Decentralized Polling with
Respectable Participants

Rachid Guerraoui', Kévin Huguenin?,

Anne-Marie Kermarrec®, and Maxime Monod!**

! EPFL
2 Université de Rennes 1 / IRISA
3 INRIA Rennes - Bretagne Atlantique

Abstract. We consider the polling problem in a social network where
participants care about their reputation: they do not want their vote
to be disclosed nor their misbehaving, if any, to be publicly exposed.
Assuming this reputation concern, we show that a simple secret shar-
ing scheme, combined with verification procedures, can efficiently enable
polling without the need for any central authority or heavyweight cryp-
tography.

More specifically, we present DPol, a simple and scalable distributed
polling protocol where misbehaving nodes are exposed with a non-zero
probability and the probability of dishonest participants violating pri-
vacy is balanced with their impact on the accuracy of the polling result.
The trade-off is captured by a generic parameter of the protocol, an inte-
ger k we call the privacy parameter, so that in a system of N nodes with
B < /N dishonest participants, the probability of disclosing a partici-
pant’s vote is bounded by (B/N)**!, whereas the impact on the polling
result is bounded by (6k + 2)B.

We report on the deployment of DPol over 400 PlanetLab nodes. The
polling result suffers a relative error of less than 10% in the face of
message losses, crashes and asynchrony inherent in PlanetLab. In the
presence of dishonest nodes, our experiments show that the impact on
the polling result is (4k + 1) B on average, consistently lower that the
theoretical bound of (6k + 2)B.

1 Introduction

Social networks are growing exponentially, and one of the most celebrated ex-
amples, Facebook, currently boasts more than 200 million active users. Many
of these users regularly share images and videos as well as discuss various so-
cial and political matters. They do so both with close friends and people they
hardly know. A particularly important task in such networks is polling, such as
the recent one about the terms of service of Facebook — initiated by Facebook
managers [J], or the organizers of a Saturday night party asking in a social group

* Maxime Monod has been partially funded by the Swiss National Science Foundation
with grant 20021-113825.

T. Abdelzaher, M. Raynal, and N. Santoro (Eds.): OPODIS 2009, LNCS 5923, pp. 144-{I58] 2009.
© Springer-Verlag Berlin Heidelberg 2009

Decentralized Polling with Respectable Participants 145

whether partners should be invited too. In many cases, such a polling can be
expressed in a binary form: each participant starts with +1 or —1, expressing the
answer to a question, and the goal is to compute the sum of the initial values. To
be meaningful, a polling protocol should tolerate dishonest participants trying
to bias the polling or discover other participants’ votes.

An easy way to conduct a poll is to use a central server (e.g., Facebook
Poll [1]). Each participant sends its vote to a central entity, which subsequently
aggregates all votes and computes the outcome. Beside the non-scalability of
this solution however, privacy is not ensured as participants might generally not
want their vote (and maybe even the subject of the poll or the result) to be
seen by a central entity, be it trusted or not [12]. Distributed aggregation is a
simple, yet naive, alternative to avoid a central server: participants aggregate
votes so that once these are summed up, it is impossible to know the vote of a
participant. However, since participants contribute to the outcome’s computa-
tion, they may bias the result by corrupting intermediary results. To prevent the
initial bootstrapping vote to be known, every vote could be split (homomorphic
secret sharing). However, a dishonest participant can still create an invalid initial
set of shares (e.g., voting for an arbitrary large value) and bias the result.

Not surprisingly, devising a distributed polling protocol that ensures privacy
while tolerating dishonest participants that might want to bias the votes is very
challenging. This is particularly true if the goal is to devise a practical, hence
simple, peer-to-peer protocol that does not rely on any heavyweight cryptogra-
phy (e.g., asymmetric cryptography). The motivation of this work is to address
this challenge by exploiting the special nature of social networks. A defining
characteristic of such networks is the one to one mapping between social net-
work identities and real ones (as opposed to virtual world platforms such as
SecondLife). Participants in such networks do care about their reputation: in-
formation related to a user is intimately considered to reflect the associated
real person. We leverage this concern and propose an approach which, instead
of masking (e.g., BFT [3]) or preventing (e.g., cryptography) dishonest behav-
iors, dissuades such behaviors. This is achieved by executing, in addition to the
polling algorithm, a distributed verification protocol which tags the profiles of
the participants. For instance, if the testimonies of Alice and Bob demonstrate
that Mallory misbehaved, their profiles are tagged with “Alice and Bob jointly
accused Mallory” and the profile of Mallory is tagged with “Mallory has been
accused by Alice and Bob”. No participant would like to be tagged as dishonest
(by a protocol that does not wrongly accuse participants as we will describe
below). Moreover, assuming a system with a large majority of honest partici-
pants, the risk for a participant to be caught wrongly accusing others is high.
For instance, if a participant is accused only by users that are related in the
social network (i.e., friends forming a coalition), the accusation would be sus-
pect and thus not be taken into account and this would eventually backfire on
the accuser. In a social network, this kind of attacks can indeed be easily de-
tected by a human reader or by an automated graph analysis tool inspired from
SybilLimit [13].

146 R. Guerraoui et al.

We consider a system of both honest and dishonest participants. The former
follow the protocol assigned to them while the latter might not. Should they
deviate from the protocol, they never do anything that will jeopardize their
reputation with certainty (i.e., with probability 1). In this context, we present
DPol, a simple decentralized polling protocol. In a nutshell, DPol works as follows.
Participants, clustered in fully connected groups, known as offices, make use of
a simple secret sharing scheme to encode their vote. Then they send the shares
of their vote (ballots) to proxies, belonging to another group (an office). Each
office computes a partial tally that is further broadcast to all other groups.
Each participant eventually outputs the same tally. DPol is fully decentralized
and does not assign specific roles to any participant. This results in a simple,
scalable, and easy to deploy protocol. The spatial complexity of DPol is O(v/Nk)
and the number of messages sent is O(v/ Nk), k being the privacy parameter and
N the number of participants.

We bound the impact of dishonest participants and balance this with the
level of privacy ensured. More specifically, in a system of N participants with
B < /N dishonest participants (which is a reasonable assumption in a social
network with a limited number of sybil identities [13]), we can choose any integer
k such that the probability for a given participant to have its vote recovered by
dishonest participants is bounded by (B/N)**! and the impact on the result
is bounded by (6k + 2)B. This is due to our underlying simple secret sharing
scheme enabling to expose, with certainty, dishonest participants affecting the
outcome more than 6k + 2 with only public verifications, i.e., without requiring
to reveal the participants’ vote. As we show in the paper, private verifications
expose, with a non-zero probability, dishonest participants further (i.e., even if
their impact is less than 6k + 2), but require to inspect the content of a subset
of ballots.

Consider for illustration a system of 10,000 participants with 99 dishonest
participants ([v/N] — 1) and assume a proportion a of participants voting +1.
For instance, setting k = 1 ensures privacy with probability 99.99% and for any
a > 0.54, 100% of the participants compute the right binary decision (i.e., the
sign of the outcome). While e-voting requires stronger guarantees, this amply
fits polling applications requirements.

DPol is indeed easy to deploy and we report on its deployment over 400 Plan-
etLab participants. The polling result suffers a relative error of less than 10%
in the face of message losses, crashes and asynchrony inherent in PlanetLab. In
the presence of dishonest participants, our experiments show that the impact on
the polling result is (4k + 1) B on average, consistently lower that the theoretical
bound of (6k + 2)B.

The rest of the paper is organized as follows: Section [2] describes our system
model. Section [3] gives a detailed description of DPol together with its formal
analysis. The impact of dishonest participants is presented in Section @l Ex-
perimental results from PlanetLab are reported in Section Bl Section [(] reviews
related work and Section [concludes the paper and proposes perspectives on
future work.

Decentralized Polling with Respectable Participants 147

2 System Model

We consider a system of N uniquely identified nodes representing participants.
Each node p votes for a binary value v, € {—1,+1} and the expected output of
the polling algorithm is Zp vp. Each participant in the social network is assigned
a profile that can be tagged by DPol.

Nodes can either be honest or dishonest. Honest nodes strictly follow the
protocol and contribute to the verifications as long as their privacy is not com-
promised. More specifically, honest nodes always collaborate with verification
procedures that do not require them to reveal their ballots (i.e., public veri-
fications). However, they may refuse to reveal their ballots for a verification
procedure (i.e., private verification). Dishonest nodes may misbehave either to
promote their opinion or reveal the opinion of honest nodes. Yet, they are ratio-
nal in the sense that they never behave in such a way that their reputation is
tarnished with certainty, i.e., they do not perform attacks that can be detected
with probability 1 by means of public verification procedures. Dishonest nodes do
not wrongfully blame honest nodes as it is rather easy for a human reader, when
looking at other users’ profiles, to distinguish between legitimate and wrongful
blames, e.g., a single node blaming at random a very large number of nodes or a
group of nodes always blaming together. We consider colluding dishonest nodes
as a single coalition B (|B| = B). When dishonest nodes collaborate to bias the
outcome of the poll, they are assumed to share the same opinion. Still, they act
selfishly in the sense that they prefer protecting their own reputation rather than
covering up their suspected accomplices. For the sake of readability, we consider
that the coalition always promotes -1 in the rest of the paper. A single coalition
represents the worst case scenario for both discovering a node’s vote and biasing
the result of the polling.

Theoretical analysis (Section B3] assumes reliable channels and non-faulty
nodes. We revisit these assumptions by measuring the impact of message losses
and crashes in the implementation (Section [H).

In order to make DPol scalable and to allow for efficient verifications we assume
a structured overlay which could be provided by the social network infrastruc-
ture. Note that the overlay is independent from the social graph. The N nodes
are clustered into r ordered groups, from gg to g,_1. A node p in group g; main-
tains two sets of nodes: a set P, of officemates containing all nodes belonging
to the same group (P, = ¢;\{p}) and a fixed-size set P, of prozies, contain-
ing nodes in the next group (Pp C git+1 mod r). Therefore, all groups virtually
form a ring, g1 being the successor of g,.. Each group g; is a clique. We define
a client of a node p, a node for which p acts as a proxy. Every node main-
tains a list of its clients in the previous group (P. C g;—1). A node discards
every message originating from a node that is not in P, U P,. We assume a
random uniform distribution of nodes across the r groups and nodes in the suc-
cessor groups are distributed uniformly at random as proxies in the predecessor
groups.

148 R. Guerraoui et al.

3 The Polling Protocol

We first give an overview of DPol. Then we prove its correctness and provide a
theoretical analysis of its complexity, considering only honest nodes. Finally, we
analyze how the protocol resists a privacy attack, i.e., dishonest nodes recovering
the vote of a node. Attacks on the outcome of the poll, i.e., dishonest nodes
biasing the result, are discussed in Section @l

3.1 Polling in a Nutshell

DPol is composed of three phases: (i) voting, (i) counting and (i) broadcasting.
During the voting phase, a node generates a set of ballots reflecting its opinion
and sends each ballot to one of its proxies. In the counting phase, each node
in a group computes the sum of the votes of the nodes in the previous group
(local tally). This is achieved by having each proxy summing up the ballots it
has received and broadcasting the result to its officemates. Finally, the local
tallies are forwarded along the ring so that all nodes eventually compute the
final outcome.

Algorithm 1. DPol at node p in group g¢;, 7 € {1,...,r}

Input: a vote v € {-1,+1} Intermediate Counting phase
Variables: an individual tally ¢ = 0

a local tally t = 0

an array of local tally sets S[{1,...,r} — @]

procedure local count(t”,P,) is
12: for each officemate € P, do

a local tally array T[{1,...,7} — 1] ii Zen—d [IZI;IDIVIDUALTALLY, t"] (officemate)
Output: the global tally ¢ : -
15: end for
Polling Algorithm upon event (receive | [INDIVIDUALTALLY, t]) do
1: vote(v, Pp) 16: ' =t'+1t
g ltc,)cil :/C):_n;g,t”’ Pp) Local Tally Broadcasting & Forwarding phase
4: local tally broadcast(i, t", Pp) procedure local tally broadcast(i, t'/, Pp) is
5: &= > Tl 17: for each proxzy € P, d(:) .
18: send [LOCALTALLY, i, t'] (prozy)
Voting phase 19: end for
procedure vote(v,P,,) is upon event (receive | [LOCALTALLY, igroup, t]) do
6 b=wv 20: Sligroup] = Sligroup] U {t}
7: for each prozy € P, do 21:if (S[igroup] = |Pe|) then
8: send [BALLOT, b] (prozy) 22: T [igroup] = choose(S[igroup])
9: b= —b 23: local tally broadcast(%,7 [igroup))
10: end for 24: endif
upon event (receive | [BALLOT, b]) do function choose(.A) returns local tally is
11: t =t"+b 25: return the most represented local tally in A

3.2 Description

Voting. The ballot generation is inspired by the simple secret sharing scheme in-
troduced in [4] and shares similarities with the Vote/Anti-Vote/Vote system [I1].
In order to vote for a given value v € {-1,4+1}, a node generates 2k + 1 ballots
b1, ..., bakt1 € {-1,+1} representing its vote, where k is an integer called privacy
parameter. The intuition is to create k + 1 ballots of a given tendency (positive
or negative) and k opposite ballots, resulting, when summed, in a single vote

Decentralized Polling with Respectable Participants 149

Yi Yi gi+1

(b) Intermediate (c) Individual tally (d) Local tally

counting sharing broadcasting &
forwarding

Fig. 1. Key phases of DPol. (a) A node in g;—1 generates 3 (k = 1) ballots {—1,+1,+1}
and sends them to its proxies in g;. (b) A node in g; collects its received ballots
{+1,+1,41} and sums them to +3 (individual tally) that it shares with its office-
mates in g; as depicted in (c). (c) A node receives every expected individual tallies
{—1,+3, 42}, computes and sends the local tally (47) to its proxies in the next group
gi+1 as depicted in (d). (d) These proxies forward the local tally to theirs in g;42.

v/ = v. Each ballot is defined as b; = v if j is odd and b; = —v if j is even, so
that v/ = Z?f{l bj =v.

Once a node has generated its 2k+1 ballots, it sends each of them to a different
proxy. The number of proxies is to be chosen accordingly, |P,| = 2k + 1. Lines
6-10 in Algorithm [M detail the voting phase. Figure depicts a node sending
its 2k 4+ 1 ballots (e.g., {—1,4+1,+1}) to its assigned proxies. Once every node
in the system has received one ballot from each of its clients, the voting round
is over.

Intermediate Counting. A group acts as a voting office for the preceding
group on the ring. The officemates collect ballots from their clients (Figure
and share intermediate results (Figure . To this end, a proxy sums the
ballots it received into an individual tally t”, as described in Algorithm [II line
11. Once a node has received the expected number of ballots from its clients,
it broadcasts the computed individual tally to its officemates, as depicted in
Figure (lines 12—-15 in Algorithm [IJ). The officemates aggregate the received
data, i.e., they sum each others’ individual tallies and store the result into a local
tally t' as shown in Figure [I(c)] (line 16 in Algorithm).

Local Tally Forwarding. Once the intermediate counting phase is over, i.e.,
all the officemates have computed a local tally, each node sends its local tally to
its proxies (lines 17-19 in Algorithm[). Upon reception of a message containing
a local tally, a proxy adds it to the set S[i] of possible values for g;. When a
proxy has received the expected number |P,| of local tallies for a given group
gi, it decides on a local tally by choosing the most represented value in S[i]
and stores it in 7 [¢]. When a local tally 7 [¢] is assigned, it is further forwarded
(Figure to the next group using the proxies (lines 20-24 in Algorithm [I).
Local tallies are then forwarded in the system along the ring. When a local tally
reaches its source (the group that emitted it), it is no longer forwarded. The

150 R. Guerraoui et al.

global tally is computed at each node by simply summing the local tallies of all
groups: t = 3", Ti] (line 5 of Algorithm).

3.3 Analysis

We analyze here the correctness and complexity of DPol assuming only honest
nodes. We then consider the impact of the dishonest nodes on privacy. The im-
pact of dishonest attacks on the accuracy of the polling is presented in Section [l

Theorem 1 (Correctness). Assume a system where each node p starts with
a binary value vy,. The polling algorithm terminates and each node eventually
outputs), vp.
Proof. (Accuracy) We first prove that the local tally computed in every group
g; reflects the vote of all nodes in g;—1. The local tally computed in a group
is the sum of the ballots received by its members. Each node p in g;—; sends
each of its ballots by p,...,bak11,, to one distinct proxy in g;. Similarly, each
proxy p’ in g; receives a set of ballots B,/ from its clients. Since we assume only
honest nodes, the set of ballots sent by the nodes in g;_1 is the set of ballots
received in g;. Therefore, the locgl tally computed by each member of g; is t/ =
Zp'Egi Zbel”j’p/ b = Zpegi,l Z?:Tl bjp = Zpegi,l [(k +1)- vpt+ k- (_Up)] =
Zpe g:_, Up- Note that this follows from the homomorphic property of the simple
secret sharing scheme. Since nodes do honestly forward the local tallies along
the ring and the messages are eventually received, each node ends up with the
correct values for the local tallies of every group, thus the correct global tally.
(Termination) A node knows the number of messages it is supposed to receive
in each phase. Since every node sends the required number of messages and every
message eventually arrives, each phase completes. As the algorithm is a finite
sequence of phases, it is guaranteed to eventually terminate.

In a realistic scenario, crashes and message losses do occur and may affect cor-
rectness and termination. Failures of nodes and message losses may (i) affect the
accuracy of the global tally, and (%) prevent nodes from detecting the end of a
phase or deciding on a local tally.

Proposition 1 (Spatial complexity). The asymptotic size S of the state
maintained at each node in group g; is O(r - k + |gi|).

Proof. A node maintains a set of proxies (2k+ 1), the set of its officemates (|g;|)
and the list of its clients (at most |g;—1]). Additionally, a node stores a set of
2k + 1 possible values for each of the 7 local tallies to perform global counting,
that is S = O(k) + O(lgi|) + O(|gi-1]) + O(r - k) = O(r - k + |g:)-

Proposition 2 (Message complexity). The asymptotic average number of
messages M sent by a node in group g; is O(r - k + |gi|).

Proof. A node sends messages during the voting phase (2k + 1 ballots), the
intermediate counting phase (|g;| — 1 individual tallies), and the global counting
phase which involves the dissemination of r local tallies along the ring using its

2k + 1 proxies, that is M = O(k) + O(|gi|) + O(r - k) = O(r - k + |gi|)-

Decentralized Polling with Respectable Participants 151

Note that the parameters are not independent: the sizes of the groups are related
and bound to the number of groups by the relation >, |g;| = N. The two
quantities M and S are minimized when r = \/N/k and |g;| = V' Nk, and thus
M =S = O(VNk).

Theorem 2 (Privacy). The probability, for a given node, to have ils vote re-
covered by a coalition of B dishonest nodes is bounded by (B/N)kTL.

Proof. The vote of a node is recovered by the dishonest nodes if and only if the
k + 1 proxies that received the k + 1 ballots containing the most represented
value collude. This event occurs with probability (kfl)/ (N). For all k, B and

k+1
N, this probability is bounded by (B/N)**1.

4 Confining the Impact of Dishonest Nodes

In this section, we analyze the impact of dishonest nodes on DPol, assuming
companion verification schemes to detect attacks and identify dishonest nodes.
Detection is performed by the nodes themselves relying on some of them being
honest, and verifications are performed by an external entity (e.g., the social
network infrastructure), polling nodes to identify the dishonest ones. We dis-
tinguish two types of verifications: (i) public verifications that leverage only
information that does not compromise the nodes’ privacy (i.e., the content of
the ballots), such as the individual tallies received from their officemates, and
(i) private verifications that may leverage all information including the content
of the ballots.

To dissuade nodes from misbehaving, verifications must affect the profiles of
the involved nodes. When an attack is detected and reported, the neighbors of
the accused nodes (i.e., the nodes it communicates with, typically clients and
proxies) are polled for the messages they exchanged. If the testimonies of p;
and po demonstrate that pg misbehaved, their profile is tagged with “p; and po
jointly accused po” and the profile of pg is tagged with “pg has been accused by
p1 and p2”.

We consider an overlay of v/ N groups of size VN (VN € N) and a perfect
client /proxy matching, i.e., each node has exactly the same number (2k + 1) of
clients and proxies.

In a first step, we assume that honest nodes do not want to disclose any of
the ballots they sent or received (i.e., public verifications). In this context, we
study the impact of colluding dishonest nodes.

In a second step, we assume that honest nodes are willing to sacrifice privacy
for the sake of accuracy by revealing some ballots (i.e., private verification) and
we prove that colluding nodes compromising the global tally within the bound
may be caught with a non-zero probability.

4.1 Impact of a Dishonest Coalition under Public Verifications

Theorem 3. For B < /N, each member of a dishonest coalition may affect the
global tally up to 6k + 2.

152 R. Guerraoui et al.

Proof (Proof (structure)). The proof relies on the facts that (7) honest nodes
always tell the truth and strictly follow the protocol (including verifications),
and (i) dishonest nodes do not behave in such a way that their reputation is
decreased with certainty. Effectively, showing that the attacks with unbounded
impact are detected by the honest nodes with probability 1 proves the theorem.
A dishonest node may bias the protocol at all three phases. Lemmas [[H encom-
pass all possible attacks, propose a detection scheme relying on honest nodes,
and bound the impact of those that cannot be detected with probability 1. In
addition, if an attack is detected, we prove that the dishonest node is exposed by
the public verification. Summing the impacts of all these attacks (Lemmas [l and
) for each dishonest node gives a maximum impact (2k + 2(2k + 1)) = (6k + 2)
on the global tally.

Note that the proof relies on the assumption B < v/N to ensure that the dis-
honest coalition can neither “control” (there is at least one honest node in each
group) nor “fool” an entire group without being detected (there are not enough
dishonest nodes to both perform and cover dishonest actions). In fact, the weak-
est assumption needed is that Vi, |g; N B| + |gix1 N B| < V/N.

Lemma 1 (Voting). A dishonest node can affect the global tally up to 2k, when
voting.

Proof. Due to the overlay structure, a node can only send ballots to the proxies
it is assigned (otherwise the ballots are discarded), i.e., a maximum of 2k + 1
ballots. Therefore a dishonest node may affect the global tally by either (i)
sending less ballots than it is supposed to or by () sending more than k + 1
-1-ballots. In the worst case, the dishonest node sends 2k + 1 -1-ballots, i.e.,
—2k — 1. Since a node voting —1 is supposed to send k + 1 -1-ballots and k
+1-ballots, its maximum impact is 2k.

Lemma 2 (Computing individual tallies). There exists a public verification
scheme so that, if a dishonest node modifies its individual tally by more than
2(2k + 1), the attack is detected with probability 1 and the node is exposed.

Proof. The considered overlay structure ensures that all nodes have exactly 2k+1
clients and thus receives 2k + 1 ballots during the voting phase. A dishonest node
can modify its individual tally by inverting the +1-ballots it received, i.e., it
turns them in -1-ballots, decreasing its individual tally accordingly. In addition,
a dishonest node can also forge ballots. The latter attack is identified by its
honest officemates if the individual tally is out of the range [—(2k + 1), 2k + 1].
Therefore, not to be publicly detected, a node corrupting or forging ballots must
output an individual tally in that range. Consequently, the worst case occurs
when a dishonest node receives 2k 4+ 1 +1-ballots and inverts them all when
summing them, leading to a maximum impact of 2(2k + 1).

Lemma 3 (Broadcasting individual tallies). There exists a public verifi-
cation scheme so that, a dishonest node broadcasting inconsistent copies of its
individual tally to honest nodes, i.e., sending different values to its honest office-
mates, is detected with probability 1 and the node is exposed.

Decentralized Polling with Respectable Participants 153

Proof. Before deciding on a local tally, every node broadcasts to its officemates
the set of individual tallies it received. This way, an honest officemate trivially
detects the inconsistency. Dishonest nodes are exposed when their neighbors are
asked for the individual tallies they received from these nodes.

Note that broadcasting different individual tallies can help a dishonest node to
impose an arbitrary value for the local tally. For instance, assume a proxy has
5 clients, i.e., k = 2, only two of them being dishonest. In that case, there is a
majority of honest nodes. Consequently, if the honest nodes send the same local
tally, it will be the one chosen by the proxy. However, if the dishonest nodes
send different values as their individual tallies then honest nodes will compute
different local tallies. The proxy will then decide on the arbitrary local tally sent
by the dishonest nodes.

Lemma 4 (Forwarding local tallies). There exists a public wverification
scheme so that, a group forwarding inconsistent copies of a local tally, i.e., nodes
sending different values to their prozies, is detected with probability 1 and the
dishonest nodes are exposed.

Proof. An inconsistent local tally forwarding is detected assuming the following:
before deciding on a local tally, a node broadcasts the set of received local tallies
to its officemates. An inconsistency is detected if at least one of the following
conditions is satisfied: (C1) an honest node received different local tallies from its
clients, (C2) an honest node received different local tallies than its officemates.
Consider j dishonest nodes concentrated in a group g; forwarding an incorrect
local tally to their proxies. Because of (C1), the clients of an honest node in g;11
must all be dishonest. Since the number of clients of all nodes equals their number
of proxies (2k + 1), a coalition of j dishonest nodes can corrupt a maximum of
j proxies. Therefore, the v/N — j remaining proxies in g;; must collude with
the coalition in g; to circumvent (C2). To conclude, not to be detected, such an
attack requires j dishonest nodes in g; and /N — j dishonest nodes in g;,1, that
is a minimum number of v/N dishonest nodes in g; U g;4+1. Assuming B < v/N,
either a dishonest node in g; is exposed by a public verification scheme (since it
broadcast a local tally that does not correspond to the sum of individual tallies
it received) or a dishonest node in g;11 is exposed by a public verification scheme
(since it has broadcast a different local tally from the one it received).

4.2 Private Verifications

So far we only considered public verifications, i.e., where the content of the
ballots is never disclosed. Assume now that the nodes accept, with a non-zero
probability, to relax privacy for the sake of verifications and reveal a subset
of the ballots they sent and/or received. Then, this partial information can be
leveraged to detect the dishonest behaviors described in Lemmas [Il and 21

Theorem 4. There is a non-zero probability to detect a dishonest node when
misbehaving, even if its impact is less than 6k + 2.

154 R. Guerraoui et al.

Fig. 2. Dishonest nodes have no gain in covering up each other

Proof. Regarding the voting phase, a dishonest node that sent k+1+4 5 -1-ballots
and only k — j +1-ballots (1 < j < k) is unable to provide, for both kinds, the id
of k— j+1 proxies to which it sent a +1-ballot. Therefore, a simple verification
is to ask the suspected node to provide a list of proxies that can testify it sent
at least j' ballots of each kind, for a random value j’ ranging from 1 to k.

Note that an inspected node can disclose j* = k without revealing its vote.
Regarding the ballot corruption attack (Lemma[2), partial information about the
ballots received by the inspected node can be leveraged to refine the bound on
its individual tally: assume the inspected node received ny ballots, if we further
know that it received at least n;r +1-ballots and n, -1-ballots, then the range
is refined from [—ny, np) to [—ny + Qn;, ny — 2n |.

In both the aforementioned verifications, a dishonest node has no interest in
covering another one up. Consider the examples depicted in Figure [2 where a
dishonest node py is the client of a dishonest node p. In Figure 2(a)} if p1’s vote
is verified and py covers p; up, i.e., it testifies p; sent a +1-ballot, it exposes
itself to a private verification on its individual tally (note that a node has to
be consistent from one verification to another, thus, if the vote of po is further
verified, pa must stick to its first version about the ballots it received). The
same situation occurs in Figure if po’s individual tally is verified and ps
covers p; up, i.e., it testifies it sent a +1-ballot to ps, it puts itself at risk,
should it be subject to a private verification on its vote. Since dishonest nodes
are selfish, they never cover each other up when privately verified. In conclusion,
relaxing privacy ensures that every dishonest node has a non-zero probability to
be exposed.

5 Implementation

The goal of the evaluation is to assess DPol with respect to the presented
theoretical bound, and the impact of relaxing the assumptions made in the
analysis. Our experiments show that, in a practical setting, DPol suffers as
low as 10% in accuracy, and the average impact of dishonest nodes is around
(4k +1)B.

Decentralized Polling with Respectable Participants 155

5.1 Experimental Setup

In this section we report on the deployment of DPol on a 400 PlanetLab nodes
testbed. This enables to stretch the algorithm in a real world setting, (i) in the
presence of message losses, crashes and asynchrony inherent in PlanetLab, and
(#) when attacking the protocol by introducing dishonest nodes. We evaluate
our algorithm with two different privacy parameter values k =1 and k = 2.

Overlay. The cluster-ring-based overlay is built using a centralized bootstrap-
ping entity keeping track of the whole set of nodes, assigning each node to a
random group. Nodes have exactly 2k 4+ 1 proxies in the next group and the
number of clients of a node is (2k + 1) |g;—1| / |g:| on average.

Communication and Asynchrony. Nodes communicate through UDP leading
to message losses on the communication channels (with PlanetLab, we observed
a loss rate ranging from 5% to 15%). In addition, PlanetLab nodes are unreliable,
leading to expected messages to be lost due to senders crashes. Therefore, phase
terminations cannot be detected by simply counting the number of received mes-
sages. In the local tally forwarding phase, when the number of possible values for
a local tally grows beyond a given threshold v - |P,.|, the node makes the decision
for this particular local tally in At seconds. In our implementation, - is set to 0.5
and At to 5 seconds. The two other phases are simply bounded in time.

5.2 Polling in Practice

Accuracy. Figure [depicts the accuracy of DPol among 400 PlanetLab nodes
with k& = 2. Figure considers the value of the tally while Figure con-
siders the sign of the tally. Without loss of generality, we consider a proportion
« of node voting +1 ranging from 0.5 to 1. In Figure we plot the standard
deviation on the computed tally for « in that range. For each run, we compute
the average of the error when computing the tally (this is the difference between
the tally on each node and the real one) over all nodes. Each point represents the
average of this value over 20 independent runs. Note that the accuracy increases
when « is close to 0.5. This is due to the fact that the closer the tally to 0.5,
the fewer message losses impact the outcome: the closer the number of -1-ballots
and +1-ballots, the closer to 0 the individual and local tallies.

Figure displays the fraction of nodes deciding on the correct sign of
the tally function of a. Effectively, even if the standard deviation is relatively
small, some nodes may decide incorrectly on the sign of the outcome. Consider
the organizers of a Saturday night party asking their friends in a social network
whether partners should be excluded. As depicted in Figure for a = 52.5%,
some nodes would compute a different answer than the majority. This means that
a minority of participants computing a negative result would come with their
partners. .. Figure (plain line) also shows the proportion of nodes that are
unable to decide on a global tally (because their set of possible values never
reach the threshold 7). We observe that this fraction remains very low (less than
4%) and is independent from «.

156 R. Guerraoui et al.

400 Expected tally { 9 1
Standard deviation ——
350 S
08 |
300 { I 1 p)
8
3
250 I S o6l !
= 200 k-] Valid output -
E 1 s Null output —+—
150 { § 04
100 I I 1 =
50 I 4 021
¥
0= 0 e I S
05 0.6 0.7 0.8 09 1 05 0.6 0.7 0.8 0.9 1
« «
(a) (b)

Fig. 3. Accuracy of the algorithm in presence of asynchrony, message losses and failures
(N =400 and k = 2)

Attacks. We consider the worst case: dishonest nodes do every possible attack
that does not compromise their reputation with probability 1, i.e., every dishon-
est node (i) sends 2k + 1 -1-ballots, and (i) inverts every +1-ballot it receives.
Figure @ displays for k¥ = 1 and k = 2, the resulting tally (sign on the upper
part of the figure and value on the lower part), compared to the real one (dashed
line), for B = 19 dishonest nodes (B = [v/N] — 1) in a system of 400 nodes.
We observe that the dishonest coalition affects the outcome of the poll within
the theoretical bound derived in the analysis (dotted lines in Figure). However,
the average impact of the coalition is less than 6k +2 (considering the worst case
where the dishonest proxy receives only +1-ballots and inverts them all). The
theoretical bound is never reached as the average impact of a dishonest node
depends on the actual number of ballots it can invert, this, in turn, depends
on «. Effectively, a dishonest proxy receives k + a +1-ballots out of 2k 4+ 1 on
average. Therefore, its impact is 2k + 2(k 4+ «) = 4k + 2« on average. For k = 2,
fitting our 55 data point cloud with a least-squares regression line (plain line in
Figured]) a(a—0.5)+b gives ¢ = 791 and b = —163. This is close to the expected
parameter values a = 2(N — B) = 760 and b = —B(4k + 1) = —180. We use this

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

0.8 |
0.6 |
04}
02

Fraction of nodes
Fraction of nodes

Valid binary output Valid binary output
350 | Average outcome 350 | Average outcome
300 | Expected outcome --------- T Bk +2 300 | Expected outcome
i 250 |
200
150
100

6k 42

Tally
Tally

1 0.5 0.6 0.7 0.8 0.9 1

a a

(a) k=1 (b) k=2

Fig. 4. Accuracy of the poll in the presence of dishonest nodes: with N = 400 and
B = 19, dishonest nodes manage to confuse the majority of the nodes for (a) a < 0.62
when £ =1, and (b) o < 0.73 when k = 2

Decentralized Polling with Respectable Participants 157

analysis to make a projection on larger scale systems. For k = 1 (Figure [{(a)),
every node of the poll outputs a valid binary results when « > 0.62, which is
to be compared to o > 0.55 observed in Figure 3(b)| (without dishonest nodes).
On average, we can analytically derive that with N = 10,000 and B = 99, the
proportion « for which the nodes decide correctly is o > 0.52.

6 Related Work

We discuss here related distributed voting protocols with a particular attention
to those that are not based on the intractability of mathematical computations.
Similarly to most protocols without cryptography, our work ensures privacy via
secret sharing techniques. Also, our solution distances itself from related work
in the sense that no participant has a special role (following the peer-to-peer
paradigm), resulting in an increased scalability and robustness.

A large amount of work on secret sharing schemes (introduced by Rivest
et al. in [10]) has been published in the late 80’s. In [2], Benaloh proposed a
scheme for sharing secrets privately based on polynomials. Since this scheme is
an homorphism with respect to addition, it can be used for polling. However, a
dishonest participant can easily corrupt the shares, thus potentially significantly
impacting the final outcome.

Assuming a majority of honest participants, Rabin and Ben-Or extended Be-
naloh’s secret sharing and proposed wverifiable secret sharing scheme (VSS) [8].
Based on VSS, they proposed a multiparty protocol to compute privately the
sum of the participants’ inputs with an exponentially small error on the output.
Beyond the fact that these techniques assume a fully connected network, syn-
chronous links and broadcast channels, they involve higher mathematics. More-
over, since there is no control over the inputs themselves (contrarily to DPol
where the ballot are in {—1,1} and therefore the vote is at max +(2k + 1)),
a dishonest participant may still share an arbitrarily high value and can thus
affect the outcome in a potentially unbounded way. The strength of this class
of protocols is to ensure strong privacy to participants, including the dishonest
ones but this makes such schemes hardly suitable for polling applications. Note
that this also applies to complex secret sharing scheme and private multiparty
computation such as AMPC [1].

In [6], Malkhi et al. proposed an e-voting protocol based on AMPC and en-
hanced check vectors. While powerful, this protocol differs from our work since
participants have distinct and predefined roles (dealers, talliers, and receivers).
This may result in decreased scalability and robustness if specific nodes fail.

7 Conclusion

We considered DPol, a simple decentralized polling protocol and proved that it
can be made private and accurate in a social network, where participants are
concerned over their reputation, by means of verification procedures, opening the
way to a novel and promising way to perform secure distributed computations.

158 R. Guerraoui et al.

In addition we believe that our work can be extended to distributed applica-
tions that are not critical (i.e., that are not sensitive to small deviation on their
outcome). A natural and interesting perspective is the extension of our polling
protocol to n-ary inputs providing doodle-like services [5]. Also, designing an
automated tool to help users of a social network to evaluate the reputation of
a participant by cross-checking information such as tags and social graphs is
definitely a very interesting and challenging problem.

References

1. Kremsa Design, Inc. Facebook Poll,
http://www.facebook.com/apps/application.php?id=20678178440

2. Benaloh, J.C.: Secret sharing homomorphisms: Keeping shares of a secret secret.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251-260. Springer,
Heidelberg (1987)

3. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recov-
ery. TOCS 20(4), 398-461 (2002)

4. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive birds:
Privacy in population protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 329-342. Springer, Heidelberg (2007)

5. Doodle: Easy Scheduling, http://www.doodle.com

6. Malkhi, D., Margo, O., Pavlov, E.: E-Voting without ‘Cryptography’. In: Blaze,
M. (ed.) FC 2002. LNCS, vol. 2357, pp. 1-15. Springer, Heidelberg (2003)

7. Malkhi, D., Pavlov, E.: Anonymity without ‘Cryptography’. In: Syverson, P.F.
(ed.) FC 2001. LNCS, vol. 2339, pp. 108-126. Springer, Heidelberg (2002)

8. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In: STOC, pp. 73-85 (1989)

9. Richmond, R.: Facebook Tests the Power of Democracy, April 23 (2009)

10. Rivest, R., Shamir, A., Tauman, Y.: How to Share a Secret. CACM 22, 612613
(1979)

11. Rivest, R., Smith, W.: Three Vvoting Protocols: ThreeBallot, VAV, and twin. In:
EVT, p. 16 (2007)

12. Stelter, B.: Facebook’s Users Ask Who Owns Information, February, 17 (2009)

13. Yu, H., Gibbons, P., Kaminsky, M., Xiao, F.: SybilLimit: A Near-Optimal Social
Network Defense against Sybil Attacks. In: SP, pp. 3—17 (2008)

http://www.facebook.com/apps/application.php?id=20678178440
http://www.doodle.com

	Decentralized Polling with Respectable Participants
	Introduction
	System Model
	The Polling Protocol
	Polling in a Nutshell
	Description
	Analysis

	Confining the Impact of Dishonest Nodes
	Impact of a Dishonest Coalition under Public Verifications
	Private Verifications

	Implementation
	Experimental Setup
	Polling in Practice

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

