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Abstract: The optimal operation of a solid oxide fuel cell stack is addressed in this paper.
Real-time optimization, performed at a slow time scale via constraint adaptation, is used to
account for uncertainty and degradation effects, while model-predictive control is performed at
a faster time scale to reject process disturbances and to safely adapt the system to the specified
output constraints following changes in cell power demand. To ensure that these constraints are
strictly honored, an adaptation algorithm that uses the built-in constraint handling of quadratic
programming is implemented within the model-predictive controller, allowing for the on-line
adaptation of the feasibility region as a means to reject uncertainty. Simulation results illustrate
the efficacy of this approach in the solid oxide fuel cell system.
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1. INTRODUCTION

With the recent push for alternative energy development,
fuel cells have received significant attention from multiple
directions. As highly integrated chemical systems, they are
subject to a number of safety and physical constraints,
all of which must be respected in a real environment.
Consequently, feedback control is important, and several
control studies have been carried out recently in this
area (Golbert and Lewin (2004); Gaynor et al. (2008);
Zhang et al. (2008)). On the other hand, research on
the optimization of fuel cell processes remains somewhat
scarce. Some examples include the work of Tsourapas et al.
(2005), where a controller is used to track the calculated
optimal values. Zhong et al. (2008) and Chrisovalantou
et al. (2009) have both investigated the tracking of the
maximum power point, while Golbert and Lewin (2007)
have used model-predictive control (MPC) to optimize
cell efficiency. Recent experimental studies (Bunin et al.
(2010)) have also demonstrated the efficacy of a real-time
optimization (RTO) approach for a solid oxide fuel cell
(SOFC) stack. Finally, in a direct precursor to this work,
Marchetti (2009) has investigated the use of two-layered
RTO for an SOFC stack, using both iterative adaptation
of the model constraints and on-line constraint control
between successive RTO iterations.

Several RTO techniques have been investigated in the
literature (Engell (2007)). Only the two-layer methodology
is considered in this paper, with the approach of Marchetti
(2009) being explored further for the SOFC application.
This choice is justified on the grounds that the speed of
the system makes the second layer necessary, as a means
to supplement the RTO. As was done in the previous
work, it is assumed that the optimal operating point
is determined by active constraints, which however may
change due to degradative effects, process disturbances, or
shifts in power demand. Any of these three factors may

push the system out of its feasible region, which must be
avoided in real applications as it would severely decrease
the life of the cell. The goal of the two-layer approach is
therefore to first correctly identify the active constraints
via the slow-scale optimization layer, and then to make
sure that these constraints are enforced via the fast-scale
control layer, all while rejecting the effects of potential
process disturbances. The effective integration of these two
schemes in the context of an SOFC system is the main
focus of this contribution.

An important additional problem in SOFC operation is
safety during both transient and steady states, as certain
constraints may become violated either in transition to
a new steady regime, or at the regime itself - the latter
corresponding to pure iterative optimization(Bunin et al.
(2010)). Prior work by Marchetti (2009) was able to curb
the number of constraint violations with the use of MPC,
but that work only used soft output constraints in the
problem formulation that were ensured via a norm func-
tion. Because the SOFC is a system where constraint viola-
tions on the order of seconds can have significant detrimen-
tal effects on the life of the cell, it is important to minimize
all violations - thereby making this approach insufficient in
practice. For this purpose, a hard-constraint formulation
with a conservative bias initialization, explained via the
concept of the feasibility region, is presented in this work.

This paper is organized as follows. Section 2 describes the
SOFC process and introduces the key variables. Section
3 formulates the optimization problem, and then reviews
the constraint-adaptation mechanism as a means to reject
model uncertainty and slow disturbances. The constraint
control problem is formulated in Section 4, with a brief
review of the soft-constraint MPC approach preceding the
proposal for an MPC that uses hard constraints instead.
Results from simulation studies using the discussed ap-
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proaches are then given in Section 5. Finally, Section 6
concludes the paper.

2. THE SOFC SYSTEM

The diagram of a typical SOFC stack system is presented
in Fig. 1. The fuel and air feeds consist of hydrogen-
water and nitrogen-oxygen mixtures, respectively, with the
electro-oxidation reaction between hydrogen and oxygen
producing the electric power in the cell.

Fig. 1. Diagram of the SOFC stack system.

From a control perspective, the molar flowrates of H2 and
O2 represent two of the manipulated variables. In most fuel
cell applications, the resistance of the load is controlled
as well - allowing for accurate manipulation of either the
power, voltage, or current. For the specific system used
here, the current is chosen as a manipulated variable:

u =

[

u1

u2

u3

]

=

[

ṅH2

ṅO2

I

]

. (1)

In practice, the set of relevant outputs may be defined as

y =

[

y1

y2

y3

]

=

[

pel(ṅH2
, ṅO2

, I)
Ucell(ṅH2

, ṅO2
, I)

ν(ṅH2
, I)

]

, (2)

where pel is the power density (the power divided by the
active cell area), Ucell is the cell potential, and ν is the fuel
utilization. It is assumed that a nonlinear, dynamic model
is available (Marchetti (2009)).

From a safety standpoint, two of the outputs, Ucell and
ν, represent key constraints that must be respected so as
to avoid fast system degradation (Gaynor et al. (2008)).
Other important constrained quantities include the stack
temperature, the air excess ratio λair (defined as the ratio
of O2 fed to the O2 reacted), the fuel flowrate, and the
current (Golbert and Lewin (2004); Marchetti (2009)).

The electrical efficiency of the cell stack, which represents
the quantity to be maximized, can be defined as the
quotient of the total power generated and the amount of
fuel/energy consumed:

η =
P − Pblower

ṅH2
QL

, (3)

where P is the power output of the stack, Pblower is the
portion of the power output that is used to supply the air
pump (see Fig. 1), and QL is the (constant) lower heating
value of the fuel.

3. OPTIMIZATION OF THE SOFC STACK

3.1 Formulation of the Optimization Problem

For the SOFC, the steady-state optimization problem can
be written as

max
u

η(u)

s.t. pel(u) = pS
el

Ucell(u) ≥ UL
cell

ν(u) ≤ νU

λL
air ≤ λair(u) ≤ λU

air

u1 ≥ ṅL
H2

,

(4)

where the superscript S denotes a desired (setpoint) value,
and L and U denote lower and upper bounds, respectively.
This formulation is a simplified version from that of
Marchetti (2009), with certain constraints dropped as
they never become active. The bounds are also chosen as
reported, i.e. UL

cell = 0.7 V, νU = 0.7, λL
air = 3, λU

air = 7
and ṅL

H2
= 5 · 10−4 mol/s.

The numerical solution of Problem (4) indicates that
the optimum will always lie on a combination of active
inequality constraints, one of which will always be either
the cell potential or the fuel utilization (Marchetti (2009)).

3.2 Constraint Adaptation to Combat Uncertainty

Uncertainty significantly affects both the power density
and cell potential, thus making it highly unlikely that
the solution of the nominal problem will be optimal, or
at times even feasible, for the real SOFC. With the use
of online measurements, the effect of model uncertainty
may be accounted for via the introduction of a bias in
the contraints (Forbes and Marlin (1994); Chachuat et al.
(2008)). For Problem (4), the power density and cell
potential constraints would then read as:

pel(u) + εpel = pS
el (5)

Ucell(u) + εUcell ≥ UL
cell,

where the constraint modifiers εpel and εUcell represent the
steady-state bias between the plant and model.

Optimization problem (4) is solved iteratively. Denoting
the differences between the plant and predicted values at
the kth iteration by δpel,k and δUcell,k, i.e.:

δpel,k = pel,p,k − pel(uk) (6)

δUcell,k = Ucell,p,k − Ucell(uk),

with the subscript p used to represent the measured plant
values, one could simply define the modifiers as:

εpel

k = δpel,k (7)

εUcell

k = δUcell,k.
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Fig. 2. Effect of process drift on optimization results
with and without constraint adaptation. Adaptation
is done every hour, with the filter values Kpel

=
1, KUcell

= 0.7. Without adaptation, Ucell violates the
constraint after about 40 h.

However, the use of a first-order exponential filter to up-
date the modifiers from iteration to iteration is recom-
mended to enforce convergence (Chachuat et al. (2008)):

εpel

k = (1 − Kpel
)εpel

k−1
+ Kpel

δpel,k (8)

εUcell

k = (1 − KUcell
)εUcell

k−1
+ KUcell

δUcell,k,

where the filter parameters, Kpel
and KUcell

, take values
between 0 and 1 (1 - full adaptation, 0 - no adaptation).

Using the appropriate numerical values for the bounds,
the solution of the optimization problem with constraint
adaptation is given as follows:

u∗

k = arg max
u

η(u)

s.t. pel(u) + εpel

k−1
= pS

el

Ucell(u) + εUcell

k−1
≥ 0.7 V

ν(u) ≤ 0.7
3 ≤ λair(u) ≤ 7
u1 ≥ 5 · 10−4 mol/s.

(9)

This iterative algorithm converges to the plant constraints
despite plant-model mismatch (Chachuat et al. (2008)),
something which has been demonstrated for the SOFC
in both simulation (Marchetti (2009)) and experiments
(Bunin et al. (2010)). As an aside, if degradation of
the metallic interconnector of the SOFC is considered
(Brylewski et al. (2001)), it can be seen that a lack of
adaptation leads to severe constraint violation in the cell
potential over time (Fig. 2).

4. CONSTRAINT CONTROL

Much work has been done to investigate the safe transition
of cell operating conditions in the case of changing power
demand (Golbert and Lewin (2004); Gaynor et al. (2008)),
as this transient represents the period of operation when
the system is most at risk of violating the safety con-
straints. Here, the issue is addressed in the context of the
proposed two-layer RTO+MPC approach. Since constraint
violations that last seconds, rather than minutes, can
damage the SOFC, priority is placed on avoiding violations
entirely, but not to such an extent that the efficiency of the
system is detrimentally reduced.

4.1 MPC with Soft Output Constraints (SCC)

Although RTO with modifier adaptation is an effective
means of converging to the proper set of active constraints,

Fig. 3. Two-layer optimization scheme for the SOFC.
Constraint adaptation is repeated for the process at
steady state and is characterized by the iteration
counter k, whereas constraint control is done in real
time t. Ωk represents a set of elements supplied by the
optimizer (u∗

k, wUcell,k, wν,k and λ∗

air,k) and required
by the MPC, while Gk denotes the constraint that is
active at the kth iteration (either Ucell(u∗

k) or ν(u∗

k)).
e are the errors between the constraint setpoints and
actual plant values.

it runs the risk of passing through infeasible regions, a case
that is exacerbated by the fact that, if a violation occurs,
one must wait until the next RTO iteration for corrective
measures to be taken. Marchetti (2009) has shown that
this problem can be mitigated through the use of an MPC
controller that enforces the active plant constraints. The
two-layer constraint adaptation and constraint control is
presented schematically in Fig. 3.

For constraint control, MPC calculates an optimal control
trajectory by minimizing the objective function J : 1

J(∆u(t)) =

np
∑

l=1

{

∥

∥wpel

[

pel(t + l|t) − pS
el

]
∥

∥

2

+ ‖wUcell,k [Ucell(t + l|t) − 0.7]‖2

+ ‖wν,k [ν(t + l|t) − 0.7]‖2

+ ‖W∆u ∆u(t + l − 1)‖2

+
∥

∥wλair

[

λair(t + l − 1) − λ∗

air,k

]
∥

∥

2
}

,

(10)

where np denotes the length of the prediction horizon, w
the weights, and ∆u the vector of input changes, i.e. the
control actions. In the SOFC system considered here, most
often only one of the inequality constraints (either the
potential or the fuel utilization) is active at the optimum,
which leaves an extra degree of freedom to track λ∗

air,k,
the optimal air excess ratio determined at the kth RTO
iteration. As such, either wν,k or wUcell,k is accordingly set
to 0, depending on the active set. A dynamic matrix of
step response coefficients, B, is used to predict the future
outputs in the MPC formulation:

y(t) = yOL(t) + B∆u(t), (11)

with yOL(t) used to define the outputs in the absence of
control action (open-loop). The standard way of imple-
menting (10) is to solve it as a quadratic programming

1 t + l|t means “at time t + l as calculated at time t”.
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(QP) problem, and apply only the first step of the given
trajectory before repeating the process at the next time
instant (Qin and Badgwell (2003)). The constraints on the
cell potential and fuel utilization are enforced implicitly
via the norm functions in (10), and are treated as “soft
constraints”.

4.2 MPC with Hard Output Constraints (HCC)

The SCC’s approach to constraint handling becomes its
major drawback, as the main priority of this MPC imple-
mentation is to get the constrained values of the plant to
their desired values, but there still exists the possibility
of constraint violations, even if there isn’t any plant-
model mismatch. Oscillatory convergence, for example,
would induce violations approximately 50% of the time,
the magnitude of which would vary with controller tuning.

For these reasons, an HCC formulation is proposed as
a solution, with the principles of constraint adaptation
and modifier filtering previously used at the optimization
level now being extended to the MPC layer. The idea
behind the HCC formulation is, essentially, to exploit the
built-in constraint handling of the QP algorithm to satisfy
the output constraints of the fuel cell system, while still
including some sort of filtering mechanism to guard against
uncertainty.

Minimization of the objective function (10) gives:

∆u∗(t) = arg min
∆u

J(∆u)

s.t. A∆u ≤ b,
(12)

and is qualified by a linear set of constraints on ∆u defined
generically here via the matrix A and the vector b. These
linear constraints usually represent the physical bounds
on the inputs, but may also be extended to include other
variables (Golbert and Lewin (2007)). Because these con-
straints are written as inequalities, as opposed to norms,
they will always be honored by the solution as they are
handled explicitly. It is possible to take advantage of this
fact by writing the safety constraints in a form recogniz-
able by the QP as well, i.e. as a linear superposition of
∆u1, ∆u2, and ∆u3.

For fuel utilization, this is relatively straightforward. It
is defined as the fraction of the hydrogen that reacts,
and may be written as a linear constraint without any
modifications:

ν =
ṅH2,reac

ṅH2

= C
u3

u1

≤ 0.7 ⇔ −0.7u1 + Cu3 ≤ 0, (13)

from which the formulation in ∆u terms is trivial and
does not change the linear structure of the constraint.
The constant parameter C results from Faraday’s law
(Marchetti (2009)) and is certain, which implies that (13)
is a linear combination of the inputs with no parametric
uncertainty. Hence, the fuel utilization constraint will
always be met if it is included in the QP problem,
regardless of the weight tuning that is used.

For the cell potential, the problem is more difficult due
to the presence of parametric uncertainty and the fact
that the expression for the potential is nonlinear. It is,
however, possible to linearize the model around the current

operating point at τ and then add the cell potential
modifier εUcell

τ to offset the uncertainty: 2

ylin
2,τ (u) + εUcell

τ ≥ 0.7, (14)

where ylin
2,τ (u) represents the linearized output equation

that is used to define the cell potential as a linear com-
bination of the inputs. εUcell

τ is updated at every MPC
time instant τ , using the filter value κUcell

, and achieves
the same value as the RTO modifier εUcell

k at convergence
for a given set of operating conditions. The cell potential
constraint (14) can thus be incorporated into (12).

Putting an explicit, linear bound on the potential intro-
duces an additional constraint to (12) and reduces the area
of the feasibility region (FR). At instances when this con-
straint is active, the MPC will seek to go to this boundary
to achieve optimality, and the introduction of a barrier
to keep it from going too far seems to be a reasonable
choice. The estimation of where this boundary actually
lies, however, is inherently inaccurate, since the εUcell

k value
itself varies with the operating point. Applying a linear
estimation of the constraint and compressing the FR in
this manner may thus be detrimental, as the controller
may still wander into infeasible regions because of the
poor approximation. To avoid this problem, the boundary
is artificially pushed in by modifying the initial bias value
εUcell

τ=1 whenever a transient state begins, and then allowing
this value to be filtered gradually to the new steady-state
plant bias from the safe, conservative side. A brief example
is given to illustrate this concept.

Example. Consider a two-input problem with two output
constraints ya(u) ≤ 1.25 and yb(u) ≥ 0. As ya(u) is
nonlinear and subject to uncertainty, it is linearized, which
results in ylin

a (u) = 0.5u1 + u2, and a modifier εa
τ is added

to offset the uncertainty. Hence, the input bounds and the
constraints for a steady-state operating point α read:

−1 ≤ ui ≤ 1, i = 1, 2
0.5u1 + u2 + εa

τ ≤ 1.25
2u1 + u2 ≥ 0.

(15)

The converged feasibility region at this operating point, for
which the constraint yb is active, assuming εa

∞
= 0.25, is

shown in Fig. 4a(i). A change in plant setpoint occurs, and
optimality requires that ya becomes active, leading to the
definition by the MPC layer, at every MPC instant τ , of a
target operating point βτ , lying on constraint ya. Because
the estimation of this constraint with the current modifier
is likely to be erroneous, a conservative initialization is
applied to the modifier by doubling it (Fig. 4a(ii)). A
sufficiently aggressive tuning scheme is then assumed to
push the control action to the boundary of the FR at every
instant τ . At the next control iteration, the modifier is
updated with a filter to bring it closer to the bias of the
plant (Fig. 4a(iii)). It should be noted that ya,p = ylin

a (u)+
εa

τ also moves due to the changes in εa
τ along with τ . In

Fig. 4a(iv), the algorithm has almost converged, without
having violated the constraint.

The strength of this approach may be seen via a com-
parison to the SCC for the same problem (Fig. 4b(i-iv)).

2 τ is the discrete time counter for the MPC layer.
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Fig. 4. Theoretical illustration of the HCC (a) and SCC (b) approaches for a problem that involves going from a
steady-state operating point α to a new steady-state operating point. The FR is shaded.

Improper tuning in this case can lead to overshoot and
violation of the constraint.

5. SIMULATION STUDY

The approach combining RTO and HCC is tested for
two scenarios, with the first treating the rejection of fast
disturbances and the second looking at the general case
of changing power demands (resulting in changing active
constraints). Throughout this section, particular attention
is given to honoring the cell potential constraint, as it is
the one subject to uncertainty, but the inclusion of the
fuel utilization boundary in the QP problem is shown
as well. For all the simulations, RTO and MPC actions
are repeated every 20 min and 4 s, respectively. Unless
otherwise stated, the weights used for the MPC are chosen
as wpel

= 10−2, wUcell
= 1, wν = 1.5, wλair

= 103, and
W∆u a diagonal matrix with elements [10−4, 10, 10−1].
This weighing scheme is similar to that of Marchetti
(2009), but with both wλair

and w∆u2
raised to reduce the

changes in the air flowrate, as a way to avoid aggressive
control action. For the RTO-only results, the filter values
KUcell

= 0.7 and Kpel
= 1 are used.

5.1 Rejection of Fast Disturbances

Although RTO alone is capable of dealing with slow dis-
turbances (e.g. the drift in Fig. 2), it cannot satisfacto-
rily deal with disturbances that are on the same time
scale as the process dynamics, in which case the con-
trol layer is required. This is demonstrated for the case
pS

el = 0.4 W/cm2, where the system has converged to the
cell potential constraint (the optimal point). In between
RTO iterations, a 10 degree change (1023K to 1013K) in
the fuel inlet temperature occurs and lasts for 2 minutes.

Fig. 5 shows the results for this scenario. The change in
temperature leads to an extended violation of the potential
constraint in the RTO-only approach since no corrective
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Fig. 5. Rejection of a disturbance in the fuel inlet tem-
perature that occurs in between RTO iterations. De-
viations from the constraint bound UL

cell for both the
RTO-only and RTO+HCC schemes are shown.

action is taken, but is immediately compensated for in the
RTO+HCC approach.

5.2 Changing Power Demand

In this case, the power density demand acts as a distur-
bance and varies as follows:

pS
el(t) =

{

0.4, 0 ≤ t < 60 min
0.2, 60 ≤ t < 120 min
0.3, 120 ≤ t ≤ 180 min.

(16)

The changes in operating conditions cause changes in the
set of active constraints, with constraint violation partic-
ularly likely at the instances when the cell potential con-
straint becomes active at time 0 and 120 min. Fig. 6b1,b2
show that these violations are significant for the RTO-
only scheme, as it must wait one full iteration (20 min)
before a move can be made to leave the infeasible region. In
contrast, the situation is handled nicely by the RTO+HCC
scheme, which quickly converges to the new constraint.

Fig. 6a2,b2 illustrate the efficacy of the HCC approach
in dealing with transients (this is compared to the SCC
approach in a2). Following the idea described in Sec-
tion 4.2, a more conservative linearized constraint (smaller
FR) is used to compress the input space (Fig. 6b2). The
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Fig. 6. Performance of the RTO and RTO+MPC schemes
in the presence of operating point changes.

corresponding constraint value is then slowly pushed out
by 40% of the offset to the true plant value at each itera-
tion. Upon convergence, the converged feasibility region
is achieved. In this case, the filter value κUcell

= 0.4
leads to a transition time of approximately one minute.
An alternate way of looking at this mechanism is to note
that the values predicted by the linearized output start out
“aggressive” when violation is feared most (thus resulting
in more conservative inputs), and then gradually settle
down to more realistic estimations (ylin

2 in Fig. 6b2). What
results is a somewhat smooth, guided transition to the new
operating point. The drawback of MPC with SCC alone
is made clear in Fig. 6a2, where it is shown that the SCC
approach results in oscillatory convergence under the same
set of weights.

6. CONCLUSIONS

The results presented in Section 5 illustrate the efficacy of
the 2-layer approach combining constraint adaptation and
constraint control for the SOFC system in simulated cases.
The experimental validation of the layered structured
is still an open issue, however, and will be included in
further research. Of additional interest is the constraint
control formulation presented in Section 4.2, as it has been
demonstrated to be both effective and significantly easier

to tune in this example. Further study of this approach,
as well as its strengths and weaknesses when compared
to the standard soft constraint formulation, is planned as
well. Finally, it is also evident that RTO+HCC converges
much quicker and more reliably to new optimal conditions
than RTO alone. While this gain in optimality may not be
significant for residential applications (long periods with
little change in conditions), applications involving frequent
power demand changes (e.g. vehicular) would give rise to
greater benefits.
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