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Abstract

Embedded wireless networks find a broad spectrum of apiplicatn transporta-
tion, environmental monitoring, logistics, supply chaiamagement, and "pocket-
switched” communication. The node mobility patterns irsthapplications tend to
give rise to spatially heterogeneous node distributiortsicivmay cause network
partitions. In this thesis, we consider the problem of myiiin mobile networks
under such challenging conditions. More specifically, waeawvor to identify fea-
tures of mobility common to different applications, in ordedevise routing meth-
ods that are tailored to exploit these features. We expleoddatures in particular,
(i) predictability and (ii) stable and heterogeneous spaibde distribution.

A mobility process is predictable if the future location ohade can be well
estimated, given knowledge of its current and past locatamd possibly other
statistics. We show how the performance of routing can bedrga by explicitly
incorporating mobility prediction. Specifically, we codsri the performance of
Last Encounter Routing (LER) under a simple synthetic ramahaypoint (RWP)
mobility model. We extend the LER algorithm so that it taketiaccount pre-
dicted node trajectories when making routing decisions| \w&e show that this
significantly improves its performance.

A mobility process has a stable spatial node distributignnformally, the
node density remains the same over time, even though individodes are not
constrained in space. This is a common feature of many niypbéitterns because
the spatial distribution is determined by the natural orstaurtted environment,
regardless of the behavior of individual nodes. This tylbicieads to heteroge-
neous connectivity and to network partition, where hightyrmected clusters are
interspersed with low-connectivity regions. We model sadituation with a set
of stable concentration points (CPs) characterized by hagte density, and with
a mobility process that describes how nodes move betweese fkkands of con-
nectivity. We study two instances of this model: the G-modéiere the CPs and
the flow of nodes are abstracted as a graph, and the H-modeiewbdes perform
heterogeneous random walks on the plane.

We exploit the presence of this stable CP topology in ordeetelop an effi-
cient routing algorithm under these two mobility models.r@auting algorithm,
Island Hopping (IH), exploits knowledge of the CP topologymake routing deci-
sions. IH achieves a very good delay-throughput trade-affigared with several
other existing routing algorithms, and it scales well whk hetwork size.
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In many situations, it would be unrealistic to assume thas @mrd the flows
of mobile nodes among them are known a-priori. We develophauk, collec-
tively called Collaborative Graph Discovery (COGRAD), tlalow the nodes to
discover the CP graph without any explicit signals from theirenment (such as
GPS coordinates or fixed beacons). We show that COGRAD céaceepn oracle
with knowledge of the CP topology after a sufficient warm-epiqd, allowing IH
to operate even in scenarios without any cues from the emvient.

Keywords

Mobile ad-hoc networks, partitioned networks, routingtpools, mobility model-
ing
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Resune

Il existe une large palette d’applications pour les rézesans fil embarqués, no-
tamment dans la surveillance environnementale, la lagistila gestion des chaines
d’approvisionnement et les communications pocket switche

La mobilité des noeuds dans ce type de scénario engendrdistebutions
hétérogeénes, et peut causer des partitions dans lauégzans cette thése, nous
nous intéressons au routage dans ces conditions diffidlks précisément, afin
de développer des méthodes de routage adaptées aemificgps, nous tentons
d’identifier des spécificités propres a toutes les thifées applications ci-dessus.
Nous étudions deux propriétés plus particulieremg(ilt la prédictibilité et (i) la
distribution spatiale stable et hétérogene des noeuds.

Un processus de mobilité est prédictible s'il est possitstimer une position
future en se basant sur la position actuelle, les positiassges et potentiellement
d’'autres statistiques. Nous démontrons que la performancroutage peut étre
améliorée en incorporant la prédiction de mobilité. é8fiquement, nous nous
intéressons a la performance de Last Encounter RoutiB&)lsous un modele de
mobilité random waypoint (RWP) synthétique simple. Nowusdifions LER pour
prendre en compte la prédiction des trajectoires des ostildEmontrons que cela
améliore considérablement la performance.

De maniére informelle, I'on peut décrire un processus dbilité spatialement
stable comme un processus dont la densité de noeuds rasle avec le temps,
malgré qu’individuellement les noeuds se déplacent ehtnpas de contraintes
spatiales. C’est la une spécificité commune a de nomkgges de mobilité, étant
donné que la distribution des noeuds est déterminéégmaironnement et les con-
structions, et non pas par les déplacements individuetéta @méene typiquement
des distributions hétérogénes et des partitions, alréigions treés concentrées et
connectées succedent a des régions tres peu peupléEspeu de connectivité.
Nous modélisons cette situation avec un ensemble de mentencentration (CP)
caractérisés par une grande densité de noeuds et urspusage mobilité décrivant
les déplacements entre ces Tlots de connectivite. Mugions deux instances de
ce modele : le modele G, ou les CP et les flux de noeuds spriésentés de
maniére abstraite dans un graphe, et le modéle H, ou lesdsoeffectuent des
marches aléatoires en deux dimensions.

Nous exploitons la présence de ces CP stables afin de geeelon algo-
rithme de routage efficace pour les deux modeles de mambNibtre algorithme de
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routage, Island Hopping (IH), exploite la connaissanceadepologie des CP afin
de prendre des décisions de routage. IH offre un excellanpeomis entre le délai
et la bande passante en comparaison d’autres algorithmesiidge, et s’adapte
bien a de grands réseaux. Dans beaucoup de cas, il nesattaliste de faire
I'hypothese que les CP et les flux de noeuds sont connusanta.

Nous développons des méthodes, regroupées sous latppelCollaborative
Graph Discovery (COGRAD) qui permettent aux noeuds de wi&aole graphe
de CP, sans signaux extérieurs (tels des coordonnées G @metteurs fixes).
Nous montrons que COGRAD peut remplacer un oracle conmaitEsaCP apres
une période d’échauffement suffisante, permettant aifialgorithme IH de fonc-
tionner indépendamment de tout signal extérieur.

Mots clés

Réseaux mobiles ad-hoc sans fil, réseaux partitionmésqoles de routage, modélisation
de la mobilité
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Chapter 1

Introduction

In the 20th century, mankind have witnessed a developmewbodfl-wide com-
munication networks that connect both people and machiheday we have ra-
dio, television, fixed wired telephony, mobile wireles®t#iony, Internet, wireless
LAN. They have become an important part of our everyday livesrther devel-
opments of the technology (such as increasing processingrpextended battery
life, and miniaturization) have opened great possibfitier a vast array of new
applications. For example, these technological advanae it feasible and af-
fordable to embed wireless communication devices intmuardther objects. The
added communication and networking capabilities to thégects extend their pur-
pose and their usability. So, the embedded wireless nesnwailte a broad spec-
trum of applications such as transportation, environmemtznitoring, wild-life
tracking, logistics, supply-chain management, and “ptskétched” communica-
tions.

In these applications, contrary to the conventional glaesamhmunication net-
works that are infrastructure-based, an ad-hoc infratreless communication
paradigm is more suitable. In the conventional networkBagtructure (such as
base stations, access points, switches, routers, emysatlevices to communicate
over large distances. Whereas, an ad-hoc network is agglficzed network of
wireless nodes that may be mobile, where every node can hdex that forwards
traffic for other nodes, without (necessarily) using a ptistang infrastructure. In
the above mentioned applications it is often a local comatiun between nearby
devices that matters; thus making an ad-hoc paradigm feasisuch applications.
Moreover, a lack of infrastructure allows for relativelydacost and quick deploy-
ment, as well as more flexibility in communication capaigitit

Although ad-hoc networks have received much attention ftbenresearch
community recently, the idea of ad-hoc networking is not .néwthe 1970s the
U.S. Defense Advanced Research Projects Agency (DARPAhssped the PR-
NET (Packet Radio Network) project in 1972 [JT87]. This waklioived by the
SURAN (Survivable Adaptive Radio Network) project in theBD8 [SW87]. These
projects dealt with automatic call set-up and maintenangacket radio networks
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2 CHAPTER 1. INTRODUCTION

with moderate mobility. However, interest in this area greyidly in the 1990s
due to the advances in wireless communication technologyceShen, ad-hoc
networks have been extensively studied.

Real-world implementations are mostly in the research @ha$ence, there
are just a few examples in industrial and commercial use.s@lae mainly in
the settings where nodes are static, such as wireless sestsarks and wireless
mesh networks. Recently, there have also appeared somearases in mobile
settings. One Laptop per Child program [lap00] developetharpensive laptop
computer designed to be distributed to children in develpgiountries as an edu-
cational device. This laptop makes use of an IEEE 802.11sdbad-hoc wireless
mesh networking chip. In September 2007, the Swedish compamaNet AB
[ter00] presented a mesh network of mobile phones that atfogalls and data to
be routed between participating handsets, without ceésiehicular ad-hoc net-
works (VANETS) [TMLO08] are one of the most promising apptioas of mobile
ad-hoc networks, and though not yet in commercial use theeina very advanced
test-field phase.

One of the key network services that needs to be availablgpbcations is
routing. This service needs to be able to deliver data froouace node to a desti-
nation node, where nodes are identified by their addressesddsign of the rout-
ing service in ad-hoc networks faces challenges not prasehe infrastructure-
based networks. The main challenge is coping with mobilftfhe nodes. In
this thesis, we consider the problem of routing in ad-hoevosts with realistic
mobility patterns in possible applications.

The design of routing protocols usually relies on a set ofiaggions on the
network topology and dynamics. For example, a particulabitity model (ran-
dom waypoint, random walk, etc.) or a class of network togige is postulated.
If such assumptions are too strong, there is a danger ofitajlthe algorithm to
these assumptions, instead of designing a robust algovithich is effective over
a wide range of settings. Therefore, we need to carefullglctieese assumptions,
and test candidates against different models to assesgdbastness. To do this,
we first review the state of the art of both mobility models aedlistic mobility
traces. Then, we review existing routing mechanisms forilaatol-hoc networks.
Finally, we define our assumptions and modeling of the ndtwapology and dy-
namics, and we desribe our routing methods designed foe tiesumptions; thus
summarizing contributions of the thesis. We also discussdwr work relates with
the state of the art.

1.1 Models of Mobility and Connectivity

Next, we review the existing models of mobility and netwodnnectivity.
Researchers in ad-hoc networking first used random molnildgels, such as

random walk (RW) [CBD02] and random waypoint (RWP) [JM9@a]these mod-

els, nodes move in a simulation area (e.g., a plane or a diakanus) identically
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and independently of each other in a random fashion. A nodesmall over the
simulation area, and its movement is independent both ofidlde’s position and
time. Thus, these models lead to homogenous (or close to dremoas) spatial
distribution in space.

In order to have a more realistic mobility model, the resears introduced
some diversities in the nodes’ movement. We distinguiskrgities through space,
time and nodes.

The space diversity means that a node’s movement depends own lo-
cation. So, there are models where nodes move only in camstrareas, such
as roads. They are a city section model [Dav00], Manhattadetn@ freeway
model[BSHO03], and a graph-based model [THR]. In an area graph-based
model [BRS05], besides the constrained areas, nodes alsodiféerent speeds
and staying times in different areas. There are also mode¢sera node has pre-
ferred locations that it visits more frequently than othé&samples are a weighted
waypoint model [HMS 05], a community model [LDS03a], and a clustered model
[LYDO06]. The work of [JBRASO03] introduces obstacles for thedes movements.

The time diversity means that a node changes either its ityolibdel or the
parameters of the model periodically through time. An exiengfHSPHO7]. Note
that this model captures all three kinds of the aforemertiadiversities.

The node diversity means that nodes move differently amaab ether (dif-
ferent model or parameters), or that a node’s movement dspenother nodes. In
this class of models, we have group models (e.g., [HGPC991$Mand social-
based models (e.g., [MMO07]).

All these models, with the appropriate set-up of their paaters, lead to a
heterogenous spatial distribution of nodes. This type sirithution can give rise
to heterogeneous connectivity between nodes, where higimigected clusters are
interspersed with low-connectivity regions. This is cangrto the homogenous
distribution where connectivity is evenly distributeddbgh the whole area.

A network being connected or partitioned is an importanpprty of connec-
tivity for routing design. All the mobility models mentiodeabove could lead to a
partitioned network if the transmission range is small gfowBut, different mod-
els lead to different types of partitioned connectivity. eTlandom models lead
to sparsenetworks, whereas these “heterogenous” models often teeldigtered
networks. What distinguishes a clustered network from asgpaetwork is the
number and size of its (connected) components. Due to tlilitative difference
in component size, in sparse networks it is typically sugfitinetworks to restrict
communication between nodes to single hops, as this doesandfice many re-
lay opportunities. For this reason, many existing routilggpathms for partitioned
networks exploit only one-hop communication. In contrastlustered networks,
restricting communication to single hop relaying would leeMimiting, given the
larger clusters and the presence of longer paths.

Beside mobility models that describe the connectivity &f ttodes indirectly,
there have appeared recently models that define directlgdhaectivity of the
nodes through a distribution of inter-contact and confawt$ for node pairs [CHDO7].
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These models appear to be useful in the context of partiioetworks.

A more detailed survey of mobility models can be found in [GCER [FHO4]
and [MMO09].

So, we see that there are many proposed mobility models. Tbstign is
which one to use. To answer this question we need to know wiohility of
people in reality is like.

1.2 Real Mobility

We survey efforts to collect mobility data in settings of essible realistic ap-
plications. We distinguish three types of collected mopitiata sets: AP-based
(Access Point based), contact-based, and position-based.

Most of the available data sets are AP-based. These datalbeted in wire-
less LANs on university campuses or business premises.eTilaso one data
set available from a metropolitan wireless network. In ¢heata, the locations of
nodes are shown to the granularity of access points (APs$.idAEhese networks
are similar to base stations in conventional cellular net&oThese data are more
useful for the analysis of the usage of a network than for ti@yais of the mo-
bility of users. The reason is that the used devices arepapio PDAs that are
usually turned on when a node uses the network, otherwigeatteeturned off.
Hence, these data captures just a small part of real mob#ityo, as mentioned
above the granularity of locations is in scale with the APs.

However, there are some general conclusions about realitpdbat the re-
searchers found in these data-sets. First, there existdeediversity where most of
the nodes do not move much, but some nodes are highly mobB9(],[BC03]).
Second, a space diversity is also present, where users spasicf their time in
their homelocations ([BCO03],[KEO05]). Third, a heterogenous spadistribution
of users appears in many traces, i.e., there are some APsnvikierage a larger
number of users than in others APs ([TB02],[SB04]).

Contact-based mobility data sets are those sets that dimeriation for every
node pair if the two nodes are connected ([SC#], [CHD™07], [LWMO6]). Thus,
there is no space information here. From this informatiesearchers characterize
mobility through a distribution of contact and intercontéimes of nodes’ pairs
(times that two nodes are connected and time between twaasht These data
are of relatively small scale (20 nodes in [S@R] and [LWMO06]), and 54 nodes
in [CHD™07]), so we did not find them satisfying enough for our analysi

Ideal mobility data would be a large-scale position-basaté that give us the
geographic coordinates of nodes frequently enough (saytabery 10s) [KWSBO04].
When we started our investigation and when we looked atst@alnobility, there
was only one position-based data set available. But, thes skt consisted of only
two users. From these data we could see an obvious clustafrthg users’ move-
ments in specific locations, hence the space diversity wigsprevalent.

Therefore, at the time we started our research there wereaom gnough mo-
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bility data available through which we could validate mipimodels. This is still
a very open research area.

1.3 Routing Mechanisms

Depending on the application, the requirements of routanglwe different. Many
applications require a unicast routing service, where acsonodes wants to de-
liver a message to a destination natléSocial applications and content spreading
ones require a broadcast or multicast routing service, avh@ode wants to deliver
a message to all nodes or to a group of nodes in the network, gamde applica-
tions require a more specific routing service, such as a geocating, where a
node wants to deliver a message to nodes located in a spee#ic a

Furthermore, applications have a different requiremesganding performance
metrics of routing. The most important performance metiogcthe design of any
routing protocol are: delivery rate, delay, and throughelivery rate is the per-
centage of messages delivered to their destinations. ethg time from when a
source sends a message until the destination receivedliefdirst time. Through-
put represents how much data transfer in total can be sastaiyna network.

What is desirable depends on the application, but what iseahble depends on
the environment where a network operates. According to éheydwe distinguish
an instantaneous and delay tolerant routing service. lindtantaneous service,
we expect that a message is delivered in a relatively shoe (of order ofims
or s), whereas in the delay tolerant service, we can toleratg laege delays (of
order of even days). The instantaneous service is possityeiro environments
where an assumption about an end-to-end connectivity holdgs assumption
means that between any pair of nodes in the network thereoisyencinication path
(possible multi-hop through other nodes) at all times. Neks can be partitioned
(i.e, the end-to-end connectivity assumption does not)heiither because of a
nodes’ mobility pattern or radio channel conditions. Neatgowhere only delay
tolerant service is possible are often called Delay TolkelRaiworks (DTNS).

In this work, we consider the problem of providing an effi¢ienicast rout-
ing service into realistic challenging environments wieeeassumption about the
end-to-end connectivity may not hold. Therefore, we nexiese existing mecha-
nisms for the unicast routing in mobile ad-hoc networks. SEn@echanisms differ
depending on the assumption about the end-to-end conitgdtiva network. We
first review routing algorithms for the end-to-end conndatetworks and then for
the partitioned ones.

1.3.1 Connected Networks

Routing algorithms for connected ad hoc networks can besifiled as proactive
(or table driven), reactive (or on-demand), hybrid (or tBudased), and position-
based (or location-aware) ([BKO7], [CD®7]).
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Proactive algorithms are based on conventional link-statdistance-vector
routing algorithms. They try to maintain shortest-pathtesiby using periodically
updated views of the network topology. Two examples are DSB¥ OLSR.

DSDV [PB94] is based on the classical Bellman-Ford algaoritiEvery node
has a routing table with the “next hop” for every reachablstidation and the
minimum distance (number of hops) to the destination. W¥emnany change
in the table happens, it is reported to neighboring nodestlamnsl the tables are
updated.

OLSR [CJ03] is based on the link state routing. Every nodentaais infor-
mation about the network topology, which is then used torddte the shortest-
path routes. Each node determines the link costs to its beighy broadcasting
“hello” messages periodically. Whenever any change in tistscappears, the node
broadcasts this information to all other nodes.

Reactive algorithms determine routes only when necessagrigally when a
source needs to sends a packet and the source does not knawusmyto the
destination. Two examples are DSR and AODV.

DSR [JM96b] uses a source routing, where a source node esladoute to
be followed by a packet in the packet's header. The souramwdiss this route
on-demand when the source does not know it. This is done ladbesting a route
“request” packet.

AODV [PBRDO03] is an on-demand extension of DSDV. Like DSDVes/
node has a routing table with the next hop and the minimunawlist to each des-
tination. However, the routes are created on-demand, shamly when there is
no “fresh” entry in the table. AODV determines the freshnesmformation by
maintaining the time that an entry was last utilized. Aninirthe table is deleted
after a certain threshold of time.

Hybrid algorithms are a combination of the reactive and gtiea principles.
For example, ZRP [Haa97] divides the network into zonesustels of nodes. The
nodes within a zone use a proactive algorithm. Every zonalsas of peripheral
nodes. When a node send a packet to the destination for whdde$ not have an
entry in its routing table, it requests the peripheral nadagactively discover the
route. More advanced proposals are [KSHO7], [WCYZ07].

Division of the network into zones or clusters is called tdusg. There are
many proposed algorithms for this problem [CLL04], [CR09].

Position-based algorithms use geographical position©dés in the network
to make routing decisions. These positions can be obtainedibg GPS receivers.

For example, GPSR [KKO0O] uses only neighbor locations invéoding data
packets. In its greedy forwarding scheme a node forwardskep#o a neighbor
that is geographically closest to the destination. Thicgdare is repeated until
the destination is reached. If the packet ends in a dead-ieekif all neighbors
are farther from the destination than the node itself, thembde performs another
procedure called a perimeter forwarding.

GPSR and similar algorithms (e.g., [BLBGO5], [GS07]) requa location ser-
vice in order to find out a position of the destination. Thisdtion service may in-
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cur a large transmission cost. There are different propdeakliminating the cost
due to the location service , e.g., GLS [LID@0], GRSS [Hsi01], LER [GV06)),
where an approximate location service is used.

1.3.2 Partitioned Networks

Routing mechanisms for connected networks described atawveot work in mo-
bility environments where the assumption about the engltb-connectivity does
not hold. That is to say, if a destination of a packet is noth@ same portion
of a network as the packet’'s source then the packet would endelivered to the
destination but the packet would be dropped. This is beceute reactive and
proactive algorithms it would not be possible to find a roatedrds the packet’s
destination. And, in the position-based algorithms thekpawould end in a dead-
lock.

A different mechanism, calledtore-carry-forwardor mobility-assisted for-
warding must be used in such networks. In this mechanism, a nodesneed
store and carry a message with itself, until a better oppdyttio forward the mes-
sage arises. Thus, nodes use their own mobility to move aagedswards the
destination and this could be the only possible way to delavenessage to the
destination. Finding such routes through space and timbevgosly a complex
problem in general and depends heavily on the joint stegisif link availability
[JFPO4]. The delay incurred may be large and thus in suchanksmonly the delay
tolerant routing service is possible.

One of the simplest possible store-carry-forward mechasis adirect for-
warding, where a source forwards a packet only to the packestination. Thus,
the source stores and carries a packet until it meets thenalésh, and then it
forwards the packet to the destination. This algorithm hasnminimum possible
transmission cost, i.e., only one transmission per mesdagiethe delay is large,
and the delivery probability may be low, depending on the ilitplpattern.

Another simple mechanism is apidemiaouting (ER) [VBO0O]. Here, a source
node gives a copy of a message to every node it meets (thabtaraady receive
the message). Also, nodes with a copy of the message dissentire message
further to other nodes they meet. This algorithm has thermin possible delay
and the maximum possible delivery probability (under theuasption of infinite
buffers), but it incurs a very large transmission overhéathe network of. nodes
ER incurres(n — 1) transmissions per message).

There are proposed mechanisms in between these two. Thall heairistic-
based mechanisms that try to achieve a better trade-ofidleetdelay and through-
put. They try to limit flooding of ER, but still to have delayoske to ER and also a
good delivery probability. Next, we review these mechasism

First, we could limit a number of hops a message can trav&Be(q] in ER.
Second, we could add an ack mechanism in ER where a destirsgi@ls an ack
when it receives a message. This ack is then broadcastedén tor delete other
copies in the network [VB00], [HABRO5]. Third, we could liirthe time that a
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message lives (i.e., we could add a time-to-live mechanjsiABRO5].

Fourth, an algorithm Spray and Wait [SPRO05] limits a totainier of copies
made. Initially, when a message is originated, a nunibef copies are sprayed,
and then each of these copies is further routed only by mefatiedirect for-
warding. There could be different mechanisms of the ingahying. The authors
in [SPRO5] consider two: a source and a binary spraying. érstiurce spraying,
a message’s source forwards Alicopies by itself to the first distinct nodes it
meets. In the binary spraying the source of a message lyisi@rts with L copies
(tokens), and then any node that has> 1 copies hands ovelm /2| to another
node it meets (with no copies) and kedps/2] for itself. It is shown that this
binary spraying mechanism is the optimal one.

Fifth, there are proposals to make more clever routing dewsbased on the
mobility history of nodes. We call these mobility-based maghes. The idea is
to copy a message only to the nodes that are more likely to theatestination
in the future or to meet nodes that will meet the destinatidhis probability is
determined based on a mobility history. In PROPHET [LDS081$ probability is
calculated based on how recently and how frequently a nodssitiee destination
or nodes that meet the destination frequently or recenthhei®éver two nodes
meet, they exchange and update their delivery predidbiihich are then used
to decide whether to exchange messages or not.

Sixth, there aresingle-copyproposals, contrary to the multi-copy ones de-
scribed above. In the single-copy algorithms, a node doéxamy a message
to other nodes, rather it forwards a message to a better fidaes, only one copy
of a message exists at all times. The advantage of forwastdidghot copying is a
savings in the buffer space as well as a smaller delay or erldedivery probability.

Hence, in these single-copy algorithms, when a node with ssage meets
another node, then that node decides whether to forward #ssage or not, by
using a mobility-based approach similarly as in PROPHEToAenis suitable for
forwarding a message if the delay of a message is smalleoratind/ delivery prob-
ability is larger if the message is forwarded to that nodeer&hare different pro-
posals of how to make decisions about whether to forward #Esage or not.

Thus, in Shortest Path Routing [TZZ03] a basis of the degssis an estimation
of the probability that two nodes will meet. This probalilis calculated as a
time that two nodes stay connected dividing by an obsenimg tvindow, i.e.,
pij = Timeconnection/TiMewindow 1S @ probability that nodeé meets nodg. In
Practical Routing [JLS07] a basis of the decisions is amedion of an expected
delay for a message to go from one node to another. The ctddufaetric is
Zle d?/Qt, whered; is the duration of a disconnected perigdandt is a total
observed period. Then, in both of these algorithms when tades meet they
update these metrics. Moreover, a network topology graphamtained. This
graph shows the described metrics between all nodes in terie Then, the
forwarding decisions are made by finding the shortest pattesan this graph.

In a MobySpace algorithm [LFCO7], the idea is that two nodesnaore likely
to meet each other if they have similar mobility patterns.néée they propose
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to use the formalism of an Euclidean virtual space (calledy&pace) as a tool
to make forwarding decisions. Routing is done by forwardimgssages towards
nodes that are increasingly similar to the mobility pattefrtihe destination. [CMOL1,
MHMO5] Seventh, DTC [CM01] and CAR [MHMO5] useraulti-hopmechanism
that differs from all others mentioned. They do not consialdy one-hop neigh-
bors as candidates to forward a message, but also all rdaamaitti-hop neigh-
bors. Also, they differ in that a node with a message peraljianakes routing
decisions at everyediscoveryinterval, and not upon an encounter of a new one-
hop neighbor as in other algorithms. Beside these diffegnthey use a similar
mobility-based single-copy approach as others.

DTC proposes to use also some other metrics (the authortheatl utilities)
besides these mobility-based metrics. Thus, DTC uses itysbdsed metrics (last
encounter timers, frequencies of encounters and futumespland other metrics
(a nodes’ power and the rediscovery interval). CAR germzalithis concept of
using utilities by using a general mathematical framewarktfie evaluation and
prediction of these utilities.

Eight, BUBBLE [HCYO08] uses social structures (communitisshuman mo-
bility to make routing decisions. In particular, BUBBLE $sbeterogeneity in
human interaction, both in terms of hubs (popular individuand groups or com-
munities.

Ninth, network coding and erasure coding techniques ae @igposed for
routing in DTNs. In both of these works they show that thisldanprove network
throughput. In network coding [WLBO05] intermediate hodas combine, instead
of simply forwarding, packets received so far, and send taemew packets. In
erasure coding [WJMFO05] a messagekablocks is encoded inta > k blocks
in such a way that it or more of then blocks are received, the message can be
successfully decoded. In both ways, network throughpuhoved.

In some scenarios of DTNs, important considerations amigeld transfer du-
ration, transfer rate and storage space. As a consequertbés,ofin important
problem is buffer management (i.e., what to do when a buffduli and a new
message comes and how to order messages to be transferred tnansfer oppor-
tunity). There are several proposals for the buffer managerfDFLO1, BBLO5,
RHBT07, BLVO7, WHABO9], and this is still an active area of resdar In the
design of our routing algorithm, we do not explicitly addrélsese limitations and
we assume that transfer duration, transfer rate and sty are not scarce re-
sources. Thus, the buffer management is out of the scoperafiank. But note
that we do take implicitly these into account, by designingcheme with small
transmission overhead in total and with a mechanism foradicg unnecessary
copies of messages.
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1.4 Contribution

In this thesis, we endeavor to identify features of mobitiommon to different
applications, in order to devise routing methods that ateréal to exploit these
features. We explore two features in particular, (i) predidity and (i) stable and
heterogeneous spatial node distribution.

1.4.1 Exploiting Predictability

A mobility process is predictable if the future location ofi@de can be well esti-
mated given knowledge of its current and past locations,pasdibly other statis-
tics. We show how the performance of routing can be improwedxplicitly in-
corporating mobility prediction. Specifically, we congidlee performance of Last
Encounter Routing (LER) under a simple synthetic randompwayt (RWP) mo-
bility model. We extend the LER algorithm so that it take®iatcount predicted
node trajectories when making routing decisions, and wevghat this signifi-
cantly improves its performance.

Last Encounter Routing (LER) [GV03, DFGV03a, DFGV03b] refto a type
of routing algorithm where the destination of a packet isated without the help
of a location service and without any control traffic to tracgology changes due
to node mobility. Rather, a packet is routed using only theoanter histories at
nodes it is forwarded through. In its basic form, the enceuhtstory consists of
the time and location when a node was directly connecteddthannode.

Itis clear that the performance of LER algorithms is clogigl to the mobility
pattern of the nodes in the network. To see this, considextagnee scenario where
there is no dependence between a node’s position at différeas, i.e., nodes
“jump around” randomly in the network domain. In this casisfdry information
is of no use, and any LER algorithm would perform as poorly m&xhaustive
search.

We look at the RWP mobility model in the context of LER for seleeasons.
First, the model is well studied and is very prominent in datian studies of
mobile ad hoc networks. Second, as shown in [GV03], a goddimaeance for the
RWP model is harder to achieve than for another prominentilityomodel, the
random walk. Third, in contrast to the random walk, the RWRleids predictable.
This provides us with an opportunity to exploit additionaflormation collected in
an encounter (such as speed, direction, etc.) to improugou

We compute optimal predictors for the RWP model under difierobserva-
tion information by using the minimum mean square error asctiterion. Then,
we incorporate these predictors into GREASE, an instanceEd® algorithms
[GV03], by making prediction of nodes’ locations in the enater history. We
show through simulations that this GREASE-RWP algorithimeges a drastically
better performance than the “non-RWP” version reportedsx(3]. Specifically,
the total average route cost is slightly more than twice asyrhaps as the shortest
path. This is quite remarkable, given that no resources mgested to track the
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rapid change in the network topology due to RWP mobility. &twer, the cost of
GREASE-RWP routes, relative to the shortest path, doesawhdo increase as
we scale up the network size.

Predictability is a mobility feature recognized in manyligé scenarios. For
example, the limitation of the speed of nodes makes a mpbitiicess predictable
over at least a short time scale. Another example is thatods have some lo-
cations that they visit more often than others, as mentiam&ekction 1.2. Hence,
the predictability is exploited by many routing mechanisthesigned for the par-
titioned networks, as we see in Section 1.3. The novelty ofvark is that we
consider the prediction in the RWP model, and how to incateothis prediction
into LER, both of which have not been previously considered.

1.4.2 Stable and Heterogenous Spatial Node Distribution

The next step we perform in our thesis is to study realistibilitp data-sets in
order to possibly identify other features common in manyiagfions that could
be exploited to help routing. As mentioned in Section 1.Zhattime we began
this investigation, there was no suitable large-scale litypkiata-sets with enough
frequent location updates. Hence, we made a special effdimd such suitable
data-sets. The results of this effort were two distinctdasgale data-sets of taxis
in the city of Warsaw, Poland and in the city of San Franci&®A 1 The Warsaw
data-set consists of 800 taxis over a three-month period, and the San Francisco
data-set consists 6f 600 taxis over a month period.

We distinguish the following properties:

e spatial distribution of nodes is heterogenous rather tlgndgenous

e there exist regions of the dense connectivity, which we caficentration
points (CPs); these are regions where the node density ik trigher than
average, and where nodes have therefore a much better chanocen aver-
age of being connected to other nodes;

e a network is often partitioned with heterogenous connigtiwhere the
highly connected CPs are interspersed with low-connégtigigions;

e spatial node distribution typically remains stable overdj this is because
it is determined by natural or constructed environment,civiihange over
relatively long time-scale.

Although heterogenous spatial node distribution and entst of CPs has been
observed by others (as mentioned in Section 1.2), theiilisgatver time appears
to be a novel one.

1The credit for the collection as well as data mining of thesgagets goes to Michal
Piorkowski[Pio09]
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Modeling

We model a network that possesses these observed propeitties set of stable
concentration points (CPs) characterized by high nodeitgength a mobility
process that describes how nodes move between these isfacmsnectivity. We
study two instances of this model: the G-model and the H-hode

In the G model, we view the network asvobility graphG(V, E), where the
vertex setV represents the CPs, and the edge lBeepresents flows of mobile
nodes between the CPs. Two nodes can communicate with dzahantly if they
are at the same vertex; and if a node is at an edge, then it taomonunicate with
any other node. This assumption of a “sharp” connectivitpdas to first concen-
trate on an essence of the problem by abstracting away a&it ottmplexities of a
real mobility.

In the H-model, contrary to the G-model, nodes move in a ggayc space
with two nodes being connected if they are within a certa@mgmission range.
Thus, the H-model relaxes the sharp connectivity assumptiao the H-model,
every node performs an independent random walk on a plarie heterogenous
speeds in different areas of the plane. Specifically, in taegowe randomly place
disks that represent CPs. A node moves faster in the area digks than outside
of the disks. Because of this difference in the speeds ierifft regions, the node
density is higher in the CPs than outside of the CPs. The Hefhtbdrefore results
in a high connectivity inside the CPs and a low connectivitysae of them.

Compared to the other existing mobility models that couddileo a temporally
stable and spatially heterogenous node density with aropppte set-up of their
parameters, we find the H-model more interesting for thefatg reasons. First,
the H-model is parsimonious, requiring only a small numbiggazameters to con-
trol the macroscopic properties of the model. We avoid @ypeeialization in the
model design and we propose a generic mobility model, thrabedurther closely
tuned to a specific real-life mobility scenario. Nevertlsslethe model captures
clustering and spatial heterogeneity. It is easier thantleroexisting models to
tune parameters properly in order to get the desired sgwtarogeneity. More-
over, it is easy to tune the parameters to set-up the desoddshdensity in a
stationary regime inside and outside of the clusters.

Second, another interesting macroscopic property of theddel is the dy-
namics of connectivity, i.e., the stability of cluster Itioas. As we will see later
in our work, for DTN routing protocols, it is not only an instaneous appearance
of clusters that matters; how these clusters evolve oves igmalso important. In
reality, cluster formation can often be attributed to feasuof the natural or con-
structed environment (e.g., railway station, warehouagkipg lot, watering hole).
For DTN routing, this is an important feature that can be eitptl for designing
efficient schemes.

Third, although other models rely on similar mobility preses, e.g., random
waypoint or random direction, they assume that each node Isa$ of so-called
preferred locations Such locations are visited by nodes more often than other lo
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cations. In other words, nodes are not statistically edemtaand their individual
mobility can be well predicted. This is a strong assumptieith important im-
plications for the design of robust routing protocols. Tisisiot the case in the
H mobility model, where nodes move independently followihg same law. We
also provide evidence that in some realistic scenariosyibiglity patterns of dif-
ferent nodes can be almost indistinguishable. This may bklgmatic for DTN
routing protocols that assume a-priori that the movemett¢pe of nodes are very
different and predictable.

Forth, there is also one interesting aspect of the H-mod¢Hiffers from other
models. The H-model captures an interesting relationskiwden speed and den-
sity. In the model, differences in node density (and hencmectivity) in different
regions can be viewed as a consequence of different avepagelsin these re-
gions. We observe such an inverse relationship betweerd spekdensity in at
least one realistic mobility scenario, but we suspect thaty be quite universal.

1.4.3 Island Hopping through Stable Concentration Points

We develop a routing algorithm assuming the mobility modsalibed in the pre-
vious subsection. Our Island Hopping (IH) algorithm is a&l@pproach to routing
for mobile partitioned networks; it explicitly exploitserassumed stable CP topol-
ogy in the nodes’ mobility.

More specifically, nodes make routing decisions for a messamg:

e aCP graph@(V, E), a node’s representation of the CP topology with
representing the CPs aiitirepresenting possible flow of nodes between the
CPs;

e the nodes’ locations in the CP topology;
e alocation of the message’s destination node of the message.

Based on this, nodes decide on a sequence of CPs through thibichessage is
forwarded to its destination, rather than deciding to wiriodes to give a message
as in other compared algorithms.

The key question is how to pass a message from one CP to th€Raktough
nodes whose future movements are random and unpredictathie.future move-
ments of nodes were known, we could pass the message toa sodg that would
move in the right direction, i.e., to a CP closer to the desiim inG(V, E). How-
ever, given that future movements are unpredictable, @aridhm makes a small
number of copies of a message at each CP, in the hope thastbleacopy will
move to the intended next CP and the other copies will be disda The process
repeats at the next CP, until the message reaches its diestina

Therefore, we view our algorithm as a spraying of a small nemalb copies at
CPs along the shortest path in the CP topology graph. In thisaur algorithm
achieves a very good delay-throughput trade-off , i.echieves delays of the order
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of much more aggressive flooding-based schemes and reguimasch smaller
number of copies of each message.

We compare the performance of our algorithm through siraratwith Direct
Forwarding, ER, PROPHET, SW, and SF. We assume infinite dsufifeall algo-
rithms. We see that our protocol achieves a delay of the @fdeR and PROPHET
(which is much less than in the direct forwarding), whiletitsnsmission cost is
much smaller (in some scenarios about ten times less). Gachpath SW and SF,
our IH achieves about 35% less delay for the same transmissist. Moreover,
the scalability with the network size appears to be morerfe for IH than other
compared algorithms. The delivery probability is similaiail algorithms.

Our IH algorithm differs in several aspects from other pigmb approaches
of routing in partitioned networks. First, an assumed nigbihodel is explicitly
different than other models. A distinguishable propertgwf model is the cluster-
ing and the stability of cluster locations. In reality, dkisformation can often be
attributed to features of the natural or constructed enwirent (e.g., railway sta-
tion, warehouse, parking lot, watering hole). For DTN rogtithis is an important
feature that can be exploited to design efficient schemekoddgih other proposed
models [HMS 05, LDS03a, LYD06, HSPHO07] can lead to the clustered netsjork
they differ in the following. They assume that each node hastaof so-called
preferred locationsSuch locations are visited by a node more often than other lo
cations. In other words, nodes are not statistically edeimtaand their individual
mobility can be well predicted. This is a strong assumptigith important impli-
cations for the design of robust routing protocols. Thisdsthe case in the G and
H mobility models, where nodes move independently follaptime same law. This
may be problematic for DTN routing protocols that assumeierghat the move-
ment patterns of nodes are very different and predictabie, @£DS03b, LFCO7].
Furthermore, in the context of DTN routing, the mobility isually modeled by
considering pairwise contact duration and inter-contiacés. In contrast, we ar-
gue that it is also important to consider the collective tigbtharacteristics and
resulting patterns that may not be captured by pairwisésgtat Second, most
of other routing proposals [VB00, SPRO05, LDS03b, TZZ03,JL3_FCO07], with
the exception of [CM01, MHMO5], exploit only the one-hop cmmnication be-
tween directly connected neighboring nodes. Our algoriéxploits in addition
a multi-hop communication through a connected componestty for forward-
ing/copying messages and for exchange of control infolomatihis is important
for learning the collective mobility patterns that are tlegploited to make efficient
routing decisions. In this respect, the closest approaciuts is the social-based
routing algorithm BUBBLE [HCYO08]. It collectively learns metwork clustered
structure that arises due to social human interactions.déference is that in our
model there is no preference in meetings between specifiespaodther all nodes
pairs are statistically the same. Hence, under our modeduiadvbe impossible for
BUBBLE to find social communities and to make efficient rogtaecisions.
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1.4.4 COllaborative GRAph Discovery (COGRAD)

In many applications, it is unrealistic to assume that tlaglrof CPs and the flows
of mobile nodes between CPs is known a-priori (though thiddcbe the case in
some applications). Instead, we assume that the only irom that nodes have
available is the set of other nodes that they can reach (adirectly or over mul-
tiple hops), which can be discovered in a straightforwardcimea (hello messages,
flooding, etc). Therefore, a large part of this thesis is ckgid to devising a dis-
tributed algorithm that allows the nodes to collaborativeiiscover the CP graph,
in the absence of any signal from the environmesich as GPS coordinates or
fixed beacons. This problem is a novel one, i.e., to the besupfknowledge
there is nothing similar in the research literature. We aatlass of algorithms
for this problem by COllaborative GRAph Discovery (COGRADuUr COGRAD
algorithm divides the problem into two phases: vertex limgehnd edge discovery.

Vertex Labeling. The goal of this phase is to generate a label, i.e., a unigre id
tifier for each vertex o¥/, which will remain stable over time, even though nodes
move in and out of each vertex. Suppose that at a given timadties currently
located at the same CP agree on a label for this vertex. Noth@noodei arrives

at this vertex. Nodéhas not received any explicit clue from the environmentithat
has moved, and the other nodes have not received a clue ¢iydidlkie not moved.
However, nodé’s set of neighbors has changed rather markedly, whereashbe
nodes’ neighbor set has only seen the additiori. o hese nodes can therefore
decide jointly that it is likely that nodeéhas moved, and the other nodes have not;
node: therefore accepts the label of this vertex.

Edge Discovery. Once we have associated a label with each CP, a node can dis-
cover the edges of the CP graph as it moves from one CP to the©E To ensure
that each node learns the entire graph, even though it mayvisit part of the
graph, it is necessary that nodes exchange edges they lsaexatied. This also
accelerates the learning process of the nodes, and moté@/aliows for outdated
information (e.g., a label that does not exist any more) téusied out.

We first develop a COGRAD algorithm under the G-model. We sti@t it suc-
cessfully replaces a COGRAD *“oracle” in IH under the G-mod&$ mentioned
in the previous subsection, the G-model makes the sharpectivity assumption
(i.e., the nodes at the same vertex are connected to eaah wtiereas a node at
an edge is not connected to any other node). In addition $p\wtté make one more
assumption in the design of COGRAD in the G-model. We assumaea node
sees momentarily any change in its neighborhood. This @sjpliat at one time in-
stant only one node can leave or join a vertex. These assomsptiake the design
problem of COGRAD easier. Though in many applications uistg they were
helpful to make first steps towards the design of COGRAD umadere realistic
assumptions. Moreover, having a simple COGRAD scheme ntad&oi easier to
focus on the design of the main principles of IH.
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Then, we develop a COGRAD algorithm under the H-model. Thislehre-
laxes the sharp connectivity assumption, i.e., nodes mowegeographic space
with two nodes connected if they are within a certain distaoteach other. We
also relax the assumption about the continuous neighbdrid@zovery. Instead,
we assume that a node sees changes in its neighborhoodigahoévery dt,
where this could be implemented simply through physicagddoroadcast or through
flooding algorithms. These relaxed assumptions led us tffexrat design of the
vertex labeling algorithm, whereas the edge discoveryqaaristay the same. Inte-
gration of this COGRAD into the IH algorithm designed for tRemodel requires
minor modifications in IH in order for IH to successfully op&x under the H-
model.

How successfully the COGRAD algorithm operates, for both@model and
the H-model, depends on control parameters of the algosittor the G-model we
set-up the parameters by using our knowledge about the moelete COGRAD
for the G-model is model-dependent. For the H-model, weredé the param-
eters in order to obtain model-independent COGRAD. Theeefare design an
adaptive COGRAD algorithm where nodes estimate the negepsaameters by
themselves in a distributed way adaptively over time. Wewthoough simulations
that IH with adaptive COGRAD operates successfully. Algjothe self-adaptive
COGRAD is designed for the H-model, we believe that it is algplicable in other
mobility models that have the observed property of a staBledpology.

Through evaluation of the adaptive COGRAD, we find that in sarases it
performs poorly, giving unstable labels. This happens,efample, when two
CPs are too close to each other and if they become discounaatereconnected
often. The main reason behind this is that the designed CQis&4orithms are
component-based, associating a label with a componenthieze can be only one
label per a component. Therefore, we design a seftlabeling algorithm that
allows several labels to coexist in the same component. \WWe shat the soft
labeling algorithm performs in a wider range of the H-modmigmeters than the
component-based algorithm does. For the purpose of the axisop, we use a
metric that shows how close a labeling algorithm is closééndealistic one (i.e.,
when each CP has only one unique label). Simulation reshti® €learly that
the soft labeling approach is a promising one for makingliabemore robust to
mobility conditions possible in reality.

1.4.5 Summary of Contributions

The main contributions of this dissertation are:

e An improved LER algorithm under the RWP model: exploiting thre-
dictability of the model.

e Observations of common properties of realistic mobilitpqasses: tempo-
rally stable and spatially heterogenous node distributiaat leads to the
partitioned connectivity with the stable CP topology.
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e Two novel mobility models that possess the above mentionagipties: the
G-model and the H-model.

¢ Island Hopping (IH): a novel mobility-assisted routing @ighm for net-
works with the observed properties.

e COllaborative GRAph Discovery (COGRAD): a distributed @ithm for
discovering the CP topology.

e Evaluation: We evaluated IH both under an assumption tleagtis an oracle
that reveals the CP graph to nodes and under our COGRAD thigoin our
two mobility models. We compared it with several DTN routigorithms
and we have shown a very good delay-throughput trade-offpaoimg to
others.

1.5 Dissertation Overview

This dissertation is organized as follows. In Chapter 2, hashow the perfor-
mance of LER under the RWP model can be improved by explicittprporating
mobility prediction. In Chapter 3, we show how we model r&#di mobility with
the G and H mobility models. In Chapters 4 and 5, we design aatli@e our
routing algorithm, Island Hopping, under the simplifyingn®del and the more
realistic H-model, respectively. Chapter 6 concludes thsaitation.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Last Encounter Routing under
Random Waypoint Mobility

In this chapter we show how the performance of routing in headdnil hoc networks
can be improved by explicitly incorporating mobility pretion. Specifically, we
consider the performance of Last Encounter Routing (LERJeura simple syn-
thetic random waypoint (RWP) mobility model. We extend tHeR_algorithm so
that it takes into account predicted node trajectories wheking routing deci-
sions, and we show that this significantly improves its penknce.

Last Encounter Routing (LER) [GV03, GV06, DFGV03a, DFGVDR&#fers to
a type of routing algorithm where the destination of a patk&icated without the
help of a location service, and without any control traffitreack topology changes
due to node mobility. Rather, a packet is routed using ordyetficounter histories
at nodes it is forwarded through. In its basic form, the ent@uhistory consists
of the time and location when a node was a directly conneat@ghhor of another
node.

In [GVO03], the following model was considered. A set of nogesform in-
dependent random walks on a square lattice. Two nodes a€tlgiconnected
neighbors if they reside at the same lattice point. Everyen@inembers when
and where it has encountered every other node,lastaencounter tableA very
simple algorithm called EASE was introduced in [GV03] to gaute a route from
a source node to a destination node, based only on LE histayeay node. It
was shown that the expected total cost of EASE routes is d smudtiple of the
expected shortest path length between a random source atidatien. In other
words, EASE is a scalable LER algorithm for the random wallkitity model, as
the cost of routes relative to the shortest path does not bjpas the network size
increases.

Itis clear that the performance of LER algorithms is clogidg to the mobility
pattern of the nodes in the network. To see this, considextagmnee scenario where
there is no dependence between a node’s position at différeas, i.e., nodes
“jlump around” randomly in the network domain. In this casistdry information
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is of no use, and any LER algorithm would perform as poorly m&xhaustive
search.

An important question, then, is the interplay between théility model and
the performance of LER algorithms. A complete answer to dlisstion remains
elusive, but it is possible to develop some intuition abaatdres of the mobil-
ity model that are favorable to LER algorithms. In particulae argue that the
following three features of a mobility model help LER: loitglfrequent intersec-
tions, and homogeneity.ocality means that a node’s position at a timeorrelates
with its position at a certain time in the future; this ensutteat information about
past encounters is actually useful in locating a ndeglequent intersectionmean
that a node over a given time interval tends to encounterge laumber of other
nodes. This ensures that information about that node'ditotés refreshed fre-
guently. Homogeneitymeans that the statistical properties of each node mobility
are similar. This ensures that the speed of diffusion of entar histories due to
movements of other nodes is matched to that of a destinatide.nin this paper,
all the scenarios we consider are homogeneous.

Based on these three features, we can see that the randomoulailky model
is quite advantageous to LER. First, as a node performs amtkmt steps over
time, the dependence between the current and a future grositithe node de-
creases only slowly with time. Specifically, it follows frothhe central limit the-
orem that the difference between the two positiorseconds apart is a random
variable with variance proportional t@t. Second, despite the locality, a node en-
counters other nodes frequently. Specifically, it was shimGV03] that over a
time interval of lengtht, a node encountef3(¢/ log t) other nodes. As a result, in
the random walk mobility model, we observe that (i) a nodeistgocation con-
tains information about its current location over a relaatime of ©(n), where
n is the network size, and (ii) when a node moves by a distatde encoun-
ters approximately®(d?/log d) other nodes. This means that information about
a destination node’s movement is quite dense around this, wadich helps LER
algorithms, and that such an algorithm can rely on fairlyinfdrmation to locate
a destination.

In this chapter, we consider LER under the random waypoil¢ PR model.
There are several reasons why we are interested in LER far\tié model. First,
the model is well studied and is very prominent in simulastudies of mobile ad
hoc networks. Second, it was shown in [GV03] that the LER rtigms EASE
and GREASE did not perform well with this model. Third, givée discussion
of helpful features above, the RWP model is much less falertabLER than the
random walk.

To see this, let us perform a back-of-the-envelope compamsth the random
walk. The random waypoint model is is defined (informally)fakbows. Every
node moves independently of any other node. A node seleetsdmm waypoint
uniformly in the area of the network, and moves towards ttagpwint in a straight
line and at constant speed. Once it reaches this waypoisg¢létts a new way-
point independently of the previous one, and starts movimgatds it (possibly
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after some pause time), and so forth. So, in this model theagedransition time
between waypoints i®(y/n), proportional to the diameter of the network. Once a
node has gone through a waypoint, the dependence with itsntyrosition drops
very rapidly. A past position of a node is therefore only usér ©(,/n) time.
Furthermore, when a node moves by a distadcit encounters onlyd(d) other
nodes. This means that information about a destination'siot@vement is much
less dense around this node, and that an LER algorithm mysbmédairly recent
information to catch up with a destination.

On the upside, the RWP model has a feature that is in our fav@r:node
movement is highly predictable over a short time-scaleabse a node moves at
constant speed on a straight line between waypoints. Thisdas us with an op-
portunity to route a packet towards the predicted curreaitiom of its destination,
rather than simply towards the location of the encounteh thie destination. This
is not possible in the random walk case, where the best poedar a node’s future
position is simply its current position.

We devise a version of the GREASE algorithm (in [GV03]) tisatiined to the
specific features of the RWP mobility model. GREASE-RWP saik¢o account
the short relaxation time by reducing the encounter ageaitcbes for initially to
obtain a first estimate of the destination’s location. Ifthiees mobility prediction
as the packet approaches the destination in order to mowwdsewhe destination
in “shortcuts”. We evaluate GREASE-RWP through simulafiometworks with
up to 1000 nodes, and we find that GREASE-RWP has a significantly be#er p
formance than the original GREASE, and seems to scale wittonk size.

The chapter is structured as follows. In Section 2.1, we &lyrdefine the
RWP model and discuss some of its properties that mattericdhtext of LER.
In Section 2.2, we present a LER algorithm specifically desigfor the RWP
model. We present simulation results in Section 2.3. SeQid concludes the
chapter.

2.1 The Random Waypoint Mobility Model

In this section we formally define the RWP model, and dischegptoperties that
play an important role in the performance of LER.

Nodes move on a square torus of sidd he origin is in the center of the square,
and the axes are parallel to the sides of the square. Therveetd is the vector
on the torus surface such that— b|| = d(b, c) is the shortest distance between the
pointsb andc. Nodes move independently of each other, so it is enoughfioede
the movement of one node.

The RWP model, with constant speed and no pause time, inrie ¢d sidea,
is completely described by:

e the value of the node’s speed

e the sequence of independently and identically distribtedl.) random



22CHAPTER 2. LAST ENCOUNTER ROUTING UNDER RANDOM WAYPOINT MOIBITY

variables{ P, }.,en, uniformly distributed in the torus.

The P, is the w-th waypoint. If the node moves between theth andw + 1-

st waypoints we say that it is on the-th segment. The distance between these
waypointsL,, = d(P,, P,+1) is thew-th segment length. The time for the node
to traverse theo-th segment is thev-th segment duration. The time instasiy,
when the node is at the-th waypoint is equal to:

w—1

Sw =

= |5

1

J
whereS; = 0. The speed vector between tlreth andw + 1-st waypoints is equal

to:
Pw+1 — Pw

Ly,
Therefore, the node’s position at timean be formally expressed as:

Viw=wv

X(t) = Puy + V)t = Swee)

wherew(t) is an index such thate [S,,), Su(t)+1)-

Note that theL,,s are i.i.d, thus the random proce§S,, },cn is a renewal
process. This property comes from the fact that torus reptessotropic space
where all points are equivalent.

In the remainder of this section, we assume that time0 is the beginning of
the observation period for the renewal procéss },<n that has been operating
long enough to be in steady stht&Ve enumerate the points of the renewal process
as{Sy }wez With the convention that, < 0 < 5.

2.1.1 Relaxation Time

The key property of realistic mobility processes that LERIeits is that the lo-
cation of a node at a timeand a timet + = are dependent, and that therefore
information collected through an encounter at titnean be useful for a packet
looking for its destination at time—+ 7.

More specifically, consider a realistic mobility scenaribese nodes have lim-
ited speed. Suppose that a source knows the destinatiotiopaXi(¢) and wants
to route a packet to the destination at time 7. If 7 is relatively small, then the
destination is in the small area arouAdt). Thus, informationX (¢) is useful. If
T increases, then the area where the destination may be bgdarger and infor-
mation X (¢) is less useful. For some large the destination may be anywhere in
the network area and informatioXi(¢) is useless.

The relaxation timé&’, is the minimumzr for which X (¢ 4+ 7) does not depend
on X (t) any more (note that as we assume homogeneity, all nodes lasare

1The RWP model with random speed does not possess a steagljnstetms of average speed
[YLNOS3]. Here, this problem does not arise because of consaeed.
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relaxation time). The relaxation time is the maximum timeafts observation
that past information about a node’s movement is still of lisis therefore crucial
to ensure that a LER algorithm does not rely on observatitoer thanT’., as this
would lead to poor routes.

Let us consider the relaxation time in the RWP model. Yet= S, — ¢
be the time the node travels to the next waypoint. After thhe- L/v (L denotes
the distribution of the segment lengtlis, s) the node will reach the second next
waypoint. Hence X (¢t + 7) for 7 > Y; + L/v depends only orP,s, where
w > w(t) + 2. The X(¢) depends only orP, and P,11. Therefore, the
positionsX (t) and X (¢ + 7) are independent far > Y; + L/v.

2.1.2 Prediction

In the RWP model, a node moves in long straight lines. Thislteé fewer en-
counters with other nodes relative to the traveled distawbéh is unfavorable to
LER. But, this also implies predictability of a node’s pamitin the future. Mobil-
ity prediction means prediction of a node’s future positigiven the node’s current
position and additional observations about the node’s litpl§e.g., the current
speed, direction, ...). Our goal is to use prediction of testidation position in
order to decrease the routing cost of LER.

The observations available to a node on its own mobility @sscdepend on
the scenario. At one extreme, a node might be able to deterority some ba-
sic parameters about its instantaneous movement, such @diseiction and speed.
This might arise when a node’s movement is subject to extarfiaences, and if
the node lacks the capability to identify waypoints. At thkes extreme, a node
might be able to know its precise movements a long time inéoftiture. This
might arise when a node’s movement is predetermined by tHe iself (e.g., a
person running errands in a city, or a doctor visiting pasenObviously, the pre-
dictability improves as the observation set increases. ukdarus here is on the
“tough” cases, we only consider observation sets that ddoodtbeyond the next
waypoint. Specifically, we calculate mobility predicto the following three
different observation sets

1. the node’s current position and speed vector;
2. the node’s current position, speed vector and previoypeiat;
3. the node’s current position, speed vector and next waypoi

The optimal mobility predictor is the one that minimizes e sense the
error between the node’s predicted and true positions. \Wehesminimum mean
square error criterion.

Definition 2.1 The optimal mobility predictor of the node’s positiof(t + 7),
given the set of observatiof$t) is the valueX (¢ + 7) that minimize:

E[(X(t+7)—X(t+7)%]0(t). (2.1)
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Our predictors are optimal under the following assumptidfisst, we assume
that we make the observation at a random timesecond, we neglect the torus
structure of the simulation area. Instead we consider Hiaclidistance by rep-
resenting the torus with a squarel? of the side lengthu with the origin is in
the center of the square. The origin is fixed at an arbitramgtpaf the torus. We
justify this assumption by the fact that our goal is to finddlogredictors within a
short time-scale (more precisely within one segment Iendtkence, the distance
traveled by a node during this short time scale becomes it cages equal to the
Euclidian distance.

Theorem 2.1 The optimal mobility predictor ok (¢+7) in the defined RWP model
if we know the following observations:

e the node’s current positioX (t) = x(t)
e the node’s current speed vectbi(t) = v(t)
is given by:

v(t)

(t+71)=x(t)+ T(P(Z > vt + E[Z117401]), (2.2)

whereZ is a random variable with the pdf equal to:

2

c(1—=7) fo<z<$g
2 2 .
fz(z) = ol —ZF + 4 arccos £ — 2 22—%) #%gzg%ﬁ ,
0 otherwise

(2.3)
wherec = 6(av/2 + aln(1 +v/2)) 71,

Theorem 2.2 The optimal mobility predictor ok (¢+7) in the defined RWP model
if we know the following observations:

e the node’s current positioX (t) = x(t)
¢ the node’s current speed vectbi(t) = v(t)
e the node’s previous waypoittt,;) = p

is given by:

(t+7)=2a(t)+ @(P(Z > vt + E[Z11740m]), (2.4)

whereZ is a random variable with the pdf equal to:
_ fuz+ 1)
1— FL(Z()) '

wherely = d(p,z(t)), and (1) and Fp,(I) are the pdf and the cdf of the segment
length (see Lemma 2.1 in the Appendix).

fz(2) (2.5)
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Theorem 2.3 The optimal mobility predictor ok (¢+7) in the defined RWP model
if we know the following observations:

e the node’s current positioX (¢) = x(t)
¢ the node’s current speed vectdi(t) = v(t)

e the node’s next waypoimt,, )41 = Prext
is given by:

x(t) +ot)r ifor < d(x(t), Prest)

Prneaxt if v > d(x(t)’pnext) (26)

(t+71)= {
Next, we give main ideas how we calculate these mobility igteds. The
details can be found in the Appendix. R
According to the well known result from statistics [GDO4jetvalueX (¢ + )
that minimizes (2.1) is equal to:

X(t+7)=E[X({t+7)]|00t)]. (2.7)
Hence, we calculate the conditional expectation ofXhe + 7) given the obser-
vation set)(t). The X (¢ + 7) can be expressed as:

X(t + 7') = X(t) + 1{7.§yt}V(t)T + 1{T>Yt}(V(t)Y;g + AP(T — Y;g)), (28)

whereY; = S, )41 — t is the time until the node hits the next waypoint, and
AP(1 —Y,) is the displacement of the node after reaching the next waypatil
timet+ 7. Figure 2.1 explains (2.8). Expected value of th& (7 — Y}) is equal to
zero (Lemma 2.2 in the Appendix). Thus, we need to calculalgtbe conditional
expectation of th&} given thed(¢). Since we observe the system at a random point
in time, theY; is the residual time of the renewal proc€s$, },,cn. Note that the
segment duration on which the node is at a random tire@ot distributed accord-
ing to the distribution of the intervalS,, .1 — S,,. This is because a long segment
is more likely to be "intercepted” by our observation tharhars one [Kle75]. We
use Palm calculus (Chapter 12,[Bou]) to relate these éiffieviewpoints and to
calculate the distribution of the residual time in the cetercase. Since the cal-
culation for Theorem 2.3 is trivial, we give further calditdas only for Theorems
2.1 and 2.2 in the Appendix.

We were unable to calculate mobility predictors in Theor@xisand 2.2 in a
closed form. Instead, in the simulations we use predictivengn Approximations
1 and 2 in the Appendix.

2.2 A LER Algorithm for the Random Waypoint Model

We first describe GREASE, an existing instance of a LER algoripresented in
[GV03]. Then we introduce GREASE-RWP, a new LER algorithmt ttakes into
account the features of the RWP model described in the predection.
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T<Y T>Y,

Figure 2.1: Explanation of (2.8): one possible movementradde and its positions
at timest andt + 7 for different values of-.

2.2.1 GREASE

Algorithm 1 shows GREASE. Notation is the following. Nodes &ndexed by
1,2,...,n wheren is the number of nodes. We focus on a single destination node
with index 1 and assume w.l.g. that a packet is sent to the destinatiomat t
t = 0. The X;(¢) is the position of the nodgat timet. TheT;(t) is the age of last
encounter of the nodeand destination.

Initially, the packet is at its source. Then, a search isquaréd around the
source to find a LE entry for the packet’'s destination thatvs times younger
than the source’s LE entry (i.e., an entry of a neder which 7;(0) < 75(0)/2).
The packet is headed towards the entry’s LE locafiari—77;(0)). This location
is called an anchor point. When the packet comes to the ampdior it performs
another search to find a new anchor point. If the packet erteua node that
has a more recent estimate of the destination’s locatiom tii@ anchor point the
packet is currently headed to, then that estimate is asstoneel the new anchor
point. The procedure repeats until the packet finds its mkg#tin node. Note that
tt is not prescribed a particular routing algorithm for thecket to get from one
anchor point to the next; any position-based routing algoricould be used for
this purpose (cf. Section 1.3).

Algorithm 1: GREASE

1  Setly :=T,(0), Yy := X4(0), k := 0.

2 Repeat

3 Search the nodes aroui@ in order of increasing distance until a node
is found such that’;(0) < Ty /2.

LetTy+1 = T;(0), andYy4q := X1(—Tk1) be the new anchor point.
While not atYy

o b~
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6 Route packet: find next hgptowardsY}, .1 and forward packet tg.
7 If TJ(O) < Tk+1, thenTkH = Tj(O), Yk+1 = Xl(_Tk-i—l)-

8 End while

9 k++.

10 Until Y}, = X1(0).

2.2.2 GREASE-RWP

The notation is the same with the following additions. Bhg) is the observation
set of the nodé at timet. The optimal mobility predictor of the destination positio
at timet is denoted byX; (¢). Recall thatT is the relaxation time.

Algorithm 2: GREASE-RWP

1 SetYp:= X(0), Tp := E[T;], k := 0.
2  Repeat

3 Search the nodes arouing in the order of the increasing distance until a

nodei is found such thaf;(0) < Tj.

4 Let Tp+1 = T;(0), and Y41 := )/(\1(0) = f(01(—=Tk+1)) be the new
anchor point.

5 While not atYy ¢

6 Route packet: find next hgptowardsY; and forward packet tg.

7 If T](O) < Tk+1, then Tk+1 = T](O), Yk+1 = Xl(O) =
f(01(=Tk+1)).

8 End while

9 k++.

The main new features in GREASE-RWP in comparison with GREX®V03]
are aggressive initial search and prediction.

Aggressive initial search means that a source searches fen@unter with
the destination younger than average relaxation time. Asavein Sect. 2.1.1
average relaxation time is of the order of a few segment tinféss means that
the packet immediately goes to the few last segments of ttinddon movement.
Thus the packet avoids the useless walking over the netwegk a

Prediction means that the packet is routed to the prediotstinétion posi-
tion rather than to the location of an encounter. It forceshcket to go to the
predicted end of the segments. Thus the packet takes ashbeiwveen the seg-
ments. Prediction is incorporated into LER as follows. Evevde tracks its own
mobility. When two nodes encounter, they exchange somenadigens about their
own mobility (e.g., their current speed and direction) glarith "hello” messages.
Each node records these observations in its LE table (cf. ZR). They are used
to calculate the optimal mobility predictor.
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Figure 2.2: Alast encounter tablen every node remembers both the location
and time of the last encounter with every other node in thevort and some
observations about every other node’s movement at the tirtfeedast encounter
(in this example, speed vector).

2.3 Simulation results

We have performed extensive simulations to evaluate thaexftiy and scalability
of GREASE-RWP. By the term efficiency, we mean how much inayeithe rout-
ing cost is larger then the shortest route. By the term sitityalve mean how the
efficiency scales with increasing the network size.

Nodes move on a torus of surfaeeaccording to the RWP model. Initially
the nodes are placed uniformly in the torus. We let them toarfov a sufficient
warm-up period so that a fair proportion of node pairs haveoantered at least
once. Then, we assume that the nodes are frozen for the tithe obuting of the
packet.

Routing of the packet is performed through the GREASE (Atbor 1), GREASE-
RWP (Algorithm 2 in this paper), GREASE-M and GREASE-A alguns. GREASE-
M is GREASE with mobility prediction. We obtain it by changirthe step 4 in
GREASE with the step 4 in GREASE-RWP. GREASE-A is GREASE vaith
gressive initial search. We obtain it by changing the step GREASE with the
step 1in GREASE-RWP. The Mi (i=1,2,3) denotes respectitredypredictors from
Theorems 2.1-2.3. If nothing is specified the predictor M2sisd.

At every timet, we assume that connectivity is given by the Delaunay graph
generated by the set of pointX;(¢) }. This is equivalent to generating the Voronoi
tessellation of the set of poin{sX;(¢)}, such that every nod&;(t) is the center
of a Voronoi cell, and is connected to the center nodes oftigcant cells. Each
node updates the entries in its LE table for its directly emted neighbors.

The advantage of this topology over other topologies (&.gearest neighbors)
is that we are guaranteed that a node always has a neightias ttlaser to the
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destination (except when that destination is already irfitienode’s Voronoi cell).
Therefore, a packet can always make progress towards i®apoint, and we do
not have to deal with backtracking, avoiding routing looes;. This allows us
to focus on the main issue at hand, i.e., the quality of coegpubutes based on
diffused information about last encounters.

The main metric we evaluate is the relative cost of the roatespared with
the cost of the shortest path route. The cost of a route ithertumber of trans-
missions (or hops) necessary to transmit a packet from asaarm@ destination. It
includes both transmissions of the actual packet from aesetada receiver node
to make progress towards its destination, as well as trassonis necessary for a
“search” packet to collect information from surroundingdes to make the next
routing decision. This metric therefore captures the ingdgbenalty incurred for
not having the exact position of the destination available.

Figure 2.3 shows an example of a route computed by GREASE &ASE-
RWP for the same source-destination pair. We see that GREHASE achieves
the shorter route than GREASE by increasing the cost of fitialisearch and by
taking shortcuts with the help of mobility prediction.

In Fig. 2.4(a) and 2.4(b) we give the relative cost conddioon the distance
between the source and destination. This provides an italicashether the rela-
tive quality of the routes increases or decreases as thesrget longer.

Figure 2.4(a) shows the benefit of mobility prediction iffdient observation
sets are used. If more information about node mobility islalbke, improvement
of GREASE is better.

Figure 2.4(b) shows that the penalty of the GREASE-RWP élyorbecause
of the uncertainty of the destination location is only 2/mds greater than the
shortest route (i.e., the ideal case where the destinaiation is known). This is
more than 35 % better than GREASE. Also, we see that aggeessiial search
or mobility prediction alone significantly increase the @éncy.

In Fig. 2.5 we give dependence of the average relative costudés on the
number of nodes. This provides an indication whether the relative cost &f th
routes is scalable with the network size.

2.4 Conclusion

In this chapter, we have shown that efficient and scalableelasounter routing
under random waypoint mobility is possible. We have acldehés by devising a
new instance of the GREASE algorithm, which differs from #eesion reported
in [GVO03] in two respects. First, we have exploited the immrpredictability of
nodal movement in the RWP model over short time-scales. Vétmacket looking
for its destination picks up a more recent encounter, it canpute a predicted
location for the destination that is better on average thandcation of that en-
counter itself. Second, we account for the fact that the RvdBahhas a very short
relaxation time, by forcing a low target age for the initiabsch. Thus the packet
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Figure 2.3: A sample route computed by GREASE and GREASE-RW/he
same source-destination pair.
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Figure 2.4: a) Impact of the different observation sets ifitity prediction on the
efficiency of GREASE. b) Efficiency of GREASE, GREASE-M (miitlyi predic-

tion), GREASE-A (aggressive initial search) and GREASE/RMobility predic-
tion and aggressive initial search).
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Figure 2.5: Scalability of the GREASE-RWP algorithm.

avoids using outdated past encounters that are indepeofina destination’s ac-
tual position.

We have performed simulations that show the following rssulFirst, the
GREASE-RWP algorithm achieves drastically better pertoroe than the “non-
RWP” version reported in [GV03]. Specifically, the total eage route cost are
slightly more than twice as long as the shortest path. Thauite remarkable,
given that no resources were invested to track the rapidgehamthe network
topology due to RWP mobility. Second, our results show, asmeald expect,
that the benefit of prediction depends on what observatioms\ailable about a
node’s mobility. It should be pointed out that if we extengwédiction beyond
the next waypoint, the performance would be further impdovehird, the cost of
GREASE-RWP routes relative to the shortest path does not seécrease as we
scale up the network size Therefore, we believe that a similar scaling result as
shown in [GVO03] for the random walk holds for the RWP model &l w

Predictability is a mobility feature recognized in manylise scenarios. For
example, the limitation of the speed of nodes makes a mpbititcess predictable
over at least a short time scale. Another example is thatsnatky have some
locations that they visit more often than others, as meatidn Section 1.2, which
is exploited by many routing mechanisms designed for thtitiomed networks, as
we see in Section 1.3. The novelty of our work is that we carsilde prediction
in the RWP model, and how to incorporate this prediction LR, both of which
have not been previously considered.

The prediction in the RWP model exploits a specific naturdefhodel, where
a node moves with the same speed between two waypoints, \ahahs us to
precisely predict where the node can be for a short time s&alg the fact that a
next waypoint does not depend on the previous waypoints snidk@possible to
predict future node’s movements on a longer time-scalepeyhe next waypoint.
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We argue that these properties are indeed present to soamd @xsome realistic
scenarios of interests, but that they are too specific. Toiereas a next step in our
thesis, we look at realistic mobility processes in order nd tommon properties
in many realistic applications that we can exploit in rogtin

Appendix

Auxiliary Results

Lemma 2.1 The sequence of the segment lendihs has the following pdf:

2z ifo<i<$

fo(l) = %j—g—g—éarccos% if§ <1< %ﬁ : (2.9)
0 otherwise

Lemma 2.2 The expected displacement of a node from a waypoint is egjaato,

i.e., the expectation of the random varia¥é S,, + At) — X (S,,) is equal to zero,

for everyw and At > 0.

Optimal Predictors
Theorems 2.1 and 2.2

Proof:
Using (2.7) and (2.8), the optimal mobility predictor is:

z(t+71) = EX{Et+71)|001)]=
z(t) +oO)7P(Y: > 7 [ 0(1)) + v(t) E[Yiliy,<ry [ 0(1)] +
+E[AP(T = Yi)liy,<ry | 0(2)).

The last term of this equation is equal to O (Lemma 2.2). Tiwespbtain:
A v(t)
Tt+71)=2)+vt)TP(Z > vT) + TE[Zl{Z>w}],

whereZ is the random variable with the same distribution #sgivend(t). Next,
we calculate the distribution df separately for Theorems 2.1 and 2.2.

In Theorem 2.1, the set of observationg(s) = { X (¢) = z(t), V() = v(t)}.
The residual tim&; depends only on the renewal process. The S,,s depend
only on the segment lengthls, s because of the constant speed. Thes do not
depend onX (¢) since every point in the torus is the same. Therefore}irdoes
not depend otX (¢). As mentioned previous, we neglect that fielepends on the
direction of the speed vector, thus thiedoes not depend o¥i(¢). Hence, theZ
has the same distribution a%;. The pdf of residual timé&7 is equal to [Kle75]:

fr(y) = L= ERW)

mg
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whereFi(z) is the cdf of the interval®R,, = Sy, 11 — Sy, andmp, is the mean of
R,,. SinceR,, = Ly, /v, the pdf of Z is:

fz(z) = LL(Z)
mr,
whereF} (z) is the cdf of,,s (Lemma 2.1), aneh, = a/6(/2 + In(1 + /2)) is
its expected value. We obtain the pdfafgiven by (2.3).

In Theorem 2.2, the set of observationsfig) = {X(t) = =(t),V(t) =
v(t), Pyy = p}. As in the previous case, the residual tifiedoes not depend
on X (t) andV (t). Knowing bothX (¢) = z(t) and P,,;) = p we know that the
previous waypoint was at time— d(p, z(t)) /v = t — to. This means that there is
a point at timet — ¢ and that there is no point in intervéll — ¢y, ¢). This second
condition is equivalent td;_;, > to. If we denote the conditional probability
given that there exists a point at timas P! then the cdf ofZ is equal to:

P(Z<z) = PYy<z|X(t)=x2(),V(t) =v(t), Pop =Dp)
= P(vY; < z | there exists a point at time— to, Y;—;, > to)
— PUO(Y, < z | Yiey 2 to) = PU(Yo < = +to | Yo > to)
(%

= P0(51§E+t0|512t0)-
v

Using the result of Palm calculus th&’(S; < z) = P°(R; < ) = Fg(z)
([Bou]), we obtain:

Fr(Z +to) — Fr(to)

Pz <z)= 1 — Fr(to)

SinceR,, = Ly, /v, the cdf ofZ can be expressed as:

Fu(z+ do) — Fi(do)
PZ<2)== 1_37L(d0)L -

and we obtain the pdf of given by (2.5). O O

Approximation 1

We are unable to compute in a closed form the predictor in flégme@.1. Therefore,
we use the following mobility predictor:

12a2

() + L B[ 7] if or > 22

o) (o _ cwn)? | emen)ty o~ a
Ht+r) = {x(t)—i— o (vr 5+ ) fo<wur <§

Bt+71) ~ z(t)+WEZ] if

v

The mean value of th& is given by:
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where the meart’[L] and the variancé ar(L) of the L;s are equal t&&[L] =
2

a/6(v2 + In(1 + v2)) andVar(L) = % — E[L]?, respectively. We make an
approximation in the regiof < v7 < “T\/i by neglecting the probability that there

is not any waypoint in the period ofr.
Approximation 2.

We are unable to compute in a closed form the predictor in fidm@.2. Therefore,
we use the following mobility predictor:

v(t) 7rl8 —7(vT+lo )3 4+-3vTa?

/:E\(t + T) = $(t) + v 3(a27l27r) |f (lo,U’T + lo) € [0, %]2
0
m(t)ﬁ-@’r |f0§l0<%,%—l0§’l}T§E[Z]
Tt+71) ~ x(t) + E[Z] if0<Iy<5,§—1p<wvr,vr > E[Z]
(1) it 1o > 22

The mean value of thg is given by:

3a*(E[L]) — lo) + wl}
3(a? —12) ’

E|Z] =

where the mean value of the;s is equal toE[L] = &(v2 + In(1 + v2)). We
make an approximation in the region< Iy < 5, § —lyp < vt < E[Z] by
neglecting probability that there is a waypoint in the pérad v7. We make also
an approximation in the regidn< Iy < §, § —ly < v7,v7 > E[Z] by neglecting
probability that there is not any waypoint in the periodof In the regiorly > a/2
we do not make mobility prediction because we are unablentpote E[Z]. The
probability of the appearance of this last case during theraipn of the LER
algorithm is small because the probability that> a/2 is small. Thus, this will
have a small effect on the predictor.



Chapter 3

Modeling Stable Clusters in
Mobility

In this chapter, we look at realistic mobility processes askithe following ques-
tions. What properties do they possess? Which ones are corimmuany realistic
applications? Which ones can we exploit in routing?

We observe three large-scale realistic mobility tracesvaaddentify the fol-
lowing properties:

e a spatial distribution of the nodes is heterogenous ratt@ar homogenous,
i.e., there are both dense and sparse regions of conngctivit

e a network is often partitioned, which is a consequence aflieterogenous
spatial distribution;

e there exist islands (clusters) of dense connectivity, twiie call concentra-
tion points (CPs);

e the CPs, and the average flows of nodes between CPs, typiealin stable
over relatively long time-scales.

These observations led us to devise two synthetic mobilitgerts that posses
the above mentioned properties. We call these models: Bphgrased (G) model
and 2) a heterogenous random walk (H) model.

We design the G-model with the main purpose of using it foinfitdata to a
model, i.e., for inferring a stable topology of CPs from mibpdata by COGRAD.
Hence, the G-model is a “rich” model in a sense that it has rpangmeters. More-
over, in order to capture the essence of the problem, it msikeglified assump-
tions about the nodes’ connectivity. The G-model assumeharp” connectivity
inside and outside CPs, i.e., the nodes inside a CP are aectad, and the nodes
outside of CPs are not connected to any other node.

We design the H-model for the purpose of modeling the mgiofithe nodes in
order to evaluate both COGRAD and IH. Our design goal is telsgparsimonious

35
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model with as few parameters as possible and to have a motiteinere realistic
connectivity assumptions than the G-model. That is to s&ywant to allow that
not all nodes inside a CP are necessarily connected andaties mutside CPs may
be connected to other nodes as well.

In our design and evaluation of IH and COGRAD, we first startielimg the
mobility of nodes by the G-model in order to concentrate amdhlsence of the
problem by abstracting away the complexity of real mohilithen, we consider IH
and COGRAD under the relaxed connectivity assumptionserHfmodel. Note
that in the both cases COGRAD uses the G-model to infer theo@itdgy.

This chapter is organized as follows. In Section 3.1 we descgealistic mo-
bility data sets and our findings of their common propertigs.Section 3.2 we
define the G-model and we derive stable CPs from the datalse3gction 3.3 we
define the H-model. We also calculate the spatial statiodistyibution of nodes
in the H-model and we discuss how to perform simulations.

3.1 Properties of Real Mobility *

For the purpose of our study we use three large GPS-basedityndhta sets.

The two data sets are mobility traces of taxi cabs from twiexit Warsaw,
Poland and San Francisco, USA. The Warsaw data set cont&B8sc@ordinates
of 825 taxis collected over 92 days in the Warsaw agglonmratiea (25x40 km).
The San Francisco data set contains GPS coordinates ofxapptely 500 taxis
collected over 30 days in the Bay area (14x25 km). In bothsaseh taxi is
equipped with a GPS receiver and sendscation updatetimestamp, identifier,
geographical coordinates) to a central server. Updatesangeriodic, rather they
are irregular. In the case of the Warsaw data set the updegdsfeequent - they
can be as frequent as a few per hour or only a few per day. Indbke of the
San Francisco data set the locatio-updates are quite fiegube average time
interval between two consecutive location updates is lems 10 sec, allowing us
to accurately interpolate node positions between locatjmates.

The third data set is less detailed than the taxi data setenthins GPS traces
collected by mobile-phone users subscribed to the NokiatSfiacker service
Mobile-phone users can upload workout and activity tracethé Nokia Sport-
stracker web site to store and share with others. So, thesdafaovides only oc-
casional snapshots of a person’s long-term mobility, it@nly consists of traces
obtained during some activities (running, walking, cyglirtc.). This data set is

The results presented in this section as well as in Sectighs and 3.3.2 are contributions of
Michal Piorkowski [Pio09]. These results were obtainedmtyiour joint work for the purposes of
i) observing important properties of realistic mobilitypchii) validating our modeling of the ob-
served mobility properties. More precisely, finding re@isnobility data sets, the algorithms for
the performed data analysis as well as the data analysidl @engibutions of Michal Piorkowski.
However, mobility modeling is my contribution. We includgetresults contributed by Piorkowski
in order to help a reader in understanding better the predenaterial.

2http: // sportstracker. noki a. cont
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larger than the taxi data sets in terms of the number of meiuities, and it also
covers a much larger geographical region and time period€rtian one year).
For the purpose of this study we focused on subsets fromtkgl$tinland (3757

distinct GPS traces, 11x8 km), Stockholm, Sweden (105&disGPS traces) and
London, UK (2488 distinct GPS traces).

Next, in these data sets we observe that the node distribigispatially het-
erogenous and temporally stable. l.e., we observe thag #dst regions where
the node density is much larger than on average which arésfersover differ-
ent days. We also observe that because of this spatiallydgeteous node distri-
bution, the network becomes partitioned where many pamsticontain relatively
large number of nodes.

3.1.1 Spatial Distribution

To check for the existence of stable CPs we apply the follgwiauristic. First,
we superimpose a grid of equal-sized cells on the area of thesa and San
Francisco agglomerations. Then, for each dagnd each cel(k,!) we find the
normalized population f(k,[;d), interpreted as the empirical probability that a
random update falls into the c€l, /) on dayd. Our analysis shows the following:

The Spatial Distribution is Heavy Tailed

Figures 3.1(a) and 3.1(b) show the empirical complemertamulative distribu-
tion function (CCDF) off (k, ; d) for the two data sets - from Warsaw and from
San Francisco respectively. Both distributions have héaily, which implies that
some cells in both cities have a population density much elttoe average.

The Spatial Distribution is Stable Over Time

Figures 3.1(a) and 3.1(b) insets show scatter plotg(éfi; d) for one randomly
chosen pair of day&l;, d3). In both cases we observe significant clustering along
the diagonal, which means that the spatial distribution iffierént days tends to
be strongly correlated. Furthermore, we observe that the mensely populated
cells (upper-right quadrant) tend to be particularly claséhe diagonal, which is

a good visual confirmation of our hypothesis. We observe #meesbehavior for
other pairs of days.

3.1.2 Partitioned Connectivity

Let us first define theonnectivity graphHere again we assume a (scaled) unit disk
model for connectivity. The mobile nodes and the correspanavireless links
define theconnectivity graphG(V, E), whereV (G) is the set of mobile nodes
and E(G) is the set of radio links between mobile nodes, iB((G) = {e =
(¢,7)|di; < r}. We defineH;, as a strongly connected component(@f with
C(G)={H,,Hy--- , Hr} the set of all components, i.€, = (J}=4 H.
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Empirical CCDF of median normalized taxi population for the Warsaw data set
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Figure 3.1: Empirical CCDF of (k, [; d) for the entire period for three levels of
discretization for two data sets (a) Warsaw and (b) San lsemclnsets in (a) and
in (b) shows the scatter plot ¢f(k,[; d) on two random days - each point on the
plot corresponds to a density in a cétl /) for different days.
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Emergence of Connectivity Islands
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20 40 60 80 100 120
radio communication range

Figure 3.2: Emergence of connectivity islands in the cotiviecgraph - each data
point represents the number of components of size largeribién the connectivity
graphG(V, E) for different values of- (scale unit is metepmn)).

To show that islands of connectivity may emerge we study Hmwstructure
of the connectivity graph changes with increasingviore precisely, we focus on
the size of componentgi;| present in the connectivity gragh(G) generated at a
random time instant from both the taxi cab and Nokia Spert&er data sets.

For this experiment, wdensifyour trace in the following way. We assume that
the sampled nodes are a representative subset of the aveffid, and that their
movements are stationary and ergodic. Under this assumptie can generate a
denser sample of instantaneous node locations (in our 6866,nodes) by sam-
pling uniformly at random from the entire data set. This @ersample brings out
more detail in the connectivity graph.

In Figure 3.2 we show the results for four cities: San FramgidHelsinki,
Stockholm and London. We observe a clear trend in all thesca3ée num-
ber of components rises quickly with the communication eantpwards a maxi-
mum; past this critical value, the number of componentdsstardecrease, because
smaller components start coalescing into larger ones. Menvthis decrease tends
to be slow; even whenbecomes a multiple of the critical value, we still have many
components left. This is because node locations are diggdbnon-uniformly in
space, which prevents percolation into a single giant etushenr grows. Thus,
we conclude that disconnected network topologies with gelamumber of com-
ponents seem to be a robust phenomenon that persists ovdeaamige of radio
ranges.
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3.2 Graph Based Model (G-model)

Given the observations about the presence of stable CPalistiedata, we now
define an idealized mobility model that embodies CPs. Thidehis to be used
for fitting data to a model, thus it is rich with parameters amdplistic regarding
assumptions about a detailed connectivity of nodes.

The network topology is given by a directed connected gi@pW, E') whose
vertex setl” represents the CPs, and whose edgedescribe the possible move-
ments of nodes between CPs. We call this gragPP graph There arex nodes
that move on this graph. At every tinte every nodei is either located at one
CP, or is en route between two CPs. We denote the curreniquosit nodei by
Xi(t) C V U ¢, wherep denotes that it is en route between two CPs. We assume
that nodes located at the same CP can communicate with death(either directly
or through multi-hop), whereas nodes at different CPs darWie call B;(t) the set
of neighbors of node at timet, i.e., B;(¢) is the set of nodes located at the same
CP asi (including i), and if nodei is en route between two CPs th&j(t) = {i}

(cf. Figure 3.3).

Figure 3.3: Nodes move on a grapi{V, E), which describes the network topol-
ogy in terms of its CPs and the ways nodes can move between them

3.2.1 Inferring the CP Graph from a Mobility Trace

Our goal is to infer the CP graph from real data in order to heeG-model with
this inferred CP graph for an evaluation of our routing allfpon (Section 4.5).
We use different procedures in the Warsaw and San Franceteosdts. This is
because the San Francisco data set consists of the frequatibh updates, which
is not the case for the Warsaw data set. Thus, the San Fraruasa set allows us
to make a realistic analysis of dynamics of the nodes’ caiivisg i.e., to analyze
how the nodes’ connectivity evolves over time and then, dasethis, to infer
CPs. This is impossible to do in the Warsaw data set, so weedani approximate
heuristic for this. Note that in our further investigations use only the CP graph
inferred from the Warsaw data set, because there are onhatk sumber of CPs
in the San Francisco data set.
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The Warsaw Data Set

In order to find CPs, we first defineclusterat dayd as a cell for whichy (x, y; d) >
5%. The reason we choose 5% as the threshold is to ensure tharin@P there
are at least 15 vehicles (see 3.1.1). Using such a smalhibickallows us to iden-
tify clusters that would be more visible for regular and freqt location updates.
We identify 174 clusters. Here we define a CP as a clusterghmesent for more
than 20 days (see 3.1.1). In result we find 79 CPs within thdewtity (cf. Figure
3.4).

Inferring stable flows between CPs from a such data set iginiatl because of
very irregular and infrequent location updates. If the getfbetween two succes-
sive location updates of a taxi is too long, the taxi mightt\dsveral CPs during
this time. Thus, we may miss direct flows of nodes between @Bslzecause of
this, we may consider falsely a non-direct flow as direct. é&@mple, a graplk’
where the edges are all observed flows between CPs overialbiac over the en-
tire data set is an almost complete graph. In order to pruméathe flows, we pro-
pose the following heuristic. For each edgev) € G’ we find a minimum travel
time 7,,:, (u, v) over all taxis and over the entire data set. Then we deletelga e
(u,v) from G’ if there exists a path betweenandv, p(u,v) = (u, wy, wa, ..., v),
such thatr,,;, (u,v) > Zeep(u,v) Tmin(€). Instead of an almost complete graph,
we obtain a grapld- for which the average vertex degree is 3.2.

The inferred CP grapty is shown in Figure 3.4. The resulting topology resem-
bles a spider net, which is consistent with the topology efdity of Warsaw, where
most of the important institutions and centers of activity lmcated downtown.

The San Francisco Data Set

In the San Francisco data set the location updates are freguneugh that it is pos-
sible to study how the nodes’ connectivity grafilh changes in time. Studying,
allows us to identify CPs, i.e., regions where node densityigher than average
and is stable over time. In order to find such regions, we capfaly one of the
well-known data clustering algorithms, elgmeans clustering [The03] - for every
time instant one can find such regions and then identify whictihem last for a
long time. This approach is used in the works of [KWSBO04] ah8(3] to extract
significant users’ locations where the users tend to sperthrmore time on av-
erage than in other places. But, we take another approachidentfy connected
components with a relative large number of nodes that lash fong time. Here
we rely on an intuition that in highly populated regions n@dbould form stable
connectivity islands. The main advantage of our approaehn the clustering al-
gorithms is that our approach does not require nodes’ positiNote also that the
works of [KWSB04] and [AS03] solve a slightly different preln, they search for
significant locations of an individual user, and we searctc@dlective significant
locations that many users visit at the same time.

As nodes are mobile and the connectivity graph changes dgalynover
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Figure 3.4: The red dots represent superimposed locatidatep of 825 taxis over
92 days taken from the data set. The black circles repre€e@Ps and black lines
show taxi flows between these CPs. Both CPs and flows are &drfom the data

set.
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time, the key question is how to establish a correspondesivesien components at
subsequent time steps. For this, we introduce the concegtister labeling This
means assigning an unique identifiefwe call it a label) to every connected com-
ponent, in such a way that the two components at the congedirtie moments
with the same label correspond to each other. To do this wiselevCentralized
Cluster Labeling (CCL) algorithm. Thus, sequences of apoading components
over time are uniquely identified by a label.

We expect CPs to be stable over time and have a large sizewthssek la-
bels that last for a long time and are owned by a large (on gegraumber of
nodes. Note that the CCL algorithm does not use nodes’ positi it uses only
the connectivity graph, which is one advantage over theaastering algorithms,
as mentioned above. Because of this, there is no informat@isoever about the
location of the CPs. However, given the evidence presergkmvbwe believe that
stable clusters should appear at certain fixed locations.

In order to extract CPs from collection of connectivity gnapby applying the
CCL algorithm, we use the part of the San Francisco tracegrogjmately 500
taxis over 24 hour period. The connectivity graphs are gaadreveryAt = 10
seconds for connectivity range = 300 meters. We determine which labels can
correspond to CPs by using two threshold values, one forifétérie and second
for the size of the label: 1800 seconds and 10 nodes resglyctivve found 19 such
labels, of which several of them lived even more than 2 hodmwvever, these 19
labels do not specify 19 distinct CPs. This is because the samnectivity island
may re-appear at different time of the day, which cannot lpturad by the CCL
algorithm.

Thus, we check if a labeled cluster appears in the same areaydhs lifetime.
We superimpose the locations of nodes that own the sameftaiteree different
shapshots. We visualize this on Figure 3.5 where the taatsotlvn the same label
(marked with the same type of a marker) cover the same aredfexedt time
instants (different colors of the same marker). This cordiimar intuition that
islands of connectivity are stable in space as well. We dlsdysthe evolution
of a cluster location. More specifically we look at the difeus of the large size
clusters’ center of mass. For every time instance, we coapetcenter of mass of
each large cluster (larger than 20 vehicles). We make aMissia(cf. Figure 3.6)
to see how far the center of a cluster moves in time. As can bereéd, during
a cluster’s lifetime its center of mass does not diffuse fanf its initial location.
We identify four locations of CPs - hamely the aquatic pdr&mping center, the
downtown area, the taxi company premises and the airporesd four locations
can be observed also in Figure 3.5.

As we identify only a small number of CPs in the San Francista det we do
not use this data set in our evaluation of IH and COGRAD, arckflore we do not
make an additional effort to identify flows of nodes in thigadaet. Nevertheless,
the results of our analysis justify the presence and reattability of CPs in the
real world. However, keep in mind that the mobility pattefriaxis is very specific
and may not give sufficient evidence of other CPs located<anmple nearby sport
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centers, gas stations, movie theaters etc. Thus we beliavgiven a large set of
mobile traces for the same area, which contains GPS locafidates of different
types of vehicles, it should provide us with more CPs. We hls@ve that CPs
might be more easily observed at a larger scale, e.g. noteaS#m Francisco
agglomeration scale only, but at the whole Bay Area scalge Miso that this is
the first attempt to identify CPs where a connected compdsehiosen to give the
evidence for the CP existence. The presented results staivthil choice might
be too extreme for determining if a CP exists or not.

Figure 3.5: Four CPs in San Francisco identified by the CChralym. Mark-
ers represent taxis that belong to CPs. Different types akensa correspond to
different CPs:triangles- the aquatic park/shopping centbaglls - the downtown
area,crosses the taxi company premisesguares- the airport. The color of each
marker represents members of a corresponding CP at diffémez moments.

3.3 The Heterogeneous Random Walk (H) Model

Next we define the H-model. The H-model is for modeling theasdanobility
with stable CPs. Hence, the design goals are: a parsimonmaagel with small
number of parameters, and more realistic connectivityraptions than in the G-
model.

Here, we also calculate the stationary node distributiothenH-model and
conditions for the emergence of CPs, and we discuss how forpera simula-
tion that starts directly from the stationary distributifre., “perfect simulation”
[Bou].) We first define our model as a diffusion process, tHeawshow to correct
for boundary effects in a discrete-time approximation. ddidon, we validate the
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Cluster Location Evolution
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Figure 3.6: Tracking the location of large clusters.

model by comparing its qualitative behavior with a reatistiobility scenario (the
San Francisco mobility trace).

3.3.1 Definition

There arex nodes moving independently of each other in a torus of uthdt lgingth.
We divide the torus into two region$; and A, where each node performs a two-
dimensional Brownian motion with heterogeneous speedfafw@es) in these two
regions, with a slower speed #y than inA;. The regionA; can be generated, for
example, as the union @f random disks of radiusg;, and 4;, its complement (cf.
Figure 3.7). The difference in variance in the two regionsegirise to different
node densities.

More formally ([KT81], Chapter 15), each node moves acewdbd a process
Z = {Z(t),t > 0} taking values in[0, 1] with the coordinate representation
Z(t) = (Zs(t), Zy(t)), where :

e Z(0) is an initial position in the torus;

e 7, andZ, satisfies the following conditions:
1
az(z,t) = ,{in%EE[Zx(t +h)—=Z ()| Z(t) =2l =0 (3.1)

belz,1) = lim %E[(Zx(t ) = Zo(®)? | Z(t) = 2]

{0—12 ifZGAl
2

o ifzed, TLSM (32)
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and similarly fora, (z,t) andb,(z,t);

ay(2,1) = lim 5 B(Ze(t + h) ~ Zu(0)) x

< (Zy(t+h) — Z,(t)) | Z(t) = 2] = 0. (3.3)

Thus, infinitesimal means..(z,t) anda,(z,t) of the changes it¥, and Z,,
respectively, are equal 1 (3.1). Infinitesimal variances,(z,t) andb,(z,t) of
the changes i, and Z,,, respectively, are equal tf if a node is inA; or o7 if a
node is in4;, (3.2), wheres? = ~o? with v > 1. Note that the variance reflects
the speed of the node. Moreover, we constrain ourselves tocess where the
infinitesimal changes i, andZ, are uncorrelated (3.3).

Figure 3.7: Heterogeneous Random Walk - nodes move mordysiownegion A,
than inAy,.

The following table summarizes the parameters of the model.

n # of nodes
m # of disks (clusters)
] disk radius
v =03 /of | ratio between variances iy, and 4,
r connectivity range

Stationary Distribution and Connectivity

Lemma 3.1 A node’s position in the stationary regime has pdf

1

= 3.4
|Arl/o?+|Anl o} .4)

f(z) = B/b(2), B
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where|A| is the surface area of the regio.

Proof: The diffusion process is described by a Fokker-Planck émuébr Forward
Kolmogorov equation), which in the two-dimensional casgii@n by ([Gar04],
p.145):

Af(z1)
ot

= (a2 f(20)~ F (ay (2 () +

oz
3 525 e (=) (50 +
+1 5255 e (0T (=) +
l
2
1
+3

fo
2 (=) (20)+
o7

+

O (by (2,0) F(2:1)), (3.5)

wheref(z,t) = P(Z(t) = z|Z(to) = zo0) With Z(t) = (Z,(t), Z,(t)) denoting
the two-dimensional diffusion, and with the values of theftioients given by
(3.1), (3.2), and (3.3).

Our goal is to find a stationary distribution given lfyz) = lim; 1~ f(2,1).
Hence,f(z) is a unique solution of (3.5) when— +oo, in which case it holds

af(z»t) J— 0
o Y
To fully describe a diffusion process we also need to knowbithendary con-

ditions. Here we have periodic boundary conditions (seeQ@ap. 119 and p.
121) given by:

Fle1)=F(@,0), F(1Ly)=F0,y); Jo(@,1)=Jx(2,0), Jy(1,y)=Jy (0,y), (3.6)

where
T (2,9)==05 - (b(w.9)  (2.)), Jy (@:9)=—0.5 5. (b(ay) f(w.v)) (3.7)

The unique solution of (3.5) with the conditions (3.6) isagivby (3.4).
O
From Lemma 3.1 follows the following interesting properfyttoe H-model.

Property 3.1 Node densities; and )\, in regions A; and A;,, respectively, relate
as\ = v\, (v = a,%/af > 1), i.e., the density of nodesistimes larger inside
the disks than outside of them. Thtise heterogeneous speed gives rise to the
heterogeneous node density that is inversely proportiontle speed

Let us now discuss the relationship between the connectifihodes and the
parameters of our model. The regime of interest for our maelhen the node
density inside the disks is high enough for clusters to foamd when the node
density outside the disks is low enough for clusters not tmfdNe rely on results
from the continuous percolation theory [MR96]. Assume asBam point process
with density A and assume that two nodes are connected iff they are witein di
tancer. Then, if \r? > (\r?).. ~ 1.43 (where(\r?)., is called the percolation



48 CHAPTER 3. MODELING STABLE CLUSTERS IN MOBILITY

threshold), an infinite cluster appears with a positive plolity. This is called the
supercritical regime. In the subcritical regime? < (\r?).,., the clusters are al-
most surely finite. Although these results hold for the inéirplane, they are good
approximations, as long as the node density is sufficiengi ([PP96], Proposi-
tion 2).

Therefore, we choose the parameters of our model such thatenie the su-
percritical regime iM4;, i.e., \;r? > (ArQ)cr, and such that we are in the subcritical
regime inAy, i.e., \pr? < (Ar?)..

Perfect Simulation and Discrete-Time Approximation

In this subsection, we provide an algorithm allowing for @rfect simulation”.
The algorithm initializes node positions to start the siatiohs immediately in a
stationary regime, thus obviating the need for a transiemthwup phase.

We begin the simulations as follows. We need to plaggodes according to
the stationary distribution given by (3%)First, we find the initial numbel; of
nodes in4;, which is~ Bin(n, ;) (@nd N, = n — N;). We then need to place
N; nodes uniformly at random in the union of disks. One strdggtard way to
achieve this is by dropping nodes randomly on the torus, ataining only those
falling into a disk, until we have enough nodes. We proceeah@logous fashion
for the V;, external nodes.

After placing the nodes, we run our simulations as followst egery time
step each node moves fd&x = (A;,A,), whereA, and A, are independent
variables chosen independently for every node and for eewy step. Each of
these variables has a Gaussian distribution with neand variances? if a node
isin 4; oro? ifitisin Ap,.

As the H-model is a diffusion process with spatially dependeefficient(z),
our simulations will lead to a systematic error, as showrF@(04]. The authors
in [FGO4] propose an elegant solution to this problem in segalircase when(z)
is a differentiable function. This solution consists inreating every step length
A, depending on the gradient éfz) during this step. As in our caggz) is a
step function their solution is not straightforwardly appble. Nevertheless, using
their approach we find the correction for the step lenjytas follows.

The step lengti\ has to be corrected whenevgr) has different values during
this step. Figures 3.8 and 3.9 show how to make the correcfidanconsider only
cases when(z) changes its value once during one step, because we agsusne
small enough that the cases are rare when changes its value more than once
during one step.

We look at the projections of the step lengthinto « andy coordinates and
hence we show how to calculate the correct step ledgil), = A + € in one-
dimensional case (cf. Figure 3.10).

*The node positions are “almost” a Poisson process with bgéeieous intensity(z), except
for the condition that the total number of nodes is exaatlpstead ofPo(n).
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A N
Z(t) Z(t)

Al = Ay

Figure 3.8: Case | - a node enters a disk.

A" i
Zt+1
(t+1) Ze(t+1)

Al = A"

Figure 3.9: Case Il - a node leaves a disk.

To calculate a correction terewe start from the following equation [FG04]:

— fono g(x)da:—ffoc Georr(w)dw
- gcorr(A) ’ (38)

whereA is the step length for the case whefx) = o7 (i.e., b(x) is a constant
for all z), andg(x) is the distribution of the step length, and g...(w) is the
distribution of the exact step length.,,., (whenb(z) is a step function).

By the normalization technique given in [Ris89], Chaptews,obtain:

w if b(w) = o2
gcorv‘(’w){ -g) I ( ) 1 (39)

oy 9(w)=J=g(w) if blw) = o}

We divide A in two parts as shown in Figure 3.10, whereb(z) = o7 and
A" whereb(z) = o7. Then, using (3.8) and (3.9) we obtain= —(1 — 1/,/7)A"
which means that:

Al L oAn
Acorr=A +WA . (3.10)

3.3.2 Validation

We now validate how well the H-model captures properties i@faistic mobility
trace. We focus on the San Francisco trace only as it is the detailed trace of

A A

2 2
0 A O,

Figure 3.10: One-dimensional case.
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the three considered. We check the following propertiestadistical equivalence
of nodes’ mobility, i) relation between speed and densitycluster dynamics,

and iv) predictive power of the H-model for an epidemic diss®tion algorithm.

Here, we only outline results without going into details abdata analysis.

Statistical Equivalence of Nodes

We test to what extent the nodes in the San Francisco tae todlow distinguish-
able mobility patterns, e.g., because drivers might hawation preferences. This
is an important consideration, because it measures that@itéor a routing al-
gorithm for partitioned networks to make judicious deaisi@boutwvhich nodea
packet should forward to.

We assume a null hypothesis that all the node mobility padtare drawn from
the same underlying distribution, and use a Pearsghtest to decide whether we
need to reject the null hypothesis, separately for eacle tislore specifically, we
look at the distribution of counts of visits to a grid of sqe@ells of equal size for
a time period of one day. This time period is a conservativeeufpound of the
time scale of interest in a routing protocol. We simply take true distribution as
the aggregate over all nodes.

We find that most of the traces (more than 60%) are statilticalistinguish-
able from the overall population. We note that over longeetiscales, we would
reject the null hypothesis more frequently, because snifidreinces in the under-
lying distributions would be amplified relative to the saimglnoise. However, in
most delay-tolerant applications of interest, the timdeso&interest tends to be of
the order of minutes to hours; over these time scales, fantitlity trace at hand,
we have to assume that a majority of nodes follow similar titgkpatterns.

Speed and Density Maps

Here we focus on the spatial distribution of vehicle speeatidensity. Figure 3.11
illustrates these distributions, where darker pixelsdaté higher speed/density.
For the sake of visualization, we show the density distiiutn a log scale (be-
cause the spatial distribution of node density is heavedail The figure does
suggest that speed and density are negatively correlagedhiat locations of high
speed see low node density, and vice versa. We conjecture¢hibdnverse re-
lationship may be quite universal, because the mobility @les may be more
“constrained” by other nodes in high-density areas, thugihg their speed. This
is quite easy to see in vehicular settings (highway vs. downttraffic jam).

Cluster Dynamics

We test how well the H-model captures the cluster dynamies the real mobility
scenario. We analyze the cluster dynamics of both realasisistoserved in the San
Francisco trace, as well as clusters produced in the H-moteke parameters
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Figure 3.11: Comparison of the speed (left) and density mght] distribution.
Darker pixels indicate higher speed/density.

were inferred from the San Francisco trace [PSDGO09]. Ferwé use the CCL
algorithm explained in Section 3.2.1. We analyze the folhgrtwo metrics:

e T.: cluster lifetime- the time a cluster (label) is present in the network;

e N.. cluster size- the average number of nodes of a cluster (label) over its
lifetime.

Figure 3.12 shows the empirical complementary CDF for thistel lifetimeT,
and the average cluster si2&. Figure 3.13 shows an evolution of the size of the
largest cluster in both the model and the trace.

From these figures we observe the following. First, we sed smrisingly -
strong diurnal fluctuations in the trace but not in the mo8elcond, the lifetime of
clusters both as produced by the model and inferred fronr#oe is heavy-tailed.
However, the model produces more stable clusters, whiclainrpsults from the
absence of diurnal fluctuations in the model, and from thepstiifference between
high and low-density regions. In a real setting, the bouedaare of course more
fuzzy. Third, the cluster sizes for the model and the traeedistributed rather
differently. In the model, the size of each cluster tends uotflate in a narrow
range. In the trace, there is more of a continuous spectruttusfer sizes, again,
in part, because of fluctuations during the day. Small cisgtdse more frequently
in the trace than in the model, which is a result of the suicatiregion not being
uniform as stipulated in the model.



52 CHAPTER 3. MODELING STABLE CLUSTERS IN MOBILITY

Empirical CCDF of cluster lifetime Empirical CCDF of cluster size
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Figure 3.12: Comparison of cluster lifetime and clustee sizboth the trace and
the model.
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Application to Epidemic Dissemination

In this section, we evaluate the predictive power of the Hieldn the context of
epidemic dissemination, one of the prominent paradigmsofating in partitioned
networks. We compare the H-model with the two prominent nidesimulations
of mobile ad-hoc networks, a (homogenous) random walk (RWilehand the
random waypoint (RWP) model. For the purpose of our study)seghe following
performance metrics:

e message delaythe time interval between sending the message by the source
and receiving its copy at the destination;

e message copiestotal number of copies made for a message in the network
during the message delay time interval,

e minimum delay path the hop length of the minimum delay path between
the source and destination discovered by the protocol.

In Figure 3.14 we give the performance evaluation resulte@tpidemic pro-
tocol using a box plot for the three metrics. First, we se¢ ghghomogeneous)
RW gives a message delay that is much larger than the regl; detaH-model is
still conservative, but much closer to the actual perforceanThis suggests that
the speed at which the message spreads benefits greatly linstars (which al-
lows for a rapid spread of the message to other nodes), andtfre low-density
complement (where messages can travel quickly). The RWRhioderestimates
the message delay, but is closest to reality. Second, tke thodels predict the
number of message copies fairly well. Third, the RWP modelesestimate the
minimum delay path. This is because the RWP model has a veajl amxing
time, which makes it likely that the message reaches itdrddn after only a
small number of hops. We argue that the H-model appears thcpribe perfor-
mance of an epidemic dissemination protocol more accyrétah other models,
which suggests that clustering and spatial heterogengdtgadient features of real
mobility scenarios that should not be abstracted away. Mewyeve stress that this
evaluation is not exhaustive enough to conclude that theddatris appropriate for
all scenarios of interest, and should be viewed as prelimina

3.4 Conclusion

In this chapter we observe the following properties of st@limobility scenarios:
e there exist CPs interspersed by low-connectivity region;

e the CPs are often not connected among each other, i.e., tiverkas often
partitioned:;

e the CPs remain stable over relatively long time-scales.
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Based on these observations we devise two mobility modetstve above men-
tioned model: the G-model and the H-model. The G-model isetauged to fit
data to a model. The H-model is for modeling actual movemehtsdes in the
network. Hence the H-model has many less parameters tha-thedel and also
more realistic assumptions about nodes’ connectivity. Al@ate the H-model
by comparing its qualitative properties with a realistichitity scenario. We find
that the H-model captures well the qualitative behaviorhef tealistic clustered
partitioned connectivity.
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Chapter 4

Collaborative Routing Methods

4.1 Introduction

In the previous chapter we observe realistic mobility dats,sand we model the
observed properties in the mobility with: i) a set of stabkstnterspersed by low-
connectivity regions, and ii) a process that describes hodes move between
these CPs. In this and the next chapter, we design a routiyggithim for such
a mobility model. In particular, in this chapter we startlwihe G-model as the
one that gives us the essence of the problem abstracting alw