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Abstract— In this paper1 we address the problem of processing
continuous multi-join queries, over distributed data streams.
Our approach makes use of existing work in the field of
publish/subscribe systems. We show how these principles can
be ported to our envisioned architectural model by enriching
the common query model with location dependent attributes. We
allow users to subscribe to a set of sensor attributes, a service that
requires processing multi-join correlation queries. The goal is to
decrease the overall network traffic consumption by removing
redundant subscriptions and eliminating unrequested events
close to the publishing sensors. This is non-trivial, especially in
the presence of multi-join queries without any central control
mechanism. Our approach is based on the concept of filter-split-
forward phases for efficient subscription filtering and placement
inside the network. We report on a performance evaluation using
a real-world dataset, showing the improvements over the state-
of-the-art, as we reduce the overall data traffic by half.

I. INTRODUCTION

The advances in sensing technologies, in particular wireless
sensors, allow for continuous and detailed monitoring of the
real world. Application scenarios are manifold, ranging from
traffic or health monitoring, over monitoring of industrial
sites and logistics, to environmental monitoring for scientific
purposes. In environmental monitoring, scientists use a wide
variety of observation networks, ranging from deployments
with limited spatial extension, to interconnected sensor stations
that often cover large regions, countries or continents, with a
large selection of different sensors. Data is no more collected
from a single dedicated observation network, but aggregated
from heterogeneous measurements, typically performed by
many different organizations. Similar trends can also be ob-
served for the other application scenarios mentioned above.

We consider streams with high data rates and that data
forwarding is expensive. Queries that target multiple streams
will often focus on a particular region, but using sensor
deployments operated by different organizations. Thus joins
over data streams will frequently occur on geographically
correlated data. For economical and organizational reasons,
and security and privacy concerns, data providers will often be
reluctant to share their data through central repositories. Our
focus will be on solutions that support such settings where data
stream processing occurs in a fully distributed environment
and with only local knowledge available at the processing
nodes.

1The main funding sources for this paper were the National Competence
Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322 and the Competence Center Environment and
Sustainability of the ETH Domain (CCES).

As a concrete scenario, we will consider widespread sensor
deployments in environmental science, as we encounter it
in the Swiss Experiment Project, an interdisciplinary project
involving more than 10 environmental research groups spread
across Switzerland. Figure 1 gives an overview of the different
field site locations. The different sensor deployments are
run by a number of different organizations, that provide the
often very expensive hardware devices and have the domain
knowledge for their maintenance. The measured phenomena
include meteorological data like temperature, snow height, air
humidity, and solar radiation, but also more specific mea-
surements for tasks like water shed monitoring, permafrost
monitoring or land slide detection. The field locations vary
from hydrological observations in the forealps to high alpine
weather monitoring deployments such as those operated by
the Snow and Avalanche Research Center (SLF) in Davos.
Apart from scientific use we expect such data being made
available for professional and personal use in large scale user
communities. This is already true for meteorological data (e.g.
storm, frost, floods warnings), but personalization capabilities
are limited and integrated access to different operators is not
supported.

Within the Swiss Experiment we use a sensor data stream
processing middleware, GSN [2], as a common data gathering
and processing platform. It opens the possibility to issue so-
phisticated continuous queries over the data streams, resulting
in complex event descriptions that involve multiple sensors.
Sensors can be addressed directly, but it is more likely that
users are interested in one or more sensors within a particular
spatial region. These interests are expressed as subscriptions.
Such subscriptions are processed through continuous queries
that report results back to the subscriber whenever a partic-
ular condition (event) is satisfied. The main difficulty is to
effectively place subscriptions at carefully selected positions
inside the network, such that sensor readings are filtered close
to their sources, as the number of readings is typically several
orders of magnitude larger than the number of subscriptions.

This becomes challenging in the case of complex sub-
scriptions that involve different data sources, because sensor
readings (events) have to be “joined” to match the sub-
scription (event description). When there are large numbers
of subscriptions in the system, they will naturally overlap,
and so the same result sets will be repeatedly transmitted
wasting network resources. This is in particular problematic in
distributed, large-scale networks connected over the Internet,
where network bandwidth is the limiting factor for achieving
acceptable response times.



Fig. 1. Google maps view of current field sites within the Swiss Experiment
project. Each point denotes one particular experimental site with in most cases
several sensor stations installed, each having several single sensors attached.

The work in the fields of operator placement and pub-
lish/subscribe for large-scale streaming systems are the closest
to our approach, as they consider joins over multiple streams,
but they often require some form of global knowledge or
even a centralized server for managing joins, and do not take
complete advantage of the existing subscription overlaps.

We consider building a publish/subscribe system on top of
the sensor data stream processing infrastructure without mak-
ing any assumption on the network layout, the semantics of the
sensor readings etc.. The proposed approach is based on the
concept of filter-split-forward phases for efficient subscription
filtering and placement inside the network, and an efficient,
publish/subscribe forwarding of matching events. Note that we
do not consider optimizing in-sensor-network data processing,
but focus on the sensors or sensor stations connected through
a Internet-based data stream processing middleware.

Our contributions can be summarized as follows:

∙ We show why state of the art approaches from the
publish/subscribe domain are insufficient, and we tailor
them for sensor networks, by extending the subscription
language, and by adapting subscription filtering and event
matching processes.

∙ We adapt state-of-the-art solutions for continuous query
processing over multiple data sources to work in a dis-
tributed setting, requiring local interactions only, without
relying on global knowledge or a centralized server.

∙ We propose an algorithm for distributing the user sub-
scriptions in the system composed of filtering, splitting
and forwarding phases: it injects fewer subscriptions,
which in turn generate less result sets overlap. Coupled
with our event propagation algorithm which avoids result
redundancy, it drastically lowers network traffic.

∙ We report on a performance evaluation replaying a real-
world dataset, showing the improvements of the three
distributed approaches on network traffic.

The paper is organized as follows. Section II reviews related
work and positions our paper. Section III details how the state
of the art can be adapted to function based only on local
interactions between nodes in the system. Section IV gives a
detailed overview of the considered model. Section V presents
our proposed algorithms. Section VI presents the experimental
results. Section VII concludes the paper and gives an overview

of ongoing work.

II. RELATED WORK

Several architectures have been proposed for interconnected
sensor networks. Sgroi et al. [18] suggest basic abstractions,
a standard set of services, and an API to free application
developers from the details of the underlying sensor networks,
focusing on systematic definition and classification of ab-
stractions and services. Both IrisNet [12] and Hourglass [19]
propose an Internet-based infrastructure for connecting sen-
sor networks to applications. In Hourglass, the focus is on
maintaining quality of service of data streams in the presence
of disconnections. In IrisNet, the authors propose a two-tier
architecture consisting of sensing agents, which collect and
pre-process sensor data and organizing agents, which store
sensor data in a hierarchical, distributed XML database. [11]
and [17] provide hierarchical data stream query processing to
acquire, filter, and aggregate data from multiple devices in a
static environment, with the focus on filtering the useful data
as close as possible from the producing device. Besides these
architectures, a large number of systems for query processing
in sensor networks exist. Most notably, Aurora [9], GSN [2],
STREAM [5], TelegraphCQ [8], and Cougar [25]. Our method
offers efficient query processing in a distributed setting and
is independent of the underlying platform; thus it can be
implemented on top of any system that offers sensor network
access and interconnection.

The work in the field of operator placement ([22], [3], [16])
is similar to ours, as it proposes algorithms and metrics to
decide on the placement of join operators shared between
overlapping subscriptions in order to reduce data processing.
However, they might require some form of global knowledge
and the query rewriting techniques do not achieve a high query
load reduction, while the result sets still overlap; thus both
queries and, more importantly, result tuples are redundantly
pushed in the system. In [26], the authors improve general
operator placement techniques to allow for dynamic load
balancing while minimizing communication costs; identical
operators or groups of operators are shared between queries,
but no complex sharing can be achieved, thus still duplicating
result sets. Xing et al. [24], [23] discuss stream processing on
a cluster of computing devices, with the aim to achieve faster
processing by parallelization, while ensuring load balancing,
such that no device can become overloaded and degrade the
overall latency. These approaches assume network traffic is
not an issue and choose processing nodes independent of data
stream localization. Thus, they are not suitable for query pro-
cessing in distributed networks. REED [1] takes into account
that centralized query processing creates a high overhead,
when there are few satisfying tuples, and processes queries
inside the sensor network; it filters the streams with query
condition(s), but it does not support queries over multiple,
independent streams. Our approach can join tuples from dis-
tributed streams, while taking into account stream localization
to reduce network traffic.

Publish/subscribe has been recognized as an efficient com-
munication paradigm for sensor networks ([20], [13], [10]).
[20] employs topic-based publish/subscribe, on the account
that sensors have well defined attributes, modeled as topics.



It does not support more expressive content-based communi-
cation, and data is aggregated only over one topic. In [13]
the authors aim at reducing the communication traffic through
the use of content-based publish/subscribe over a reduced
number of paths inside the system, identified by an augmented
distance vector protocol. A semi-probabilistic approach, [10],
combines deterministic forwarding of publications (those that
match subscriptions are propagated only in a small vicinity),
with probabilistic forwarding to a random number of neighbors
(when there is no match). This approach cannot guarantee
100% delivery; to achieve better reliability, it must increase
publication traffic. More recently, in [7], the authors achieve
less duplication, by approximating subscriptions over multiple
attributes, called multi-joins, with binary joins and by using
a publish/subscribe dissemination of results. However, they
assume a centralized processing location, and the join approx-
imation technique introduces false positives.

III. TAILORING EXISTING APPROACHES FOR “LOCAL

KNOWLEDGE”-ONLY INTERACTION

We have explained in the previous section that existing ap-
proaches cannot be applied in a truly distributed environment,
as they require some form of global knowledge (e.g., for global
query plans) or do not consider the cost of streaming data in
the network (e.g., for centralized or cluster processing). They
cannot support distributed, processing nodes, with knowledge
emerging only from local interaction, between neighboring
(linked) nodes. We have analyzed traditional operator place-
ment techniques, and adapted them to be applicable without
global query plans. As for the recently proposed multi-join
technique [7], we have distributed the processing tasks and
the forwarding of data to all nodes.

A. Operator Placement Based on Local Interaction

In general, operator placement techniques construct a global
query execution plan that reuses identical filters between
different queries, and places these reduced number of filters
(operators) on nodes, with the goal to minimize processing
tasks and, possibly, to reach a balanced processing load
between nodes. They achieve filter reuse between different
queries by joining the corresponding query plans for the
processing of that filter, while load balancing is achieved
by relocating filters depending on a node’s processing load.
An operator takes as input one or several data streams, and
generates one result set stream, which can be duplicated if
downstream operators are part of different query plans.

Placing Operators Based on Local Interaction: We have
designed a distributed operator placement and improved the
reuse of operators. By taking advantage of well established
publish/subscribe techniques, that achieve pairwise subscrip-
tion reduction, we reuse wider filters for the more restrictive
ones, which they cover entirely. Thus, different query plans
can share not only identical operators, but also covering
operators, which results in smaller number of operators and
larger portions of shared query plans. To place operators, we
do not construct a global query plan, instead we rely on
local knowledge and interaction. We distribute query plans
following subscription paths from users to corresponding data
sources, which ensures streams are processed only on nodes

that would have to relay them anyway. User subscriptions
are placed as operators at nodes on the reverse data sources
advertisement path, and are split into simpler join operators,
each time the corresponding advertisement paths diverge. Due
to the pairwise coverage check, split operators are filtered out
at nodes where a covering operator resides.

Constructing the Result Sets: Each operator generates its
own result set, and forwards it on the reverse subscription path.
We assume a publish/subscribe forwarding which recognizes
the covered (and filtered out) operators and generates the
missing result set at the node where covering was detected.
In the setting of traditional operator placement techniques,
this can be seen as placing the more restrictive operator
downstream from the covering operator, to filter the larger
result set to extract the smaller result set. Thus, covered
operators generate traffic only from the node where coverage
was detected, to the user’s node. This mechanism reduces the
result set redundancy typical to operator placement techniques
in the case of joins over multiple attributes. On the other hand,
redundancies still exist: an attribute’s publications can appear
in different results sets, if the corresponding operators have
different, but overlapping attribute sets. This drawback also
pertains to typical operator placement techniques, and it is not
reduced by having global knowledge.

B. Distributed Multi-join Processing

In most application scenarios the amount of publications
largely exceeds the amount of user queries or subscriptions.
Thus, the above mentioned drawback prompted further re-
search among which, recently, Chandramouli et al. propose a
more efficient approach in [7]. It splits multi-join queries into
binary joins over a main attribute that generates the result set,
and a filtering attribute, which sanctions the main attribute’s
matching events. Result sets for such binary joins are easier to
dispatch efficiently to the users (thus less redundancy between
result sets), but on the other hand generate false positives,
which are forwarded all the way to the user and create
additional network traffic. Although the authors discuss the
importance of a distributed network of processing nodes, it
is a centralized approach, where a processing server has full
knowledge of users subscriptions and published data.

Placing Binary Joins Based on Local Interaction: We have
designed a distributed version of the algorithm in [7], as the
application in a distributed environment is not detailed. Data
streams in our considered setting do not include a payload of
data, so we treat all streams equally in the filtering process
and when choosing the pairs of binary joins into which a
multi join is split. We forward subscriptions following the
reverse advertisement path, and start the splitting process
only at the first node where the path diverges. We preserve
the natural splitting into simple operators, according to the
network connections behind this node, to send the individual
filters to the corresponding data source. Splitting into binary
joins results in higher number of forwarded subscriptions, but
only from the divergence node towards the sensors (it acts in
a way as the centralized server).

Keeping in line with the original algorithm, which processes
together binary joins with the same signature, we perform
pairwise covering filtering, for both binary joins and multi-



joins: covered multi-joins would eventually split into covered
binary joins.

Constructing the Result Sets: Similar to the operator place-
ment techniques, each binary join generates its own result set,
comprised of the main attribute’s matching values for which
there exist matching values of the filtering attribute. Since
each result set stream has only one attribute, it is easy to
check whether one data item has been already forwarded over
a link, which avoids result set overlap. Events traverse the net-
work following the matching subscriptions (and corresponding
binary joins) reverse path. We employ a publish/subscribe
forwarding, which recognizes covered binary joins and sub-
scriptions and generates the missing result set at the node
where covering was detected. Matching data streams against
binary joins creates false positives, which traverse the network
all the way to the user, affecting the overall traffic.

IV. MODEL

A. Publish-Subscribe Model
We model sensors as data sources, where each sensor

produces data of a fixed type and has a known location. The set
of data types produced by sensors is denoted by 𝒜, and a given
sensor 𝑑 has an attribute type 𝑎𝑑 ∈ 𝒜. Each attribute 𝑎𝑑 has
values 𝑣 from a corresponding value domain 𝒟𝑎𝑑 . The location
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑑) of a sensor 𝑑 is given as a value 𝑝𝑑 ∈ ℒ from the
location domain, e.g., 2D or 3D space. To make its presence
known, a sensor 𝑑 produces a data source advertisement or
short advertisement 𝐷𝑆𝐴𝑑 = (𝑎𝑑, 𝑝𝑑). Measurements of a
sensor 𝑑 result in publications of events 𝑒𝑑 = (𝑎𝑑, 𝑝𝑑, 𝑣, 𝑡),
where 𝑣 is the measured value and 𝑡 is the time of the
measurement event.

Conditions on events published by sensors are expressed as
filters. A simple filter, 𝑓𝑎, expresses a condition on attributes of
a given type and is of the form 𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑚𝑎𝑥 (in ordered
domains) or 𝑎 = 𝑣. A simple filter with identification, 𝑓𝑑,
specifies the attribute type and the location, and thus applies
to a single sensor 𝑑. It is of the form (𝑚𝑖𝑛 ≤ 𝑎𝑑 ≤ 𝑚𝑎𝑥) ∧
(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑑) = 𝑝𝑑). A complex filter with identification is a
set of simple filters with identification. For a set of sensors 𝐷
we use the shorthand notation 𝐹𝐷 = {𝑓𝑑, 𝑑 ∈ 𝐷} to denote
a complex filter with identification. An abstract filter allows
users to constrain the type and value of data sources from a
given region 𝐿 ⊆ ℒ. For a given set of attributes 𝐴 ⊆ 𝒜, an
abstract filter 𝐹𝐴,𝐿 is of the form 𝐹𝐴,𝐿 = {𝑓𝑎 ∧ 𝑝𝑑 ∈ 𝐿, 𝑎 ∈
𝐴}, where 𝑓𝑎 is a simple filter over attributes of type 𝑎. The
nature of region containment conditions checks depends on
the location domain ℒ, e.g. 𝐿 can be an area in 2D space,
a volume in 3D space, or a sub-location in a hierarchically
organized location domain.

A user subscription is a set of filters expressing ranges either
over explicitly named sensors, as an identified subscription
𝑆𝑖𝑑 = (𝐹𝐷, 𝛿𝑡), or over types of data streams, bounded
to a specified region, as an abstract subscription 𝑆𝑎𝑏 =
(𝐹𝐴,𝐿, 𝛿𝑡, 𝛿𝑙). Typically, users are interested in correlated data
from multiple data sources, but publication timestamps are
seldom identical over different sensors. Therefore, a temporal
correlation distance 𝛿𝑡 provides the maximum acceptable
difference between publication timestamps from different sen-
sors, such that they are considered as correlated. Similarly,

when users are interested in data streams from a region, the
spatial correlation distance 𝛿𝑙 gives the maximum acceptable
difference between different sensor locations such that their
publications are considered as being correlated. If event corre-
lation is independent of spatial proximity we set 𝛿𝑙 = ∞. Most
applications set 𝛿𝑡 and 𝛿𝑙 as constants, because correlations
have the same meaning through out the application.

We can now formally specify the matching of events to
subscriptions in our model: a simple event 𝑒𝑑 = (𝑎𝑑, 𝑝𝑑, 𝑣, 𝑡)
generated by a sensor 𝑑 matches at time 𝑡 an identified
subscription 𝑠𝑖𝑑 = (𝐹𝐷, 𝛿𝑡), if 𝑑 ∈ 𝐷 and 𝑓𝑑(𝑣) evaluates
to 𝑡𝑟𝑢𝑒. It matches at time 𝑡 an abstract subscription 𝑠𝑎𝑏 =
(𝐹𝐴,𝐿, 𝛿𝑡, 𝛿𝑙) if 𝑎𝑑 ∈ 𝐴, 𝑝𝑑 ∈ 𝐿 and 𝑓𝑎𝑑(𝑣) evaluates to 𝑡𝑟𝑢𝑒.
Subscriptions can also match complex correlated events 𝐸 =
{𝑒1, 𝑒2, . . . , 𝑒𝑛}. A complex event 𝐸 matches a subscription
𝑠 (identified or abstract) at time 𝑡, if the following conditions
hold:

1) Completeness: There is one simple event for each sensor
(identified subscription) or each attribute type (abstract
subscription)

2) Each simple event 𝑒𝑖 = (𝑎𝑖, 𝑝𝑖, 𝑣𝑖, 𝑡𝑖) matches the
subscription 𝑠

3) 𝑡 = 𝑚𝑎𝑥𝑖=1...𝑛𝑡𝑖
4) ∣𝑡− 𝑡𝑖∣ < 𝛿𝑡 for all 𝑖 = 1 . . . 𝑛

Additionally, for abstract subscriptions, the condition
∣𝑚𝑎𝑥(𝑝𝑖 − 𝑝𝑗)∣ < 𝛿𝑙, 𝑖, 𝑗 = 1 . . . 𝑛 needs to be satisfied.

For optimizing the processing of event and subscription
propagation, we will rely on subscription subsumption, which
is defined as follows. A subscription 𝑠 is subsumed by sub-
scriptions 𝑠𝑖, 𝑖 = 1 . . . 𝑘, if for all complex events 𝐸 matching
𝑠, there exists a subscription 𝑠𝑖, such that 𝐸 also matches 𝑠𝑖.

B. System Model

Our system model consists of processing nodes connected
in an acyclic graph. Nodes having sensors attached are also
called sensor nodes, and represent sources of data streams,
while other nodes are relaying nodes, as they relay data
received from other nodes. Data propagation in our network
happens three-fold, for each group of data: advertisements,
subscriptions, and events. Similar to the generic propagation
methods introduced by directed diffusion [14], subscriptions
in our system follow the reverse dissemination path of adver-
tisements, and events following the reverse dissemination path
of subscriptions.

Each node maintains three types of information, the set
of received advertisements from each neighbor, the set of
received subscriptions from neighbors and local users, and the
set of received events. While advertisements and subscriptions
are expected to be valid until explicitly removed, or have
predefined life times, events are assumed to be valid for
a short amount of time. Their validity should, nevertheless,
be longer than 𝛿𝑡 to allow potentially correlating events to
traverse the network. On the other hand, having a finite event
validity reflects the expectation that, after a given time, no
further time-correlations will appear (all time correlated events
have already traversed the network). As a consequence, simple
events can be dropped from the local storage after they are no
longer valid, thus storage space requirements are reduced.



We assume sensor stations to be connected via a wide
area network where network bandwidth consumption is of
major concern. However, note that we do not consider any
in-network data exchange issues like network traffic reduction
or message lost, assuming this is handled by the employed
sensing infrastructure.

V. FILTER-SPLIT-FORWARD PROCESSING

Network traffic is generated by advertisement, subscription,
and event propagation, with the latter having the greater
impact, as events are several orders of magnitude more nu-
merous than subscriptions, which themselves can be orders of
magnitude more numerous than sensors. For an efficient data
traffic, received data must be stored at each node, in order to
reduce forwarding of data, similar to general publish/subscribe
systems.
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Fig. 2. Representation of data structures required at node 𝑛 to process data
sources advertisements, subscriptions and events from its neighbors.

We exemplify the data storage in Figure 2, for a node 𝑛
with five neighbors, two of which are sensor nodes (nodes 1
and 2), while the others host user subscriptions. For simplicity,
we do not show data relayed by 𝑛 to its neighbors. First, 𝑛
stores the advertisements received from each neighbor 𝑚 or
local sensors, in separate structures, identified with 𝐷𝑆𝐴𝑚,
or 𝐷𝑆𝐴𝑙𝑜𝑐𝑎𝑙, respectively. Thus, the content of 𝐷𝑆𝐴1 is
𝐷𝑆𝐴1 and the content of 𝐷𝑆𝐴2 is 𝐷𝑆𝐴2, while 𝐷𝑆𝐴𝑙𝑜𝑐𝑎𝑙 is
empty (and not shown). Second, 𝑛 must store the subscriptions
received from its local users and its neighbors (more on when
and how subscriptions are forwarded in Subsection V-B) in
structures identified with 𝑆𝑙𝑜𝑐𝑎𝑙 and 𝑆𝑚, respectively. In Fig-
ure 2, each of the neighbors 3, 4, 5 forwards one subscription,
𝑠3, 𝑠4, and 𝑠5, respectively, stored at 𝑛 in structures identified
with 𝑆𝑚: 𝑆3 = {𝑠3}, 𝑆4 = {𝑠4} and 𝑆5 = {𝑠5}. Because
there are no local users, 𝑆𝑙𝑜𝑐𝑎𝑙 is empty and not shown. And
third, all received events (forwarded by neighbors or published
by local sensors) are stored together, in a structure identified
with 𝑈 .

In the following subsections, we will describe the prop-
agation algorithms and the corresponding storage needs for
each type of data in our systems. Subsection V-A describes
advertisement processing. Subsection V-B presents our algo-
rithms for subscription processing, discussing an advanced

publish/subscribe technique for subscription filtering, set fil-
tering, and why it cannot be directly applied to sensor
networks. We detail how we develop this technique for the
considered setting and exemplify with a simple subscription
set over a small network. Event processing is presented in
Subsection V-C, where we show how we match and detect
complex events, while avoiding result set redundancies.

A. Advertisement Propagation
Advertisement propagation can be a straight forward flood-

ing, as the number of data sources is expected to be small
compared to subscriptions and events. Thus, a node propagates
all received advertisements (from neighbors and those of local
data sources) to all its neighbors, except the originating one.
Also, all received advertisements are stored in the correspond-
ing 𝐷𝑆𝐴 data structure, per neighboring node, plus local
data sources. This ensures that any incoming subscription
can immediately follow the matching advertisements’ reverse
dissemination path.

Algorithm 1 Advertisement propagation

1: /* Run each time a new sensor 𝑑 of type 𝑎 appears at node 𝑛
with 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑛) = 𝑙𝑛 */

2: if receive(“𝑠𝑒𝑛𝑠𝑜𝑟′′, 𝑑) at node 𝑛 then
3: append to(𝐷𝑆𝐴𝑙𝑜𝑐𝑎𝑙, (𝑎, 𝑙𝑛))
4: for all 𝑗 ∈ neighbor(𝑛) do
5: send advertisement(𝑎, 𝑙𝑛)
6: end for
7: end if
8: if on receive(“𝑎𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑒𝑚𝑒𝑛𝑡′′, 𝑎𝑑, 𝑙𝑑) at any node 𝑚 from

neighbor 𝑘 then
9: append to(𝐷𝑆𝐴𝑘, (𝑎𝑑, 𝑙𝑑))

10: for all 𝑗 ∈ neighbor(𝑚) ∖ {𝑘} do
11: send advertisement(𝑎𝑑, 𝑙𝑑)
12: end for
13: end if

B. Subscription Propagation
A node can receive subscriptions from local users and

from its neighboring nodes, and should forward them toward
corresponding sensors, by following the reverse path of the
respective sensor advertisements. A subscription cannot match
events unless all of its attributes have corresponding sensors.
Furthermore, to reduce the storage needs at each node and
the subscription traffic in the system, nodes try to filter out
redundant subscriptions, that is subscriptions subsumed by the
set of already stored subscriptions. Any type of subscription
filtering can be applied for this purpose, after which, only
unfiltered subscriptions are forwarded to those neighboring
nodes that have matching advertisements.

Set Filtering: To reduce subscription traffic, we have looked
into the most efficient subscription filtering techniques, known
in general as set coverage or set subsumption, proven to
be co-NP complete [21]. In [15], we propose a probabilistic
algorithm, which guarantees detection of set subsumption with
a configurable probability of error. The probabilistic aspect
can generate false positive decisions that a new subscription
is covered by existing ones. The uncovered parts, or gaps, of
such subscriptions generate false negative events, if events fall
into these gaps. The algorithm takes as input as a parameter



the error probability as specified by users or applications.
This parameter controls the tradeoff between processing cost
and false negatives, i.e., smaller probabilities generate more
processing load but less false negatives, and vice versa. We
show in [15] that, in practice, the actual error is even smaller
and decreases with larger subscription sets. We call this
algorithm set filtering, and find it appropriate for distributed
data streams, like sensor networks, where data sources could
be unreliable, user subscriptions numerous and transmitted
data can be lost due to in-network traffic congestion and link
failure ([4], [13]).

However, set filtering as defined in the context of content-
based publish/subscribe systems cannot be directly applied
to distributed sensor networks, because it considers all sub-
scriptions and events defined over the exact same set of
attributes; in fact, all published data in such systems is already
correlated. To apply set filtering in distributed data streams,
we define subsumption within our model, considering also the
location and timestamp meta-attributes, aside from the non-
correlated data attributes. First of all, the timestamp attribute is
orthogonal to the subsumption process, because it only affects
the data content (the streams) and its correlation, and not user
subscriptions (as long as 𝛿𝑡 is constant). On the other hand,
the location meta-attribute has a direct impact, even more so
as we support identified and abstract subscriptions.

For identified subscriptions, each sensor in the system
acts as one attribute, while for abstract subscriptions, the
data types act as data attributes. In fact, the location meta-
attribute adds another dimension to the problem, and due to
the location domain’s containment property, it can be treated
as just another data attribute, e.g., a location region can be
contained in another region, or union of such regions. This
translation of attributes and meta-attributes into data attributes
partly reduces the difficulty of applying set subsumption in
the context of distributed data streams, but we still face the
problem of non-correlated data: subscriptions are defined over
different attribute subsets. We cannot assume that a missing
attribute in a subscription implies a request for the whole
corresponding value space (instead, values for such an attribute
are unrequested and should not be forwarded to the end user).

Illustrative Example: In Table I, three subscriptions query
three previously advertised sensors, and are registered in the
following order: 𝑠1, 𝑠2, 𝑠3. Neither 𝑠1 nor 𝑠2 can be subsumed,
because they request data from sensors not queried before.
However, all of 𝑠3’s sensors have already been requested, and,
furthermore, all data matching 𝑠3 can be obtained by joining
and filtering the result sets of 𝑠1 and 𝑠2. Thus, 𝑠3 is subsumed
by existing subscriptions, but this decision cannot be reached
with set filtering.

TABLE I

SUBSCRIPTION SUBSUMPTION EXAMPLE

𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 𝑆𝑒𝑛𝑠𝑜𝑟 𝑎 𝑆𝑒𝑛𝑠𝑜𝑟 𝑏 𝑆𝑒𝑛𝑠𝑜𝑟 𝑐
𝑠1 50 < 𝑎 < 80 10 < 𝑏 < 30
𝑠2 20 < 𝑏 < 40 2 < 𝑐 < 20
𝑠3 55 < 𝑎 < 75 15 < 𝑏 < 35 5 < 𝑐 < 15

Propagation of subsumed subscriptions generates redundant
processing and traffic in the network, which increase with the

length of a subscription’s path from the user to its matching
sensors. We consider the previous subscription set appearing
at the same node (𝑛6) in the small-scale setting of Figure 3,
a 6-node network, with 3 sensor nodes (𝑛1, 𝑛2, 𝑛3). In this
setting, even though 𝑠3 is subsumed at 𝑛6, it will traverse the
whole network.

Divide and Conquer: We have designed a “divide-and-
conquer” solution, which takes into account that subscriptions
with more attributes are more restrictive than subscriptions
with fewer attributes, but demand more processing for data
correlation. For each new subscription, we first check sub-
sumption against subscriptions with the same attribute set,
and in case of a negative answer, we split it into simpler
subscriptions, to compare with subscriptions over subsets of
the initial attribute set. We use data source advertisements to
drop subscriptions without sources and to guide answerable
subscriptions towards the matching sensors. Keeping in mind
that a sensor is affected only by one simple filter, part of the
original subscription, we use the advertisement reverse path as
a deterministic choice for subscription splitting. At the same
time, we can postpone subsumption processing to the node
where advertisement paths diverge. If all subscription subparts
are subsumed along the paths, this process can actually detect
subsumption against subscriptions over different attribute sub-
sets.

Set Filtering Applied: We detail in Algorithm 2 how we
can apply set filtering in our setting. We assume the same 𝛿𝑡
for all subscriptions in our system and in the case of abstract
subscriptions, the same 𝛿𝑙. We compare only subscriptions
over the same attributes, i.e., both the set of subscriptions and
the tested subscription have the same set of attributes, and only
subscriptions of the same type (exceptions: simple operators
and identified subscriptions where all attribute locations are
logically the same). Under these conditions, we can apply
set filtering, by either treating each different sensor type
and, separately, the location information, as individual at-
tributes (line 4), for abstract subscriptions, either treating each
(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) pair as an attribute (line 7), for identified
subscriptions. We are not limited to filter out subscriptions
to the arrival order; however, since traffic has already been
generated by the existing subscriptions, we do not actively
remove them.

Algorithm 2 filter(𝑠,𝒮): subscription filtering with set filter-
ing

1: /* Check if a new subscription 𝑠 is filtered by 𝒮 */
2: if 𝑠 = (𝐹𝐴,𝐿, 𝛿𝑡, 𝛿𝑙) then //𝑠 is abstract

3: 𝒮 = {𝑠𝑖 ∈ 𝒮, 𝑠𝑖 = (𝐹𝐴𝑖,𝐿𝑖
𝑖 , 𝛿𝑡, 𝛿𝑙), 𝐴𝑖 = 𝐴}

4: return set filtering(𝑠,𝒮) //Treat 𝐿 as another attribute
5: else //𝑠 = (𝐹𝐷, 𝛿𝑡) is identified

6: 𝒮 = {𝑠𝑖 ∈ 𝒮, 𝑠𝑖 = (𝐹𝐷𝑖
𝑖 , 𝛿𝑡), 𝐷𝑖 = 𝐷}

7: return set filtering(𝑠,𝒮) //Each 𝑑 (sensor) is one attribute
8: end if

Subscription Placement: A subscription might be forwarded
as a whole, but could also be split into subsets of filters:
one subset for each neighbor with matching advertisements,
over the attributes common to those advertisements and the
processed subscription. As a consequence of this split and
forward process, nodes forward subscriptions either as the
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Fig. 3. Depiction of set filtering for the Table I subscription set in a small network of 6 nodes, when subscriptions appear sequentially at one node and
sensors are places at the other side of the network. Node data structures reflect the forwarding, splitting and placement of operators after 𝑠1 (left), after 𝑠2
(center) and after 𝑠3 (right).

complete set of filters given by a user, or as filters subsets. We
refer to a (sub)set of filters as a correlation operator, because
it requires data over different streams and must correlate them
on time (and maybe also location). When such an operator is
addressing a single attribute, we call it a simple operator, and
it does not suffer further splitting on its way to the matching
sensor(s), though it might be filtered out along the way.

Algorithm 3 split and forward(𝑠,𝑚): split and forward at
node 𝑛, subscription 𝑠 coming from node 𝑚

1: /* If there are matching sources for 𝑠, split and forward towards
sources’ nodes*/

2: if 𝑛 == 𝑚 then //𝑠 from local users
3: if matching sources(𝑠,neighbor(𝑛)) = false then //absent

sources
4: return
5: end if
6: end if
7: for all 𝑗 ∈ neighbor(𝑛) ∖ {𝑚} do
8: 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 = project(𝑠, 𝑗)
9: send subscription(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟)

10: end for

Subscription forwarding makes sense only if the subscrip-
tion can be answered by the existing data sources. In Algo-
rithm 3, we perform this check only at the originating node,
where new subscriptions are first checked against the stored
data sources advertisements, and subsequently dropped if some
source is missing (line 3). Only if all sources are present, or the
subscription (or operator) came from a neighbor, which means
its sources were already checked, must the subscription be
forwarded to the node’s neighbors, according to the matching
source advertisements’ reverse dissemination path. One can
imagine this operation as a projection of the subscription on
the neighbor’s data space, as defined by its advertisements
(line 8). Finally, for each neighbor with matching advertise-

ments, the resulting projected operator is forwarded (line 9).

Algorithm 4 Subscription propagation

1: /* Run each time a new subscription 𝑠 appears at node 𝑛*/
2: if receive(“𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛′′, 𝑠) at node 𝑛 from node 𝑚 then
3: if 𝑛 == 𝑚 then //𝑠 from local users
4: 𝒮 = 𝑆𝑙𝑜𝑐𝑎𝑙 //all local subscriptions
5: else
6: 𝒮 = 𝑆𝑚 //all subscriptions from 𝑚
7: end if
8: if filter(𝑠,𝒮𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑) = false then
9: append to(𝒮𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑, 𝑠)

10: split and forward(𝑠,𝑚)
11: else
12: append to(𝒮𝑐𝑜𝑣𝑒𝑟𝑒𝑑, 𝑠) //set of covered subscriptions
13: end if
14: end if

Subscription Propagation Overview: Subscription propaga-
tion is described in Algorithm 4, where both the filtering and
the split and forward procedures are depicted as black boxes.
Incoming subscriptions are the filtering set, whether they are
from local users (line 4) or a given neighbor (line 6). Fur-
thermore, only the previously uncovered subscriptions (line 8)
need to be considered, because the covered subscriptions are
redundant to the filtering problem. Both covered and uncov-
ered subscriptions must be stored: even though only uncovered
subscriptions are candidates for forwarding to neighbors, all
subscriptions define the correlations needs of the neighbors
or local users. User subscriptions that were not filtered out by
the filter procedure might require some other information than
existing subscriptions and must be forwarded in the system
towards the matching data sources. If these data sources have
different paths, the subscription is correspondingly divided,
and subsequent filtering and splitting will eventually determine
whether it is subsumed.



Looking back at our subscription set example, we detail in
Figure 3 the processing of each subscription, and the state
of the system after each processing is completed. Near each
node we put the operators it stores, and near each link, the
forwarded operators, while the forwarding sense is depicted by
an arrow. Figure 3 (left) illustrates the system’s state after 𝑠1
is processed, (center) after 𝑠2 is processed, and (right) after 𝑠3
is processed. The gain in memory space, traffic and processing
can be immediately observed, as no further storage, processing
and forwarding is done in relation to 𝑠3 from 𝑛2 towards the
sensor nodes.

C. Event Propagation
A sensor node generates (simple) events each time there

is a sensor reading. Since events can be very numerous, for
efficiency reasons they should be forwarded in the system,
only if there are interested users. This is reflected by the
presence at a sensor node, of a subscription or correlation
operator addressing the corresponding attribute. At each node,
on the path from the publishing node to the matching users,
an event is forwarded (or on the contrary, dropped) only if it
is part of a complex event matching a correlation operator, or
if it matches a simple operator. Furthermore, in accordance to
the publish/subscribe paradigm, we ensure each simple event
is forwarded only once over a network link.

Algorithm 5 Event-propagation

1: /* Run each time a new event 𝑒 = (𝑎𝑑, 𝑝𝑑, 𝑣, 𝑡) appears at node
𝑛 from 𝑚*/

2: initialize(𝑒.𝑠𝑒𝑛𝑑𝑇𝑜) //neighbors having received 𝑒
3: t insert(𝑈, 𝑒) //timestamp ordered set of unexpired events
4: 𝑇 = 𝑡− 𝛿𝑡
5: 𝑋 =t correlated(𝑈, 𝑇 ) //time correlated events, from 𝑇
6: while not empty(𝑋) do
7: for all 𝑗 ∈ neighbor(𝑛) ∖ {𝑚} ∪ {𝑛} do
8: if new events(𝑋, 𝑗) then //𝑋 has simple events not seen

by 𝑗
9: 𝒮 = 𝑆𝑗

𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 //𝒮 = 𝑆𝑙𝑜𝑐𝑎𝑙 for 𝑗 == 𝑚
10: end if
11: for all 𝑠𝑘 ∈ 𝒮 do
12: 𝑋𝑘 = complex match(𝑋, 𝑠𝑘)
13: if 𝑌𝑘 =new events(𝑋𝑘, 𝑗) then
14: if (𝑗 == 𝑛) then
15: send complex event(𝑋𝑘,user(𝑠𝑘))
16: else
17: send events(𝑌𝑘, 𝑗) //also updates 𝑠𝑒𝑛𝑑𝑇𝑜
18: end if
19: end if
20: end for
21: end for
22: 𝑋 =t correlated(𝑈,next(𝑇 )) //increase 𝑇 to next timeunit
23: end while

Algorithm 5 presents the forwarding of events, how to detect
and match a complex event. At each node, all received simple
events are stored and indexed by their timestamps (line 3),
to facilitate time correlation. Furthermore, each event has a
corresponding array of flags (line 2: one flag per neighbor),
tracking whether it was forwarded to neighbors, to ensure that
no data unit is sent more than once to the same neighbor.

A potential complex event, containing the incoming simple
event 𝑒, can only be present in a 𝛿𝑡 length sliding window over
the received events set, with a start point set by the first simple

event preceding 𝑒 by 𝛿𝑡 (line 4). Each set of simple events,
from an instance of the sliding window, must be checked
against the set of uncovered subscriptions from each neighbor
or against all local subscriptions (which are all whole), in order
to construct the complex event users were looking for (line 9).
For each subscription, the set of simple events is checked
against the filters, and if at least one event per subscription
attribute is still left (line 12), we know a matching complex
event exists. Simple events from the matching complex events
are sent to the neighbor having forwarded the subscription,
if they have not been previously forwarded to that neighbor
(line 13).

As an optimization, checking the set of subscriptions from a
given neighbor can be stopped early, if all simple events in the
current window instance have been forwarded to that neighbor.
The overall procedure, launched for a new event, ends after
having checked the last sliding window instance (line 22).

VI. EXPERIMENTS

Our experimental study consists of the following algorithms:

∙ Centralized approach. Although we focus in this paper
on efficient decentralized continuous query processing,
we have implemented a fully centralized approach to
compare against. Using the network topology, all sub-
scribers forward their subscription queries on the shortest
path to the central node (the node with the minimum
pairwise distance to all other nodes). Sensors send their
events in the same way to the central node which does
the matching. Matching events will be sent on the shortest
path from the central node to the owner of the matching
subscription.

∙ Naive approach. This approach emphasizes the problem
of high network load in multi-join query processing,
as it forwards all received queries (no filtering) and
constructs result sets per query (no optimization for result
set overlap). It provides a baseline against which we
check the proposed solutions.

∙ Distributed operator placement. This approach was
described in Section III-A where we adapt operator place-
ment techniques to a distributed setting without global
knowledge. The traffic is reduced by sharing common
operators (identical or covered) between queries and
publish/subscribe forwarding of result sets.

∙ Distributed multi-join processing. This approach was
described in Section III-B where we adapt the technique
of splitting multi-joins into binary joins from [7] to
a distributed setting: joins splitting and processing, as
well as event processing are no longer performed on a
centralized server, but distributed on the network nodes
and driven by local interaction. The traffic is reduced by
detecting coverage of multi-joins and binary-joins and
publish/subscribe forwarding of events.

∙ Filter-Split-Forward. This is our novel approach and
was described in Section V, where we detail how we
process correlation operators, through efficient filtering,
system state driven splitting and placement, all based
strictly on local interaction. The traffic is reduced by
detecting correlation operators subsumption and pub-
lish/subscribe forwarding of events.



TABLE II

IMPLEMENTED APPROACHES

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 𝐸𝑣𝑒𝑛𝑡 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛
𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑁𝑜𝑛𝑒 𝑁𝑜𝑛𝑒 𝐹𝑢𝑙𝑙 𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡𝑠

𝑁𝑎𝑖𝑣𝑒 𝑁𝑜𝑛𝑒 𝑆𝑖𝑚𝑝𝑙𝑒 𝐹𝑢𝑙𝑙 𝑟𝑒𝑠𝑢𝑙𝑡 𝑠𝑒𝑡𝑠
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑃𝑎𝑖𝑟 𝑤𝑖𝑠𝑒 𝑆𝑖𝑚𝑝𝑙𝑒 𝑃𝑒𝑟 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

𝑀𝑢𝑙𝑡𝑖 𝑗𝑜𝑖𝑛𝑠 𝑃𝑎𝑖𝑟 𝑤𝑖𝑠𝑒 𝐵𝑖𝑛𝑎𝑟𝑦 𝑗𝑜𝑖𝑛𝑠 𝑃𝑒𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝐹𝑖𝑙𝑡𝑒𝑟 𝑠𝑝𝑙𝑖𝑡 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑆𝑒𝑡 𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 𝑆𝑖𝑚𝑝𝑙𝑒 𝑃𝑒𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

Table II summarizes the differences between the five ap-
proaches, in terms of subscription filtering and splitting (and
consequent placing of operators) and event processing, exclud-
ing the advertisement propagation, that does not happen for
the centralized approach and is the same for all distributed
approaches.

We have implemented all approaches in Java (JSE5.0) and
have evaluated them in a distributed environment, on a cluster
of quadcore 2.4GHz machines running Linux (Debian Etch).
Each node in our system runs on a virtual machine, simulating
a less powerful device, with 256MB RAM, and 1.5GB HDD.
The virtual nodes were created with paravirtualization (Xen
No HW emulation) at a ratio of 30 nodes per quadcore.

A. Network Settings and Data Set
In our experiments we replay a real data set over a network

of nodes emulating a real setup, obtained through a sensor
network deployment of EPFL’s SensorScope team [6] which
took place in September and October 2007 on the Grand St.
Bernard pass. We have selected 5 measurement data types
from this project, as attributes in our setting, and as data
sources 10, respectively 20 base stations, depending on the
number of sensors in each experiment. The selected attributes
represent the following measurements: Ambient Tempera-
ture, Surface Temperature, Relative Humidity, Wind Speed,
and Wind Direction. Subscriptions are generated by creating
ranges over 5 attributes, centered around the median values in
the corresponding stream, with an offset drawn from a Pareto
distribution with a skew factor of 1. We target all locations
with the same number of subscriptions, which we vary across
each experiment.

We emulate the real deployment setup by grouping nodes
with sensors from the same base station in a vicinity, such
that they are neighbors. We vary the network size in our
experiments from 60 to 200 nodes, out of which 50, or 100
have a sensor attached, evenly distributed over 5 attribute
types. As such we replay 10, respectively 20 different base
stations.

For each of the four experiment setups, we ensure that the
four approaches are tested in the same network settings (local-
ization of data sources, of subscriptions, network connection
between nodes), that the subscription sets and subscription
registration order ar the same, and, of course, we replay the
same event sets. During an experiment, we only vary the
number of user subscriptions, to check on the approaches’
performance with increasing subscription (and user) load.

B. Metrics
For all experiments, we will focus on subscription load and

publication load, which are the main contributors to the overall
data traffic.

Subscription load reflects the entire load of subscriptions
forwarded in the network, and increases every time an operator
is forwarded to a neighboring node. It is influenced by the
number of user subscriptions with matching data sources, by
node connectivity and distribution, and also by the subscription
propagation policy of each approach. Due to the different
efficiency of the filtering algorithms, we expect that the naive
approach, with no filtering, behaves the worst, followed by the
operator placement and multi-join techniques, with filtering
based on pair-wise coverage, while the filter-split-forward
approach should incur the smallest subscription load, due to
to set subsumption.

The key issue of complex events traffic is analyzed through
the publication load metric, which quantifies the forwarding
of result sets. This metric is influenced by the number of
operators residing at each node, because each one generates
a result set, but also by the efficiency of event forwarding
techniques. Similarly to subscription load, the naive approach
should behave the worst, and the operator placement technique
should benefit from the smaller number of present subscrip-
tions. The multi-join technique should perform better than
operator placement due to the publish/subscribe mechanism of
forwarding events, which compacts the overlapping result sets.
However, since it inherently forwards false positives (events
matching binary joins, but not the originating multi joins), it
should perform worse than filter-split-forward.

Because we employ a probabilistic algorithm for set sub-
sumption, we also quantify event recall. When subscrip-
tion subsumptions are falsely detected, events matching such
subscriptions will not arrive to the user, unless they match
unsubsumed, overlapping subscriptions.

C. Small Scale Experiment

In the first experiment we model a small scale deployment
of a network of 60 nodes, with 50 nodes replaying sensor
data (10 groups comprised of 5 sensors, one for each data
type). We vary the number of user subscriptions from 100
to 1000, and we measure the performance of each approach
after every new batch of 100 subscriptions. Location-wise,
subscriptions are evenly targeting the 10 groups, and their
attribute set varies between 3 to 5 attributes. The attributes are
chosen randomly, thus creating a mixture of attribute subsets,
which should decrease subscription overlap.

As the number of user subscriptions increases, so does the
overall subscription overlap. Operator placement techniques
and the multi-joins approach can reduce the subscription set up
to a certain point (Figure 4), based on pair-wise coverage, but
our approach performs better (on average 18%), due to group
subsumption, associated with the splitting phase of the algo-
rithm. Set filtering can only compare between subscriptions
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Fig. 4. Subscription load for the small scale experiment
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Fig. 5. Event load for the small scale experiment

over the same subset of attributes and, since the subscriptions
in this experiment have different attribute sets, there should be
less subsumption than in cases where all subscriptions can be
compared. The splitting phase actually allows the comparison
between subscriptions over different (but overlapping) attribute
sets, by comparing the simpler split operators and achieving
reduction results similar to cases where all subscriptions are
over the same attributes.

The publication load is depicted in Figure 5. The Filter-
Split-Forward approach outperforms the operator placement
method, due to a smaller number of forwarded operators and
sharing of dissemination costs between overlapping operators.
The performance is better (10% to 30%) than the multi-joins
approach, due to the presence of fewer operators, and the fact
that our approach does not introduce false positives. The rea-
son why the improvement factor is not so big in this particular
setting, is that event dissemination costs are almost similar for
the two approaches, and for small number of attributes per
subscription, binary-joins are good approximations of multi-
joins, thus generating few false positives. In fact, binary joins
are equivalent to multi-joins with two attributes, but become
approximations for multi-joins over three attributes; the quality
of the approximation degrades with increasing numbers of
attributes.

D. Medium Scale Experiment
For the second experiment, we consider a network of 100

nodes, out of which 50 nodes are replaying sensor data (there
are 10 groups comprised of 5 sensors, one for each data type).
We vary the number of user subscriptions from 100 to 900
and we report the traffic load after each 100 subscriptions
batch. Subscriptions are evenly targeting the 10 subnetworks,
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Fig. 6. Subscription load for the medium scale experiment
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Fig. 7. Event load for the medium scale experiment

and have 5 attributes each, which is a realistic number of
attributes, and is expected to further expose the weakness of
the multi-join approach. We have chosen the medium size
setting to compare against the centralized approach as it is a
good representative and we have measured the same metrics.
However, this does not reflect the extra strain the central node
must support, as it is the only one processing the matching of
events to subscriptions.

The subscription reduction in the second experiment (Fig-
ure 6) is similar for the distributed approaches to the first
setting, establishing the same order, performance-wise, among
these four approaches, with our approach outperforming state-
of-the-art by 4.5% to 17.4%. For this setup we also look at the
performance of the centralized approach which has by far the
lowest subscription traffic. This is not a surprise as subscrip-
tions are not forwarded (and split) all the way to the sensors,
but only once to the central server, chosen to be exactly at the
center of the network. However, it does not make up for the
large drop in performance for the more important event traffic,
as we will see in Figure 7. For the decentralized competitors,
as before, operator placement and multi-join achieve more or
less the same reduction in subscription traffic, because they
use the same filtering technique (pair-wise covering detection).
The slight differences come from the exact order in which
subscriptions appear at nodes in the system: even though they
are generated at the same intervals over all approaches, in each
instance, nodes can be faster or slower in processing a new
subscription or forwarding it over the next link, and we do
not apply retroactive filtering (checking if a new subscription
covers already forwarded subscriptions).

The publication load (Figure 7) is similar for the distributed
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Fig. 8. Subscription load for the large (network) scale experiment
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Fig. 9. Event load for the large (network) scale experiment

approaches to the first experiment, however, our approach
outperforms distributed multi-join by a wider margin (48%
to 55.9%). This is due to binary joins approximations creat-
ing more false positives per multi-join than in the previous
scenario, and also to forwarding them over more links, as the
network is larger. Also, the event traffic for the centralized
approach is the largest, and it largely outbalances the gains
obtained by this approach for the less important subscription
traffic. Its event traffic has a fixed component due to sending all
events to the central node, and a variable component, for for-
warding the results sets back to subscribers’ original locations.
The impact of the fixed component is more important the less
events match subscriptions (highly selective subscriptions). In
our scenario, we have chosen medium selective subscriptions,
making sure each one has a minimum number of matching
events, so we expect the centralized approach to deteriorate
further compared to the distributed approaches for general sets
of subscriptions.

E. Large Scale Experiments

In the third experiment, we want to analyze the influence
of the network size, hence construct a network of 200 nodes,
out of which 50 nodes are replaying sensor data. We vary the
number of user subscriptions from 100 to 900. Subscriptions
are evenly targeting the 10 subnetworks, and have 5 attributes.
The same conclusions can be drawn as in the previous exper-
iment, for the subscription load reduction (Figure 8), as the
approaches’ relative improvement factors are the same; only
the total number of subscriptions increases, which is normal
as the average path from a user to the matching data sources
increases with the network size. The reduction in publication
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Fig. 10. Subscription load for the large (sources) scale experiment
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Fig. 11. Event load for the large (sources) scale experiment

load (Figure 9) shows even wider margins (56% to 62%), thus
proving that the network size has a bigger influence for the
larger traffic of events.

In the fourth experiment, we analyze the influence of the
number of distinct data sources. We construct a network of
200 nodes, out of which 100 nodes are replaying sensor data.
We vary the number of user subscriptions from 100 to 900.
Subscriptions have 5 attributes, and are evenly targeting the 20
subnetworks, which should again decrease the set reduction
opportunities, because candidate subscription set sizes are
smaller than in the previous experiment. This is confirmed
in Figure 10. Nevertheless, the publication load (Figure 11)
achieved by Filter-Split-Forward decreases even more than in
the previous experiment when compared with the multi-join
approach (54% to 68%), which confirms the importance of the
filter-split-forward phases, independent of the network size and
candidate subscription set size.

F. Event Recall

For each of the four experiment settings, we have also
measured the user perceived event recall of our approach, to
compare with the other approaches which are deterministic,
and have by design perfect accuracy (i.e., 100% event recall).
As can be seen in Figure 12, the Filter-Split-Forward approach
reaches an excellent accuracy, given the major gain in perfor-
mance, illustrated by the subscription and even load metrics.
The measured accuracy is 100% in some cases, and generally
around 98%. However, for the small scale experiment and the
large scale experiment with small number of subscriptions,
the recall is around 93%, which we think is also acceptable
in most application scenarios.
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Fig. 12. End user event recall for the Filter-Split-Forward approach for all
network settings

To achieve a higher recall, one can think of adapting the
probabilistic filtering to be more conservative. In addition, in
scenarios that require not to lose any event, the subscriptions
can be made coarser, i.e., the specified filter ranges could
be enlarged, requiring a final local filtering step. However,
this would increase the number of forwarded events, and the
overall traffic. Reducing either the traffic, either the number
of missed events creates a tradeoff, upon which the user has
to decide.

VII. CONCLUSION AND OUTLOOK

We have presented a general framework for processing
publish/subscribe queries over distributed sensor networks.
The requirements imposed on the underlying sensing infras-
tructure are almost negligible, hence, the integration of a large
number of heterogeneous sensor networks under one common
light-weight event processing model becomes possible. In our
approach, multi-join queries are passed along communication
links, from one node to other nodes, towards the data sources.
We employ so called filter-split-forward phases for efficient
subscription filtering and placement inside the network. In ad-
dition, we have tailored existing works in the area of operator
placement and distributed multi-join processing to a distributed
setting. We have conducted a performance evaluation by
replaying a real data set to check the performance in traffic
reduction achieved by the proposed and tailored distributed
solutions for continuous query processing, compared to a
baseline distributed approach and a centralized scheme. For
low data rates, inexpensive data forwarding and providers
sharing data, a centralized solution could work, too. Our
approach is useful in such a setting as well: fewer subscriptions
to check for event matching and efficient event delivery, if
final users are reached by a distributed network. Also, if
global knowledge is available, our approach can gain by either
rewiring the network to connect sensors that frequently co-
occur in user queries, if rewiring is possible, or placing the
complex operators closer to the sensors with higher data rates.
As future work, we will have a look at ranking batches of
events, for more efficient event propagation, focusing only
on the top-ranked items. This is in particular interesting for

subscription queries posed by users with large numbers of
matching events.
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