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Abstract

Two-dimensional fluid simulations of a simple magnetized torus are presented, in which the

vertical and toroidal components of the magnetic field create helicoidal field lines that terminate

on the upper and lower walls of the plasma chamber. The simulations self-consistently evolve the

full radial profiles of the electric potential, density, and electron temperature in the presence of

three competing effects: the cross-field turbulent transport driven by the interchange instability,

parallel losses to the upper and lower walls, and the input of particles and heat by external

plasma sources. Considering parameter regimes in which equilibrium E × B shear flow effects

are weak, we study the dependence of the plasma profiles – in particular the pressure profile

scale length – on the parameters of the system. Analytical scalings are obtained that show

remarkable agreement with the simulations.
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I. INTRODUCTION

A simple magnetized torus (SMT) is a plasma confinement device in which vertical and

toroidal components of the magnetic field, Bv and Bφ, create helicoidal field lines that

terminate on the upper and lower walls of the torus vessel. A number of SMTs have now

been built (see Refs. [1–3] for some examples) with the goal of exploring the basic physics

of turbulent transport in a simple open-fieldline magnetic configuration. Some of these

experiments deliver detailed local characterization of the plasma fluctuations and thus offer

an excellent test-bed in which to carry out comparisons to numerical simulations [4].

The goal of this work is to explore the self-consistent scaling of the plasma profiles, in

particular the pressure gradient scale length, Lp, on the parameters of the device, such as

the vertical height and major radius of the chamber, Lv and R, the strength of the plasma

sources, and the relative magnitude of Bv and Bφ. Linear theory studies and experimental

results typically indicate the presence of two main instabilities in the SMT [5]: the inter-

change mode with k|| = 0 and driftwaves with k|| 6= 0. We focus here on parameter regimes

in which the turbulent transport in the system is driven predominantly by the interchange

mode. Furthermore, we consider parameters typical of the TORPEX experiment [1], i.e.

Ti � Te and β � 1, in which the plasma is produced in a radially localized region by

microwave injection. The k‖ = 0 nature of the fluctuations in this case, combined with

the relatively high collisionality and low ion temperature typical of the experiments, allows

the system to be conveniently studied using two-dimensional, reduced two-fluid simulations

that describe field-line averages of the various fluid quantities. Comparisons to three dimen-

sional simulations that include the finite k‖ driftwave dynamics, the details of which will be

presented in a separate publication, appear to confirm the validity of the two-dimensional

model in the regimes studied here. The simulations produce self-consistent, radially-global

profiles of the E×B shear, density, and temperature that reflect a balance between external

plasma sources, parallel losses to the vacuum chamber, and cross-field turbulent transport

due to the interchange modes.

The present work generalizes some of the findings of Ref. [6], which were limited by two

key assumptions regarding the parameters of interest: First, it was assumed that the pressure

gradient was steep enough to be well away from marginal interchange-mode stability. The

second assumption concerns the impact of sheath effects on the longest-wavelength modes
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in the system. As the helical fieldlines of the SMT make one full toroidal circuit, they are

displaced vertically, in the poloidal plane, by a distance ∆ = 2πRBv/Bφ = Lv/N where N

is the total number of field line turns in the SMT. The k‖ = 0 assumption imposes vertical

periodicity of the system on this scale, and thus sets a maximum vertical perpendicular

wavelength λ = ∆ or equivalently a minimum vertical wavenumber k∆ = 2π/∆. In Ref.

[6] it was assumed that sheath effects, which act to cut-off the linear interchange spectrum

[6, 7] at wavenumbers below k ∼ kσ [where kσ is defined later in Eq. (4)], were weak even

for the smallest k ∼ k∆ modes allowed in the system: that is, it was assumed that kσ < k∆.

Here both of these assumptions are relaxed and more general scaling laws are obtained for

parameters in which the background E × B shear flow in the system is weak (denoted as

the L-mode regime in Ref. [6]).

The present paper is structured as follows: Sec. II presents the model used to describe the

interchange turbulence in the SMT. In Sec. III an analytical estimate for Lp is developed,

which is compared with the simulation results in Sec. IV. The simulations explore two

separate turbulence regimes. In the first, the longest vertical wavelength of the interchange

modes is set by sheath boundary condition effects, i.e. kσ � k∆, while in the second limit

the dominant wavelengths in the simulations are fixed by the return of the field line on the

poloidal plane, i.e. kσ < k∆. Following the Conclusion Section, we present in App. A a

derivation of the model used in the paper, while in App. B we briefly summarize the findings

obtained in Ref. [6].

II. MODEL

We consider a turbulent regime in which the interchange instability dominates over drift

waves, i.e. DD/DI < 1, where DD and DI are the diffusion coefficients due to drift

waves and interchange turbulence, respectively. The coefficient DD can be estimated us-

ing a mixing length estimate, DD ∼ csρ
2
s/Lp. The estimate of DI is provided by Eq.

(16), and thus one concludes that interchange dynamics overcomes drift wave dynamics if

kΓρ
2
s

[
R/(2L3

p)
]1/2

/ [1− 10Lp/(3R)]3/2 < 1, where kΓ is the vertical wavelength of the mode

that contributes most to the transport.

In the regime of interest, owing to the low TORPEX plasma temperature and k|| '
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0, neglecting collisions with neutrals, relatively simple two dimensional equations can be

obtained from the drift-reduced Braginskii equations (see, e.g. [8]) to model the plasma

dynamics. The details of the derivation are presented in App. A. Here x denotes the

radial coordinate, z the coordinate along the magnetic field line, and y the coordinate

perpendicular to both x and z. The evolution equations for the line integrated density,

n(x, y, t) =
∫
n(x, y, z, t)dz/Lc, potential, φ(x, y, t) =

∫
φ(x, y, z, t)dz/Lc, and temperature,

Te(x, y, t) =
∫
Te(x, y, z, t)dz/Lc, with Lc = 2πNR being the magnetic field line length, are:

∂n

∂t
= R [φ, n] + 2

(
n
∂Te
∂y

+ Te
∂n

∂y
− n∂φ

∂y

)
+D∇2n− σn

√
Te exp (Λ− φ/Te) + Sn, (1)

∂∇2φ

∂t
= R

[
φ,∇2φ

]
+ 2

(
Te
n

∂n

∂y
+
∂Te
∂y

)
+ν∇4φ+ σ

√
Te [1− exp (Λ− φ/Te)] , (2)

∂Te
∂t

= R [φ, Te] +
4

3

(
7

2
Te
∂Te
∂y

+
T 2
e

n

∂n

∂y
− Te

∂φ

∂y

)
+ke∇2Te −

2

3
σ
√
T 3
e [1.71 exp (Λ− φ/Te)− 0.71] + ST , (3)

where [a, b] = ∂xa∂yb − ∂ya∂xb, Λ = log
√
mi/(2πme), σ = R/Lc = ∆/(2πLv), and Sn and

ST are the sources in the particle and temperature equations. In Eqs. (1-3) and in the

rest of the paper, we normalize n and Te to reference values n0 and Te0, time t to R/cs0

(cs0 =
√
Te0/mi), lengths to ρs0 = cs0/Ωi. We note that a system of equations similar to

Eqs. (1-3) is used in Ref. [7].

The system of Eqs. (1-3) has been solved numerically, using a numerical code developed

from the ESEL code [9], the algorithm of which is described in Ref. [10]. We consider a

domain with extension ∆ in the vertical direction, and we apply periodic boundary con-

ditions along this direction, due to the flute property of the interchange modes. In the

radial direction, we use Dirichlet boundary conditions for the three fields. The source

profiles are chosen to mimic the electron cyclotron (EC) and upper hybrid (UH) reso-

nance layer in the TORPEX experiment, i.e., Sn = ST = S0{SUH exp [−(x− xUH)2/λ2
UH ] +

SEC exp [−(x− xEC)2/λ2
EC ]} [11], with SUH = 1.5, SEC = 1, λUH = 5, λEC = 2.5, xUH = 35,

xEC = 15.
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The simulations are started from random noise. The sources then introduce plasma

and heat, increasing the plasma pressure and triggering the interchange instability. The

interchange instability leads to density and particle transport in the radial direction from

the source region to the low field side of the machine; at the same time, plasma is removed

from the system by parallel losses. The results discussed in the present paper focus on

the quasi-steady state period, established after an initial transient phase, resulting from a

balance between parallel losses, perpendicular transport, and the sources.

As summarized in App. B, the plasma dynamics described by the model (1-3) has been

discussed in Ref. [6] in configurations far from marginal stability and kσ < k∆. The presence

of two turbulence regimes was pointed out. The high confinement regime (H mode) is

characterized by a strong shear flow, i.e. γ/v′E×B < 0.5, where γ is the peak linear growth

rate of the interchange mode, and v′E×B = R∂2
xφ is the E×B shear flow. Shear flow creates a

transport barrier that limits the perpendicular transport, steepening up the plasma profiles

and increasing the peak plasma pressure. We focus here instead on the low confinement

regime (L mode), where shear flow plays a negligible role and plasma transport occurs freely

in the radial direction; thus, for the simulations presented γ/v′E×B > 0.5.

III. THEORETICAL ESTIMATE OF Lp

We first note that the maximum of the local linear growth rates associated to Eqs. (1-3)

occurs for ky ' kσ where

kσ =

√
σ

γ
√
Te
. (4)

Sheath effects suppress the linear growth rates at long wavelengths ky < kσ, while ρs effects

decrease the growth rates at shorter wavelengths.

First we restrict attention to parameters for which sheath effects do not strongly in-

fluence the dynamics of the ky = kΓ interchange mode, where kΓ denotes the wavenum-

ber of the mode that provides the dominant contribution to the transport. The anal-

ysis of the linearized system of Eqs. (1-3) shows that this occurs for σ < γ/
√
Te and

kΓ

√
Te > max{σ, kσ

√
Te}. Moreover, we consider cases in which ρs effects do not strongly

influence the linear properties of the kΓ mode: this occurs when kΓ

√
Te < γ/

√
Te.

As we now show, the balance between plasma parallel losses and perpendicular transport
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leads to an expression for the pressure scale length, Lp = |p/∂xp| (the analogous definition

is used for Ln and LT ). The overbar denotes the time average of the physical quantities,

the tilde the fluctuating part (e.g., p = p + p̃). By multiplying Eqs. (1) and (3) by Te and

n, respectively, considering the time and y average of their sum, and noting that p̃/p '

T̃e/T e + ñ/n, the balance between parallel and perpendicular transport yields

∂Γp
∂x

= −5

3
σpT

1/2

e (5)

in the source free region where the time and y averaged cross-field radial transport is given

by Γp = R
〈
p̃∂yφ̃

〉
y
.

We first estimate ∂yφ̃. In the regime of interest it is possible to neglect sheath terms and

the dominant terms in Eq. (1) lead to

∂ñ

∂t
' R [φ, n]− 2n

∂φ̃

∂y
' n

∂φ̃

∂y

(
R

Ln
− 2

)
(6)

and a similar expression can be deduced from Eq. (3) for the temperature

∂T̃e
∂t
' R [φ, Te]−

4Te
3

∂φ̃

∂y
' T e

∂φ̃

∂y

(
R

LT
− 4

3

)
. (7)

By summing Eqs. (6) and (7), and approximating ∂tñ ∼ γñ and ∂tT̃e ∼ γT̃e, one obtains

∂φ̃

∂y
∼ γ

p̃

R∂xp− 10p/3
(8)

which is the desired expression for ∂yφ̃. As a consequence of Eqs. (7) and (8) one also

obtains LT = 5Lp/2 and Ln = 5Lp/3.

We now turn to the estimate of p̃. The turbulence saturates when the unstable modes

become strong enough to neutralize the main source of free-energy in the system; i.e., when

∂xp̃ is able to relax the equilibrium gradient to its marginally stable value. We evaluate ∂xp̃

using standard non-local linear theory methods (employed for example in Ref. [12] for drift

waves) that are valid for kΓLp > 1. By linearizing the system (1-3), one can express ñ and

T̃e as a function of φ̃. An eigenvalue equation for φ̃ is then found, ∂2
xφ̃− k2

y [1 +G(x)] φ̃ = 0,

where

G(x) =
2

n

3Rγ∂xp+ 10γp− 10ikyT
2
e (R∂xn+ 2n)

γ
(
3γ2 − 20ikyTeγ − 20k2

yT
2
e

) ' 2

nγ2

(
R
∂p

∂x
+

10

3
p

)
(9)
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within the small ky
√
Te approximation. Taylor-expanding G(x) ' G0 +G′′0(x− x0)2/2, with

x0 the point of instantaneous steepest pressure gradient, G0 = G(x0), and

G′′0 =
∂2G(x)

∂x2

∣∣∣∣
x=x0

∼ 2RTe(10/3−R/Lp)
γ2L3

p

(10)

one is lead to a harmonic oscillator equation for φ̃. In the limit kyLp > 1, one has γ ' γ|x=x0
,

given by the solution of the equation 1 + G(x0) = 0, and φ̃ ∝ exp[−a(x − x0)2/2] with

a = ky
√
|G′′0| /2. We note that the equation 1 + G(x0) = 0 provides the local dispersion

relation of our model in the regime of interest, and can be written as

γ3 − 20

3
ikyTeγ

2 −
[

20Te
3

(
Tek

2
y − 1

)
+

2TeR

Lp

]
γ − 20

3
ikyT

2
e

(
2− R

Ln

)
= 0 (11)

which coincides with the dispersion relation in Ref. [13] in the limit Ti → 0. Two instabilities

are contained in the dispersion relation (11). In the limit γ ∼
√
Te and kΓ

√
Te < 1 one

obtains the dispersion relation of the interchange mode

γ =

√
Te

(
2R

Lp
− 20

3

)
(12)

with a critical pressure gradient Lp/R = 3/10. If one instead scales γ ∼ Teky, the dispersion

relation for the entropy mode is obtained. For ky
√
Te < 1 it can be written as γ = 10ikyTe(2−

R/Ln)/(3R/Lp − 10) and thus the entropy mode is stable in the present configuration [13].

Focusing on the interchange mode, the typical radial extension of the instability is thus

given by 1/
√
a ∼

√
Lp/ky and considering the dominant mode, ky = kΓ, one estimates

∂xñ ∼
√
kΓ/Lpñ and ∂xT̃e ∼

√
kΓ/LpT̃e from which ∂xp̃ ∼

√
kΓ/Lpp̃

As noted earlier saturation occurs when the turbulent fluctuations effectively remove the

instability drive from the system. We can model this as

∂xp̃ ∼ ∂xp

(
1− 10

3

Lp
R

)
. (13)

The factor on the right-hand side vanishes as marginal interchange stability is approached -

an effect that was not included in Ref. [6] due to the assumption Lp � R. We will show in

Sec. IV that the analytic estimates following from Eq. (13) yield good agreement with the

simulations even near marginal stability. We obtain

p̃ ∼
√
Lp
kΓ

p̄

Lp

(
1− 10

3

Lp
R

)
(14)
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Using the results from Eqs. (8) and (14), one can thus evaluate

Γp = α

√
2T eR

Lp

p

kΓ

(
1− 10

3

Lp
R

)3/2

(15)

where α is a numerical parameter determined from simulation data (α ' 0.34). Defining a

diffusion coefficient for the interchange mode as DI = Γp/∂xp, one has that

DI = α

√
2T eRLp

kΓ

(
1− 10

3

Lp
R

)3/2

(16)

Inserting the expression for Γp given in Eq. (15) into Eq. (5), since ∂x(T
1/2

e p) =

−6T
1/2

e p/5, one finally obtains the desired equation for Lp

α

√
2R

L3
p

(
1− 10

3

Lp
R

)3/2

=
25

18
σkΓ (17)

IV. COMPARISON WITH SIMULATION RESULTS

We consider two regimes in which to compare Eq. (17) to the simulation results. We

first examine the case k∆ � kσ. In this regime, the dominant modes (e.g. the modes with

the largest growth rates) have wavenumbers dictated by the sheath dynamics: kΓ ∼ kσ, and

have corresponding wavelengths that are smaller than ∆. In the second regime of interest,

we assume k∆ > kσ and thus the strongest, fastest growing modes in the system are governed

by the box size: kΓ = k∆.

The parameter space of the two regimes can be estimated as follows. Introducing κ =

k∆/kσ, the Te value in Eq. (4) can be evaluated as the maximum temperature Te,max in the

system. The global temperature balance from Eq. (3) then leads to [6]

T 3/2
e,max '

∫
STdx

σ(2ξxS/3 + 4LT/9)
(18)

where ξ ' 0.5 and xS denotes the location of the peak temperature, corresponding to the

source position (xS ' 36 in the present simulations). Thus, one can write

κ =
2π

∆

( ∫
STdx

2ξxS/3 + 4LT/9

)1/3
1

σ5/6

√
2R

Lp
− 20

3
(19)

being the regime k∆ � kσ attained for κ� 1, while k∆ > kσ implies κ > 1.
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A. k∆ � kσ

We perform a number of simulations in the k∆ � kσ regime, varying the source strength,

S0, σ, and R and we evaluate Lp by measuring the distance between pmax and pmax/2. All

the simulations performed show that the mode predominantly contributing to the transport

has a wavelength comparable to that of the peak growth rate, kσ; precisely, it is found that

kΓ = ζkσ, with ζ ' 1.5. The half width half maximum of the spectrum is typically 0.4kσ.

From Eq. (17), the following equation for Lp is obtained

α

2

(
2R

Lp

)7/4(
1− 10

3

Lp
R

)7/4

= ζRσ11/6 25

18

[
2ξxS/3 + 10Lp/9∫

STdx

]1/3

(20)

Note that 0 < Lp < 3R/10 and marginal stability is reached for σ → 0 or
∫
STdx→∞.

The dependence of Lp on σ and S0 (for R = 200) is shown in Fig. 1, where the prediction

of Eq. (20) are compared with the simulation results, showing remarkable agreement. The

Lp dependence on R is shown in Fig. 2 (with S0 = 1 and σ = 0.1 fixed).

We note that, since kσ depends on the local value of Te, Lp is not constant. In particular,

the estimate given by Eq. (20) for Lp is valid close to the pressure peak, where T e ' Te,max.

B. k∆ > kσ

Imposing kΓ = k∆, Eq. (17) becomes

α

√
2R3

L3
p

(
1− 10

3

Lp
R

)3/2

=
25

18

R

Lv
(21)

showing that Lp/R depends only on the geometrical parameters of the SMT, i.e. Lv/R. We

note that two limits are present in this dispersion relation. In the case Lv � R, Eq. (21)

provides Lp ∝ (Lv
√
R)2/3, which matches the Lp estimate in Ref. [6], as summarized in

App. B. Instead, if Lv � R, one obtains Lp = 3R/10, the marginal stability threshold for

the interchange mode. The simulation results in the k∆ > kσ regime are shown in Fig. 3.

Simulations and analytical theory again show good agreement.
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FIG. 1: (Color online) Lp as a function of σ and different value of S0 from Eq. (20) (black line)

and simulation value (red circles). R = 200.

V. CONCLUSIONS

In the present paper, the dependence of Lp on the geometrical parameters of the SMT,

the plasma source strength, and the magnetic configuration has been obtained. The esti-

mate provides a theory-based prediction that may be compared and checked against SMT

experiments with different dimensions.

In the case of the TORPEX device [1], experiments have been performed by varying the
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FIG. 2: (Color online) Lp as a function of R as predicted by Eq. (20) (black line) and simulation

results (red circles). S0 = 1 and σ = 0.1.
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FIG. 3: (Color online) Lp/R as a function of Lv/R as predicted by Eq. (21) (black line) and

simulation results (red circles).

value of Bz in the k∆ > kσ regime [5]. It has been shown that Ln and LT are not strongly

affected by the Bz field, as expected from Eq. (21). The LT/Ln ratio is close to the 3/2

predicted theoretically and a Lp/R in the range 0.05 − 0.07 is measured [5, 14]. TORPEX

is characterized by a circular poloidal cross section, with the ratio Lv/R varying with the

radius and having its maximum at the center of the cross section, Lv/R = 0.4. According
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to Fig. 3, Lv/R = 0.4 corresponds to Lp/R ' 0.14. Thus, the estimate presented in the

present paper seems to be in reasonable agreement with the experimental measurements.

The Helimak experiment [2] is characterized by a rectangular cross section, with Lv/R ' 2.

In this device, typical measurements lead to Lp/R in the range 0.15 − 0.2 [15]. In good

agreement with the experimental measurements, for Lv/R = 2, Fig. 3 yields Lp/R ' 0.22.
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Appendix A: Deduction of the two-dimensional model for interchange turbulence

In the case of constant magnetic curvature equal to R, the drift-reduced Braginskii equa-

tions [8] for n(x, y, z, t), Te(x, y, z, t) and φ(x, y, z, t) can be written as

∂n

∂t
= R [φ, n] + 2

(
n
∂Te
∂y

+ Te
∂n

∂y
− en∂φ

∂y

)
+Dn∇2

⊥n−
∂(nV||e)

∂z
+ Sn (A1)

∇ · (nvpol) = −2

(
Te
n

∂n

∂y
+
∂Te
∂y

)
− 1

n

∂j||
∂z

+
η0i

n

(
2
∂2V||i
∂y∂z

− ∂2φ

∂y2

)
−Dφ∇4

⊥φ (A2)

∂Te
∂t

= R [φ, Te]− V||e
∂Te
∂z

+
4

3

(
7

2
Te
∂Te
∂y

+
T 2
e

n

∂n

∂y
− Te

∂φ

∂y

)
+DT∇2

⊥Te +
2

3

Te
n

0.71
∂j||
∂z
− 2

3
Te
∂V||e
∂z

+ ST (A3)
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where η0i is the Braginskii viscosity. We simplify Eq. (A2) by using the Boussinesq approx-

imation for the polarization drift [16]

∇ · (nvpol) = R
[
φ,∇2

⊥φ
]
− ∂∇2

⊥φ

∂t
− V||i

∂∇2φ

∂z
(A4)

Reference [17] shows that the ion parallel flow at the sheath edges, z = ±Lc/2, can be

approximated as nV||i
∣∣
z=±Lc/2

' ±n
√
Te/2

∣∣
z=0

, and the electron flow as nV||e
∣∣
z=±Lc/2

'

±n
√
Te exp(Λ− φ/Te)/2. By integrating Eqs. (A1-A3) along the z direction from −Lc/2 to

Lc/2, using the expressions for the electron and ion flux at the sheath edges, neglecting the

η0i terms and the z-dependence of n, φ, and Te, the two-dimensional fluid equations Eqs.

(1-3) that describe the plasma turbulence in our system are deduced.

Appendix B: Brief summary of the main findings in the regime far from marginal

stability and k∆ > kσ

We briefly summarize the findings of Ref. [6] that examines configurations far from

marginal stability and having k∆ > kσ, i.e. kΓ = k∆. Far from marginal stability, Ln � R

and the leading order terms in Eq. (1) are ∂tn−R[φ, n] ' 0 from which, in the absence of a

strong shear flow, one has ∂yφ̃ ∼ γ0ñ/(R∂xn) with γ0 =
√

2TeR/Lp. Turbulence saturation

occurs for ∂xn = ∂xñ. The ∂xñ term can be estimated by the nonlocal linear theory outlined

in Sec. III, obtaining ñ ∼ n(Lp/k∆)1/2/Ln. Thus, Γn = R
〈
ñ∂yφ̃

〉
y
∼ n(2RLpT e)

1/2/(Lnk∆)

and, analogously, ΓT = R
〈
T̃e∂yφ̃

〉
y
∼ (2RLpT

3

e)
1/2/(Lnk∆). The expression for Γn and ΓT

can be inserted into the y and time-averaged Eq. (1) and Eq. (3) that in the source free

region read
∂Γn
∂x
' −σnT 1/2

e ,
∂ΓT
∂x
' −2

3
σT

3/2

e , (B1)

thus obtaining Ln ∝ (Lv
√
R)2/3 and LT ∝ (Lv

√
R)2/3. In Ref. [6], the presence of a turbu-

lence regime was observed, where shear flow limits the perpendicular transport, steepening

the plasma profiles. This regime was denoted as high confinement mode (H mode) regime

and it appears when γ0/v
′
E×B < 0.5.

We now estimate the L-H threshold condition. Shear flow amplitude is limited by

the Kelvin-Helmholtz instability; in general, the maximum allowed shear flow is present

in the simulations, i.e. v′E×B ' χφmax/∆
2, with χ ' 2.5. Since it is observed that

13



LT ' Ln ' ∆ at the L-H threshold, the transition condition, γ0/v
′
E×B ' 0.5, can be

rewritten as 2∆3/2/(χΛ
√
RTe,max) ' 0.5. The value of Te,max can be estimated from Eq.

(18) and one deduces that the L-H transition occurs for

2∆11/6

χΛ
√
R

(
4/9∆ + 2ξxS/3

2πLv
∫
STdx

)1/3

' 0.5. (B2)
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