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Abstract: Measurement of strain is an important application of digital
holographic interferometry. As strain relates to the displacement derivative,
it depends on the derivative of the interference phase corresponding to the
reconstructed interference field. The paper proposes an elegant method
for direct measurement of unwrapped phase derivative. The proposed
method relies on approximating the interference phase as a piecewise
cubic polynomial and subsequently evaluating the polynomial coefficients
using cubic phase function algorithm. The phase derivative is constructed
using the evaluated polynomial coefficients. The method’s performance is
demonstrated using simulation and experimental results.
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1. Introduction

Digital holographic interferometry (DHI) is a popular non-invasive and whole field measure-
ment technique which has emerged as an important tool for deformation analysis in areas like
non-destructive testing, experimental mechanics etc. In DHI, the information about the de-
formation or displacement is encoded in the interference phase of the complex reconstructed
interference field whose real part constitutes a fringe pattern [1] . For many applications, the
displacement derivative or equivalently the interference phase derivative is of particular interest
since it gives information about the strain distribution. A popular approach for phase derivative
estimation in DHI is digital shearing where a superposition between pixel shifted i.e. sheared
complex amplitude of reconstructed wave and the original complex amplitude is performed to
approximate the phase differentiation operation [2, 3, 4]. The sensitivity of this method de-
pends on the amount of the shearing introduced. The phase derivative obtained using the digital
shearing approach is usually susceptible to noise and hence methods involving various filtering
operations have been proposed [5]. The iterative filtering operation in [5] is time-consuming
and has to be implemented with caution so as not to smear the dense fringes. It needs to be em-
phasized that the phase derivative obtained by the above methods is wrapped and hence requires
an unwrapping algorithm. Some of the other methods developed for phase derivative estimation
are [6, 7]. Recently, methods [8, 9] based on the high-order ambiguity function (HAF)[10] were
proposed with potential benefits for fringe analysis in DHI. However the performance of HAF
based methods is adversely affected in the presence of severe noise [11].

In this paper, we propose an elegant method to directly estimate the unwrapped phase deriva-
tive in DHI even in the presence of severe noise using the cubic phase function (CPF) algorithm
[11]. The proposed method works by modelling the complex reconstructed interference field
obtained in DHI as a piecewise polynomial phase signal. In other words, the reconstructed in-
terference field is divided in many segments and the interference phase is assumed to behave
like a polynomial in each segment. The major benefit of using piecewise polynomial approx-
imation is that even phase distribution with rapid variations can be modelled as a low order
polynomial with sufficient accuracy in a small segment. In the proposed method, the phase
is modelled as a cubic polynomial or equivalently the phase derivative as a quadratic, and the
quadratic coefficients are evaluated using the CPF algorithm in each segment. The phase deriva-
tive is then constructed using the evaluated coefficients. The theory of the proposed method is
outlined in the next section and simulation and experimental results are presented in section 3
followed by conclusions and acknowledgements.

2. Theory

The reconstructed interference field in DHI is given as

I(x,y) = A(x,y) exp [ jφ(x,y)]+η(x,y) (1)

where A(x,y) is the amplitude term; φ(x,y) is the interference phase and η(x,y) represents
the noise assumed to be zero mean additive white gaussian noise (AWGN). Here x and y refer
to the pixels or equivalently columns and rows along the N ×N fringe pattern. To implement
the piecewise polynomial phase approximation, we divide an arbitrary column x into say Nw

segments such that each segment is of size Ns = N/Nw. So for the kth segment such that k ∈
[1,Nw], Eq. (1) can be written as

Ik(y) = Ak(y) exp [ jφk(y)]+ηk(y) (2)

Assuming a cubic phase approximation with the cubic coefficients [a0k,a1k,a2k,a3k] for the kth

segment, we have
φk(y) = a0k +a1ky+a2ky2 +a3ky3 (3)
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∂φk(y)
∂y

= a1k +2a2ky+3a3ky2 (4)

∂ 2φk(y)
∂y2 = 2(a2k +3a3ky) (5)

From Eq. (4), it is clear that the phase derivative for the kth segment can be evaluated by de-
termining the coefficients [a1k,a2k,a3k]. They are estimated using the CPF algorithm [11]. The
CPF of Ik(y) is given as

CPFk(y,Ω) =
(Ns−1)/2

∑
τ=0

Ik(y+ τ)Ik(y− τ)exp(− jΩτ2) (6)

The peak of the CPF’s magnitude corresponds to the second order derivative of phase also
known as the instantaneous frequency rate in signal processing. Hence we have

Uk(y) = argmax
Ω

|CPFk(y,Ω)| (7)

where ‘argmax’ indicates the value of the argument Ω at which |CPFk| attains the maximum
value. So using Eq. (5), we have

Uk(y) = 2(a2k +3a3ky) (8)

Equation (8) which involves the coefficients a2k and a3k gives the second order phase derivative
as a function of y for the kth segment. In order to estimate these coefficients, Uk(y) is evaluated
for two positions of y i.e. y1 and y2 to generate two equations in the two variables [a2k,a3k].
Hence, we have

Uk(y1) = 2(a2k +3a3ky1) (9)

Uk(y2) = 2(a2k +3a3ky2) (10)

Equation (9) and Eq. (10) are solved to get the estimates [â2k, â3k]. The recommended values of
y1 and y2 are 0 and 0.11Ns to keep the estimation error minimum [11]. The remaining coefficient
a1k is then estimated using a dechirping operation which is carried out as

I′k(y) = Ik(y)exp[− j(â2ky2 + â3ky3)] (11)

Equation (11) is equivalent to peeling off the contribution of the polynomial coefficients a2k and
a3k from the phase of Ik(y) which effectively yields I′k(y) as a single tone signal with frequency
a1k. Hence estimation of a1k boils down to single tone frequency estimation from I′k(y) which
can be implemented using a Fourier transform (FT). In other words,

Gk(ω) = FT [I′k(y)] (12)

â1k = argmax
ω

|Gk(ω)| (13)

Equation (12) is efficiently implemented using fast Fourier transform (FFT). The estima-
tion accuracy for â1k is further improved using iterative frequency estimation by interpolation
on Fourier coefficients (IFEIF) technique [12]. IFEIF is a computationally efficient technique
with enhanced accuracy for single tone frequency estimation. With the coefficient estimates
[â1k, â2k, â3k] known, the phase derivative for the kth segment can be constructed using Eq. (4).
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Fig. 1. Original vs estimated phase derivative in radians/pixel at SNR of (a) 5 dB, (b) 10 dB, (c)
15 dB. (d) Absolute error for phase derivative estimation

By repeating the above procedure for all Nw segments, the phase derivative for the column
x is determined. A 50 % overlapping segment strategy is used to minimize the error at the
boundaries of adjacent segments. The phase derivative is determined in a similar fashion for
all columns x ∈ [1,N] to give the overall phase derivative for the entire fringe pattern. It needs
to be emphasized that the phase derivative obtained by the proposed method is unwrapped and
hence no further unwrapping algorithm is required.

The major advantage of the proposed method is the inherent robustness of the CPF algorithm
to severe noise [11]. To show the applicability of the proposed method for phase derivative
estimation, we simulated a one dimensional signal at signal to noise ratios (SNR) of 5 dB,
10 dB and 15 dB. The performance of the proposed method is shown in Fig. 1(a)-1(c). The
absolute errors in phase derivative estimation for different SNRs are shown in Fig. 1(d). It is
clear from Fig. 1 that even for SNR as low as 5 dB, the proposed method works reasonably well
for phase derivative estimation.

3. Simulation and experimental results

The fringe pattern corresponding to the real part of the reconstructed interference field in DHI
simulated at SNR of 5 dB is shown in Fig. 2(a). The original phase derivative along y direction
in radians/pixel is shown in Fig. 2(b). The phase derivative estimate ω1(x,y) in radians/pixel
obtained by applying the proposed method is shown in Fig. 2(c). We used Nw = 8 for analysis
throughout the paper. Though the phase derivative obtained from the proposed method is un-
wrapped, the corresponding wrapped form is shown for illustration purpose only in Fig.2(d).
The wrapped form was evaluated using arctan{Im(exp[ jω1(x,y)])/Re(exp[ jω1(x,y)])} where
‘Im’ and ‘Re’ denote the imaginary and real parts of a complex number. The root mean square
error (RMSE) for phase derivative estimation was 0.0166 radians/pixel. Note that the pixels
near the borders were neglected for the RMSE calculation to ignore the errors at the bound-
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Fig. 2. (a) Simulated fringe pattern. (b) Original phase derivative in radians/pixel. (c) Estimated
phase derivative in radians/pixel. (d) Wrapped form of the estimated phase derivative

aries.
The practical applicability of the proposed method is tested for a DHI experiment. A circu-

larly clamped object was subjected to central loading and two holograms were recorded before
and after deformation using a Coherent Verdi laser (532 nm). Numerical reconstruction was
performed using Discrete Fresnel transform [1] which gave the complex amplitudes of the ob-
ject wave before and after deformation. The complex amplitude of the post-deformation object
wave was multiplied with the conjugate of the complex amplitude of the object wave prior
to deformation to obtain the reconstructed interference field. The corresponding fringe pattern
is shown in Fig. 3(a). The estimated phase derivative along y direction after applying the pro-
posed method and the corresponding wrapped form are shown in Fig. 3(b) and Fig. 3(c). For the
sake of comparison, the phase derivative was also estimated using the digital shearing method
[4] where the sheared complex amplitude of the reconstructed wave was superimposed on the
original complex amplitude to approximate the phase differentiation operation. The wrapped
phase derivative estimate thus obtained is shown in Fig. 3(d). It is clear from Fig. 3(d) that
the digital shearing method is susceptible to noise besides requiring an unwrapping algorithm.
Compared to the digital shearing method, the proposed method offers better ability to handle
fringe patterns with severe noise.

4. Conclusions

The paper proposes an elegant cubic phase function algorithm based method for phase deriva-
tive estimation in DHI. The major advantages of the proposed method are its ability to directly
provide the unwrapped phase derivative thereby eliminating the requirement of unwrapping
algorithms and its robustness to noise. The proposed method’s performance is verified by the
simulations whereas its practical applicability is validated by the experimental results presented
in the paper. The results indicate that the method has the potential to be established as an im-
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Fig. 3. (a) Fringe pattern obtained in a DHI experiment. (b) Estimated phase derivative in radi-
ans/pixel. (c) Wrapped estimated phase derivative. (d) Wrapped phase derivative estimate using
digital shearing method.

portant technique for phase derivative estimation in DHI.
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