weuse the following
performance metrics:

• message delay- the time interval between sending the message by the source
and receiving its copy at the destination;

• message copies- total number of copies made for a message in the network
during the message delay time interval;

• minimum delay path- the hop length of the minimum delay path between
the source and destination discovered by the protocol.

In Figure 3.14 we give the performance evaluation results ofthe epidemic pro-
tocol using a box plot for the three metrics. First, we see that a (homogeneous)
RW gives a message delay that is much larger than the real delay; the H-model is
still conservative, but much closer to the actual performance. This suggests that
the speed at which the message spreads benefits greatly from clusters (which al-
lows for a rapid spread of the message to other nodes), and from the low-density
complement (where messages can travel quickly). The RWP model underestimates
the message delay, but is closest to reality. Second, the three models predict the
number of message copies fairly well. Third, the RWP model underestimate the
minimum delay path. This is because the RWP model has a very small mixing
time, which makes it likely that the message reaches its destination after only a
small number of hops. We argue that the H-model appears to predict the perfor-
mance of an epidemic dissemination protocol more accurately than other models,
which suggests that clustering and spatial heterogeneity are salient features of real
mobility scenarios that should not be abstracted away. However, we stress that this
evaluation is not exhaustive enough to conclude that the H-model is appropriate for
all scenarios of interest, and should be viewed as preliminary.

3.4 Conclusion

In this chapter we observe the following properties of realistic mobility scenarios:

• there exist CPs interspersed by low-connectivity region;

• the CPs are often not connected among each other, i.e., the network is often
partitioned;

• the CPs remain stable over relatively long time-scales.
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Based on these observations we devise two mobility models with the above men-
tioned model: the G-model and the H-model. The G-model is to be used to fit
data to a model. The H-model is for modeling actual movementsof nodes in the
network. Hence the H-model has many less parameters than theG-model and also
more realistic assumptions about nodes’ connectivity. We validate the H-model
by comparing its qualitative properties with a realistic mobility scenario. We find
that the H-model captures well the qualitative behavior of the realistic clustered
partitioned connectivity.
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Chapter 4

Collaborative Routing Methods

4.1 Introduction

In the previous chapter we observe realistic mobility data sets, and we model the
observed properties in the mobility with: i) a set of stable CPs interspersed by low-
connectivity regions, and ii) a process that describes how nodes move between
these CPs. In this and the next chapter, we design a routing algorithm for such
a mobility model. In particular, in this chapter we start with the G-model as the
one that gives us the essence of the problem abstracting awayall complexities of
the real mobility. Then, in the next chapter we consider the H-model with more
realistic connectivity assumptions.

In this introductory section, we first discuss the assumptions and the main is-
sues of the considered problem; then we explain the main ideas of our routing ap-
proach, and we review the remaining part of the chapter whichpresents the design
and evaluation of our routing algorithm.

4.1.1 Network Model and Assumptions

The network model is given by the G-model (Section 3.2). Let us recall the notation
and main assumptions. The network consists ofn nodes that move independently
on a CP graphG(V,E) (c.f. Figure 4.1) according to an identical mobility process.
The location of a nodei, Xi(t) ⊂ V ∪ φ, whereφ denotes an edge.Bi(t) denotes
the set of nodes that nodei can communicate with (either directly or through other
nodes). IfXi(t) = v thenBi(t) is the set of nodes at vertexv, and if Xi(t) = φ
thenBi(t) = {i}.

For our purpose of the design and analysis of a routing algorithm, we focus
on a Markovian process only. Specifically, we assume that each node performs a
random walk onG. We will see in the next subsection that the Markovian process
(a process where the future does not depend on the past, giventhe present), makes
the routing in the G-model even more challenging.

57
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vertex1
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Bi(t)
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5

4

Figure 4.1: Nodes move on a graphG(V,E), which describes the network topol-
ogy in terms of its CPs and the ways nodes can move between them.

4.1.2 The Routing Problem Issues

We focus on the unicast routing problem, where a source nodes wants to deliver
a messagem to a destination noded. Next we address the main issues of this
problem under our network model.

Assume thats originatesm at timet0. If nodess andd are at the same CP at
time t0, then there is an end-to-end route betweens andd at this moment, and m
can be delivered to noded “instantaneously” by forwardingm to the nodes along
this route. Thus, the routing problem in a connected portionof the network is
actually a problem for a node receivingm to decide to which of its local neighbor
to forwardm.

If nodess andd are not at the same CP at timet0 then there is no end-to-
end route betweens andd at this moment., andm can not be delivered to noded
instantaneously. However, as nodes move they can carrym from one CP to another
CP, andm can be delivered tod over time. This is so called store-carry-forwarding
or mobility-assisted forwarding.

In such partitioned networks, a node receivingm needs to decide not only to
which node to forwardm but it also needs to decide when to forwardm. Moreover,
in such networks there is another useful strategy beside forwarding. It is copying
m to another node instead of forwarding(i.e, a node still keeps m after sendingm
to another node). This strategy is beneficial because the several copies ofm have
a higher chance of findingd sooner than the single copy. Even in some mobility
scenarios, forwarding ofm could be useless, and the only possible approach could
be multi-copying, as appears to be the case in the G-model. Inthe multi-copy
approach an important decision to make for a node carryingm is when to discard
m. Thus, the routing problem in the partitioned network becomes a problem of
making the following decisions: i) whether to copy or to forward m, ii) when to
copy/forwardm, iii) to which node to copy/forwardm, and iv) when to discard
m. These routing decisions have to rely on opportunistic contacts and are therefore
subject to the dynamics of the network topology.

The design and analysis of routing algorithms for such partitioned networks is
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therefore more challenging and complex than for connected networks. The diffi-
culties arise also because we need to take into account more important performance
metrics in partitioned networks than in connected ones. In our analysis, we con-
sider the following performance metrics:

• transmission overhead- the total number of transmissions ofm until no
more copies ofm exist in the network, plus overhead due to control mes-
sages.

• delay - the period of time that elapses from the moments originatesm until
d receivesm;

• delivery rate - the probability thatm is delivered tod.

The goal is to minimize the transmission overhead and the delay, and to have the
delivery rate close to 100%. It is usually impossible to optimize all three metrics
at the same time, as these are opposite requirements. So, ourgoal is to achieve a
desirable trade-off between these metrics. In connected networks it is often enough
to optimize the transmission overhead only, whereas the other two are less critical.

4.1.3 Island Hopping (IH) Overview

Next we discuss the possible routing approaches under the G-model, and then we
give the main ideas behind our routing algorithm called Island Hopping (IH).

We find that only the multi-copy approach can work under our model, i.e. any
forwarding ofm under the our model is useless. This is because of the Markovian
property of the model. An informal proof of this fact follows. Under the G-model,
a node can forwardm only to nodes that are at the same CP. If two nodes are at
the same CP then the future movements of these two nodes are statistically equiv-
alent, because these movements depend only on the current location. So, if a node
forwardsm to any other node, then the delay remains the same, but the transmis-
sion overhead increases for one transmission. Thus, any forwarding of messages is
useless under the G-model with the Markovian mobility process.

Hence, we focus on multi-copy schemes only. Under the G-model, a node can
make a copy of a message only to nodes located at the same CP. Asthe future
movements of all nodes at the same CP are statistically equivalent, then it is ir-
relevant to which nodes at the CP a messagem is copied, i.e., no statistics about
the past nodes’ movements can help in choosing a set of suitable relay nodes from
the nodes at one CP. But, there is a value in statistics about the past mobility for
making decisions of when to copym to other nodes, i.e., at which CP to copym.
In other words, it is worth it for a node carryingm to use the past mobility infor-
mation in order to decide in which CP to make copies ofm, but it is not worth it to
use the past mobility information for deciding to which nodes at a CP to copym.
This means that the only decision that a node can make using mobility statistics is
when to make copies ofm, more precisely, at which CP to make copy ofm.
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In our IH approach, nodes use statistics about past mobilityin order to decide
at which CPs to make a copy ofm. In particular, the nodes collectively learn the
CP topology and collectively estimate the location of the destination noded. Then
the nodes exploit this knowledge to move a message through a sequence of CPs to
the CP where noded is located. Each CP represents an opportunity to make new
copies ofm. Our idea is to make copies only in those CPs that movem closer tod
in the CP graphG(V,E).

The key question is how to pass a message from one CP to the nextCP through
nodes whose future movements are random and unpredictable,and moreover through
nodes whose future movements are statistically equivalent. If the future movements
of nodes were known, we could passm to a single node at the CP that would move
m in the right direction, i.e., to a CP closer to the destination in G(V,E). If the
future movements of nodes were statistically different, then we could choose a set
of nodes at the CP that are more likely to move in the right direction. However, in
our model, IH can only make a number of copies of a message at each CP, in the
hope that at least one copy will move to the intended next CP. And the other copies
that move to non-intended next CP are discarded. The processrepeats at the next
CP, until the message reaches its destination.

The key challenges are (i) not to lose the message completely, and (ii) to avoid
that an unnecessarily large number of copies are generated.We observe that it is
worth it to use additional statistics about the past copyingof m to address these
challenges. For example, if a node knows thatm is already copied at a CP, then
the node may decide not to make additional copies into this CP. This could be
beneficial because oncem reaches the next intended CP it is not useful to make
more copies in the previous CPs that are thus further fromd in G(V,E).

For simplicity of presentation, we first describe the IH algorithm in Section
4.2 assuming that the CP graph, and node positions on the graph, are known. In
Section 4.2 we also show how nodes can estimate the destination location in the
CP graph. In Section 4.3, we describecollaborative graph discovery (COGRAD),
a distributed algorithm that infers the CP graph from each node’s dynamic neigh-
borhood set. This allows the IH algorithm to operate withoutany explicit clue to
nodes about their location and movement. In Section 4.5, we show extensive sim-
ulation results on synthetic graphs. We show that our IH algorithm in conjunction
with COGRAD results in a scheme that achieves delays of the order of much more
aggressive flooding-based schemes and requires a much smaller number of copies
of each message. In Section 4.6 we conclude the chapter.

4.2 Island Hopping (IH)

Island Hopping (IH) is a mobility-assisted routing algorithm in which a node makes
routing decisions, i.e., when to pass a copy of a message to other nodes and when
to discard it, by using the knowledge of:

1. the CP graph, and its own position in that graph, and
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2. the destination’s position in the CP graph.

We describe here IH assuming that this knowledge is available to the nodes. We
first show the main ideas of the algorithm under the further simplifying assumption
that nodes know the position inG of a message’s destination. We then show how
nodes can locate the destination. Last, we give a formal description of our IH
algorithm.

4.2.1 Message Progression Towards a Fixed Destination

Our IH scheme uses the following three ideas, which we illustrate in Figure 4.2.

Routing a Message through a Sequence of CPs

Assume that a nodei, currently located at vertexu ∈ V , has a messagem with
destination noded located at vertexw ∈ V . The key is for nodei to decide which
vertexv should be the next hop inV for messagem in order to make progress
towards the destination. This desired next hopv is stored in the message in the field
m.next hop. We choose this next hopv as a neighboring vertex on the shortest
path between verticesu andw in the CP graph.

The next move of nodei is in general not yet known. If nodei happens to move
to the desired next hopv, then nodei keepsm, and generates new copies in other
nodes. If nodei moves to another vertexv′ 6= v, nodei discardsm.

In Figure 4.2(a), nodes at vertex1 originates a messagem to noded at
vertex 4. Noded makes several copies ofm with m.next hop := 2. Figure
4.2(b) shows what happens when these copies move to neighboring vertices. The
node with the copy that moves to vertex3 discardsm becausem.next hop 6= 3,
whereas the node with the copy that moves to vertex2 makes new copies ofm
with m.next hop := 4. This process continues until the message reaches noded
at vertexw.

At Least One Copy Moves to the Next-hop CP

If none of the copies of messagem move tom.next hop, then all these copies
of m will be eventually discarded, andm will be lost. To boost the probability
that at least one copy ofm progresses towards the next-hop vertex, we introduce a
“one-hop” acknowledgement (ACK) scheme. The goal of this scheme is to piggy-
back one-hop delivery information about messagem through nodes moving in the
reverse direction, and to generate additional copies if needed.

Assume that there exist copies ofm at vertexu with m.next hop = v. Nodes
at vertexu should be informed when a copy ofm has reachedv. When a node
with m arrives atv, it broadcasts this fact to all nodes atv. If one of these nodes
then moves tou, it broadcasts an ACK form. All nodes atu can then discardm.
But if a node atu holding m has not received an ACK by the time where only a
small numberc1 of copies ofm are left, it generates additional copies ofm. This
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process repeats for at mostc2 times. How many copies ofm are left in a vertex can
be found by a node in the following way. When copies are made ata vertex, every
node remembers the set of nodes at the vertex. As the set of nodes at a vertex is
proactively maintained through the vertex labeling algorithm, then a node can find
out how many ofm are left in the vertex by comparison with the remembered one.

In Figure 4.2(b), a node withm moves from vertex1 to vertex2, where it
generates new copies, and broadcasts to all nodes the identity of m. In Figure
4.2(d), one of these nodes arrives at vertex1 and broadcasts an ACK form. Then
all copies ofm at vertex2 are discarded.

Only One Copy Survives to the Next-hop CP

If more than one copy ofm with m.next hop = v moves into vertexv, then new
copies ofm can be generated atv several times. This could lead to an exponential
increase of the number of copies. We include a mechanism to suppress additional
rounds of copying. If nodei moves tov, it makes new copies only if none of the
nodes currently atv have seen an earlier copy ofm arrive atv.

Figure 4.2(c) shows what happens when a second copy ofm arrives at vertex
2 from vertex1. Even if m.next hop = 2, the copy is discarded, becausem has
already been at vertex2.

4.2.2 Dynamically Locating Destination through Last Encounter Rout-
ing

So far, we have assumed that the location of the destination is fixed and known to
the message, which is unrealistic. To discover the locationof the destination of a
message, we cannot resort to the classical methods such as flooding, because the
network is partitioned.

To solve this problem, we borrow an approach from [GV06] called Last En-
counter Routing (LER), where a node maintains a Last Encounter Table (LET),
with an entry for every other node. An entry consists of the time and location of its
last encounter with the node. In [GV06], the location of the node is its geographic
location. We adapt this to our setting, where the location oflast encounter is a
vertex: each node remembers for each other node the last timethey were located
at the same vertex, and therefore connected.

The LETs are used by a message to continually obtain more recent information
about the location of the destination, as follows. Assume again that a nodei at a
vertexu has a messagem destined for a noded. As we saw in Section 4.2.1, node
i needs to determine the next-hop vertex form. Before doing so, nodei searches
all nodes atu for the most recent LET entry for noded. This location is then used
as an estimate of the position of noded to determine the next-hop vertex. The
message remembers this estimate in a fieldm.le. As the message gets closer, it
tends to find more recent information, “zeroing in” on the destination.
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64 CHAPTER 4. COLLABORATIVE ROUTING METHODS

Using the oracle knowledge aboutG and the destination location inG, IH
tightly controls copying of a message in CPs en route, immediately killing any
message that strays from the shortest path towards the destination. Using the LER
approach to estimate the destination location inG, IH will make copies in CPs that
stray from the shortest path, but it tends to be close to it.

4.2.3 The IH Algorithm - Formal Description

Terminology. The header of messagem consists of the fields shown in Table 4.1.
Them.cid field is needed to differentiate between different copies ofa message,
and it consists of the time and location when the copy is made.The one-hop ACK
of messagem is denoted asACK(m).

Table 4.1: Header of a messagem
m.src source address
m.dst destination address
m.id message identifier
m.le = {time, location} the most recent LE data form.dst

m.next hop next-hop vertex
m.cid = {time, location} copy identifier

Nodei stores messages in amessage tableMi. While nodei is at vertexv, it
stores in avisiting tableVi the set of pairs(m.id,m.cid) of messages that visitv
and havem.next hop = v. As we saw above every node has a LET. The entry in
the nodei’s LET for nodej is denoted asi.le[j].

The primitivebroadcast(m) at vertexv transmitsm to all nodes at vertexv,
andcopy(m) at vertexv passes a copy ofm to a numbernc of nodes at vertexv.
The primitivesearch(m) at a vertexv consists of: 1) checking ifm was atv, and
2) if it was not, searching for the most recent LE data form.dst and updating the
visiting tables (Vj = Vj ∪ {(m.id,m.cid)}, for all j ∈ Bi(t)). Messagem was at
v if (m.id,m.cid) ∈ Vj, for anyj ∈ Bi(t). The result of this primitive is: (m was
at v) or (m was not atv; andbest le = most recent{m.le, j.le[m.dst]}, for all
j ∈ Bi(t)).

The functionnext hop(x, y) is the first vertex on the shortest path between
the verticesx andy in the nodei’s view of the CP graphGi(V,E). If there are
several shortest paths then one path is randomly chosen.

The IH algorithm. A node runs the IH algorithm when it originates a message,
when it arrives from an edge to a vertex, when it is at a vertex and a node leaves
its neighborhood, and when it receives an one-hop ACK (Algorithms 3, 4, 6, and
5, respectively).

Algorithm 3: IH: node s originates messagem for node d



4.2. ISLAND HOPPING (IH) 65

1 Put the following header: m.src = s, m.id = id, m.dst =
d, , m.next hop = ∅, m.le = ∅, m.cid = {tnow, Ys(t)}.

2 If Ys(t) = φ /* nodes at an edge */
3 Ms = Ms ∪ m
4 Else /* nodes at a vertex */
5 Nodes runs Algorithm 4 (from step 3) form
6 End if

Algorithm 4: IH: node i arrives at vertex v

1 For every (m.id,m.cid) ∈ Vi if m.cid.location = v then
broadcast(ack(m)).

2 Vi = ∅.
3 For everym ∈ Mi

4 If m.next hop = ∅ thenm.next hop := v.
5 If m.dst ∈ Bi(t) then
6 Sendm to nodem.dst; Mi = Mi \ m
7 ElseIfm.next hop 6= v then
8 Mi = Mi \ m
9 Else
10 search(m)
11 If m was atv then
12 Mi = Mi \ m
13 Else
14 m.le := best le,

m.next hop:=next hop(v, best le.location),
copy(m).

15 End if
16 End if
17 End for

Algorithm 5: IH: node i receivesACK(m)

1 If m ∈ Mi thenMi = Mi \ m.

Algorithm 6: IH: node i at vertex v sees that nodej leaves vertexv

1 For everym ∈ Mi

2 If copy(m) at v happens more thanc2 times
3 Mi = Mi \ m
4 Else
5 If less thanc1 nodes atv havem thencopy(m).
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6 End if
7 End for

4.3 Collaborative Graph Discovery (COGRAD)

We now specify howcollaborative graph discovery (COGRAD)infers from changes
in neighborhood sets the CP graph in a distributed way, without any other signal
from the environment. This is important, because it would beunrealistic to assume
that the graph of CPs and the flows of mobile nodes between CPs is known a priori.
Instead, we assume that the only information that nodes haveavailable is the set of
other nodes that they can reach (either directly or over multiple hops), which can be
discovered in a straightforward manner (hello messages, flooding, etc.).Note that
a single node would obviously be unable to find out anything about the network
topology; a COGRAD protocol is necessarily collaborative.

More formally, the only input information available for COGRAD to nodei at
time t are:

• Bi(t) - the set of neighbors of nodei at timet, i.e., the set of nodes in the
connected component (cluster) where nodei is;

• Yj(t
−) for everyj ∈ Bi(t) - the values of labels of all nodes in the cluster

where nodei is at the time instant before timet (denoted ast−).

We assume that nodei knows this information at every continuous timet. As a
consequence of this assumption, we assume that every node instantaneously sees
any change in its neighborhood, i.e., only one node can leaveor join the node’s
neighborhood set at timet. The goal of COGRAD is that every nodei learns in a
distributed way following information:

• the CP graphG(V,E), and

• the current position of nodei, Xi(t), at all timest.

The COGRAD algorithm achieves this in two phases: vertex labeling and edge
discovery. We next describe these two algorithms.

4.3.1 Vertex Labeling

The goal of this phase is to generate a label, i.e., a unique identifier, for each ver-
tex of V , which will remain stable over time, even though nodes move in and out
of each vertex. The idea is that nodes first decide whether they are currently at a
vertex or at an edge; and then if they are at a vertex, they decide on a label for the
vertex. Nodes make these decisions in a distributed way by looking at how their
neighborhood sets change over time. Suppose that at a given time the nodes cur-
rently located at the same CP agree on a label for this vertex.Now another node
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i arrives at this vertex. Nodei has not received any explicit clues from the envi-
ronment that it has moved, and the other nodes have not received a clue that they
have not moved. However, nodei’s set of neighbors has changed rather markedly,
whereas the other nodes’ neighbor set has only seen the addition of i. These nodes
can therefore decide jointly that it is likely that nodei has moved, and the other
nodes have not; nodei therefore accepts the label of this vertex.

Under the G-model, it is easy to decide for a node whether it isat a vertex
or at an edge. If the node has more than one node in its neighborhood set then it
is certainly at a vertex. Under the assumption of the instantaneous neighborhood
discovery primitive it is also not difficult for nodes at a vertex to decide on a label.
At the startup, nodes that are at a vertex agree on a label for this vertex, e.g., by
taking a random number from a large alphabet, or by taking theminimum node
identifier of nodes at the vertex. This ensures an initial setof unique vertex labels.
Once a vertex is labeled, then a node that comes into the vertex simply accepts
an existing label. The only ambiguity there could be in this labeling process is
when there is only one node left at a vertex. Then this remaining node erroneously
decides that it is at an edge. Then this vertex is relabeled the next time there are
two nodes at the vertex. We call this a relabeling error.

Although these errors can occur in the labeling process, this does not affect
the performance of the routing algorithm if the errors occurrarely, as we will see
through simulation studies in Section 4.5. In order to ensure that the relabeling
errors occur rarely we set up a thresholdh for a required number of nodes at a
vertex for which the nodes at the vertex are allowed to associate a label with the
vertex. In this way, vertices that most of the time have less thanh nodes obtain
labels only rarely. Thus, the goal is that vertices with a small number of nodes
does not get a label at all, because there is a large probability for these vertices to
stay with only one node or to become empty. In Section 4.4 we explain in more
details how to set up this parameter. In Figure 4.3 we show howthe vertex labeling
algorithm works on an example withh = 3. We focus on one vertex. At the
beginning, the nodes at the vertex do not have any labels. When there are at least
three nodes at the vertex they obtain a random label5 (cf. Figure 4.3(b)). When a
node comes into the vertex it obtains the same label5 (Figure 4.3(c)). The vertex
looses its label5 when only one node stays at the CP (cf. Figure 4.3(f)).

Next, we formally define the vertex labeling algorithm. Every nodei maintains
a variableYi(t), which is eitherYi(t) = φ if nodei thinks that it is en-route between
CPs at timet or Yi(t) = y if node i thinks that it is at the CP with labely. In the
former case we say that nodei does not have any label, whereas in the latter case
we say that nodei has labely. The goal of the vertex labeling algorithm is therefore
that every nodei decides onYi(t) at every timet.

From the data ofYj(t
−), j ∈ Bi(t) nodei computes:Y (t−) = φ if every

Yj(t
−) = φ or Y (t−) = y if at least one ofYj(t

−) = y. Note that in our algorithm
it is not possible to have different labels amongYj(t

−). Then, nodei runs Algo-
rithm 7) with the input(Bi(t), Y (t−)) to get the outputYi(t). Note that all nodes
in a cluster must have the same label, because all nodes in this cluster obtain the
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same information from the neighbor discovery protocol.

Algorithm 7: Vertex Labeling Algorithm - Input: (Bi(t), Y (t−)), Output:
Yi(t).

1 If |Bi(t)| = 1 then /* nodei alone */
2 Yi(t) = φ /* edge */
3 Else /* nodei is at a CP */
4 If Y (t−) = φ then /* no nodes with a label */
5 If |Bi(t)| ≥ h then /* at leasth nodes at the CP /*
6 Yi(t) =random /* a new label */
7 Else /* less thanh nodes at the CP */
8 Yi(t) = φ /* no label */
9 End if
10 Else /* nodes already have a label */
11 Yi(t) = Y (t−) /* keep current label */
12 End if
13 End if

4.3.2 Edge Discovery

As a node moves on the graph, it observes the label of every vertex it visits, as
described in the previous section. If a node moves directly from vertexu with
labelyu to vertexv with labelyv, then this indicates the existence of a labeled edge
(yu, yv), and we say that the nodedirectly observesthis edge.

To discover the edge setE, it would be possible for each node to rely only
on its own observations of the edges it traverses. However, this approach has the
following drawbacks. First, if node mobility is such that a node does not visit the
entire graph, then this node will never discover some parts of the graph, which can
result in poor forwarding decisions. Second, even if a node moves over the entire
graph, the discovery process would be rather slow, and the transient time (until
every node knows most of the CP graph) would be excessively long.

We therefore would like to accelerate the dissemination of edge information to
allow every node to learn the entire graph. One approach is for nodes to exchange
labeled edges through a gossip protocol. This allows nodes to learn the entire CP
graph more quickly.

Note however that a node’s view of the CP graph may change overtime because
of relabeling errors. If the label of a vertexu changes fromyu to y′u, then all edges
with label yu become obsolete. We use an aging mechanism to eliminate such
obsolete edges.

More precisely, in our gossiping scheme, nodei’s view of the CP graph,Gi,
is represented by the set of pairs(e, tobs), wheretobs is the time when edgee was
directly observed. Nodei has edgee in Gi either if it has directly observede, or if
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Figure 4.3: Vertex Labeling - example forh = 3. Evolution of a vertex over time,
where each subfigure shows the vertex before labeling (up) and the vertex after
labeling (down).
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Figure 4.4: Edge Discovery - an example: a) CP graphG - Nodesi andj move
on the CP graph; b)Gi(t = 3), before gossiping; c)Gj(t = 3), before gossiping;
d) Gi(3) = Gj(3), after gossiping. Note that only nodesi andj are shown, we
assume there are a number of nodes in each vertex.

it has receivede through gossiping from other nodes. Every node, upon arrival at
a vertex, gossips a constant number (ne) of randomly chosen entries(e, tobs) from
its view of the graphGi to all nodes at this vertex. Therefore, nodei updatesGi

either when it directly observes an edge, or when it receivesa gossip message from
another node. When nodei directly observes edgee at timet, it adds(e, t) to Gi

and deletes the old entry fore from Gi if it exists. When nodei receives(e, tobs)
through gossiping, it does the following. If it does not havean entry fore in Gi

yet, then it adds(e, tobs) to Gi. If it already has an entry fore, (e, tiobs), and if
tobs > tiobs, then it replaces(e, tiobs) in Gi with (e, tobs).

In addition to the process of learning edges, a node removes an edge from its
cache if the edge grows too old. More precisely, a node removes entry(e, tobs) from
its graph at timetobs + Tage, whereTage is a fixed constant for all nodes. Figures
4.4 and 4.5 show examples of this process of the nodes’ learning and forgetting
edges of the CP graph.

4.4 Operation of IH and COGRAD

So far, we have described the IH algorithm as operating on topof an oracle that
reveals to every node the CP graphG and the node’s position onG. We now
describe how IH operates on top of COGRAD, where the CP graphG, and each
node’s position onG, are obtained through COGRAD. Thus, the performance of
IH depends on how successfully COGRAD infers the required knowledge.
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Figure 4.5: Edge Discovery - an example: a) CP graphG - Vertexy looses its label
at t = 3, and nodek moves on the CP graph; b)Gk(t = 5) (note thatGi(5) =
Gj(5) = Gi(3)) before gossiping; c)Gi(5) = Gj(5) = Gk(5), after gossiping;
d) Gi(t = 7) = Gj(7) = Gk(7) if Tage = 5, e) Gi(t = 7) = Gj(7) = Gk(7)
if Tage = 10. Note that only nodesi, j andk are shown, we assume there are a
number of nodes in each vertex except vertexy which is empty.
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Figure 4.6: COGRAD - Impact ofh: a) CP graphG b) Gi, for h = 2; c) Gi, for
h = 4; d) Gi, for h = 6.

4.4.1 Impact of COGRAD on IH

The operation of COGRAD depends heavily on its parametersh and Tage. A
nodei’s estimateGi of G can look very differently for different values of these
parameters, as we see on the examples in Figures 4.5 and 4.6. Figures 4.5(d) and
4.5(e) showGi for different values ofTage. And, Figure 4.6 showsGi for different
values ofh.

We may think that the optimal values ofh and Tage are those that give an
estimate closest toG. We saw that given the perfect knowledge ofG and the
destination location inG IH tightly controls copying of a message en route, thus
immediately killing any message that strays from the shortest path towards the
destination. But, this is not necessarily the best estimatefor operation of IH. To ex-
plain this, let us first see what errors can appear and how theyaffect IH. First, there
could be missing vertices or missing edges. This may lead to less efficient routing
decisions in IH. That is to say, IH may make copies of a messagein CPs along a
much longer route than the one that would be taken if these vertices and edges were
not missing. This increases both the delay and the transmission overhead. If there
are many missing edges, then this may result in the inabilityof nodes to find a path
towards the destination and as a consequence of this the message is dropped and
not delivered to the destination. Second, there could be obsolete edges inGi with
labels that do not exist any more. Because of this, nodes can choose as the next



4.4. OPERATION OF IH AND COGRAD 73

hop for a message a label that does not exist any more. In this case, the message is
also dropped and not delivered to the destination. The latter error is a more serious
one as it immediately leads to a drop of a message. Now let us explain whyh = 2
is not better thanh = 4 in the example from Figure 4.6 thoughGi looks exactly
the same asG for h = 2. This is because vertices with labelsx andz have a small
number of nodes, and thus there is a high probability that labelsx andz will be-
come obsolete soon. Therefore, it would be better that labelsx andz are not given
at all. Thus, a smart set-up of the COGRAD parameters is necessary in order that
COGRAD give to IH such knowledge that makes IH perform well.

4.4.2 How to Set up COGRAD Parameters?

As we have seen an obsolete edge is more harmful for IH than a missed edge. So,
we would like to set up the parameters such that it rarely happen that an obsolete
edge is in a nodes’ cache. But, as we want this and as we do not want that a node
misses many edges of the CP graph as well, we want to find the smallesth and the
largestTage as possible.

We observe that there is a relation between the parametersh andTage for which
IH performs well. This relation allows us to set uph, givenTage. Then, we set up
an appropriate value forTage with help of simulations. We do not make an effort
to calculate it analytically. One reason for this is that in Chapter 5 we design a
COGRAD scheme, which can adaptively estimate this value. Another reason is
that additionally we modify IH such that the modified scheme relaxes the necessity
for a quick removal of obsolete edges, i.e., for a small valueof Tage.

Next, we determine a desirable relation betweenh andTage such that IH works
well. We find first a relation betweenTage and a desirable frequency of relabeling
errors1τerr. Then, we find a relation between this frequency andh. Finally, we
set uph as the minimum value that ensures that the frequency of relabeling errors
is less than1/τerr.

ParameterTage and Frequency of Relabeling Errors1/τerr

As we have seen an obsolete edge is more harmful for IH than a missed edge. An
obsolete edge can appear in a node’s cache either because of achange in the CP
graph itself or because of errors in COGRAD. Here, we consider that the CP graph
is fixed, and obsolete edges appear because of errors in COGRAD, i.e., because
of the labeling process of COGRAD when a label stops to exist.Note that the
same holds if a vertex in the CP graph is deleted. Thus, obsolete edges appears in
nodes caches’ whenever a label dies, i.e., obsolete edges appear as frequently as
relabeling errors happen.

We expect that IH works well if the percentage of time that nodes have obso-
lete edges in their caches is much less than the time that their caches are free from
obsolete edges. Let us denote the period of time during whichan edge stays in
the nodes’ caches as a “staleness” period. Therefore, it would be desirable that the
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period between two consecutive relabeling errors at a vertex is much larger than
this staleness time, i.e., thatτerr is much larger than the staleness time. For our
purposes we relax this requirement. We require thatτerr be at least a maximum
possible staleness time. It appears that this value is good enough because we ad-
ditionally modify IH to be able to handle some percentage of errors in COGRAD.
The staleness time can be at mostTage, because edges older thanTage must be
removed. Thus we set uph such that the desirable frequency of relabeling errors is
1/Tage, i.e., we set uph such that the period between two consecutive relabeling
errors at a vertex is at leastTage on average.

The Parameterh and Frequency of Relabeling Errors1/τerr

We calculate here analytically how to set uph such that we obtain a desirable
frequency of relabeling errors1/τerr. To simplify our analysis, we look at the
evolution of a single vertex. We assume that nodes arrive andleave this vertex
according to a random process, where arriving nodes do not have any labels. We
apply the labeling algorithm described above on this singlevertex. Depending on
how the number of nodes in the vertex fluctuates, the vertex isa CP with a label for
some time, then it loses the label and is not a CP for some time,then it generates
a new label, and so on. The vertex loses its label when there isonly one node
left, and after that the vertex gets a new label when the number of nodes ish. We
show this in Figure 4.7, where we denote asTCP the time the cluster is a CP and
Tnon−CP the time the cluster is not a CP. Hence, we want to find the minimum h
such thatE[TCP + Tnon−CP ] ≥ τerr.

CP:35 CP:57

tof nodes
Number

TCP Tnon−CPTCPTnon−CP

Figure 4.7: Evolution of the labeling process of a cluster.

We model the vertex with anM/M/∞-queue, where nodes arrive according
to a Poisson process with arrival rateλ, and every node stays for an exponentially
distributed time with meanµ−1. The mean number of nodes at the cluster is de-
noted byρ = λ/µ. Let the Markov processNt ∈ {0, 1, 2, . . .} denote the number
of nodes at the cluster at timet.

Let
Da(b) := inf{t > 0 : Nt = a|N0 = b}

denote the first passage time of statea from stateb. Then, the value of interest for
us is an expected value ofD := TCP + Tnon−CP = D1(h) + Dh(1). Therefore,
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we search for the minimumh such thatE[D] ≥ τerr for every value ofλ andµ.
Using the following results [RMvdB06]:

E[D1(h)] =

h−1∑

k=1

1

λ

∞∑

j=k+1

k!

j!
ρj−k

E[Dh(1)] =

h−1∑

k=1

1

λ

k∑

j=0

k!

j!
ρj−k,

we find:

E[D] =
eρ

λ

h−1∑

k=1

k!

ρk
.

Thus, we need to find the minimumh such that

Fh(ρ) = eρ
h−1∑

k=1

k!

ρk
≥ λτerr for everyρ.

Because it is impossible to find this analytically, we plotFh(ρ) for the fixed
values ofh = 10, 12, . . . , 20 (c.f. Figure 4.8). We see thatFh(ρ) givenh has one
minimum over allρ. Let us denote this minimum asFmin

h . Thus for any parameter
settings, it holds thatE[D] ≥ Fmin

h λ. For each value ofh, we find thisFmin
h

numerically by findingρ for which dFh(ρ)/dρ = 0 and plugging it intoFh(ρ).
Then, in Figure 4.9, for eachh we plot the value ofE[D] normalized with respect
to λ (ns = Fmin

h λ) that can be achieved under any parameter settings. Figure 4.9
allows us to find a proper value ofh that ensuresE[D] is larger than the required
valueτerr. We use this figure to properly set up the parameterh given the required
τerr = Thold−on.

ParameterTage

Though it may be possible to calculate analytically this value under the G-model,
we rather find an appropriate value through simulations. Onereason is that in
Chapter 5 we design a COGRAD scheme under more realistic assumptions, which
can adaptively estimates this value. This adaptive COGRAD scheme sets up an
appropriate value ofTage by estimating it in a distributed way. Thus this scheme
adapts the value ofTage to the CP graph topology and the nodes’ mobility. The
other reason is that we additionally modify IH such that the modified scheme re-
laxes the necessity of a quick removal of obsolete edges.

4.4.3 IH with COGRAD

As we saw in Section 4.2, a nodei located at vertexu chooses the next hop for a
messagem with the destination atw as the next vertex on the shortest pathu → w
in its view of the CP graph. We have not specified which next-hop is chosen from
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several of the shortest paths, and thus several possible next-hops, exist. In this case,
we use the age of edges obtained by COGRAD in the edge discovery part to choose
between these possible next-hops. We choose the next-hop with the smallest age of
its incoming edge fromu, i.e., the vertexv whose entry((u, v), t) is most recent.

We discuss two other conditions that can arise in IH due to errors either in the
underlying graph discovery algorithm or the locating of thedestination. The first
situation arises when nodei makes the next-hop decision for a message, but cannot
find a shortest path tow. This can happen when ini’s view of the graphGi, (i) w
is not known, or (ii) a pathu → w does not exist inGi. The second situation arises
when the destination location (obtained by the last encounter tables as described in
Section 4.2) is the current node’s locationu, but the destination is elsewhere.

We resolve these situations as follows. The node keeps the message with set-
ting m.ttl = nh, and waits until it moves to another vertexv. There, it then tries
again to find a next hop. If it does not succeed, it decrementsm.ttl; and if it suc-
ceeds, it setsm.ttl = nh. Allowing copies of a message to live for a number of
hops (nh > 1) until they move to the intended next CP makes IH more robust to the
changes in the CP graph compared to the case where copies can live only one hop
(nh = 1) until they move to the next intended CP. To observe this, seethe scenario
shown in Figure 4.10 where an edge56 − 95 becomes obsolete. Assume that the
node shown in vertex56 still thinks that this edge exists. Then, this node might
choose vertex95 as the next hop for a messagem. If the node discardsm imme-
diately when it moves to a vertex that is not the intended nexthop, thenm would
be lost. But, if the node still keepsm for several hops (nh > 1), thenm would
have a chance of reaching the desired vertex95. Note that this modifications of IH
does not incur any additional transmission overhead, however it increases memory
consumption. We find this as not much of drawback, because oneassumption of
our work is that memory is chip and not scarce resource.

There are still some rare situations in which the IH algorithm does not succeed
in delivering a message to the destination. These are: (i) when none of the message
copies reach the intended next hop within thenh traversed hops, (ii) when a CP
disappears, but a node still keeps obsolete edges of this CP in the node’s view ofG,
(iii) when a CP changes its label due to the imperfection of the labeling algorithm
and does not learn edges with the new label yet but keeps obsolete edges with the
old label, and (iv) if a node can not determine a next hop for a message because
of the reasons explained above within thenh traversed hops. In order to keep IH
fairly simple and as the performance of our algorithm is onlyslightly worsened due
to these rare situations as shown in Section 4.5, we do not tryto make IH robust to
them.

Our IH scheme of the shortest path routing in the CP graph topology optimizes
the transmission overhead but does not take into account thedelay. This may not be
an optimal solution in some applications. For example, another approach would be
to estimate the delay between two neighboring CPs, and then to find the shortest
route in the CP graph with the cost of edges equal to this estimated delay. This
would minimize the delay of the scheme. What is better depends on an application
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and a mobility process.
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Figure 4.10: CP graph: (a) the view of the red node (b) real.

4.5 Performance Evaluation

In this section, we evaluate the performance of the IH algorithm, both in combina-
tion with an oracle that reveals the true vertex or edge identity to each node, and in
combination with the COGRAD algorithm that discovers the CPgraph and node
locations from each node’s neighborhood setBi(t), as described in Section 4.3. For
this purpose, we developed a custom simulator implementingthe CP graph-based
mobility model, and the IH and COGRAD algorithms.

We compare our algorithm with ER [VB00] and PROPHET [LDS03b]. We
also compare the delay of our algorithm with the scheme wherea source transmits
a message only to the destination (no routing algorithm is used). We denote this
scheme as “no R”. In addition, we evaluate how our algorithm depends on the
various parameters.

4.5.1 Simulation Set-up

The nodes’ mobility model is the G-model (described in Section 3.2). More pre-
cisely, we letN = c|V | nodes perform independent random walks on a graph,
with c > 0 a parameter controlling the mean number of nodes per vertex.Note that
the random walk is the most challenging mobility process forour purposes, for the
following reason. When a node performs a random walk, its future movements are
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independent of the entire past. In other words, even if a nodeaccumulates statis-
tics about its past movements, this will not help predict thefuture. As such, all
the nodes located at a vertexv at a given timet are statistically equivalent, and no
information about the past (e.g., keeping track of when a node has last seen the
destination, as in PROPHET) can be used to predict where a node will go in the
future.

The location of a node is either a vertexv ∈ V (which implies that the node
can communicate with all other nodes currently located at the same vertexv), or
an edgee = (u, v) ∈ E (which implies that the node is en route from islandu to
islandv, and is not able to communicate with any other node). Each node spends
an exponentially distributed time with meanTV at a vertex, and an exponentially
distributed timeTE at an edge, where we setTV = 10TE . All the delay results
we report, as well as all time scales, are normalized by setting TV + TE = 1, i.e.,
we normalize to unity the average speed at which a node advances from vertex to
vertex.

We present simulation results for both synthetic topologies and for the city
traffic topology we have inferred in Section 3.2.1. The synthetic topologies we use
are:

• the 2-dimensionalk × k grid, where we varyk from 3 to 9, i.e., |V | =
9, . . . , 81,

• the regular random graph - a random graph where each vertex has the same
degreer, with r = 4 and with different number of vertices|V | = 9, . . . , 81,

• a diverse degree graph - a random graph with|V | = 100, where we divide
vertices into ten groups with ten vertices of the same degreein each group
and where we vary degrees of vertices from1 to 10.

The more challenging CP graphs for our algorithm are those with the vertices
having the diverse degrees. The reason is that in graphs where vertices have ap-
proximately equal degrees, the mean number of nodes per vertex is approximately
equal toc for all vertices. Because of this, ifc is large enough then all vertices will
be well populated with nodes, and thus they will be stable CPs, which is easier for
our IH algorithm to perform well. Hence, in our simulation results we include both
types of graphs: those with evenly distributed degrees of vertices (the grid graph
and the regular graph) and those with diversely distributeddegrees of vertices (the
city graph and the diverse degree graph).

So far, the only assumption we make about the set of nodes within a same CP
is that each node can reach the other nodes (either because they are in direct radio
range of each other, or because they can form a connected ad hoc network). How-
ever, for the purpose of simulations we assume for simplicity that nodes within a
CP are directly connected. This assumption is favorable forboth our algorithms
and for the epidemic-based algorithms ([VB00],[LDS03a]) we compare with, be-
cause it makes it possible to transmit a message to all nodes at a CP in a single
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broadcast. If nodes at a CP were not directly connected, thenthe broadcast func-
tion would have to be replaced by a flooding primitive.

Each simulation we report is preceded by a warm-up phase thatis needed to
populate the last encounter tables (LETs). The warm-up phase terminates if 80%
of the node pairs have encountered each other at least once; note that this is con-
servative in that the LE tables are asymptotically fully populated.

Other fixed parameters in our simulations are:c1 = 3 andc2 = 2 in IH (defined
in Section 4.2), and the maximum number of transmissions of amessage allowed
that one node performs in ER and PROPHET is set to1000.

4.5.2 Performance Metrics

We use the following metrics:

• delivery rate - the number of messages delivered divided by the total number
of messages sent by sources

• delay - the normalized delay for the delivered messages

• number of transmissions per message- the number of times a message is
transmitted until there are no more copies of this message inthe network.

We compute these metrics by averaging over a number of randomly chosen
source-destination pairs, where for each pair a source sends a single message to its
destination. In simulation results we show the mean values of these metrics with
95% confidence intervals.

Note that the number of transmissions per message includes only the transmis-
sions of actual messages, not the control messages generated by IH and COGRAD.
We justify this as follows. First, in the IH algorithm, control messages result only
when a traffic message is to be transmitted. Therefore, the IHcontrol overhead
should be considered relative to the overhead to transmit messages. Usually, data
messages tend to be orders of magnitude larger than control messages. This is in
compliance with the proposed architecture for delay tolerant networks in [Fal03].
Therefore, the IH overhead per data message can be neglected. Second, in the
COGRAD vertex labeling algorithm, control overhead accrues when a node dis-
covers its neighborhood setBi(t), and this type of control overhead is also present
in ER and PROPHET. Third, in the COGRAD edge discovery algorithm, control
overhead accrues when a node arrives at a vertex and broadcasts a small num-
ber of edges. In comparison, ER and PROPHET exchange a summary vector and
predictability vectors respectively, whenever a node meets a new node, which in
our setting means the broadcast of these vectors per each node’s arrival at a ver-
tex. Therefore, the control overhead in our scheme is comparable to that in ER or
PROPHET, and low when compared to data messages - except whenthe network
is very lightly loaded. Hence, we consider only traffic messages in our simulation
results.
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4.5.3 Simulation Results

Let us recall the control parameters of our algorithm and ourmodel. In COGRAD
in vertex labeling, there is the parameterh, the threshold of the number of nodes
when a new CP is formed. In COGRAD in edge discovery, there is the parameter
ne, the number of edges that each node gossips upon its arrival at a vertex, and
there is the parameterTage, the age threshold fixed for all nodes upon which an
edge is removed from the CP graph. In IH, there is the parameter nh, the maximum
number of hops (i.e. traversed vertices) that a message can live before it reaches
the desired next hop. And, in the mobility model we can vary: agraph topologyG
and the mean number of nodes per vertexc.

First we consider the grid 9X9 graph and the city graph withc = 15. For the
beginning we set uph = 2 andnh = 1. We show in Figures 4.11 and 4.12 how
the performance metrics depend onne andTage. We see that the results are not
very sensitive toTage, i.e., that in the broad range ofTage from 50(TV + TE) to
100(TV +TE) the results vary little. We also see that the good results areachieved
with a relatively small number of gossiped edges (ne = 4), especially in the case
of the grid topology.

In the case of the taxi graph, we have a slight drop in the delivery rate (85%-
95% depending onne). This is because the taxi graph consists of a number of
vertices with small degrees (1 and 2), which results in a small mean number of
nodes in a stationary regime (less than 4 and 8, respectively) and thus frequent
relabeling errors occur in these vertices. This suggests that we could obtain better
results if the CPs with a small mean number of nodes were actually considered
edges in the CP graph.

Second, we show in Figure 4.13, the performance metrics for the grid topol-
ogy as a function of the square root of the grid sizek, for c = 15. We set
Tage = 70(TV + TE) andne = 4. Figure 4.13(a) shows the delivery rate. We
notice that the delivery rate of the flooding-based approaches (ER, PROPHET) is
essentially 100%. The delivery rate of IH drops slightly, but remains very close
to 1. This slight drop-off is due to relabeling errors in COGRAD, as described
earlier. We show below that this problem could be overcome with settingh andnh

appropriately.
Figure 4.13(b) shows the end-to-end delivery delay. Although the delay of

IH is higher than that of flooding-based approaches (around 1.5 times higher), the
figure suggests that it is only a small constant factor higherthan ER/PROPHET as
a function of network size.

Figure 4.13(c) shows clearly the main advantage of our scheme: it requires a
significantly lower overhead per message than ER/PROPHET.

Third, we show simulations based on the inferred city graph in Section 3.2.1. In
these simulations, we vary the parameterc to explore the sensitivity of IH+COGRAD
to small values ofc. We setTage = 70(TV + TE) andne = 4. We see in Figure
4.14(b) that small values ofc are problematic; this is because vertices empty too
frequently, leading to a high packet drop-rate due to relabeling errors. Settingh
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andnh appropriately can relieve this problem as shown below.
Finally, Figures 4.14(b) and 4.14(c) confirm our finding thatIH+COGRAD

achieves a very favorable tradeoff, with a delay close to that of flooding-based
approaches that are essentially the lowest possible delay,with much lower trans-
mission overhead, which implies that a network operating under IH+COGRAD
has a capacity gain of more than an order of magnitude over ER/PROPHET for the
scenarios considered here.

Fourth, we now introduce the parametersh > 2 andnh > 1 into our scheme.
Recall that the role of these parameters is to help with the problem of unstable CPs
due to the relabeling errors. The larger value ofh results in a longer life of labels
and thus better performance of the IH algorithm. But, a too large value may result
in just a small number of CPs in the network, and thus missing relatively good
places to disseminate a message. This increases the delay. Also, the larger value
of nh results in the better performance of IH. But, it also increases the memory
consumption. Figure 4.15 confirms this. We show the dependence of h andnh

in the diverse degree graph, which is the most challenging for IH and COGRAD
of all considered topologies. We see that withnh = 1 the delivery rate decreases
significantly whenh < 10. This is in compliance with our discussion about how
we can set uph givenTage in Section 4.4.2. That is to say, by using Figure 4.8 we
find thath should be aroundh = 10 given the normalized value ofTage, ns = 100.

In Figure 4.16 we show the dependence onc in the diverse degree graph where
we seth = 15 andnh = 3. We achieve fairly good performance for such setting of
parameters. We also show the results for the grid graph and the regular graph with
various number of vertices in Figure 4.17 for the same parameters. And we also
here achieve very good performance.

4.6 Conclusion

In this chapter we devise a novel routing algorithm for mobile partitioned networks.
We evaluate it through simulations in the G models. Our IH algorithm achieves
very good delay-throughput trade-off compared to the epidemic algorithm as well
as PROPHET.

This favorable tradeoff is possible because our scheme tightly controls the
copies of a message en route, immediately killing any message that strays from
the shortest path towards the destination. In flooding-based approaches, messages
diffuse throughout the network; in particular, it is difficult in these approaches to
ensure that all copies of a message is discarded after one copy of the message has
been delivered to the destination. This problem does not arise in IH.

To achieve this, our IH algorithm relies on the stable topology of the CPs in-
herently hidden in the mobility of nodes. We also devise an algorithm (called
COGRAD) for discovering this CP topology in a distributed manner without any
external signals from an environment.
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per vertexc; (h = 15, ne = 5, Tage = 100(TV + TE), nh = 3). (a) Delivery rate,
(b) delay, (c) number of transmissions.
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of vertices|V |; (c = 15, h = 15, ne = 5, Tage = 100(TV + TE), nh = 3). (a)
Delivery rate, (b) delay, (c) number of transmissions.
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Chapter 5

Relaxed Connectivity
Assumptions

In the previous chapter, the design of both COGRAD and IH was driven by an
abstract graph-based mobility model. In this model we make two simplifying as-
sumptions:

• sharp connectivity between nodes at vertices and edges (allnodes in the same
vertex are connected, whereas a node in transit is not connected to any other
node);

• nodes can see changes in their neighbourhood instantaneously, thus we as-
sume that only one node can leave or join a vertex within a suitable short
time interval.

These assumptions allowed us to design the main principles of IH, while having
a very simple COGRAD scheme.

In this chapter, we relax these assumptions. Specifically, we consider a mo-
bility model in a geographic space with nodes connected iff they are within a cer-
tain range. For the evaluation purposes we assume the H-model, but note that we
expect that the designed algorithms performs in a wider range of mobility models
with the stable partitioned clusters. Also, we assume that anode sees changes in its
neighbourhood periodically every∆t, instead of instantaneously. Obviously it is
impossible to have an instantaneous neighbourhood discovery. There are different
ways to implement a periodic neighbor discovery protocol. For example, instead of
letting all nodes in a component to collect necessary information, a more efficient
way would be to let only one node per component to do so. One node at a com-
ponent can collect necessary information by flooding a request into the component
and then collecting replies from all the nodes. We can choosethis node as a first
node in a component for which current information about its neighbourhood gets
older than∆t. In this way, timers of nodes does not have to be synchronized.

These relaxed assumptions require the development of a morerobust labeling
algorithm in COGRAD, whereas Edge Discovery and IH can stay the same. Be-
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side a novel labeling algorithm under the relaxed assumptions, we also design an
adaptive COGRAD scheme where nodes estimate in a distributed way necessary
parameters of COGRAD adaptively over time. Note that in the previous COGRAD
scheme (Section 4.3), we set up these parameters assuming a concrete mobility
model (the G-model with a random walk on the graph).

We evaluate IH with this adaptive COGRAD scheme using the H mobility
model (Section 3.3). We show that IH performs better than theSpray and Wait
(SW) [SPR05] and the Spray and Focus (SF) scheme [SPR08].

Though the adaptive COGRAD scheme performs fairly well, there are some
cases where it generates unstable labels. We propose one solution to this problem
called a soft labeling. In this “soft” scheme we allow to haveseveral labels in a
component contrary to the previous scheme, where only one label was allowed.

An outline of the chapter is the following. In Section 5.1 we describe how
we design a labeling algorithm under the aforementioned assumptions, while in
Section 5.2 we describe the adaptive COGRAD algorithm. In Section 5.3 we eval-
uate IH together with adaptive COGRAD by means of simulations. in Section 5.4
we discuss limitations of the labeling algorithm and we propose the soft labeling
approach to overcome these limitations.

5.1 Labeling Algorithm

As we mentioned above, the relaxed connectivity assumptions require a different
labeling algorithm than the one we have designed in Section 4.3.1 within the frame-
work of the G-model. The relaxed connectivity assumption requires a new mecha-
nism for deciding whether a node is at a CP or in transit between CPs, whereas the
relaxed assumption about the instantaneous neighbourhoodrequires a new mech-
anism for the labeling of CPs. This is because the former assumption implies that
between CPs there could be (transient and typically small) connected components
of more than one node, and the latter assumption implies thatthe node’s neighbor-
hood can change by more than one node during the period of time∆t between the
two neighborhood discovery updates. However, as before, wefollow the principle
that a label is associated with a connectivity component. I.e., the nodes connected
to each other (either directly or “multi-hop” through othernodes) must have the
same label, and no two components can have the same label. We denote such a
labeling algorithm ascomponent-based.

In the next two subsections we describe the two main ideas that govern the work
of our new labeling algorithm. In Section 5.1.1 we show how nodes in a component
decide on a label, and in Section 5.1.2 we show how nodes in a component decide
whether the component represents a CP or an edge (for example, several nodes
traveling between CPs got connected for a short period of time).
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5.1.1 Majority Rules

Every node makes a new decision about its label after every neighborhood redis-
covery interval∆t. We assume that the neighborhood discovery is synchronized
for nodes at the same component, so that they make a decision at the same time
and thus the nodes at the same component decide on the same label.

We consider that isolated nodes are in transit between CPs and thus they do not
have any label. And, we consider components with at least twonodes as candidates
for CPs, and thus nodes in these components get a label. Thereare two “majority”
rules that nodes at a component use to determine a label. The first rule says the
following: a labely is possiblefor componentC at timet if more than the half
the nodes that belong to componentC at timet had labely at timet − ∆t. This
rule ensures that every component has a unique label, i.e., no two components can
have the same label if no two components had identical labelsat the previous time
stept−∆t. The second rule decides on a label forC among the possible labels by
choosing the one with the largest number of nodes atC at timet. If there are no
possible labels forC then a new random label forC is chosen.

15

15

15

15

15

15
15

19
19

74 74

7474

74

9

9
9

9

9 9

Figure 5.1: Network at timet − ∆t. Nodes are shown as circles with a number in
it, where the number represents a label of this node. An emptycircle represents a
node without any label.

We show how these rules work on the following example. Figure5.1 shows a
network at timet − ∆t. Nodes are shown as circles with a number in it, where the
number represents a label of this node. If a node does not havea label then there is
no number in the circle. We see that at timet−∆t there are four components with
labels15, 9, 19, and74 and there are also several isolated nodes without any label.
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Figure 5.2 shows the network at timet, before the labeling is done. We see that
several nodes have moved during this period of∆t. Now, the nodes again decide
about new labels. Let us explain how the nodes atC1 decide on a label. We see
that at timet at C there are4 nodes with label15, 3 nodes with label74, and2
nodes with label9. And we see that at timet−∆t the number of nodes with labels
15, 74 and9 is 7, 5 and6, respectively. Thus, using these information the nodes at
C1 decide on a label forC1 at timet. Using the first rule they decide that labels15
and74 are possible. Then, using the second rule, they choose label15. Using the
same reasoning, the nodes atC2 decide on label9, and the nodes atC3 decide on a
new random label (e.g.,100). And, nodes that are alone loose their labels. Figure
5.3 shows the network at timet after the labeling is done.

Next, we describe the labeling algorithm more formally. Letus recall the used
notation. Every nodei maintains a variableYi(t), which is eitherYi(t) = φ if node
i thinks that it is in transit between CPs at timet or Yi(t) = y if node i thinks that
it is at the CP with labely. The goal of a vertex labeling algorithm is therefore that
every nodei decides onYi(t) at every timet.

We assume that the input information available to nodei at timet is:

• Bi(t − ∆t) andBi(t) - the set of neighbors of nodei (i.e., the set of nodes
in the component where nodei is) at timest − ∆t andt, respectively;

• (Yj(t−∆t), |Bj(t−∆t)|) for everyj ∈ Bi(t) - the values of labels and the
sizes of labels of the nodes at the component where nodei is at timet−∆t.

Note that actually only one node at each component needs to collect these infor-
mation, which is easy to do by using the neighborhood discovery procedure. Then
this node decides on a label, and then it broadcasts the labelto other nodes in the
component.

Now, after we defined which information is available to nodei that needs to
make a labeling decision, let us see how nodei determines its new labelYi(t) at
time t. If Bi(t) = Bi(t − ∆t) (the neighborhood set of nodei did not change)
then nodei decides on its previous label (i.e.,Yi(t) = Yi(t − ∆t)). If Bi(t) 6=
Bi(t − ∆t) (the neighborhood set of nodei changed) then nodei recomputes the
label as follows. From the data ofYj(t − ∆t), j ∈ Bi(t) nodei first computes
the set of tuplesLi(t) = {(y, by(t), cy(t − ∆t))}, whereby(t) is the number of
nodes inBi(t) that had labely at timet−∆t andcy(t−∆t) is the total number of
nodes that had labely at timet − ∆t. If none of nodes inBi(t) have a label then
Li(t) = ∅. Then, nodei runs Algorithm 8) with the input(Bi(t), Li(t)) to get the
outputYi(t). Note that all nodes in a component must have the same label, hence
nodei broadcastsYi(t) to all nodes in the component.
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Figure 5.2: Network at timet before labeling. Nodes have moved during the period
∆t.
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Figure 5.3: Network at timet after labeling. Nodes use two majority rules to decide
on their new labels.
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Algorithm 8: Component-based Labeling
Input: (Bi(t), Li(t) = {(y, by(t), cy(t − ∆t))})
Output: Yi(t).

1 Yi(t) = φ
2 WhileLi(t) 6= ∅
3 z = argmaxy by(t)

4 If bz(t) > cz(t − ∆t)/2 then
5 Yi(t) := z /* node loses labely */
6 Break /*stop while loop */
7 Else
8 Li(t) := Li(t) \ (z, bz(t), cz(t − ∆t))
9 End if
10 End while
11 If Yi(t) = φ and |Bi(t)| ≥ 2 then /* there are more than2 nodes but no

label*/
12 Yi(t) :=random /* nodes assign new label */
13 End if

5.1.2 Visibility of Labels

The labeling algorithm as described in the previous subsection generates a lot of
short-lived labels. This is because we assign a label as soonas a component has
more than one node. In Section 4.5, we saw that if labels die frequently then this
negatively impacts the performance of IH. Thus IH benefits mostly from long-lived
labels.

To insure the longevity of labels, we can take an approach as before (Section
4.3.1) where a component becomes a CP only if it consists of more thanh nodes.
This approach gives an indirect control over life-times of CPs by appropriately
setting up the parameterh. The reasoning behind this is that if a component has
more nodes then the probability that the component will livelonger is larger.

Here, we take another approach. We run the labeling algorithm as described in
the previous subsection. Then, we track the life-time of every label. A component
with a labely becomes a CP only if the life-time of labely, τ(y), is greater than
a threshold valueTvisible. This means that labely becomes visible to the edge
discovery part as well as to IH only onceτ(y) > Tvisible. We find that this approach
gives us more direct control over life-times of CPs. This is because we find that the
age of a component/label is strongly correlated with its residual life-time. More
specifically, if a component lived for a relatively long period of time, we assume
that there is a high probability that the component will be also long-lived in the
future.
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5.2 Adaptive COGRAD

For mobility patterns under the relaxed connectivity assumptions, our COGRAD
scheme uses the vertex labeling algorithm described in Section 5.1 in conjunction
with the edge discovery algorithm described before (Section 4.3.2). In this scheme
we need to set two parameters,Tvisible in the vertex labeling algorithm andTage

in the edge discovery algorithm. Next, we show how nodes can estimate these
parameters adaptively over time.

5.2.1 Estimation of Age ConstantTage

As we saw in the edge discovery part, a nodei keeps an edge cacheGi with entries
(e, tobs), wheretobs is the time when an edgee was observed by a direct movement
of some node (not necessarily nodei) through edgee. Now, for the purpose of the
estimation ofTage, nodei keeps entries(e, tobs, tupdate). Here,tobs is the same as
previously, andtupdate is the time when nodei updated edgee. The update of edge
e happens when nodei learns (either directly or from other nodes) about a younger
observation ofe than nodei currently has.

Every node estimatesTage for itself. The idea is that nodei estimates how old
on average edges inGi become before fresher updates are received, and then that
nodei uses this value as an estimate ofTage in order to discard outdated edges in
Gi. More precisely, nodei calculates the mean valuem and the standard deviation
σ of tupdate − tobs over all edges inGi. Then, nodei setsTage = m + 3σ. This is
one of the ways in statistics used to detect outliers in data [BG05]. Initially, each
node setsTage = ∞ and each node performs the above described calculation of
Tage every time-step∆t until a concrete value is obtained. Once a node learns a
concrete value forTage, the node makes the calculations again after the estimated
Tage time, and the procedure repeats.

5.2.2 Estimation of Visibility Threshold Tvisible

As we saw, short-lived labels are not useful for IH. Therefore, we incorporate a
mechanism in COGRAD to filter labels and to make visible to IH only those with
long expected lifetime. The parameter that controls visibility of labels isTvisible.
A largerTvisible results in longer-lived CPs. On the other hand, too large value of
Tvisible may worsen the performance of IH, because valid CPs may be missing and
thus many useful opportunities for IH to copy messages are lost. So, the question
is what value ofTvisible is large enough to provide enough good performance of
IH.

To answer this question, let us analyse when a label is harmful for IH. When a
component with a label disappears this label will remain in the node caches until it
becomes older thanTage. During this “staleness” time the nodes have a wrong view
of the existing CP graph which can lead to wrong routing decisions that negatively
impact the performance of IH.
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A measure of the usufulness of a label for IH is therefore the percentage of
the time that the label is not stale. Hence, ideally the life-time of CPs should
be much longer of the staleness time, and thusTvisible should be much longer
than the staleness time. But, it appears that it is not necessary to make so strong
requirement. This is because IH is robust to some extent to errors in COGRAD.
So, we try with a weaker condition, we want to ensure that the life-time of labels
is at least a maximum possible staleness time. Since the maximum staleness time
for any label isTage, we set-upTvisible = Tage.

5.3 IH with Adaptive COGRAD under the H-model

In this section we evaluate our IH scheme together with the self-adaptive COGRAD
under the H mobility model. We use the same performance metrics as before:
delivery rate, number of transmissions, and delay. We compare it with Epidemic
Routing (ER), Spray and Wait (SW), and Spray and Focus (SF).

5.3.1 The IH Scheme

We use the IH scheme described in Section 4.2 with a simple modification. Instead
of discarding messages as in the previous scheme, nodes put them in a ”wait for
destination” state, where nodes can copy messages only to their destinations. Thus,
a node carrying a message discards it only if the node meets the destination of the
message.

We make this modification in IH in order to have a fair comparison of our
algorithm with others we compare with. Other algorithms also uses the same prin-
ciple of discarding messages as in this modified version of IH. This modification
increases the delivery rate of IH and make it the same as in other algorithms, but
it requires larger memory storage. We consider a memory to not be a critical re-
source, and thus we do not compare algorithms according to memory requirements.
Because of this we find that the more fair comparison for us is to use the described
modified IH scheme.

Our IH scheme relies on broadcast and unicast primitives within a component.
The task of the broadcast primitive is to deliver a message toall nodes in a compo-
nent, and the task of the unicast primitive is to deliver a message from one node to
another one within a component. For the purpose of our simulations, we choose a
simple counter-based broadcast method ([KM05]), while instead of implementing
any particular unicast routing algorithm we calculate the cost of it as the shortest
path distance between two nodes in a connectivity graph.

5.3.2 Simulation Set-up

Mobility model is the H-model with the following parameters. We put circlesC in
a grid topology as shown in Figure 5.4, where the circles are equally spaced. We
consider grids of sizes 3x3, 4x4, and 5x5.
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Figure 5.4: Placement of areaC is deterministic in form of a grid.

The transmission range isrt = R/2. We set-upσ1 andσ2 in such a manner
that the nodes’ density inside circles isλ1 = 2λ0 (λ0 is a connectivity percolation
threshold,λ0r

2
t ≈ 1.43), and the nodes’ density outside circles isλ2 = λ1/16, i.e.,

k = σ2
1/σ

2
2 = 4.

5.3.3 Simulation Results

In Figure 5.5 and Figure 5.6, we show the number of transmissions per message
and the delay, respectively, for IH, ER and SW. The figures show results for the
3x3, 4x4, and 5x5 grid topology. The number of transmissionsper message in the
SW algorithm is equal to a parameter of the algorithm called the number of tokens
that we need initially to set-up. We compare IH with SW by comparing the delay,
while setting-up the number of tokens in SW equal to the number of transmissions
per message in IH.

From these results, we see that IH has about two times larger delay than ER
(which is the minimum possible one), but IH has about 10-20 times less the trans-
mission overhead than ER. And also, the transmission overhead in IH scales much
better with the grid size than in ER. Compared with SW, IH has an improvement
in delay of more than35% for all considered grid sizes.

We also compare our algorithm with SF. SF works similar to SW with the addi-
tion that nodes can also forward a message instead of copyingit. Our simulations
show that SF performs worse than SW. For example, for the grid3x3 if we set the
number of tokens to10 then we get a delay of 47.57 time units, and the number
of transmissions is 68.66. So, under the much larger number of transmissions per
message the delay is also larger. A similar observation holds for the other grid
sizes. The reason of the poor performance of SF is that any forwarding ofm under
the H-model does not help to improve the performance. This isdue to the Marko-
vian structure of the model as we discussed before. Hence, the expected delay in
SF is not decreased by forwarding messages, and more uselesstransmissions are
performed.
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Figure 5.5: IH and ER: the number of transmissions.
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approximately equal to the number of transmissions in IH.)
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5.4 Soft Labeling

As we saw in the previous section, COGRAD works fairly well under the H mo-
bility model with the disks placed into a grid. As we continuefurther evaluations
of our algorithm under various disks placements, we found that the vertex labeling
algorithm did not perform well in some cases. The critical cases are those where
two disks are too close to each other. We explain why in the next subsection. To
overcome these limitations, we design a soft labeling algorithm. This algorithm
allows several labels to co-exist in the same connected component, contrary to the
previous “component-based” labeling algorithm where onlyone label can exist in
a component. In Section 5.4.2 we describe how the soft labeling algorithm works,
and in Section 5.4.3 we confirm the advantage of the soft labeling algorithm over
the component-based one.

5.4.1 Limitations of the Component-based Labeling

The component-based labeling algorithm may result in short-lived labels in the
case when two disks of the H- model are relatively close to each other even un-
der the supercritical connectivity inside the disks and thesubcritical connectivity
outside of the disks. An example in Figure 5.7 shows this. We see that initially
the nodes in the disks form two disconnected components thatthus have different
labels15 and9. Then, when the nodes in the discs get connected, they all have
now the same label15. When the nodes in the disks get disconnected again, one
of the disks get a new label19. Note that in this example relabeling errors happen
in the both disks. Depending on the distance between the disks, the transmission
range and the node densities, this connection and disconnection of the nodes in the
two disks may happen often, thus resulting in short-lived labels.

We noticed that the same situation happen in the simulation scenario consid-
ered in the previous section even under the subcritical regime ofλ2 if λ2 becomes
large enough. As we will see later the soft labeling algorithm helps to overcome
this problem.

5.4.2 The Soft Labeling Algorithm

Algorithm 9 formally describes how the soft labeling algorithm works at a node
i. Nodes run the algorithm every∆t as before, after every new neighborhood
discovery. For each component, the nodes first calculates the set of possible labels
Yp. A label y is possible for a component if the majority of the nodes that were
at CPy at the previous time stept − ∆t is still in the component at timet. Then,
every node in the component chooses one label fromYp. A nodei chooses label
z ∈ Yp if the majority of nodes in nodei’s local neighborhoodNi(t)) had labelz
at timet − ∆t.

Figure 5.8 shows how the soft labeling algorithm works in theexample scenario
shown in Figure 5.7. We see that it succeeds to maintain the initial labels of the
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disks regardless of the disks’ connection and disconnection. Thus, in this critical
scenario the soft labeling creates longer-lived labels compared to the component-
based labeling.

Algorithm 9: Soft Labeling
Input: (Bi(t), Li(t) = {(y, by(t−), cy(t)}, Ni(t))
Output: Yi(t)

1 Yi(t) = φ, Yp = ∅
2 For ally in Li(t) 6= ∅
3 If by(t) > cy(t − ∆t)/2 thenYp = Yp ∪ {y}.
4 End For
5 For ally in Yp 6= ∅
6 ny =

∑
j∈Ni(t)

1{Yj(t)=y}
7 End For
8 If Yp 6= ∅
9 z = argmaxy{ny(t)|y ∈ Yp}
10 Yi(t) = z, τ(Yi(t)) = τ z(t−) + 1)
11 Else
12 If |Bi(t)| ≥ 2 then
13 Yi(t) =random
14 End If
15 End If

5.4.3 Evaluation

We compare the soft labeling algorithm (Algorithm 9) with the component-based
labeling algorithm (Algorithm 8), under the H mobility model. We use a metric
that shows a labeling quality inside CPs. Ideally, inside a CP (a disk in the H-
model) there should be only one “real” label. Hence, we look at one diskC and we
consider the average percentage of time that there is one andonly one “real” label
atC. So, the metric we use is:

Q =
1

tend − tstart

tend∑

t=tstart

q(t), (5.1)

whereq(t) is given by:

q(t) =

{
1 if exactly one label is located atC
0 otherwise

. (5.2)

The location of a label is a “center of mass” of locations of all nodes with this label.
The simulation set-up of the disks in the model is the same as in Section 5.3.2.

Figure 5.9 shows the dependence ofqin on the parameters of the H-modelλ1 and
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Figure 5.7: Relatively close CPs; the component-based labeling: a connection and
a disconnection of two close CPs results in relabeling errors; a) two CPs are dis-
connected, b) the two CPs get connected, c) the two CPs get disconnected again.
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Figure 5.8: Close CPs - soft labeling: no relabeling errors;a) two neighboring CPs
are disconnected, b) the two CPs get connected, c) the two CPsget disconnected
again.
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Figure 5.9: Dependence of the quality of labeling inside CPsQ on the nodes’ den-
sities inside and outside CPs (λ1 andλ2, respectively).λ1 andλ2 are normalized
on the percolation thresholdλ0 ≈ 824.
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λ2, the nodes’ densities inside and outside disks, respectively. We see that the
soft labeling significantly outperforms the component-based labeling over a wider
range of the parameters of the H-model. More specifically, wesee that the quality
of the soft labeling inside CPs is close to1 for much larger values ofλ2 than
for the component-based labeling. This indicates that the soft labeling algorithm
overcomes successfully the close disks problem that appears for larger values of
λ2 as described in Section 5.4.1.

5.5 Conclusion

We design IH and COGRAD in both this and previous chapters, but under different
assumptions about mobility of nodes and about discovery of nodes’ neighborhoods.
The assumptions in this chapter are closer to realistic conditions, thus we make
further steps towards designing IH and COGRAD in realistic networks.

For the mobility of nodes, we assume the G-model in the previous chapter,
while we assume the H-model in this chapter. The H-model relaxes the sharp con-
nectivity assumption incorporated in the G-model. Beside this, also the fact that the
H-model requires a small number of parameters makes the H-model more suitable
than the G-model for simulations and analysis of our algorithms. For the neigh-
borhood discovery primitive, we assume an instantaneous neighborhood discovery
in the previous chapter, whereas we assume a periodic neighborhood discovery (at
every rediscovery interval) in this chapter. Obviously, the latter assumption is more
realistic.

Note that both the G-model and H-model represent challenging cases that DTN
routing algorithms should be able to handle, where more realistic connectivity as-
sumptions make the H-model more challenging. The key distinguishing features
of these models are that (i) nodes are statistically equivalent, (ii) clustering arises
as a property of the environment, rather than as a property ofthe nodes, and (iii)
a mobility process of nodes possesses Markov property. It should be clear that the
former two features would hamper any attempt to base routingdecisions onnodal
statistics(e.g., preferred locations for particular nodes, or encounter frequencies
between specific pairs of nodes), which appears to be an implicit or explicit as-
sumption built into many routing protocols. Moreover, the Markov property would
hamper any attempt to usepast mobility statisticsin order to decide on a suitable
subset of nodes from nodes in a CP for coping/forwarding a message to. While the
last mentioned feature is true in the G-model, it is actually“close to true” in the
H-model. The reason is that nodes at the same CP differ in their locations slightly,
thus they are not exactly statistically equivalent given the past mobility of nodes.
But, this difference is small and is practically useless to make any meaningful rout-
ing decisions about to which nodes at a CP to pass a message.

In this chapter, we show that IH and COGRAD can operate well under the
challenging H-model and under a realistic assumption aboutthe neighborhood dis-
covery primitive. Moreover, under these challenging assumptions we design an
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adaptive COGRAD algorithm that estimates in a distributed way its parameters
adaptively over time. How well this COGRAD scheme operates depends mainly
how well the labeling algorithm operates, i.e., how stable labels it gives. And this
depends on a mobility scenario. For example, in some critical scenarios of the
H-model a component-based labeling scheme used in the adaptive COGRAD al-
gorithm is not a best choice. We show that another soft labeling scheme has more
promising applications in these scenarios.

Therefore, in this dissertation we design IH and COGRAD under fairly realistic
and challenging assumptions. But, it is also necessary to evaluate our algorithms
under realistic data sets. For example, an open question is which labeling scheme
is more suitable under these realistic data sets. In fact, weexpect that under the
realistic data sets there will be some situations where COGRAD will not perform
well. Thus, we expect that there will be necessary to make some accommodations
of COGRAD to these situations, but we expect that IH can stay the same with
eventually minor modifications. Note that for the design of IH and COGRAD it
was an essential to first use a model for node’s mobility instead of using realistic
data sets immediately. This is because the considered data may not contain stable
CPs and thus it would be difficult to determine if it is a property of the data or
unsuccessful operation of COGRAD. Moreover, the model gives us a possibility
to evaluate how the performance of the algorithms depends onvarious parameters
(such as node density, the number of nodes in CPs or in total, the number of CPs,
etc).
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Chapter 6

Conclusion

In this thesis we consider the unicast routing problem in mobile ad-hoc networks.
We devise efficient routing methods by exploiting features of mobility common to
many real-world applications of mobile ad-hoc networks. Weexploit two features
in particular, i) predictability and ii) temporally stableand spatially heterogenous
distribution of nodes.

Exploiting predictability, we improve significantly the performance of LER un-
der the RWP mobility model. Studying LER under RWP is important because the
RWP model is very prominent model in mobile ad-hoc networks and the previous
work on LER [GV03] showed that the LER algorithms EASE and GREASE did
not perform well under RWP. We derive optimal predictors under the RWP model.
The predictors optimize the mean square error between predicted and real locations
under different observation sets. As observations, we use speed and location of a
node, and as possible additions previous and next waypoints.

Exploiting temporally stable and spatially heterogenous node distribution, we
devise Island Hopping (IH), a novel efficient routing algorithm for realistic mobile
ad-hoc networks. These features of mobility appear to be present in large-scale re-
alistic mobility traces that we investigated. We argue thatthis could be a common
pattern in many realistic scenarios, because it is natural or constructed environ-
ments that limits the nodes’ movements. The limitations imposed by the envi-
ronments typically leads to heterogeneous connectivity and to network partition,
where highly connected clusters are interspersed with low-connectivity regions.
We model such a situation with a set of stable concentration points (CPs) char-
acterized by high node density, and a mobility process that describes how nodes
move between these islands of connectivity. We study two instances of this model:
the G-model, where the CPs and the flow of nodes are abstractedas a graph, and
the H-model, where nodes perform heterogeneous random walks on the plane.

Assuming the described mobility model with stable CPs, we devise the routing
algorithm IH. It exploits the knowledge of the stable CP topology to make routing
decisions. In this way IH achieves a very good delay-throughput trade-off com-
pared with several other main routing approaches for mobilepartitioned networks,
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and moreover IH scales well with the network size. Specifically, we compare IH
with Direct Forwarding (a message is forwarded only to the message’s destination),
Epidemic Routing (ER), PROPHET, Spray and Wait (SW), and Spray and Focus
(SF). The chosen algorithms represent the main approaches in the state of the art
at the time we designed IH.

For making our first steps towards the design of IH we used the G-model which
was useful to devise the main principles of IH. Then we use theH-model, as a more
realistic model regarding connectivity assumptions. Notethat the G-model is de-
signed for the purpose of a fitting data to a model, rather thanfor the evaluation
purposes. Therefore, we design the G-model as an abstract model that maximally
simplifies reality by capturing only the essence of the clustered partitioned connec-
tivity. And, the H-model is the one that is designed for the evaluation purposes.
Therefore, we design the H-model with much more realistic connectivity assump-
tions than the G-model. Beside this, the H-model is a parsimonious model with a
small number of parameters and thus suitable for the evaluations. Nevertheless, we
show evaluation results of IH for both of these models.

The operation of IH relies on the knowledge about the stable CP topology, i.e.,
the knowledge about CPs and the flows of mobile nodes among these CPs. In
many situations, it would be unrealistic to assume that these are known a-priori.
Therefore, we develop methods collectively called Collaborative Graph Discovery
(COGRAD) that allow the nodes to discover the CP topology without any explicit
signals from the environment (such as GPS coordinates or fixed beacons). To our
best knowledge we are not aware that any similar problem is considered in the
research literature.

We also consider the COGRAD problem under the G-model first. The sim-
plified connectivity assumptions make the problem easier. Though the designed
COGRAD scheme does not have much of a practical value, it was helpful in un-
derstanding the essence of the problem. Then, we consider COGRAD under the H-
model with the relaxed connectivity assumptions. Moreover, we make an effort to
design an adaptive COGRAD algorithm for the H-model, that estimates its param-
eters. The parameters change over time adapting to the current mobility conditions
and the current CP topology. Hence, the designed scheme has apractical value
beyond the H-model. We show through simulations that the designed COGRAD
schemes can replace an oracle with knowledge of the CP topology, allowing IH to
operate even in scenarios without any cues from the environment.

Note that in both COGRAD schemes (for the G-model and the H-model), it is
the G-model that we use as a model to infer the CP topology. This was exactly
the purpose of the designing the G-model. Therefore, in bothof these schemes, a
CP is associated with a connected component, i.e., no more than one CP can exist
in a component. These component-based algorithms have limitations in a mobility
scenario when two or more CPs are too close to each other. Thisis an important
scenario that we expect to occur in reality in many circumstances. To overcome
these limitations, we propose a soft’ labeling approach. This soft approach allows
the coexistence of more than one CPs in a component. We show that the soft
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labeling algorithm is a more robust algorithm operating successfully under wider
range of the model’s parameters than the component based one.

One of the important step in evaluations of our IH and COGRAD algorithms is
to use a realistic mobility data-set instead of a syntectic mobility model. In this the-
sis, we did not achieve this step. The reason for this is that there were not suitable
data-sets available. This is because we need a large-scale data-set with relatively
frequent updates of nodes locations in order to successfully run the COGRAD al-
gorithm. The only data-set that we are aware of which fulfils this requirement is the
San-Francisco data-set. We ran the offline and decentralized version of the label-
ing algorithm under this data-set. But, there were only small number of stable CPs
found in the data-set, so that the IH approach was not much beneficial. We argue
that the reason for such small number of CPs is that the mobility pattern of taxis
is very specific and may not give sufficient evidence of other CPs (located for ex-
ample nearby sport centers, gas stations, movie theaters etc). Thus we believe that
given a large set of mobile traces for the same area, which contains GPS location
updates of different types of vehicles, it should provide uswith more CPs. We also
believe that CPs might be much easier observed at a larger scale, e.g. not at the San
Francisco agglomeration scale only, but at the whole Bay area scale. Therefore, to
achieve this further step more suitable data-sets are desirable.

One of interesting questions that remained unanswered in this thesis is the ap-
plicability and robustness of the soft labeling algorithm.An interesting question
is for example to characterize mobility conditions where the soft labeling achieves
good results and what are its limitations. Moreover, note that the incorporation of
the soft labeling to IH is not straightforward. The possibility of having several CPs
in a component requires different handling of routing in IH within a component.
This opens further interesting research questions.

In this thesis, we show that both the predictability and the stable and heteroge-
nous node density are important features of realistic mobility patterns for the de-
sign of routing algorithms in mobile ad-hoc networks. By exploiting these, we
show that it is possible to design efficient routing algorithms for mobile partitioned
networks. The possible scenarios of the mobility with CPs other than the observed
taxi traces include:

• People in urban environments: workplace, restaurants, public transportation
(train stations, airports), movie theaters, etc.

• Wildlife monitoring: watering holes, clearings, oases, etc.

• Office buildings: cafeterias, conference rooms, water coolers, hallways, etc.

Therefore, applicability of our routing methods in the realworld is very promising.
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