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Abstract

An ephemeral network is usually defined by the very short-lived and heteroge-
neous nature of interactions among self-organizing wireless devices. The wide
penetration in everyday gadgets of radio technologies operating in unlicensed
frequency spectrum, such as Bluetooth or 802.11 WLANSs, accentuates the risk
involved in communicating with unknown nodes, especially in hostile environ-
ments. Thus, misbehavior in ephemeral networks poses a serious threat to both
well-behaving nodes and the network itself. The lack of centralized infrastructure
and control makes such networks vulnerable to abuses, resulting in local service
degradations and interruptions. Due to the short-lived and heterogeneous con-
tacts among nodes, the reputation mechanisms based on repeated interactions
are hard to establish and thus local revocation schemes seem to better cope with
the highly volatile network model. In this report, we present a fully distributed
scheme for local revocation of public-key certificates using a game-theoretic ap-
proach, in which each node selfishly decides on its actions and where, for each
action, there is an associated cost and benefit. By providing incentives, dynamic
costs and thanks to the history of previous behavior, our payoff model estab-
lishes the best course of actions for all the involved devices on-the-fly, such that
the resulting revocation generates the least cost for the collectivity of players,
i.e. a successful revocation that is also socially optimal. Based on the analyti-
cal results, we then formally define such algorithm and evaluate its performance
through simulations. We show that our scheme is both accurate and effective in
quickly removing malicious devices from the network.
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Chapter 1

Introduction

In the last few years, the transition from wired to wireless mobile networks is a
reality towards which both service providers and customers are migrating to. A
recent study [I7] shows that more than one-fourth of wireless customers in the
U.S. have already abandoned the wired landline and are using exclusively wire-
less devices for their communication needs. The centrally-managed infrastructure
owned by the service provider allows the end-users to benefit from a wide palette
of services but, at the same time, limits their mobility and freedom of choice.
Wireless capability, embedded in everyday devices, could be the Panacea to such
constraints since it allows direct communication among different nodes, indepen-
dently of the service provider, but the security concerns become even stronger.
The dynamic network topology and frequent neighbor changes make it imperative
to act both proactively and reactively with respect to potential malicious behav-
ior [24]. In other words, an efficient defense against misbehavior in short-lived
connections with potentially unknown partners has to encompass both detection
and reaction mechanisms.

To date, public key certificates are typically created either by a trusted third
party called certification authority (CA), or by the node themselves in a dis-
tributed fashion, like in PGP [25]. The goal of such certificates is to allow the
nodes to be able to uniquely identify and authenticate themselves and their mes-
sages while communicating. In fully open networks, where nodes are not subject
to access controls by a third authority, distributed key management schemes have
been studied and solutions have been proposed in [12] 3]. On the other hand,
when globally verifiable public key certificates are needed prior to joining the
network, the signature of the trusted CA on individual’s public-key certificates is
the best option. Therefore, such prerequisite makes the availability of valid cer-
tificates extremely important, especially when the mobility of the nodes imposes
a sporadic contact with the issuing authority. As it is the case for ephemeral
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networks, a node without a valid certificate is completely denied participation,
at least until the next time it connects with the accredited issuer.

Although a wireless device might not act selfishly or maliciously at first, there
are circumstances in which this could not be true anymore. After some period of
operation, the power management policies could for instance force a previously
cooperative and well-behaving wireless node to suddenly become selfish. This
could arise if the battery of the device starts to run out or, in the more adverse
case, if another device gains control of the first one. The issue of node misbehavior
detection is a central part of the proactive security aspect in mobile networks and
has been addressed by various authors in [19, [14]. Thus, an efficient misbehavior
detection mechanism is the sine qua non condition for a performing and clear-cut
reaction system.

A solution to limit the abuses of efficient reaction schemes in presence of
malicious nodes is achieved by the use of reputation systems, a set of techniques
that considers the past behavior in order to determine the trustworthiness of
a node [20]. Such reputations are usually built on the outcomes of repeated
interactions and their value is stored either on a tamper-proof device on the
node itself [13] or distributed to its neighbors [4]. Nevertheless, due to the very
short-lived and heterogeneous nature of the contacts in ephemeral networks, such
entries are hard to develop and maintain. Moreover, reputations are a natural
means of disregarding misbehaving nodes but they can be redeemed. On the
other hand, revocations are usually final.

In this report, we develop a local certificate revocation scheme for misbehaving
nodes in ephemeral networks. By introducing the network participants as players
in a game theoretic way, we are able to model their actions in a potentially
hostile environment without having to assume any kind of cooperation among the
different parties. The most commonly cited methods for revoking certificates in
a multi-party environment are i) vote [22, 1] and ii) suicide [16]. We include both
of them and we also add the possibility of abstaining, i.e. not taking any action
but expecting others to perform the revocation. Moreover, we provide an efficient
incentive to stimulate players to participate in the certificate revocation process
through rewards. It is worth mentioning that the relationship between costs and
benefits depends both on the kind of actions taken by the players and by the
outcome of the revocation procedure. We then extend our model to include the
past behavior and we establish conditions that guarantee a successful revocation
of the misbehaving node’s certificate. Since each device could potentially have
a different past behavior, we determine the best course of actions for all the
participants that will result in a successful revocation with a minimal cost, i.e. a
unique outcome that is also socially optimal.

The rest of the report is organized as follows. In Chapter [2| we introduce the
system model, the settings in which a public-key certificate revocation process



takes place and we define the associated game theoretic framework that will be
used throughout the report. We begin by an elementary model in which we only
consider the costs associated with the certificate management for each node and
then we establish the plausible outcomes represented by the Nash equilibria of
the games. Chapter |3]is devoted to a more complex model of revocation games
that includes both the rewards for the participating nodes and the history of
their previous payoffs. By providing incentives for collaboration, we show that a
successful revocation of a malicious node’s certificate is guaranteed. Moreover, the
incentive-based approach and the reputation-inspired variable costs allow us to
refine even more the predictions of the outcome of such games. The introduction
of two optimality concepts allows us to identify, in a distributed manner, a unique
Nash equilibrium that is also socially optimal. Afterwards, in Chapter [4 we
show through simulations that our unique optimal Nash equilibrium selection
algorithms are both effective in removing the malicious node’s certificate and
with minimal message overhead. Finally, we give our concluding remarks in

Chapter

Related Work

Public-key management schemes for mobile wireless networks have been proposed
in various forms. There are three main approaches: i) fully distributed key man-
agement, ii) central-authority management achieved when a trusted CA creates
and revokes certificates and a iii) combination of the previous methods in which
the CA issues the certificates but the nodes can revoke them independently.

The fully distributed approach has been studied by several authors. In [12]
and similarly in [3], the certificates are generated, stored and distributed by
the nodes, who maintain a local repository of the certificate that they already
have. Prior to communicating, the nodes exchange their repositories and look for
certificate chains in the merged data set. The main assumption is that nodes do
not create false certificates for unknown peers if they believe that the keys do not
belong to those peers. However, since the validation of other’s certificates is based
on individual beliefs, even a single misbehaving node could sign certificates for
other such devices and thus the robustness of such scheme is still to be determined.

A trusted third party is required for the generation and revocation of public-
key certificates in [19] and envisaged in [4]. Rather than completely revoking,
the authors suggest a method to deal with misbehaving devices by disregarding
their messages or by minimizing their trust level among the neighbors. In [19] an
ignored certificate cannot be restored while in [4] the trust can be regained and
the certificate renewal interval can be extended.

The combination of a trusted certificate issuer and distributed revocation
ability is a topic that has been developed in [, 18]. The former study revokes the
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malicious node’s certificate based on a trust threshold value computed by taking
into account the reputations of both the accused and accusing nodes through
weighted accusations. If the sum of such weighted accusations is greater than
a threshold value, the certificate is revoked and is completely useless for further
interactions. In [I8], the authors take a game-theoretic approach for certificate
revocations in ephemeral networks by extending the possibility of revocation just
by a single node’s decision, in addition to the aggregate voting scheme. The
interactions among the well-behaving nodes are visible to all of them since the
game model is a dynamic complete information game. Since every revocation
game is modeled as a cost game, without giving incentives for participation the
revocation is achieved only by the last players of the game. An important problem
with this solution is that some of the last nodes that should participate in the
game might move out of communication range before its end and thus invalidate
the revocation process.

In our work, we take a different approach than in [I8]. First of all, we consider
revocations in which nodes take actions simultaneously, i.e. they are unable to
decrypt other’s decisions before taking their own, since it might take too much
time in practice and the nodes might have already lost contact. The participants
do not know a priori the strategies of the others and they cannot wait for the last
players simply because there is no notion of first or last players in simultaneous
games. Second, by considering the past behavior of all the participants, we are
able to allow for personalized costs, depending on the behavior of each node in
past games. A node that has behaved correctly, i.e. no or little abuse of the
revocations, is more motivated to take decisive actions against the misbehaving
device since the price to pay would be lower than for a node that has not behaved
well previously. In a sense, this reflects a reputation-like system. Finally, by
designing a distributed on-the-fly Nash equilibrium computation algorithm that
is also socially optimal, we are able to guarantee the unique most efficient outcome
for the collectivity of the players.

A Note on Game Theory

The theory of games or game theory is defined as “the study of multiperson
decision problems” [8] and it first appeared in the fields of economics and politics,
two natural environments in which a formal tool for decision-making could be
applied. The essence of game theory is that the participants (or players) of
such processes can take different actions and the payoff (or wtility) that each one
of them obtains depends on the outcome of the game, his own action and the
actions of other players [2]. In computer science, it first started to emerge as
static wireless sensor networks (WSNs) began to spread and then it made its way
in mobile ad hoc environments such as pervasive and ephemeral networks. In



such settings, a multi-party decision could be taken, for instance, for determining
the participants in message forwarding processes when there are multiple and
redundant nodes or, as in this report, to determine the best course of action
for each participant in a revocation scheme, in case a misbehaving node was
positively detected.






Chapter 2

Revocations with Costs

Ephemeral networks are formed by autonomous mobile wireless devices with self-
organizing capabilities, a very limited communication range and important power
and bandwidth constraints. Clearly, such limitations impose that every interac-
tion among neighboring nodes is carefully planned in order to maintain a suf-
ficient level of throughput and overall performance. For instance, devices that
are running out of battery could exhibit sometimes what is called a selfish be-
havior, i.e. they might refuse to communicate with neighboring nodes in order
to save resources, or a malicious behavior by which they deliberately inject false
information. In wireless ad hoc, ephemeral and pervasive networks these are cru-
cial issues and methods to deal with such selfish nodes have been discussed in
[14, 24, 21].

In this Chapter we deal with a similar challenge, namely the issue of removing
nodes that exhibit some form of misbehavior in the network, such that the other
devices in communication range are willing to sacrifice part of their wealth in
order to remove it. The wealth in our case is the quantity of valid public-key
certificates that each node has at its disposal at any given time. In the follow-
ing sections, we define the system model and establish the rational outcomes of
such revocation process through the game-theoretic concept of Nash equilibrium,

defined in Section

2.1 System Model

2.1.1 Network Model

The underlying network model in this report is that of an ephemeral and pervasive
type, i.e. a network with short-duration (1-10 sec), short-range (10-100 m) and
heterogeneous contacts among nodes who are likely to exchange (some) data

7
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spontaneously, even without previous knowledge of the other peers [I5]. We
allow the communication to take place both in licensed and unlicensed frequency
bands as long as the wireless devices are able to establish a direct communication
among themselves.

Furthermore, we assume that all devices are powerful enough to run public-key
cryptographic algorithms. This assumption is based on the evidence that most
of today’s smartphones (and future cell phones [I0]) have integrated public-key
certificates for connecting to secure HI'TPS servers on the Internet or to authen-
ticate themselves on protected enterprise 802.11 WLAN networks. Moreover, we
consider that a trusted third party (or parties) exist in such networks and that
each mobile node is pre-loaded public-key certificates (or pseudonyms) signed by
such CA. The certificate serial number serves as unique ID that distinguishes
each device in a given revocation process. We explicitly state that each node has
with more than one certificate in the initial deployment phase, supported by the
trends to ensure the location privacy (by synchronized pseudonym changes) and
avoid the possibility of being tracked and identified over time [111 23]

After the initial deployment, we do not assume an always-on connection with
the central authority anymore but we do assume that nodes will reconnect with
the respective CA sporadically (from a few hours to a few days). During the
successive reconnection, the CA will then be able to renew their credentials and
verify their past behavior in an appropriate way. Since the description of the
behavior verification process by the CA is outside the scope of this report, we
do not develop it here. It is clear that the logistic costs associated with the
certificate management (by the CA) and frequent pseudonym changes (by the
nodes) could make the limited reserve of valid certificates a critical resource. In
order to allow for integrity and authenticity checks, we assume that a node is
able to send messages iff it can sign them with a valid certificate.

2.1.2 Opponent Model

The opponent considered in our setting could potentially be any device described
in Section [2.1.1] i.e. a mobile wireless node with exactly the same characteristics
as the other benign nodes. We allow the misbehavior to be both of selfish and
malicious kind. An opponent could either be intentionally and systematically
refusing to cooperate with other nodes (and thus behaving selfishly) or it could
inject false information in the network and try to disrupt its correct operation
(acting maliciously). For instance, by sending undesired advertisements or by
hijacking other nodes with the intent to subvert them to its own advantage, a
misbehaving node could be accused by its neighbors and a revocation process

against it could be initiated.
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2.1.3 Reaction Model

In our model, we assume that all nodes in the network have the necessary fea-
tures to detect a potentially hostile or misbehaving node. In our work, we are
concerned with the reaction of a set of nodes, once a misbehaving node has been
identified, and the best course of action for the revocation of the its certificate
revocation. Therefore, it is not our intent to develop a misbehavior detection
system. References on the latter aspect can be found in [19, [14].

2.2 Game-Theoretic Model

This section delineates the game-theoretic model that we use throughout the rest
of the report. The main reason for the interest in game theory for modeling the
certificate revocation process is that it allows the nodes to independently and
selfishly decide on the best action to take by knowing, however, that the “price
to pay” for each individual decision depends on other nodes’ decisions as well.
In this first cost model, the “price to pay” is only the cost that is associated
with the revocation decision. The unit in which we measure this cost is, not
surprisingly, in public-key certificates since every sent message send contains the
digital signature of its creator.

The cost that well-behaving nodes might face in order to revoke a malicious
node might sometimes be even greater than the cost induced by the latter node.
In this scenario, it might be more appropriate for the formers not to revoke the
malicious device (e.g. when the bogus information does not preclude the network
from functioning or is not judged to be very disturbing).

2.2.1 Players, Strategies and Payoffs

With the ideas presented in Section [2.2] we are now able to formally define what is
called a revocation game. In order to characterize the game, we need to specify the
set of players (the nodes involved in the revocation process), the set of strategies
(the actions that each node can take) and the set of payoffs (in this chapter the
payoffs correspond to the negative of the costs).

Players The set of wireless nodes P = {F;}!_; that are in communication range
with both the accused node and the device that initiated the revocation process.

Strategies The set of strategies that can be taken by each node in a revocation
processis S = {S;}7_ . In our work, we define as S; = {abstain, vote, self-sacrifice}
the set of possible strategies for each player ¢, where abstain means that the node
does not take any action against the accused device but simply expects others
to revoke it, vote stays for the voting action that would result in a successful
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revocation if and only if (iff) there is a sufficient number n, of total voters, and
finally self-sacrifice which stands for the ability of a player to commit suicide and
at the same time to revoke the accused node. We stress here that since only one
sacrifice strategy is sufficient to revoke the accused node’s certificate, the cost
of such strategy should be carefully determined in order to avoid abuses. We
therefore devote Section solely to the optimization of the self-sacrifice cost
function.

Payoffs Since the costs associated with the revocation decisions depend both on
the individual strategies and on the ultimate game outcome (successful revocation
or nothing), each player gets an individual payoff u; = benefit — cost. The set
of the individual payoffs is & = {w;}]" | and, in the cost game here defined, the
payoffs correspond to the negative of the costs associated with the revocation
game (or benefits = 0). We note the presence of the attack-induced cost of the
malicious node (in case it is not revoked by the other players) as ¢ and we account
for it through the parameter k in Table

1, if successful revocation
k= (2.1)

0, if unsuccessful revocation

The costs that correspond to the three strategies A ,V and S, are as follows:

(a) Abstain: if a player ¢ decides not to take any action in a game and expects
the other players to revoke the accused node, the cost for 4 in this case is 0.

(b) Vote: to cast a vote does imply a cost since this action can determine the
revocation of the accused node and thus should not come for free, in order
to avoid potential abuses of the revocation process by colluding misbehaving
nodes. We define v as the cost of voting and we bound in by [0, 1] since
it seems reasonable to assume that it should not exceed the cost for a self-
sacrifice, since only one of the latter is completely sufficient for the revocation
whereas more than one vote is needed for the same outcome (n, > 1 votes
are needed for a successful revocation).

(c) Self-sacrifice: since the annulment of one’s own certificate is sufficient to
revoke the accused node’s certificate as well, we define the cost for the self-

sacrifice strategy to be 1 (one valid certificate).

2.3 Revocation Games with Costs

We model the revocation game G as a finite n-player static (simultaneous) game of
complete information [7], where the static type reflects the simultaneous decision-
making process in which the wireless nodes are forced to vote “at the same time”,
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RevoGame 2
RevoGame 1
Malicious f/:

ot

Figure 2.1: Pervasive network scenario in which two simultaneous revocation
games (RevoGame 1 and RevoGame 2) are occurring against two malicious nodes.
All players are under the same radio coverage area and, as we can see, each can
participate to at most one game.

without having the possibility to overhear or to know the decision of the other
nodes beforehand. The key concept here is that every node chooses his strategy
in order to minimize its own costs. From the results of [I8], we have seen that
the sequential revocation process and the time needed for the decryption of the
other nodes’ decisions while still playing might cause an unpredictable game
outcome due to some of the last nodes going out of communication range while
still playing the game. We thus take the simultaneous approach such that the
issue of sequential voting and on-the-fly decryption is not present.

The usual representation of a static game is in the normal (or strategic) form.
The visually appealing representation for the two-player revocation game is shown
in Table where each row corresponds to one of the three possible strategies
for player one and each column to a possible strategy for player two. In each cell
we then have the payoffs that the first and second player get at the end of the
game if they choose the corresponding strategy. In Table for instance, if the
game were to end by the self-sacrifice of player one and the abstention by player
two (the (5, A) strategy profile), player one would incur in a cost of 1 (since he
would lose one valid public-key certificate) and player two would not have to pay
any cost since the malicious node would have been revoked by player one without
any action taken by player two. Furthermore, we assume that for each accused
node, there is one revocation game initiated by one of the neighboring nodes. If
several nodes are accused, there could be as many independent revocation games
in parallel, where each node can participate to at most one game at any given
time (Figure . Without loss of generality, we provide the analysis for a single
revocation game.

Definition 2.1. A revocation game of complete information is expressed by G, =
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Abstain | Self-sacrifice Vote

Cost | (1-k) - ¢ 1 v+ (1-k)-c

Table 2.1: Costs associated with the possible strategies. When the revocation is
successful we have k = 1, otherwise k = 0.

{P,S,U}, where P is the set of all the players P = {P;}_,, S is the strategy set
and U is the payoff set. A strategy s; of the strategy subset S; is either Abstain,
Vote or Self-sacrifice, i.e. s; € S; = {A,V,S}. The possible outcomes of the
revocation game are either the successful revocation (k = 1) of the malicious
node or nothing (k = 0). All players have the same complete knowledge about all
parameters of the game.

2.3.1 Solutions & Nash Equilibria of the Game

We introduce here the main concepts used for the analysis of the possible out-
comes in revocation games. For a detailed analysis of other concepts of game
theory one can look in [7, §]. The most important idea for our work is that of a
Nash equilibrium, which represent the most probable outcome in a game where all
participants are rational and selfish, i.e. they play with the intent of maximizing
their own payoff (or minimizing their cost). We define the Nash equilibrium as
follows:

Definition 2.2. In a n-player static game of complete information G,, = {P,S,U},
a strategy profile s* = (s7,s5,...,s%) is a pure-strategy Nash equilibrium (NE) if
the strategy s; is such that

wi(S]y ey S5y Sh) > ui(S], ooy Siy. .oy 8h), Vs €5 (2.2)

79 1°9n) = ’on

In other words, the equilibrium strategy s; solves

MAaX Ui (ST, -3 851,56, Si41-+->5n) Vi (2.3)
5;€8;
That is, no player i is better off deviating from his equilibrium strategy s; given
that the other players chose their respective s* ;.

A mixed-strategy NFE is analog to the pure strateqy here defined, where instead
of allowing only one possible strategy for each player we relax the condition and
include the possibility to play any of the possible strategies with a finite probability.
For instance, s* = (o7,...,0}) is a mized-strateqy NE if the distribution of =
(%, pY,ps), is such that

wi(oy,... 00, 00) > ui(o),...,060...,00), Vi, Vo (2.4)
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Player 2
A V S
(-c,-¢) | (-c,-c-v) | (O, -1)
(-c-v,-¢) | (-v,-Vv) | (-v,-1)
('11 O) ('11 'V) ('17 '1)

Player 1
n|<L|>

Table 2.2: 2-player cost game representation in the normal form.

where pf denotes the probability that player i plays strategy k.

We see that by conforming to a strategy profile that is a NE, each node has no
incentive to deviate from its strategy since even if it were given the opportunity
to do so after the others have already played, the change would not bring him a
better payoff

A concept related to the NE is that of the best response function, defined
hereafter:

Definition 2.3. A best response function for player i is a function br : s_; — s;
such that it maximizes i’s expected payoff, given the strategies of other players
s_i. Formally, it is defined as

bri(s—;) = arg Sier{ri‘a%’s} wi(si, S—i), Vi, Vs_; (2.5)

We deduce that a strategy profile s* is a NE iff it is the set of mutual best
responses of all players of the game.

Another useful definition is provided by the Pareto-optimal NE which provides
greater payoffs than any other NE, to all players. If, for instance, we have two
NE profiles s* and s** with w;(s*) > w;(s*),Vi and strictly greater for at least
one 7, then s* is a Pareto-optimal NE profile and thus it is the most appealing to
all players since it gives greater payoffs to all of them.

2.3.2 2-Player Revocation Game

Before tackling the issue of a general finite n-player revocation game, we first
focus on the different NE that arise in the 2-player game of Table [2.2]for different
values of ¢ and v, where the row player is player 1, the column player is player
2 and the number of votes needed to revoke the malicious node is n,, = 2. This
allows us to develop an intuition about the way the outcomes of the game are
derived. For each of the following theorems, we give the relative proof by simply
applying the definitions of Nash equilibrium and best response function.

Theorem 2.1. For c < v < 1, the 2-player static game Ga has one pure strategy
Nash equilibrium (A, A).
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Proof. Since —¢ > —v and —c¢ > —1, (A, A) is the only pure strategy NE. O

Theorem 2.2. Forv < ¢ < 1, the 2-player static game G5 has two pure strategy

NE (A, A) and (V,V) and one mized strateqy NE (01,02), where o1 = o9 =
1— . . .

(¢, pi,p;) = (-2, %,0). Moreover, (V,V) is Pareto-optimal with respect to

(A A).

Proof. For the pure strategies NE, since —¢ > —v but —¢ < —v we have that
(A, A) and (V, V) are the pure strategy NE. By inspection we see that the payoffs
corresponding to the strategy (V, V') are Pareto-optimal with respect to (A4, A). In
the mixed strategy NE, let pf denote the probability that player ¢ plays strategy
k and o; = (p¢,pY,p;). For player i to be indifferent between the three strategies
abstain, vote and self-sacrifice we need that u;(A,o0_;) = w;(V,0-;) = w;i(S,0-;),
for i = 1,2. Given that

ui(Av U—i) = _C(pcii +pvﬂ')
u;i(V,o-;) = —v(p?; +p2;) — (v + c)p,
uz(‘sv U—i) =-1

p(ii +p21 +ps_l =1

we obtain the probabilities for player —i’s strategies oo

{pg:1;1}7 pg:%7 szl—%—ﬂ)
Since the 2-player static game G5 is symmetric, the same probabilities apply
to both player 1 and 2, hence 01 = g9 = (min (1, 1;”), 2,0). Thus, the mixed

strategy NE is (01, 02). O

Given the pure strategy NE of Theorem we can represent the best re-
sponse functions for player one and player two as in Figure 2.2l We see that
whenever p{ > (1 —v)/c, the best response for player j is to abstain (or pj = 1)
and, since pj = 0, to vote otherwise (or pj = 0). Seen from a different perspec-
tive, when c diminishes, p{ grows and the mixed strategy NE approaches the pure
strategy (A,A). As a result, the most probable NE would be (A,A) since the cost
of the malicious node still remaining in the system is lower.

Theorem 2.3. Forv < 1 < ¢, the 2-player static game Go has three pure strategy
NE (S, A), (A,S), (V,V) and one mized strategy NE (01,092) where o1 = 09 =

1-v v

1 k ", :
¢, p¥,pi) = ( -2, 2,1 — ) where pf denotes the probability that player i plays

strategy k.

Proof. For the pure strategies NE, since v < 1 and ¢ > 1 we have that (S, A),
(A,S) and (V,V) are the NE. In the mixed strategy NE, we refer to the proof of
Theorem and we conclude that (o1, 02) is the NE with

(=12 =t p=1-1
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P1
1 —0 (AA)
1-v E
o Tttt L R L L LY.
(V,V) H» p?
0 1-v 1
C

Figure 2.2: Best response strategies for the 2-player revocation game with fixed
costs, where the continuous line represents the best response function of player
one and the dashed line the best response function of player two. The NE are at
the intersections between the two best response functions.

2.3.3 n-player Revocation Game

In the previous subsection we showed that the 2-player static game has one or
more pure strategy Nash equilibria for each combination of the cost parameters.
In this section we extend the revocation game to a finite number n of players,
assuming the same possible strategies and costs for each player as in Table

By definition, the costs of each player depend on the outcome of the game
(successful revocation or no revocation), which, in return, depends directly on
the strategies chosen by all the players. With this in mind, let G,, define the n-
player static revocation game from Section where the strategy of each player
is either abstain, vote or self-sacrifice.

From 2- to 3-player Static Game

In order to better understand the dynamics of the game, let us consider briefly the
3-player revocation game G3 and its NE, assuming that the revocation occurs by
at least one self-sacrifice or by the majority voting rule (= 2 here). The normal
form representation of such game is given in Table where player 1 chooses
the row, player 2 the column and player 3 the matrix.

The pure strategy Nash equilibria of the 3-player revocation game with fixed

costs are as follows:
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A \% S A \% S A \% S
A | (-c, ¢, €) (-c, -v-c,-¢) | (0,-1,0) A | (-c,-c,-c-v) | (0,-v,-v) | (0,-1,-v) A (0,0,-1) | (0,-v,-1) | (0,-1,-1)
V | (-c-v, -c, -¢) | (-v, -v, 0) (-v,-1,0) V| (-v,0,-v) (v, v, V) | (v, -1, -v) V| (v,0,-1) | (-v,-v,-1) | (-v,-1,-1)
S | (-1,0,0) (-1,-v,0) (-1,-1,0) S | (-1,0,-v) (-1,-v,v) | (-1,-1,-v) S | (-1,0,-1) | (-1,-v,-1) | (-1,-1,-1)

Table 2.3: 3-player cost game representation in normal form.

e ¢ < v < 1. The unique pure strategy NE is (A, A, A), i.e. all players
abstain.

e v <c<1l NEare (4,4,4), (V,VA), (V,;A, V) and (A,V,V). By in-
spection we can see that (A, A, A) is Pareto-suboptimal and thus we can
consider only the strategies that result in the revocation of the malicious
node by majority voting.

e v < 1 < ¢. NE are all combinations of strategies consisting of one self-
sacrifice and two abstentions or two votes and one abstention. Any of
these combinations results in the malicious node being revoked.

The proof of these NE is similar to the ones shown in Section For brevity,
we leave them to the interested reader.

Finite n-player Static Game

In order to extend the number of players from 3 to n, let n, define the number
of votes needed for the revocation as

n
In this case, the strict majority of the players is needed in order to revoke a node.
We now show the existence of the following pure strategy NE in the n-player

static revocation game G,, = {P,S,U}.

Theorem 2.4. For ¢ < v < 1, the n-player static game G, has a unique pure
strategy NE profile (A, A, ..., A).

Proof. The payoffs corresponding to the strategy profile s* = (s},...,s,...,s))

ren

are u = (—c¢,—c,...,—c), i.e. each player pays the cost of the malicious node still
remaining in the system after the game ends. We focus on player 7, where s} = A
and w;(s},...,sf,...,s)) = —c. In order for s; = A to be his best response
strategy, given the other player’s strategies (s7,...,s;_q,5;,1,...,5)), We require

that w;(sy,..., s’

R

L SE) > ui(st, ..y Siy ..., Sh), for all s; € S;. The payoffs are
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as follows:
ui(sy,...,A,...,s,) = —c (2.7
ui(sy,...,V,...,80)=—c—w 2.8
ui(s]y .., S, .., 8,) =—1 (2.9)

As it can be seen, the highest payoff for player ¢ is given for the strategy s = A.
Since the payoffs of all the n players are the same as for player 4, it follows
that for all players i, s* = (s},...,s,...,55) = (A,...,A) is the unique pure

strategy NE of this game. O

Theorem 2.5. Forv < ¢ < 1, the n-player static game G,, has pure strategy NE
that are all strategy profiles s* that include (a) n, votes with n — n, abstentions
and (b) all abstentions.

Proof. We will first concentrate on part (a) and then we will prove part (b). We
assume that, given the s*, strategies of the other players, s} could either be A
or V for each player i, depending on whether he is one of the n, voters or n —n,
abstainers in the sequence under consideration. Therefore, we have two cases for
all player i:

if s7 = A (s, ...s5,...,8,) =0 if s7 =V w(s],...,s5,...,8,)=—v
(2.10)

wi(sy,...,V,...,85) = —v ui(sy, ..., A,...,8,) =—c

(2.11)

ui(sy, ..., S, ...,80) =—1 wi(sy, .., S, ..,8) =—1

2.12)

We see that, for all player i, any strategy s; # s; results in a lower payoff for
him. Thus, no player has an incentive to deviate from his equilibrium strategy
and therefore any strategy profile s* that is a combination of n, votes and n —n,,
abstentions is a NE.

For part (b) of the theorem, we already know that u(4,..., A) = (—¢,...,—c)
and thus any deviation from that strategy would result in a lower payoff for the
deviating player and therefore our result. O

Theorem 2.6. For v < 1 < ¢, the n-player static game Gy, has pure strategy
NE that are all strategy profiles s* that include (a) one self-sacrifice with n — 1
abstentions and (b) n, votes and n — n, abstentions. The malicious node is
revoked by any of the NE.

Proof. For part (a) we assume that, given the s* ; strategies of the other players,
s; could either be S or A for each player i, depending on whether he is the
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self-sacrificer or one of the n — 1 abstainers in the sequence under consideration.
Therefore, we have two cases for all player ¢:

if s7 =S5 wi(sy,...,s5,...,s0) =—1 if s7 = A wu(sy,...,s;,...,8,) =0
(2.13)

wi(sy,...,A,...,8,) = —c wi(s]y. ., Sy, sp) =—1
(2.14)

ui(sy,...,V,...,8,) =—c—w ui(sl, .., V,...,s5) = —v
(2.15)

We see that, for all player i, any strategy s; # s; results in a lower payoft for
him. Thus, no player has an incentive to deviate from his equilibrium strategy
and therefore any strategy profile s* that includes one self-sacrifice and n — 1
abstentions is a NE.

For part (b), we refer to Theorem where it can be seen that, for v < 1 < ¢,
a strategy profile s* that is a combination of n, votes and n — n, abstentions is

a NE. O

2.4 Summary

In this Chapter we have introduced our revocation games with fixed costs and
explained what are the conditions in which such revocation takes place. Thanks
to the game-theoretic concepts of Nash equilibrium and best response function,
we have been able to analyze the outcomes and predict the actions taken by each
player in our cost-only model.

The rational outcomes of the game, the NE, have shown that the revocation of
the malicious node is not always guaranteed, even with the plausible assumption
that v < ¢ < 1, since the strategy profile (A,...,A) was a NE just as well as the
other equilibria that resulted in the successful revocation of the malicious node’s
public-key certificate. Interesting also was the fact that, in the equilibria with
successful revocation, we didn’t find any costly action, i.e. vote or self-sacrifice,
in excess than what was strictly needed. In other words, in the vote-only NE,
we didn’t find more than n, votes (strictly needed for the revocation) nor more
than 1 self-sacrifice. This favorable feature that limited the unnecessary waste
of valid certificates also brought a less desirable aspect of such NE: for almost
all combinations of v and ¢ we had more than one NE. This means that in order
for the game to end in a unique way, predictable by all the players, we would
need a mechanism that specifies exactly which one of the possible NE to choose.
Clearly, each selfish player would want that unique NE to be the one that favors
him the most, but this would create a situation in which a unique NE across all
the players would be impossible to establish.



Chapter 3

Revocations with Payoffs, Past
Behavior & Social Welfare

In [I8] the authors developed a cost model for the dynamic revocation games of
complete information with n players. In order to include the possibility of the
players not knowing beforehand the strategies adopted by other players, we then
extended this initial model to the n-player static games of complete information
in Chapter [2| of this report, where players chose their actions simultaneously.
At the same time, we have established the Nash equilibria and drawn different
conclusions.

Although interesting, the cost model is unable to capture an important as-
pect of a different version of the same game: the benefits that players who are
actively™® participating in the revocation game could receive in case the malicious
node is effectively and correctly revoked from the system. These rewards could
serve as incentives to motivate the players to actively participate towards the
revocation and could be decisive when multiple outcomes are possible.

In this Chapter, we develop a payoff model of the revocation game in which
actively participating players receive a fixed benefit from the central authority to
compensate for their costs when the revocation of the malicious node is successful.
Next, we include the history of previous payoffs in the model and analyze the
behavior of the players in a scenario where the cost of self-sacrificing is variable.
The reason behind such choice is that we would like to have a model in which
players with a high reserve are more willing to sacrifice themselves, since the cost
of such action does not preclude their ability to continue operating in the network
and leaves the others with sufficient certificates. Moreover, we define a way to
coordinate on a unique socially optimal NE in case more than one NE are present

*By actively we mean players that either vote or self-sacrifice

19
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Abstain Self-sacrifice Vote
Cost | (1-k)-c Cs v+ (1-k) - c
Benefit 0 B k-b
Payoff | -(1-k)-c B-c k-b-v-(1-k)-c

Table 3.1: Payoffs associated with the possible strategies where c; = 1 in the fixed
costs model. If the revocation of the malicious node’s certificate is successful we
have k = 1, otherwise k£ = 0.

in the game and we design the algorithm that realizes that idea.

The rest of the Chapter is organized as follows. In Section we present
the general game model and in Section we describe the payoff model of the
n-player static revocation game with fixed costs, by looking at the respective NE
for different combination of benefit and cost parameters. Section is devoted
to the static revocation games with previous payoffs and variable self-sacrificing
cost, with some examples of possible scenarios and the respective NE. In Section
[3.4] we optimize the parameters used by the variable self-sacrifice cost function
and in Section we present and implement a mechanism to select a unique
socially optimal NE. After a brief description of the complexity of our payoff
model in Section we summarize the main results of this Chapter in Section

3.7

3.1 Game-Theoretic Model

Let us define the revocation game with payoffs as GI, = {P,S,U}, where P is
the set of all the players P = {P;}' ;, S is the strategy set and U is the payoff
set. As usual, a strategy s; of the strategy subset .S; is either Abstain, Vote or
Self-sacrifice, i.e. s; € S; = {A,V,S}. The possible outcomes of the game are
either (a) successful revocation (k = 1) of a public key certificate of the malicious
node or (b) nothing (k = 0). The costs and benefits associated with each of the
possible actions depend on the outcome of the game and are summarized in Table
For instance, in the fixed cost model the cost of voting is v € [0, 1], the cost
of self-sacrificing is ¢; = 1 and the cost of the malicious node remaining in the
system after the game ends is ¢ € [0, 1].

3.2 Revocation Games with Payoffs & Fixed Costs

We describe here the payoff model of the revocation game, where costs and ben-
efits for each of the possible actions are fixed for all players. Like we did in
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83=A
A \Y S
A (-c, -¢c, -¢) (-c, -v—-c, -0) (0,B-1,0)
V | (-v-¢, -¢, -¢) | (b-v, b-v,0) (b-v,B-1,0)
S (B-1,0,0) (B-1, b-v,0) | B-1,B-1,0)
S3=V
A \ S
Al (-c -c, -c-v) | (-¢c, -¢, -c-Vv) | (-C, -C, -C-V)
V| (b-v,0, b-v) (b-v,0, b-v) (b-v,0, b-v)
S (B-1,0, b-v) (B-1,0, b-v) (B-1,0, b-v)
S3=S
A \ S
A (0,0,B-1) 0,0,B-1) 0,0,B-1)
\ (b-v,0,B-1) (b-v,0,B-1) (b-v,0,B-1)
S (B-1,0,B-1) (B-1,0,B-1) (B-1,0,B-1)

21

Table 3.2: Payoffs for the 3-player revocation game with fixed costs, where two
votes (majority) are needed for the revocation of the malicious node. S5 refers
to the current strategy adopted by player three.

the previous Chapter for the cost model, we start by delineating the NE in the
3-player game and then we generalize to the n-player static revocation game of
complete information.

3.2.1 3-player Game

The strategic representation of 3-player revocation game with payoffs G4 is shown
in Table [3.2] where player one chooses rows, player two chooses columns and
player three chooses matrices. The pure strategy Nash equilibria in such game
depend on the relationship between the benefits and costs and, by inspection,
they are:

e For B =1Ab > v. The unique pure strategy NE is the strategy profile is
(V,V,V).

e For B = 1 Ab < v. The pure strategy NE profiles involve at least one

self-sacrifice and abstentions for the other players.

e For (B<1Ab<v)A(B—-1>b—v> —c). The pure strategy NE involve
exactly one self-sacrifice and two abstentions.

e For (B<1Ab<wv)A(b—v>B—1> —c). The pure strategy NE involve
combinations of (a) one self-sacrifice with two abstentions and (b) two votes

with one abstention.
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It can be noticed that, except for the first case, there are multiple pure strat-
egy NE and no possible Pareto-optimal strategy profiles that could reduce the
plausible choices of the players. Since the players choose their actions simultane-
ously, this could be an issue because they should then agree to play exactly one
particular NE in a given game. Considering the fact that we do not assume any
kind of coordination between the players, there could be a scenario in which two
players choose a NE strategy s} but the third player chooses a different NE s3,
yielding a suboptimal payoff for all parties.

In order to mitigate the effects of the lack of coordination, players could
choose a NE strategy profile s* that yields the biggest individual expected payoff
when there is increasing uncertainty about the actions of other players. If there
are several NE profiles that give the same payoffs and, among those, there is
one for which all individual payoffs u; are independent on the coordination with
other players, then all players should converge to that particular NE, which then
becomes the risk-dominant NE.

In the 3-player revocation game G§ described in Table there are several
NE depending on the benefit parameters combinations. Among these NE, how-
ever, it appears that there are no risk-dominant strategies. If we consider the
case (B<1Ab<v)A(B—-1>b—v> —c), we see that it is impossible to
say whether one NE is less risky than the other two without additional informa-
tion about the players and their behavior. Therefore, we leave the investigation of
risk-dominant NE for future analysis. We provide, however, a selection algorithm
based on social welfare in Section B.5.11

3.2.2 n-player Game

We are now able to perform the Nash equilibria analysis in the finite n-player
static revocation game with payoffs G5,. As usual, we prove the following NE
by showing that each player ¢ has no incentive to deviate from his best response
strategy s;, provided that the others conform to their own.

In order to extend the number of players from 3 to n, let n,, define the number
of votes needed for the revocation as the majority of players, i.e. n, = [n/2] +
1. We note that n, could also be determined dynamically based on the game
parameters. Due to lack of time, we intend to explore that possibility in a future
work.

Theorem 3.1. For (B = 1) A (b > v), the n-player static game Gh has a unique
pure strateqy NE profile s* = (V,V,..., V), i.e.all players vote. The outcome of
the game is the revocation of the malicious node.

Proof. In G} the payoffs corresponding to the strategy profile s* = (V,V,...,V)
are u = (b—wv,...,b—v), i.e. they are the benefit minus the cost of voting for all
the n players. By looking at any player i, we see that s; = V indeed solves the
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maximization problem described in the definition (2.2), i.e. the NE. Formally,
we have

SZ:A ul(V,,A,V,,V):O (31)
si=V w(V,...,V,...,V)=b—w
SiZS ’U,Z'(V,...,S,V,...,V):B—l

and therefore we see that for any s; # s7 = V, the payoff u; is strictly smaller
than if s; = s}, for all players ¢. Thus, the strategy profile s*(V,...,V) is the
unique pure strategy NE. O

Theorem 3.2. For (B = 1) A (b < v), the n-player static game G% has pure
strateqy NE that are all strategy profiles s* that include at least one self-sacrifice
and all others abstain. The outcome of the game is the revocation of the malicious
node.

Proof. For the proof, we start by looking at the case where there is only one
self-sacrifice and n — 1 abstentions. In this case, the payoffs are v = (B —
1,0,...,0) = (0,...,0), where the self-sacrificing player could be any of the n
players. Assuming that all players other than i choose their s*,, we have that
s7 could be either S or A, depending on the sequence under consideration. The

payoffs are
if s7 =S (A, ...,s7,A,...,A) =0 (3.4)
ui(A,...,A,...,A) = —c (3.5)
wi(A,..., VA, ..., A)=—v—c (3.6)
if sy = A (s, ...,s5,...,8,) =0 (3.7)
ui(sy, -, Visipq, ..., 8n) =b—w (3.8)
S,87 1, 8,) = (3.9)

We see that if player ¢ is the only sacrificing participant, he has no incentive
to deviate from this strategy and if, on the other hand, he is one of the n — 1
abstainers, his payoffs are equivalent (= 0) for both self-sacrificing and abstaining.
By symmetry of the payoffs, any strategy profile s* that includes at least one self-
sacrifice and all other abstentions is a NE. ]

Theorem 3.3. For (B < 1Ab<v)]A[(B—1>b—v > —c)|, the n-player
static game Gh has pure strateqy NE that are all strateqy profiles s* that include
exactly one self-sacrifice and n — 1 abstentions. The outcome of the game is the
revocation of the malicious node.

Proof. In this proof, we choose one strategy profile s* = (s7,...,s}) that we
claim is a pure strategy NE and then, by symmetry of the payoffs, we extend it
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to any such profile as long as it has exactly one self-sacrifice and n—1 abstentions.
First, consider the strategy profile s* = (S, A,..., A). We see that s] = S and
si=AVj€ [2,...,n]. We now consider all possible strategies for player one,
given the other n — 1 strategies, and all possible strategies for a player j, given
the other n — 1 strategies.

For s7 = S :ui(s],A,...,A)=B -1 (3.10)
u(4,...,A) = —c (3.11)
w(V;A...JA)=—v—c (3.12)

For sj = A (S, A,...,85,...,4) =0 (3.13)
uj(S,A,...,V,...,A)=b—v (3.14)
wi(S,A,...,S,...,A)=B—1 (3.15)

As it can be seen, no player i wants to choose a strategy s; # s}, since this
would not give him a higher payoff. Thus, due to the symmetry of the payoffs
for all players, any strategy profile s* that has exactly one self-sacrifice and n —1
abstentions is a pure strategy NE. O

Theorem 3.4. For [(B < 1)A(b < v)]A[(b—v > B—1 > —c)], the n-player static
game G%, has pure strateqy NE that are all strategy profiles s* that include (a)
one self-sacrifice with n — 1 abstentions and (b) n, votes with n —n, abstentions.
The outcome of the game is the revocation of the malicious node.

Proof. For part (a) of the theorem, the proof is analog to the one of Theorem
and thus we will concentrate on part (b) here. In this sense, let us choose the
strategy profile s* = (V,...,V, A, ..., A) that has n, voters and n—n, abstainers.
The payoffs that correspond to s* are u = (b —v,...,b—v,0,...,0), where the
first group (b—v) belongs to the n, voters and the second group (0) to the n—n,
abstainers. We now distinguish between two sets of players in s*: g, is the set of
the n, players that voted and g, is the set of the n —n,, players that abstained. A
further assumption is that player ¢ belongs to g, and player j to g,. We are now
able to solve the maximization problem of equation for all players ¢ and j.

ifs; =V: wV,...,s;,A,...,A)=b—wv (3.16)
wi(V,..., A, A, .. A) = —c (3.17)
w(V,...,S,A,...,A)=B—1 (3.18)

ifs;=A: uj(V,...,V;s7,...,4) =0 (3.19)
wi(Vy . SV, V, A A)=b—u (3.20)
uj(V,...,V,S,A,...,A)=B—1 (3.21)

We see that, for any player ¢ of the g, set, his best response strategy is to
vote, given that the other players conform to their own best responses. The same
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argument holds for any player j of the g, set, since he is better off abstaining than
by choosing any other strategy, i.e. s7 = A. Therefore, due to the symmetry of
the payoffs, all strategy profiles that include (a) one suicide with n—1 abstentions
and (b) n, votes with n — n, abstentions are NE. O

3.2.3 Considerations on the Payoff Model with Fixed Costs

The theorems shown so far for the payoff model of the n-player static revocation
game depend on the relationship between benefit and cost parameters. The main
consequence of the addition of benefits in case of a successful revocation is that
the malicious node is always revoked at the equilibria, as opposed to the cost
model in which the revocation of the malicious node was not guaranteed for the
case where ¢ < v < 1.

The other important facts that emerge from the consideration of the payoff
model with no previous history are the following;:

e If benefits are equal to the costs, any strategy that revokes the malicious
node is a NE. In the case where the majority voting rule applies, it means
that any strategy that has at least n, votes or at least one self-sacrifice is
a NE.

o If benefits for voting are greater than the respective costs (B =1Ab > v),
the NE is unique and it consists of the all-vote strategy.

e If benefits for voting are smaller than the respective costs (B =1Ab < v),
any strategy that revokes the malicious node by at least one self-sacrifice
and all other abstentions is a NE.

3.3 Adaptive Revocation Games with History

In the previous Section, we analyzed the payoff model of the static revocation
game of complete information G} and we found the relative pure strategy NE.
This model was only based on the current game and the payoff functions did not
include the history of the previous payoffs, i.e. the number of keys that each
player had before he started the current game. Yet another character that was
missing in the first payoff model is the idea of a variable cost of self-sacrificing.
There could be a situation in which a node has to choose a strategy but it has
very few keys left. In such scenario, the cost of self-sacrificing should be greater
than the cost of the same strategy when the node has still many keys left since
in the former case the risk of remaining without any valid certificate would be
greater than in the latter case.

We now extend the initial payoff model of Section to include the history
of the previous payoffs and the variable self-sacrifice cost.
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3.3.1 Previous Payoffs

Let u; define the number of keys that each node has prior to entering the game.
We define the new payoff function u; with previous payoffs as

u; = u; + benefit — cost (3.22)

¢

and we refer to it hereafter as “payoffs with history”.

In a nutshell, the new payoff function is identical to the one defined in Table
but with the addition of the previous payoffs u; for all players. As it can be
noticed, the NE defined in Section do not change for the payoffs with history.
Since u; is a player specific constant value, each player’s best response function
is not affected. By consequence, we will not discuss the NE of the n-player static

revocation game any further as they have been already shown in Section

3.3.2 Variable Cost for Self-sacrifice

Up to now, we have considered only fixed costs and benefits for all players. With-
out the notion of the history of previous payoffs u; , we have focused on the pure
strategy NE for different combination and relationship between cost and benefit
parameters. The payoffs with history as defined by equation [3.22] allow us to
consider the idea that the cost of self-sacrificing should somehow depend on the
reserve of keys that each player has left, i.e. it should depend on u; . It appears
reasonable to assume that when wu; is high, player ¢ probably participated cor-
rectly in previous games, i.e. no or little abuse of voting of self-sacrifice against
benign players. Thus, he should not be charged too much for self-sacrifice. On
the other hand, if u; is low then self-sacrificing should be used with extreme
precaution because once the last keys are depleted, the node would not be able
to operate until the next time it establishes contact with the central authority.
Hence, the greater cost would penalize and quickly remove malicious nodes from
the system as well as limit its abuses.

To reformulate this idea into operational terms, we first define the variable
cost of self-sacrificing as c¢,; and then we consider several functions of u; that
could be appropriate to model it. In Figure [3.3.2| we plotted three functions:

(a) ¢si =1/u; . The cost ¢, is inversely proportional to the reserve u; . For low
or high u; the cost is very different. When u; =1 — ¢,; = 1, a self-sacrifice
would mean a complete temporary exclusion of node i from the system.

(b) ¢s; = max(h —g-wu; ,0). The cost decreases linearly with the reserve with a
slope of —g.

(¢) ¢si = max(h —a - (u;)%0). The cost decreases like the negative square

function of the reserve, meaning that c,; is relatively high for an initial range
of values u; and then decreases rapidly for greater u; .
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Figure 3.1: The cost of self-sacrificing cs; vs. the previous payoffs u; for three
different functions (h =4, g =1 and a = 1/4).

Any of the three proposed models has the desired behavior but some put
more or less weight on the quantity of keys u; that are left. In our analysis, we
consider the three functions and analyze their behavior for different values of the
coefficients.

3.3.3 2-player Game with Previous Payoffs & Variable Cost

In order to understand the impact of previous history and cost variability, we start
by looking at the 2-player version of the static revocation game with payoffs G5,
in which we include the previous payoffs u; and the variable cost of self-sacrifice
¢cs,i- Moreover, we define such game to be collaborative for the voting-based
strategies, meaning that players are better off collaborating when voting and
removing the malicious node than leaving it in the system. In other words, we
define b — v > —c. Assuming that the vote of the majority is needed for the
revocation, both players would have to vote or at least one would have to self-
sacrifice in order to revoke the malicious node. The payoff matrix of the game is
shown in Table

We know that the best response strategy of player i, given the strategies s_;
of the other players, is defined as

bri(s—i) = arg max u;(s;, S—;) (3.23)

5i€5;
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A V S
A (u;-c,uy -¢) (u;-c,uy -v—c) (U, Uy + B—cgp)
V| (@Uu'-v-c Uy -¢)| (uy+b-v,uy +b-v) (uy+b-v,u,y+B-cq»)
S [ (U +B-CopUp) | (U +B-Cog Uy +b—V) | (Uy+B-Csy, Uy + B—0Cs»)

Table 3.3: Payoffs for the 2-player static revocation game with previous payoffs
and variable cost for the self-sacrifice.

For instance, if we consider the 2-player game of Table with ¢;; = 1/u; , we
can compute the best response strategies of player 7 for all possible strategies of
player j and we obtain:

Aifu; < 5
bri(A) =arg max wu(s;, A) = W < pre (3.24)
s;,€{A,V,S} S otherwise
bri(V) =arg max w;(s;,V) = b Bt (3.25)
5;€{A,V,S} S otherwise

Aifb<vAu; <4
bri(S) = arg max wu;(s;,S) = Vifb>v/\ui_<3%b+1}

SiE{A,V,S}
Sif (b>vAuy > g U (b <vAu; > 5)
(3.26)
Similarly, when ¢;; = h — g - u; > 0 we have
Aif uy < h=c=B
bri(A) =4 "% S g (3.27)
S otherwise
bry(vy =24 " g (3.28)
S otherwise

Aifb<v/\ui_<%
bri(S) = qV if b> v Au; < beBih (3.29)
Sif (b>wvAu; > ==Y U (b <o nu; > B2E)
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Finally, if cs; = h —a - (u; )* > 0, the best response functions are

Aif u; <y/P==BAhL>c+B
bri(A) = a (3.30)

S if u; > h=c=

a

Vifu <\/|EEBHARL> B+v—b
bri(V) = o S (3.31)
Sifu; >/ 7= b—v=B+h

Aifb<vA(uy <y/2=EAh>B)
bri(S) =V ifb>vA (uy <y/Z=BH AR > B+v—b) (3.32)

Sif (b>vAu; > /=B b <ony > /28

As it can be noticed, when player two chooses to abstain, player one’s best

CU

response strategy is either to abstain or to self-sacrifice, but he should not vote
in any case. Indeed, u;(V,A) is the lowest among all possible payoffs given
player two’s abstention. Moreover, the choice between abstain or self-sacrifice for
player one depend on his reserve of keys that is still left: if he has enough keys
(uy > thresholds), he should definitely self-sacrifice and, if not, he should abstain.
When player two chooses to vote, player one’s choices are limited to either vote
himself or to self-sacrifice. Since we assumed a collaborative voting game, i.e.
b — v > —c, this comes naturally since voting brings him always a better payoff
than abstaining. Finally, if player two chooses to self-sacrifice, player one has all
three strategies at his disposal, depending on the relationship between the cost
and benefit parameters and his reserve u; .

Having considered the cost functions and best responses when c,; > 0, we
now list them for ¢, ; = 0, according to the definitions of Section

bri(A) = S (3.33)
Vifb>vAb—v>B

br(vy=4 TR (3.34)
S otherwise
Vitb>vAb—uv>B

bri(S) =4 U (3.35)
Sif(b>vAb—v<B)Ub<w

In order to make sure that the threshold values for u; of the different best
response functions are always positive, we have to define the minimal value for
the parameter h in the linear and square functions. We can see that if

h>max(B+¢,B—b+v,B)=B+c¢ (3.36)

then all threshold values are positive and thus all possible strategies present in
the best response functions are available for each player.
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Player 2

o
Player 1 QOO«()‘“ Malicious
& node
k
O

Bogus messages

Figure 3.2: Two well-behaving nodes (player one and player two) start a revoca-
tion game against the malicious node, once the bad behavior has been identified.
All nodes are in communication range with each other.

3.3.4 Numerical Example of the 2-player Game

As we have seen, the best response functions found in Section often depend
on more than just one parameter and the interpretations in such a general scenario
are far from being trivial. For this reason, we develop here a simple situation in
which there are two nodes that start playing the revocation game with previous
payoffs and variable cost from Table [3.3]

The two well-behaving nodes (player one and player two hereafter) and one
malicious node are all in communication range with each other, but initially player
one and player two are not aware of the malicious nature of the third node.
At a certain point in time, however, one of the two players somehow registers
the presence of the malicious node and starts the revocation game. Figure [3.2
illustrates this scenario.

We consider four versions of the same revocation game but with different
previous payoffs u; . As we can already see in Figure the decision thresholds
for the linear and square cost functions are relatively high with respect to the
inverse function. In this context, for the first game Gé we assume a relatively
large number of remaining keys for each player whereas in the second game, G4I,
player one has still more than enough keys left but player two is running out even
with the c¢s; inverse function. The third game, GIH | has player one low on keys
but player two still enough and in the last game, G4V, both players are low on
keys for all cost functions. A visual comparison of the payoffs is shown in Figure
and the exact values of the other parameters are the following:

e Forall games: h=4>B=g=1>¢c=05>v=03>a=025>b=
0.2.

e GLiuy =3>u;, =2.

o GIli uy =15>u; =08,
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V(h-B)/a=3.46
(h-c-B)/a=3.16

(h-B)/g=3

(h-c-B)/g=2.5

1/(B-b+v) = 0.91
1/(B+c) =0.67

& Player 1

# Player 2

Game

Figure 3.3: Previous payoff functions u; for the four revocation games GL, G
GLT and GIV. The shaded horizontal regions represent the threshold intervals
for each of the three ¢, ; cost functions (violet for the inverse, blue for the linear
and yellow for the square function).

A v s
A[(25,15) ] (25,12) | (3,25)
v [(22,15) | (29,1.9) | (2.9,25)
S [ (367,2) | (3.67,19) | (3.67,25)

Table 3.4: Payoffs for the 2-player static revocation game Gé when ¢s; = 1/u; .

o GIH:ul =05 <uy; =08.
o GIV:iur =u; =05.

With the given numerical values, we are able to compute each player’s best re-
sponse strategies and therefore the NE of the four games.

GZ Nash Equilibria

We start by delineating each player’s best response strategies according to the
respective payoffs and cost functions.

Csi = 1/u;  The payoffs are shown in Table and the best responses are:

bri(A) = S bra(A) = S (3.37)
bri(V) = S bra(V) = S (3.38)
bri(S) = S bra(S) = S (3.39)
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Since the NE are the mutual best responses, the unique pure strategy NE in this
case is the profile s* = (s7,s5) = (5, 5), i.e. both player sacrifice themselves and
the malicious node is revoked. The payoffs corresponding to s* are u = (3.67,2.5).

Csi =h—g-u; The best responses in this case are:

b7“1 (A) =5 b?“Q(A) =A (3.40)
bri(V) = S bro(V) = V (3.41)
b?’l(S) =AUS bT’Q(S) =A (3.42)

The unique NE strategy profile is s* = (S, A) with v = (3,2), where player one
sacrifices himself and player two abstains. This reflects the situation in which
they were before starting the game, since player one had still a largely sufficient
reserve of keys but player two’s reserve was below the two limiting thresholds, i.e.
uy; < (h— B —c¢)/g. Thus, the choice to sacrifice for player one and to abstain
for player two appears a very rational decision.

csi=h—a-(u;)? The best responses are:

bri(A) = A bra(A) = A (3.43)
bri(V) =V bra(V) =V (3.44)
bri(S) = A bra(S) = A (3.45)

This situation reflects the behavior of the players when both u; are below all
thresholds. There are two NE strategy profiles (A, A) and (V, V) with u4 4y =
(2.5,1.5) and u(y,y) = (2.9,1.9). Clearly, the unique Pareto-optimal NE is the
profile s* = (V, V), i.e. the unique rational strategy choice.

G1! Nash Equilibria

Csi = 1/u;  As usual, the best response functions are:

le(V) =5 b?“Q(V) =V (3.47)
bT‘l(S) =8 bT‘Q(S) =A (3.48)

The unique pure strategy NE is s* = (5, A) with payoffs u(g 4) = (0.83,0.8).

Csi =h—g-u; Since all u; are below the thresholds, the best responses are
equivalent to ones found in Section for ¢s; = h —a- (u; )%. Therefore, the
NE are the same and the unique Pareto-optimal NE profile is s* = (V, V) with
u=(1.4,0.7).
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csi=h—a-(u )2 Like in the previous case, the unique Pareto-optimal NE

profile is still s* = (V, V) with v = (1.4,0.7).

G4!T Nash Equilibria

Csi = 1/u;  The best responses are:

bri(A)=A bro(A) = S (3.49)
br (V) =V bra(V) =V (3.50)
b?“l(S) =A b’l“Q(S) =A (3.51)

In this case, we have two pure strategy NE: (A,S) and (V,V). The first
NE would result in the payoffs u4 ) = (0.5,0.55) and the second in wyyy =
(0.4,0.7). We can deduce that the final choice between one NE profile will de-
pend on the level of selfishness and the will to take risks of the nodes. If player
one chooses to vote, he will be sure that no matter the NE choice of player two,
player one will get a payoff of 0.4 and this seems to be his safest strategy. Player
two, on the other hand, has the same dilemma since if he chooses to self-sacrifice,
he will be sure that he will get at least a payoff 0.55. From the analysis, the
safest strategy for both players would be (V,S), which would yield the payoffs
ucy,s) = (0.4,0.55). Even though (V,S) is not a NE, in case of increasing uncer-
tainty and node selfishness this risk-dominant strategy would probably be the
less costly for both players. We will discuss the unique NE selection criteria in

Section B.5.11

csi=h—g-uf U csi=h—a-(u)? The unique Pareto-optimal NE pro-
file is s* = (V, V) with v = (0.4,0.7).
GLV Nash Equilibria

In this game, all u; are below all thresholds for all c¢;;. Therefore, the best
response functions and NE are the same for all ¢;; and they are:

bri(A) = A bra(A) = A (3.52)
bri(V) =V bro(V) =V (3.53)
b?“l(S) =A b’l“Q(S) =A (3.54)

The unique Pareto-optimal NE profile is s* = (V, V) with u = (0.4,0.4).

3.3.5 n-player Game with Previous Payoffs & Linear Cost

In the 2-player game described in Section we have found the best response
functions br;(s—;) for any of the two players. We now use these results to develop
the n-player game GIP with previous payoffs and variable cost of self-sacrifice,
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assuming b — v > —c. As usual, we fix the number of votes needed for the
revocation of the malicious node to n,. In absence of proofs supporting a more
complex model, we express the relationship between reserve of valid keys u; and
the self-sacrifice cost c¢s; with the linear function c¢s; = h —g-u; > 0.

In the 2-player game, whenever player two abstains, the outcome of the game
is that the malicious node remains in the system except if player one self-sacrifices.
Assuming we are player one and n, = 2, if player two chose to abstain our best
response would be defined as in Equation .

Since payoffs are only determined by our strategy and the outcome of the
game, we will prove that bri(A) = br;(s—;) for any sequence of strategies s_;
in the n-player game, as long as s_; is composed by at most n, — 2 votes and
all other abstentions. For instance, br;(s_;) = bri(A) for any combination of
s—i=(AA,...;,A) up to s_; = (A,..., A, V,..., V), as long as the number of
votes is smaller or equal than n, — 2. By analogy, we have that br;(s_;) = bri(V)
for any s_; that has exactly n, — 1 votes and all other abstentions. The last case,
bri(s—;) = br1(S), holds for any s_; that has at least one self-sacrifice.

By grouping these statements and assuming that b — v > —c¢, we are able to
obtain the best response functions for the n-player static revocation game G’
with previous payoffs and variable cost of self-sacrifice.

Lemma 3.1. In GY’, if s_; is a combination of at most n, — 2 votes and all
other abstentions, the best response function for any player i is defined as
A if uy < b=B=c

9 (3.55)
S otherwise

bri(s—;) = arg max u;(s;,$—;) = {

si€{A,V,S}

Proof. In order to prove the theorem, we look at the payoff functions for the
different possible s;, given all s_; that respect the condition of the theorem.

s;=A ui(A,s-) =u; —c (3.56)
si=V wi(V,s—) =u;, —c—v (3.57)
$; =09 ui(S,5—) =u; +B—h+g-u; (3.58)

From the above equations we know that the strategy vote will never be a best
response since the associated payoff is always lower than the one given by abstain.
The only choice is then between the strategy S and A. Solving the inequality
B —h+g-u; > —c we have that the best response of player i is to abstain if

u; < % and to self-sacrifice otherwise. O

Lemma 3.2. In GIY¥ and assuming b —v > —c (collaborative voting game), if
s_; 18 a combination of exactly n, — 1 votes and all other abstentions, the best
response function for any player i is defined as

= h—B—v+b
) = {V Y < (3.59)

br;(s_;) = ar max  u;(8;, S—
Z( 7,) gSZE{A7V7S} 'L( T KA

S otherwise
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Proof. From the formulation of the theorem we know that b —v > —c and there-
fore we already exclude the abstain strategy. The choice is then between S and
V. The list of the payoffs for these strategies gives

si=V uwi(V,s—) =u; +b—v (3.60)
si=2S8 wi(S,5-3) =u; +B—-h+g-u; (3.61)
By solving the inequality B — h + g - u; < b— v we obtain that br;(s_;) =V if
u;, < % and bri(s—;) = S otherwise. O

Lemma 3.3. In GI?, if s_; is composed of at least one self-sacrifice or at least
n, votes, the best response function for any player i is defined as

. — _ h-B
Aifb<vAuy; <=
bri(s_;) = ar max  ui(s;,5_;) =V ifb>vAu, < h=B-vtd
i(s-4) gSiE{AvVvS} (81,5 / ' h Bg +b h—B
. _ —B—wv _ _
Sif (b>vAu; > =2 U (b <vAuy > *57)

’ (3.62)

Proof. First of all, we list the payoff functions for all possible strategies s; as

s; =A wi(A,s-;) = u; (3.63)
5=V wi(V,s—i) =u;, +b—v (3.64)
$; =08 ui(S,5s—) =u; +B—h+g-u; (3.65)

Next, we consider that b < v and therefore we can already exclude the strategy
vote as possible best response. Therefore the choice is between A and S. The
solution to the inequality B—h+g-u; > 0 tells us that bry(s—;) = S if u; > %
and bri(s_;) = A otherwise. On the other hand, when b > v we can already
exclude the strategy abstain as possible best response, which leaves us the choice
between S or V. By solving the inequality B —h + g-u; > b—v we obtain that
bri(s—;) = S if u; > W and bri(s—;) = V otherwise. O

It is important to note that the self-sacrifice strategy can only be chosen if
the final payoff u;(S, s_;) is greater than zero, i.e. if u;(S,s_;) = u; +B—cs; > 0.
In the linear cost function game, this is equivalent to

__ h—-B

> 3.66
w >t (3.60)

3.4 Linear Cost Function Parameter Optimization

We are now ready to develop the linear self-sacrifice cost function even further by
giving bounds on the required parameters such that there is no or little redun-
dancy in the revocation process. In other words, we avoid unnecessary operations,
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such as having more than one self-sacrifice in a game, and we derive upper and
lower bounds of the linear cost function parameters.

In Figure 3.3.2] and from the definition of the linear cost function of Section
we can see that the linear function has two parameters as usual: h is the
y-intercept and g the slope. We now bound these values such that there is no
or little redundancy in the revocation process, i.e. no unnecessary votes or more
than one self-sacrifice in a NE strategy profile.

3.4.1 Y-intercept parameter h

We know that the threshold values of the best response functions need to be
positive and therefore we have

h>max(B,B+c¢,B—b+v)=B+c (3.67)
> B+c (3.68)

3.4.2 Slope parameter g

First of all, we want that c,; > 0 for all players F;, 7 = 1...,n. In mathematical
terms, we need that

csi=h—g-u; >0, Vi=1...,n (3.69)

which is equivalent to

csi=h—g- mlaxui_ >0 (3.70)
h
— " >y (3.71)
max; u;

Then, we want that the following conditions are met for a player ¢* that has
the highest u; , i.e. a player who satisfies ¢* = arg max; u; .

1. Guaranteed revocation. No abstain strategy is a best response to all s_;

that have no self-sacrifice or at most n, — 2 votes. In other terms, we need

that
h— B —
maxu; > (3.72)
z g
h— B —
g>———° (3.73)
max; u;

2. System-wise efficiency. At most one self-sacrifice strategy is present in

each NE profile or, in other words, we do not allow br;(s—;) = S, if s_;
already has one or more self-sacrifices. We can guarantee this by setting
the maximum payoff of the game lower than the largest threshold.
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(a) If b < v:
- B
maxu; < (3.74)
v g
h—B
g< =2 (3.75)
max; u,
(b) If b > v:
h—B— b
maxu; < g“+ (3.76)
h—B— b
g< T2 (3.77)
max; u;

Bounds for g

Finally, by merging the upper bounds (3.71)), (3.75), (3.77) and the lower bound
(3.73) we obtain that

o ifb<wv: LB LB
TP g T2 (3.78)
max; u; max; u;
o ifb>wv: LB LB b
hoPme g o omudh (3.79)
max; u; max; u;

In the end, we see that the value of the slope ¢ changes from game to game,
depending on the maximum value of u;, at each time. It also means that the
thresholds are not stationary either.

3.4.3 Nash Equilibria with Linear Cost

In Section we have given the theorems that define the best response functions
for each player in the n-player revocation game G5*. We will prove here that there
exists at least one NE profile s* in such game as well. This result is of extreme
importance since it will be a necessary requirement for our unique optimal NE
selection algorithm that we present in Section [3.5.1

Claim 3.1. In G and assuming b — v > —c (collaborative voting game) and
b < v, there exists a pure strateqy NE profile s* with exactly one self-sacrifice
and n—1 abstentions. Moreover, the player that commits self-sacrifice is the one
with the largest u; .

Proof. By definition, a Nash equilibrium strategy profile s* is such that no player
could achieve a better individual payoff by unilaterally deviating from s* while the
others comply to it. Let us consider the strategy profile s = (A,..., A, S, A,..., A),
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where the only S strategy is adopted by the player with the largest u; (we call
him Pg) and all the remaining n — 1 players adopt the strategy abstain (we refer
to any of these players as P4). Using the bounds found in Section for h and
g, we will show that s* is always a NE in all such GLP.

First, let us analyze the individual payoffs for each player and for all his
possible strategies, given the strategies of the other n — 1 players.

(a) For any Pjy:

upy, (A, i) = up, (a5 ;) =Up, (3.80)
up,,(V,5-i) = up, (vs ) =up, +b—v (3.81)
’U/PA7(S, S—i) = UPA7(S7571_) = u]_DA + B — CS,PA (382)

Here, we can already exclude the second possibility since the cor-

responding payoff is always smaller than the other two. We are left with
up, (As_;) and up, (s, ,) and we can see that

Up, (S,s_i) — UPy(As_;) = —Cs,Py <0 (383)

UPp,(Sis—i) < UPa,(As_s) (3.84)

Therefore, no player P4 has incentive to unilaterally deviate from his equi-

librium strategy abstain.

(b) For Pg, where Up, = MAax; U, :

Upg, (A, 8-1) = Upg (As_;) = Up, — C (3.85)
upg (V,5-i) = Upg (V,s_;) — “1_95 —Cc—v (3.86)
upg, (S, 5—i) = upg (s,5_) = Up, + B —¢s pg (3.87)

Again, to vote is not an option for Pg since the strategy abstain would always
give him a better payoff. Like in the previous case, have to analyze up, (a5
and up, (s,_,) and we obtain

Upg (S,s_;) — UPg,(As_;) = B — Cspg +¢ (3.88)
=B—-h+g-u; +c¢ (3.89)

(@) h—B—
SB-ht " Cup te (3.90)

max; u,

h—B—

Upg

—0 (3.92)

where (a) follows from the lower bound 1} and (b) from up, = max; u; .
Summing up, we have that

Upg (S,s_;) — UPg (A,s_;) >0 or (393)

uPs,(S,S,i) > ’U’PS,(A,S,.L') (394)
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Therefore, Ps has no incentive to unilaterally deviate from his equilibrium
strategy S.

In the end, no player is better off deviating from his equilibrium strategy and
thus s* is a Nash equilibrium in any n-player revocation game G.F. O

3.5 Social Welfare & NE Selection

At this point, we have seen that both in the fixed and variable cost models the
pure strategy NE are not always unique. In practical terms, it means that there
are situations in which either one of the possible strategy profiles could be chosen
as the NE of the game. What is missing, however, is a way to enforce the choice
of exactly one such NE for all the players in the game. Indeed, only if all players
make a consistent decision about one particular NE, the game ends in an optimal
and predictable fashion. Nevertheless, we do not assume any kind of coordination
among players.

The method that we use to select a single NE, in case more are present, is
based on the principle of the price of anarchy, which takes into account the utility
of all players or, in other words, the social welfare function w. There are different
kinds of these functions and two among them are the utilitarian and egalitarian

functions:
n
Utilitarian: w(s) = Z u;(s) (3.95)
i=0
Egalitarian: w(s) = minu;(s) (3.96)
K3
By maximizing w(s) over all possible strategy profiles s = (s1,...,s,) € S, we

achieve the social optimum welfare

Social Optimum = mag;w(s) (3.97)
s€

The price of anarchy (PoA) is then defined as the ratio of the social optimum
welfare to the welfare of the worst NE strategy profile s*

PoA — So?ial Optimum (3.99)
mingeNg w(s*)

The idea is that it gives a measure of how well selfish players (NE) perform
compared to the social optimum.

As an example, in the 2-player games described in Section we see that
the game GZ/! has two pure strategy NE (A, S) and (V, V) with ua,s) =
(0.5,0.55) and wu(y,y = (0.4,0.7) but none of them is Pareto-optimal with re-
spect to the other. To solve the issue and help players make consistent decisions,
i.e. both players choose exactly the same NE strategy, we use the notion of social
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optimum but in a slightly different way. We do not try to maximize the welfare
function w over all possible profiles s but only over the NE profiles s*, since we
are interested in selecting one NE that is optimal with respect to the given w.
When there is prior agreement upon the social welfare model, both players are
able to make independent but mutually consistent decisions that will ultimately
select a unique NE. The choice then between the egalitarian and the utilitarian
functions depends on the idea of social welfare: if we take the sum of all individ-
ual payoffs as social welfare, then we would choose the utilitarian function; if we
think that the best is when everybody has a more uniform quantity of keys left,
then we would choose the egalitarian function.

In order to better visualize the NE selection process using the modified social
optimum, we refer back to the Gﬁf I game.

Utilitarian model (3.99)
Social Optimum =0.4+4+0.7=1.1 with NE s, = (4,5)  (3.100)
Egalitarian model (3.101)
Social Optimum = 0.5 with NE st = (V,V)  (3.102)

As it can be noticed, any of the two welfare functions removed the corresponding
suboptimal NE and left us with a unique NE profile s*. In this case, there is
no uncertainty about which NE profile to choose since, depending on the social
welfare model, we are left with only one NE.

3.5.1 Unique Optimal NE Selection Algorithms

We now describe the sequence of event that are encountered in a revocation game
and afterwards we define the unique NE selection algorithms more formally. We
assume that each node ¢ has a unique ID variable called thisNodeID (the serial
number of the valid certificate that is being used) and a reserve of keys u; > 0.

Once the malicious node has been identified, a well-behaving node starts
a revocation game and sets the game variable initiatorID equal to his own
thisNodelID. At this point, all participating nodes broadcast their own 2-tuple
(u; , thisNodelD) so that each player knows the reserve of keys and the unique
ID of all participants. All NE computations are then completely distributed and
no other messages need to be transmitted.

Once the NE have been computed, we start the optimal NE selection proce-
dure, which is based on two algorithms: NESelect and OptNE. The inputs to the
second algorithm are the first optimality criteria and all NE profiles; the output
is a set G of optimal NE profiles. The first algorithm then looks whether this
set is a singleton or not and if so, it outputs the unique optimal NE profile s*,
otherwise it changes the optimality criteria and restarts. If this process ends up
with G having more than one optimal NE as well, the player that initiated the
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revocation game is then asked to select one NE from the set G at random and
to broadcast it to all participants. The final output of the two algorithms is the
unique socially optimal NE profile s*.

Algorithm 1 NESelect.
1. AlINE = {s|s € NE}
2: if |AIINE| =1 then

3:  s* = getNext(AlINE)

4: else

5. G = OptNE(utilitarian, AIINE)

6: if |S| =1 then

7: s* = getNext(G)

8: else

9: G = OptNE(egalitarian, AlINE)
10: if |S| =1 then

11: s* = getNext(G)

12: else

13: if thisNodelD = initiatorID then
14: s* = SelectRandom(G)

15: Broadcast(s*)

16: else

17: s* = ReceiveOpt(initiatorID)

Algorithm 2 OptNE(firstOptCond, AlINE).
1: if firstOptCond = “utilitarian” then

2 wils) = Yo uils)
3:  wo(s) = min; u;(s)
4: else

5 wi(s) = min; u;(s)
6 wals) = X0 guils)
7
8
9

. G = {s|s = arg maxsc Ayng|wi ()]
. if |G1] =1 then

G=G;
10: else
11: G = {s|s = argmaxseq, [wa(s)]
12: G =Gy

13: return G

The function getNext(.) takes the next in line element of (.), SelectRandom(.)
chooses one element of (.) at random, Broadcast(.) sends a broadcast message
with the element (.) to all neighbors and ReceiveOpt(.) waits for the broadcasted
element sent by the node with the (.) ID.

We devote Chapter 4] to the performance analysis based on simulations of the
two algorithms NESelect and OptNE.
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3.5.2 Parameter effect on Example Games

We are now able to test the parameter bounds and equilibrium selection algo-
rithms found earlier to see how they perform in some typical example games. In
the 2-player game, we analyze the same four scenarios that have been studied in
Section The revocation of the malicious node is performed when there is
at least one self-sacrifice or with at least n, votes.

2-Player games

The parameters of the 2-player games G5 are the following
e For all games: h=4>B=1>c¢c=05>v=03>b=0.2 and n, = 2.
o Gl ul =3>u; =2.
o Giiul =15>u; =0.8.
o Gy =05 <u; =0.8.
. G%V: u; = uy = 0.5.

We also define the three thresholds values appearing in the best response functions

as
h—B-—
try ::4444254449 (3.103)
h—B—v+b
frg — L2 VTD (3.104)
g
h—B

The slope parameter g is chosen as the middle point between the lower and upper
bounds. For b < v it is

h—B— h—B
7_6 <@g< ——— (3.106)
max; u, max; u;
2(h— B) —
g= =B -c (3.107)
2 - max; u;

We refer the reader to Figure for a representation of the different previous
payoffs and thresholds for each game.
G1 Nash Equilibria

We have that 0.83 < g < 1 and thus we choose the middle point g = % ~ 0.92.
Then, the threshold values are try = 2.72, tro = 3.15 and trg = 3.26.



3.5. SOCIAL WELFARE & NE SELECTION 43

& Player 1
H Player 2

Game

Figure 3.4: Previous payoffs in the different 2-player games with the respective
threshold intervals (yellow, blue, violet and green).

We are now able to compute the best response functions of both players. We
obtain

bri(A) =S bra(A) = A (3.108)
bri(V)=V bro(V)=V (3.109)
bri(S) = A bra(S) = A (3.110)

The NE are then (S, A) and (V, V) with u(g 4y = (2.76,2) and uyy) = (2.9,1.9).
Applying the NE selection algorithm defined in Section we identify the
unique NE profile s* = (V, V).

G4 Nash Equilibria

As we did before, 1.67 < g < 2 and thus we choose g = % ~ 1.83. The threshold
values are tr; = 1.37, tro = 1.58 and trg = 1.64. The best response functions are

bri(A) = S bra(A) = A (3.111)
bri(V)=V bro(V) =V (3.112)
le(S) =A b?”Q(S) =A (3.113)

The NE are the same as in G4: (S, A) and (V, V) with u(g,4) = (1.245,0.8) and
uey,yy = (1.4,0.7). The unique socially optimal NE profile is s* = (V, V).
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GL!T Nash Equilibria

The slope is bounded by 3.125 < g < 3.75 and thus g = 3.44. The thresholds are
tr1 = 0.73, tro = 0.84 and trg = 0.87. The best responses are

bT‘l (A) =A bTQ(A) = S (3.114)
b (V) =V bra(V) =V (3.115)
bri(S) = A bra(S) = A (3.116)

and the NE are (A, S) and (V, V) with u(4 ) = (0.5,0.55) and u(y,y) = (0.4,0.7).
The optimal NE is s* = (V,V
GLV Nash Equilibria

As usual, 5 < g < 6 and thus ¢ = 5.5. The threshold values are tr;y = 0.45,
tro = 0.53 and tr3 = 0.55, while the best responses are

bT‘l (A) =5 bTQ(A) =5 (3.117)

bri(V)=V bra(V) =V (3.118)

bri(S)=A bra(S) = A (3.119)
The NE profiles are (S, A), (V, V) and (A, S) with ug 4y = (0.25,0.5), uyy) =
(0.4,0.4) and w4 ) = (0.5,0.25). The unique optimal NE is s* = (V, V).

3-Player Games

The main game parameters are the same as for the 2-player game defined earlier
(ny, = 2). The previous payoffs in the new 3-player games are

° Gé: uy =3 >u; =2.9>u; =1.
° Gél: U =3>uy; =ug = 1.

Figure [3.5] shows the two scenarios.

G% Nash Equilibria

According to the theorems of Section the mutual best responses of the three
players define the following NE profiles:

= (A,8,4) — s = (3,2.56,1) (3.120)

= (S,A4,4) — wgan =(276,29,1) (3.121)
53 =(V,\V,A) —  uwya = (2.9,2.8,1) (3.122)
=(V,AV) — wyav) =(29,2.9,0.9) (3.123)

= (AV,V) = uayy) = (3,2.8,0.9) (3.124)
(3.125)
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Figure 3.5: Previous payoffs in the different 3-player games with the respective
threshold interval (yellow).

When identifying the unique optimal NE profile s*, we follow the algorithm de-
scribed in Section [3.5.1] First, we select the utilitarian function and choose all
profiles s7 that are socially optimal NE: s3, s} and s5. Next, we see that there is
no unique such profile and therefore we select the most egalitarian among them,
which is s3. The unique optimal NE is thus the profile s* = (V,V, A).

G Nash Equilibria

Likewise, the NE profiles are:

= (S,A,4) — wgana =(276,11) (3.126)

= (V,V,4A) — uwya =(29,09,1) (3.127)
si=(V,A V) —  uway) = (29,1,0.9) (3.128)
si=(AV,V)  —  uavy = (3,0.9,0.9) (3.129)
(3.130)

The NE selection algorithm dictates that we need to select the profiles s3,
s3 and s3. Next, we see that there is more than one such profile and thus we
select the most egalitarian but here again, we have two possible profiles: s3 and
s3. Therefore, we carry on with the algorithm which selects then the egalitarian
optimality criteria in the first place. As a result, we are left with only one NE,
s}, which is then the unique optimal NE s* = (S, A, A).

3.6 n-player Model Complexity

Variable costs and previous payoffs are a natural extension to the initial fixed costs
model. By adding benefits and dynamic parameters, we enriched the revocation
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games but at the expense of increased analytical complexity. Here we show that,
despite the additional parameters, we are able to contain the size and time of
computation of the best responses of the n-player static revocation game.

Already in the 2-player game, we have seen that an extensive list of all possible
best responses was needed in order to ascertain the NE. If we wanted to go beyond
the simple two player scenario to a finite n-player game, we would not be able to
do so in a compact fashion, since we would need to list all possible best responses
for all players and all combinations of strategies. However, since u; depends only
on the total number of players that choose a given strategy and not their order or
identity, we are able to reduce the length of such list and therefore to accelerate
the process of finding the best responses in a finite n-player revocation game.

In order to understand why this is important, let L define the number of en-
tries necessary to extensively represent the total amount of best response strate-
gies for the n-player revocation game. If each player’s payoff depended on the
order of the sequence of the other n — 1 strategies, we would have

Li=n-3""1= g?)" — O(n-3") (3.131)

Since in our revocation game the quantity L does not depend on the order of
strategies but only on the number of each strategy {A,V,S}, we are able to
reduce the number of entries necessary to

n—1 n—1-k n—1
3 n 1
Ly=n()_ > D=n>_ n—k)= §(n2+n) = §(n3+n2) — 0(n?)
ks=0 k=0 ks=0

(3.132)
where k, is the number of players that choose to vote and k; is the number of
players who choose to self-sacrifice. Assuming n = 10, the number of entries for
the best response strategies would be

L1 =10-3'% = 590.490 (3.133)
1.100
Ly =10 == = 5500 (3.134)

where the ratio is L1/Ly =~ 107 for only 10 players.

We see that by keeping the payoffs dependent on the number rather than on
the order of other player strategies, we are able to represent the best responses in
a polynomial rather than exponential time and thus we could be able to compute
the NE much faster. Unfortunately, this is not the case as we will see later on.

3.7 Summary

In this Chapter, we extended and enriched the static revocation games of complete
information by adding, on top of the costs, the benefits for a successful revocation
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of a malicious node. The gradual development of the new model begun with
the analysis of the simple payoff model with fixed costs, without any notion of
previous history of games nor cost-variability. In this framework, we showed that
in the n-player revocation game with fixed costs, the malicious node is always
revoked by the well-behaving players, as long as the payoff for the vote or self-
sacrifice strategies are greater than the cost of the malicious node still remaining
in the system. Under this condition, if the reward for voting/self-sacrificing is
greater than the reward for self-sacrificing/voting, the NE is unique and it is the
all-vote/all-self-sacrifice strategy.

With the inclusion of the history of previous payoffs and the variable cost of
self-sacrificing, the payoff game model acquired a more dynamic behavior since
it allowed for the cost to depend on the actual reserve of keys that each player
has still left prior to entering the current game. By the trade-off between aggres-
siveness and conservatism and without further proof of complexity, we chose to
describe this individual cost by a simple linear function of each player’s reserve of
keys. After formally showing the best response strategies in the n-player revoca-
tion game with previous payoffs and variable (linear) cost, we then bounded the
required parameters in order to achieve a system-wide efficient revocation of a
malicious node, i.e. without generating more cost for the whole system than what
is needed for a successful revocation. In addition to the bounds, we developed an
algorithm that selects the unique optimal NE in case many are present, according
to the social optimum welfare functions. We tested the new implementation on
several 2- and 3-player revocation games and obtained promising results that will
be further validate by simulations in the next Chapter.

We also found interesting the fact that the extension of our model to a finite
n-player game would only require a polynomial amount of storage for the best
response functions, compared to the exponential order in general. This is due
to the fact that each player’s payoffs do not depend on the order of the other
strategies but just on their total number. However, as we will see, this does
not imply that a unique optimal NE strategy profile can be found in polynomial
time. Since each strategy profile could have different payoffs for different players,
the search for an optimal NE requires an extensive listing of all best responses.
Ultimately, the optimal NE search problem was shown to be NP-complete [9] 5],
0).






Chapter 4

Performance Evaluation

The analytical results achieved in Chapter [2| and [3| have proven to hold in the
simple example games that have been discussed. Our intent to revoke the mis-
behaving node’s public-key certificate by its neighbors has been fulfilled, as well
as the unique determination of an optimal NE strategy profile. Even with many
candidate NE, our algorithm has been able to select the socially optimal profile
that would result in an efficient system-wide revocation and, at the same time,
to preserve the assumption about the selfish nature of the nodes.

There are, however, aspects that the 2- and 3-players games considered so
far have not been able to capture completely. For instance, what would be the
behavior of the players when their number is greater than 37 Would they prefer
more to sacrifice one node or to contribute to the voting together? And also: is
the revocation always guaranteed, as it was in the analytical model? If so, were
the nodes able to find one optimal NE in a unique manner or should the rely on
the optimal selection by the revocation game initiator?

In this Chapter, we try to answer to these (and other) questions by looking
at the result that have been provided through simulations of the payoff games
defined in Chapter

4.1 Simulation Environment

The game model that we tested was the payoff model with previous payoffs and
variable (linear) cost of self-sacrifice. In Chapter [3| we called this game GZF.
The number of votes needed for revocation n, has been set to the majority of
the players, according to equation . The code that implemented the unique
optimal NE selection algorithms NESelect and OptNE can be provided by the

author upon request.

49
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The simulations have been performed in Matlab software environment® on a
Windows based PC (Core 2 Quad, 2.33 GHz) as follows. We run 10 iteration for
each number of players between 2 and 9 with b < v. We then run 10 simulations
for each number of players between 2 and 6 for the case b = v and b > v. The
main reason for this difference is that when b = v or b > v, the predicted NE
profiles are the optimal voting NE. One can show that the final payoff for this
strategy would be greater than the payoff for the self-sacrifice optimal NE, due
to the strict upperbound on g.

Players The number of players varied from 2 to 9. The role played by each of
them is equal, i.e. there is no player with special abilities nor particular treatment
with respect to the others.

Iterations The number of iterations for each number of players was set to 10.
In other words, we performed 10 simulations for the 2-player game, other 10
simulations for the 3-player game and so on and so forth up to the 9-player game.

Previous Payoffs Since the nodes could have an undetermined number of valid
certificates before entering a game, we modeled the distribution of previous pay-
offs u; as uniform random variables in the interval [0, max u~], where maxu™ =
9.39 was set for the simulations. At least one player always had v, = maxu~ =
9.39.

Other Parameters The remaining fixed cost and benefit parameters are: B =
1>¢c=05>v=03>b=0.2and h = 4.5. The slope parameter g was
always the middle point between the upper and lower bounds for each iteration,
as defined in Section When needed, b =v =0.2 and b = 0.3 > v = 0.2.

Tracked Data We kept track of the following relevant data through all itera-
tions: all NE profiles, the optimal NE, previous payoffs and payoffs after the each
game, the optimality criteria that was used to determine the optimal NE and the
duration of each iteration.

4.2 Results Analysis

First of all, the result showed that the analytically established bounds on the
game parameters are valid. In all simulations, the output of the unique optimal
NE selection algorithms was indeed one such strategy profile. No strategy with
more than one self-sacrifice or more than n, votes was NE. We now examine more
in detail the other interesting aspects of the simulations.

*Matlab R2007a developed by MathWorks, http://www.mathworks.com/products/matlab/
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4.2.1 Results forb<v
Quantity of NE

Figure we can notice the following. First, the number of the NE that result
in a successful revocation of the misbehaving node’s certificate by a vote strategy
(exactly m, votes and n — n, abstentions) grows exponentially with the number
of players. This is explained by the fact that it is possible to have up to (TZ)

NE profiles with vote strategies and this number grows exponentially with n as
shown here below:

(”) _ ol n! (4.1)

Ty ([n/2] + Dl(n— [n/2] = 1)!
o n-(n—1)-...-(n—[n/2])
D 2
@ n n—1 n/2
= n/2+1 n/2 1 (43)
® 2n 2(n —1) o (4.4)
n + 2 n 2
>1 >1 \>,1./
=" a>1 (4.5)

where (a) comes from the fact that [n/2| < n/2, (¥n > 0), and (b) since n > 3,
given that when n = 2 the only possibility is (V, V).

On the other hand, the number of NE with one self-sacrifice stays limited
between one and two NE profiles. We can explain this by saying that there is
always at least one such strategy (where the sacrificing node 7 is the one that has
the highest u; ) but there might be other nodes with a high enough u; (j #1),
such that j’s best response is above the required threshold as well.

As a last result, we have not found any NE that would result in a unsuccess-
ful revocation of the misbehaving node and thus our efficiency and revocation
guarantee requirements of Section are fulfilled.

Selected NE Type

We notice an interesting aspect in Figure the dominant optimal NE profile,
selected by our algorithm, in 2- and 3-player games is obtained by wvote, i.e. there
are n, votes and n — n, abstentions; on the other hand, in 4-9 player games
the selected optimal NE is the self-sacrifice by one player. By looking at the
simulation parameters we can explain this fact.

For our simulations, we had v = 0.3 > b = 0.2, which results in the payoff
uj = u; + b—v= u; —0.1 for each player that has voted. On the other hand,
we know that B =1 > ¢ = 0.5 and that gives a payoff u; =u; + B—-h+g-u;,



52 CHAPTER 4. PERFORMANCE EVALUATION
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Figure 4.1: Average quantity of the different NE as a function of the number of
players when b < v. It can be noticed that there are no NE strategy profile that
would result in a non-revocation of the misbehaving node’s certificate.

i # j. By developing the latter, we have the following expression for a player ¢
that has v, = max; uy

a 2(h—B) —
ui:ui_—l—B—h—i-g-ui_(:)uz»_—l—B—h—i-y'u._ (4.6)

—_ (A
2 uy;

= — g —u; —0.25 (4.7)

)

Now, the NESelect algorithm uses the wtilitarian social optimum function first,
i.e. the sum of individual payoffs, and then the egalitarian if needed. This
means that the self-sacrifice NE would result in a better social optimum (the
sum of individual payoffs would be greater) than the vote strategy if and only if
ny - (—0.1) < —0.25, which happens when n, > 3 or, equivalently, when n > 4.

Optimality Criteria

The NESelect algorithm defined in Section [3.5.1] states that, in the first place,
we use the utilitarian — egalitarian sequence of social optima and, if necessary,
in the opposite direction as well. We call the first sense (from left to right) the

o2nd criteria. The situation

1% criteria and the opposite (from right to left) the
is illustrated in Figure It is straightforward to realize that, except for one
iteration, the 1! criteria was entirely sufficient in order to determine the optimal
unique NE. This means that such NE could be found without having to go through

the optimality process another time and, more importantly, that the nodes did
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Type of selected NE vs # of players
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Figure 4.2: Average type of selected optimal NE as a function of the number of
players when b < v. We notice that the vote NE (n, votes and n—n,, abstentions)
is dominant for the 2-3 player games whereas the self-sacrifice NE is the choice
for 4-9 player games.

not have to rely at all on the random optimal decision from the initiator of the
revocation game.

Simulation Duration

Not surprisingly, the duration of the simulation for each game in the 2- to 9-player
scenario was increasing exponentially with respect to the number of players. As
stated in Chapter [3] the search for a socially optimum NE requires exponential
time and thus this is a limitation of the current implementation of the selection
algorithms. Figure shows that this analytical result is validated empirically
through our simulation. Nonetheless, one can notice that up to 5 players, the
search and determination of the unique optimal NE takes less than 1 second,
a time frame that is sufficient for taking a revocation decision in most of the
ephemeral networks.

4.2.2 Results forb=v

In this case, we have b = v = 0.2, which translates in the unchanged payoffs for
all voting players in a game. Hence the voting strategy is the unique type of
NE that is chosen in all games, for all combination of previous payoffs. It also
suggests that the multiplicity of such possible NE is greater than it was for the
b < v case, since now even for n > 4, a vote strategy will be the unique optimal
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Optimality Criteria vs # of players
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Figure 4.3: Average type of optimality criteria as a function of the number of
players when b < v. We see that, except for one iteration, only the 1¢ criteria
was sufficient in all cases to determine the unique optimal NE profile.
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Figure 4.4: Average duration of the simulation as a function of the number of
players. The exponential nature of the relationship between the search for an
optimal NE and the number of players is clearly defined in this semi-log plot.
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Figure 4.5: Average duration of the simulation as a function of the number of
players when b = v. As the number of possible optimal NE grows exponen-
tially and since they all have the same sum of individual payoffs, the chances to
run through the entire NESelect algorithm are higher. This is confirmed by the
random criteria being used more and more as the number of players grows.

NE.

The determination of which players exactly will perform the action and which
will abstain is the unknown here. By looking at the optimality criteria, we can
already see that all vote strategies will have the same sum of individual payoffs
and thus the algorithm will proceed to the egalitarian criteria. Again, for the
least happy player, there are multiply possible NE that would make him as happy
as possible. For instance, if a player j has the minimum payoff (and thus is the
one that will not vote), there are ("n_vl) possible NE that would make no difference
for him. As a consequence, there are high chances that the algorithm will need

to run through the 27¢

criteria selection and maybe even the random optimal
criteria, which is not envisaged. By observing Figure [£.5] we can see this trend

as the number of players grows.

4.2.3 Results for b > v

In this case, the unique NE profile in all games will be the all-vote strategy,
i.e. every player votes. This is in clear contrast with our intention to limit the
unnecessary operations as stated in Section but is in line with the selfish
behavior of the nodes when considering solely their individual payoffs.
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4.3 Summary

The intent of this Chapter was to test the unique optimal NE selection algorithms
in possible scenarios that could arise in ephemeral and pervasive networks, where
a misbehaving node was already recognized and the revocation process has just
started.

In general, the results showed that the analytical model was indeed behaving
correctly according to our requirements and successfully achieved its goal of de-
termining the unique (socially optimal) NE profile for all players, in a distributed
fashion.

The pros are, first of all, that the malicious node is always successfully revoked
and, with a single exception, without the need for the initiator to determine the
unique optimal strategy. The choice of the nodes was completely independent
and they all selected the same equilibrium strategy. Moreover, we achieved the
revocation without unnecessary waste of valid public-key certificate since all out-
comes of the games had either exactly n, votes or only 1 self-sacrifice, in a way
that maximizes the overall social utility.

The negative points that we have found are, first of all, the duration of the
simulation for a relatively small number of players and the limited scope of the
voting strategy when the quantity of players increased. The first aspect could
be improved by a more efficient code implementation and thus more players
could potentially be accommodated. The latter feature is due essentially to the
determination of the number of voters needed for a successful revocation, i.e. n,
was the majority. The challenge is here to develop a dynamic assignment of n,
as a function of some parameters used in the games, such that the social cost
generated by the voters does not systematically exceed that of the self-sacrifice
as soon as there are more than 3 players in the game.

When we nullify the cost for the voters (b = v), we see that the system evolves
towards a social revocation decision that is more and more “randomized”. Since
the self-sacrifice generates more social cost than the votes, the abundance of the
latter strategies makes the unique NE selection process more difficult and, as
a result, the random optimal NE is predominant in larger games. This could
sometimes be undesirable.

The last aspect is quite obvious. When we incentive the voting strategies by
providing a benefit that is greater than the cost (b > v), all players would prefer
to vote (and get a strictly positive payoff) rather than abstaining (and getting
nothing at best) or self-sacrificing (and having a negative payoff).



Chapter 5

Conclusion

The revocation of public-key certificates is an important aspect of information
security. The integrity, authenticity and non-repudiation features of a message
can be verified using these certificates. In case they get compromised (either by
loosing or hijacking), the dangers of misuse of one’s identity could become great.
Moreover, if a wireless node get subverted and reprogrammed to act maliciously
or very selfishly, it should definitely be denied to possibility to further interfere
in the network. Due to the ephemeral and pervasive nature of the networks
we analyzed, it is even more important to prevent such malicious nodes from
damaging other networks in which they might connect in the future. Therefore,
the revocation of public-key certificates is an extremely important measure to
achieve this goal.

In this thesis, we developed a local certificate revocation scheme by using a
game theoretic approach. The selfish and rational assumption about the individ-
ual nodes reflects their potentially different owners and thus their selfish nature.
With this framework, we first created a cost model for the revocation process,
where each action taken in order to revoke the malicious node had an associated
cost expressed in public-key certificates. Since all messages need to be digitally
signed, the limited number of valid certificates would deter nodes from abusing
the system because otherwise they would be unable to communicate anymore.
Our analysis showed that the revocation of the malicious node is not always guar-
anteed but, when it is, it does not generate any unnecessary actions that would
result in a higher cost for the participants.

Afterwards, we enhanced the cost model by considering some reward for active
participants in case of a successful revocation. This incentive towards participa-
tion proved to be very effective. Furthermore, we included in the initial model the
history of previous behavior through the reserve of valid certificates of each node.
Like in real world, the well-behaving individuals should receive a benefit when

o7
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performing a costly but good action, in order to compensate for the effort; on the
other hand, the malicious or dishonest devices should be punished. In order to
cope with recidivism by insisting malicious or very compromised well-behaving
nodes, we implemented the idea of a variable cost of the self-sacrifice action: the
better you behave, the lower the cost for such drastic action is and wvice versa.
With these features, all possible outcomes of the revocation games guaranteed
now a successful revocation of the malicious node. The issue that emerged with
this first extension is the multitude of such possible game outcomes and the
difficulty of coordinating to one specific equilibrium by all the selfish nodes.

In order to solve this issue, we developed a unique Nash equilibrium selection
algorithm based on our payoff model with previous payoffs and variable self-
sacrifice costs. The unique feature is that we take into account the social welfare in
addition to the individual payoffs, by selecting the socially optimal game outcome
in case more were present. The simulations results validated our analytical model
and provided some further insights on the vote-based and self-sacrifice strategies.
By relaxing the constraint on the number of voters (majority) to allow for a more
dynamic number (based, for example, on the sum of payoffs of the players with
respect to the accused node), it might be possible to exploit the vote strategy in
more cases than what is currently done.

Therefore, our opinions is that for future improvements on this work one could
consider, among other aspects, a dynamic number of voters, a more efficient im-
plementation of the unique optimal NE selection algorithms, an optimization of
the benefit parameters related to the different strategies and finally an improved
simulation setting that would implement realistic traffic and interference param-
eters encountered in real-world environments.
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