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It is believed that low frequency microinstabilities such as ion temperature gradient (ITG) driven
modes and trapped electron modes (TEMs) are largely responsible for the experimentally observed
anomalous transport via the ion and electron channels in a tokamak. In the present work, a
comprehensive global linear gyrokinetic model incorporating fully kinetic (trapped and passing)
electrons and ions, actual ion to electron mass ratio, radial coupling, and profile variation is used to
investigate the ITG driven modes and pure TEMs. These modes are found to exhibit multiscale
structures in the presence of nonadiabatic passing electrons. The multiscale structure is related to the
large nonadiabaticity of electrons in the vicinity of mode rational magnetic surfaces and leads to
reduced mixing length estimates of transport compared to those obtained from adiabatic electron
models. © 2009 American Institute of Physics. [DOI: 10.1063/1.3134022]

I. INTRODUCTION

Anomalous transport in collisionless hot tokamak
plasma is believed to be due to drift waves driven by the
density and temperature gradientsl’2 of the particles in a
magnetically confined plasma. While the turbulent heat flux
of ions is believed to be driven by ion temperature gradient
(ITG) mode, the electron heat and particle flux, on the other
hand, are expected largely to be driven by the trapped elec-
tron mode (TEM) in the low magnetic field side of a toka-
mak on ion scales and by electron temperature gradient
(ETG) on electron scales. Enormous effort has been put to
understand the underlying physics issues both theoretically
and computationally and then to match the predicted trans-
port flux with that observed experimentally. The study of ion
transport by ITG mode has started with adiabatic electron
model.>* The next step is then to incorporate the nonadia-
batic electrons and is achieved in the form of trapped elec-
trons included in the background model. This has extended
the study of this class of microinstabilities to the trapped
electron coupled ITG mode (ITG-TEM)*'? and TEM.>!316
The new models with trapped electrons give growth rate two
to three times larger than the adiabatic electron case. At the
same time the transport flux is observed to rise substantially.
A comparison of gylroﬂuid'7 and continuum gyrokinetic18
simulation of transport in a realistic geometry with experi-
ments has been carried out, and the electron, ion thermal
diffusivity, and perturbed density fluctuation level are found
to exceed the experimental value by factors of more than 2.
The reason of this deviation is expected to be due to the
nonlocal behavior owing to the variation in the plasma gra-
dients. Following this, sophisticated flux ribbon codes have
come up with advanced features'?” to reduce the discrep-
ancy between experimental and computational results.?' Ki-
netic electron simulation with trapped particles using a gen-
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eralized split weight scheme to Jf gyrokinetic particle
method is performed in Ref. 22. The result shows significant
increase in the ion heat diffusivity in comparison to the adia-
batic electron model in line with the increased growth rate.
However, the experimentally observed ion diffusivity23 is
much lower than the adiabatic electron level. Thus a more
complete gyrokinetic model that treats electrons and ions on
the same physics footing with global profile effects is very
much sought to address such anomaly.

The major problem with the incorporation of full dynam-
ics of electrons with nonadiabatic passing fraction in a time
dependent model is their fast parallel motion. The high mo-
bility of these electrons needs higher resolution in their re-
sponse time scale and is a formidable task in the presence of
full ion dynamics, the issue of which is well discussed in
Ref. 24. With advances in computational facilities, signifi-
cant progress has been achieved to this end to treat the elec-
trons fully k1'netically.20’25’26

In the present work, we propose a linear global spectral
gyrokinetic model that includes the effect of fully nonadia-
batic passing and trapped electrons with true ion to electron
mass ratio, kinetic resonances, and finite Larmor radius
(FLR) effect to all orders and considers density and tempera-
ture profile and the respective gradient variations. The results
show the role of the fully kinetic electrons which we term as
“nonadiabatic” passing electrons on the trapped electron
coupled ITG (ITG-TEM) and pure TEM. It is observed that
inclusion of nonadiabatic passing electrons influences
strongly the growth rate of ITG-TEM and pure TEM and
brings fine radial structures of the mode on the mode rational
surfaces. A calculation of flux is done based on the mixing
length estimation. It predicts transport level below those ob-
tained from adiabatic electron models.

The model discussed here addresses the nonadiabatic
contribution due to all the species in a tokamak, namely,
passing ions, trapped ions, passing electrons, and trapped
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electrons. Recently such a study addressing the effect of
nonadiabatic passing electrons on the ITG mode has been
reported in Ref. 27. Here the results accounting for all the
four subgroups of species are presented, which include ITG,
ITG-TEM, and TEMs. Our study on ETG mode with nona-
diabatic trapped electrons will be reported elsewhere.

To serve our purpose, here we use the electrostatic ver-
sion of the fully gyrokinetic, fully electromagnetic global
linear stability model EM-GLOGYSTO extensively studied and
reported in Refs. 5 and 28-34 as applicable to large aspect
ratio tokamaks. Thus we drop the parallel and perpendicular
magnetic field perturbations, i.e., B, and B fluctuations,
Shafranov shift, and equilibrium flows. For other details of
the EM model, the reader is referred to Refs. 29 and 31.
Thus, particle nonadiabaticity for passing ions and trapped
ions, passing electrons and trapped electrons, FLR effects to
all orders for all species, kinetic resonances, viz., trapped and
transit resonances, poloidal and radial coupling of modes due
to particle drifts across magnetic flux surfaces are taken into
account.

In Sec. IT we highlight the main equations. Section III A
contains the numerical results for ITG with adiabatic elec-
trons (ITG-adiabEl) and ITG-TEM without nonadiabatic
passing electrons and new results when ITG-TEM coupled
with nonadiabatic passing electrons. Changes in the mode
structures and the corresponding effects on the mixing length
estimates of ITG-TEM induced transport and on the thresh-
old %; values for the transition from dominant TEM to domi-
nant ITG modes are obtained. Section III B contains the nu-
merical studies for TEM with and without nonadiabatic
passing electrons. This is followed by the presentation of
mode structures and then the mixing length estimation of
transport due to TEM for both the cases. Conclusions are
presented in Sec. IV.

Il. MODEL EQUATIONS

In real space r, for species j, the perturbed density can
be expressed as due to adiabatic and nonadiabatic responses
of the constituting particles. Thus, for our case, the perturba-
tion in density for species j can be expressed as

(r;m) =- (%{Lv)l6+fdkexpuk-r)

J
fu,
x f v o= ) (2 Jjw(k;ué(x;,)],

(1)

where the first term on the right hand side corresponds to the
adiabatic response, while the second term represents the
nonadiabatic response of the particles to a perturbation with
all its kinetic effects. Also, g; and T, are the charge and
temperature for species J» respectively, and N is the equilib—
rium  density. w;=w,[1+ 711/2(U\|/Um 3)+77jv /thh]
where w,;=(T;V, In Nk,g)/(q,B) is the dmmagnenc drift fre-
quency; 1m;=(dInT;)/(d1In N), vj and v, represent parallel
and perpendicular VCIOCItleS respectively, and vy, is the ther-
mal velocity of species j. JO(ij) is the Bessel function of
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argument x; =k, p; , presenting the FLR effect. We consider
a local Maxwellian for each species of mass m; as

NI
Tu &)= Wﬁ)mexp(—
iy AN

mj

o)
Tj(¢)/mj '

where ¢£=v?/2. Also in Eq. (1) U, represents the guiding

center propagator for passing particles of type j=i,e and 7;

represents the guiding center propagator for trapped particles

of type j=i,e, both describing the equilibrium guiding center

motion. For details of the propagator for both passing and

trapped particles, the reader is referred to Refs. 5, 27, and 33.
Introducing quasineutrality condition

2 fij(r;w) =0, (2)

J
one would finally end up with a generalized eigenvalue prob-
lem where w and @ are the eigenvalue and eigenvector, re-
spectively, which can then be conveniently solved in Fourier
space by Fourier decomposing the potential in Eq. (2) first
and then taking Fourier transform to eventually obtain a con-
volution matrix in Fourier space. With single charged pass-
ing ions, electrons along with trapped ions and electrons, we
have

EEMkk’(Pk""E > Mkk’(Pk'+EEM P

k' J=i K J=tri Y

+E 2 M{(,k’@k’ =O.

k' J=tr-e

The axisymmetry of the system considered here enables one
in the linear analysis to fix the toroidal mode number n so
that the notation k=(«,m) for the wave vector parametrizes
the radial wave number « and the poloidal wave number m.
Thus k=(x,m) and k'=(«’,m’). Note that we have four
species: nonadiabatic passing ions (i), trapped ions (tr-i),
nonadiabatic passing electrons (e), and trapped electrons
(tr-e).

A. Diagnostics: Eigenmode-averaged quantities

Simple diagnostics for various physical quantities are
computed as averages over the eigenmode. For example,
mode-averaged k%, is computed as

f dpz p — Pkm)
(k2 = - : (3)
fdpzm |()0(k,m)|2

where quantities with suffix “(k,m)” imply Fourier weights
of the corresponding perturbations.

2

lll. RESULTS AND DISCUSSION

The effect of the nonadiabaticity of passing electrons on
the ITG mode is explored and discussed in Ref. 27. In the
present work, the effect of nonadiabaticity of passing elec-
trons is extended to ITG coupled TEM (ITG-TEM) and to
pure TEMs.
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TABLE I. Equilibrium profiles and parameters.
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Parameters

Equilibrium profiles

B field: By=1.0 T
Temperature: Ty=T(s,)=7.5 keV

Major radius: R=2.0 m

Minor radius: a=0.5 m
Radius: s=p/a, 0.01<s<1.0, 5,=0.6
L,y=04 m, Lp=0.2 m— % (s0)=2.0

(s)=T,(s)/Ti(s)=1, €,=L,,/R=0.2

N-profile and T-profile:
ads, 5=
N(s)/Ny=exp| — tanh ,
L, s,

ads s—5
T; (s)/Ty= exp[— —Ttanh( 0) ] ,
Lpo

ST

85,=0.35, ds;=0.2 at s=s,
q(5)=1.25+0.67 s*+2.38 5°-0.06 s*
such that g(s=s,)=2.0;

shear § is positive and at s=s(, §=1

For this purpose, we consider the profiles and parameters
in Table I. The equilibrium profiles corresponding to these
parameters are shown in Fig. 1. The chosen parameters lead
to the value of p*= PLi(S=So)/Cl =0.0175.

A. ITG-TEM

The real frequency w, and growth rates y normalized by
wdoszi(szso) oL/ a* for ITG-TEM are plotted in Fig. 2.
Here we have shown (i) ITG-adiabEl (ITG mode with usual
adiabatic electron response, i.e., i/n=ed/T,) (dashed line

for % and solid line for , marked with square), (ii) ITG-
TEM without nonadiabatic passing electrons (dashed line for
¥ and solid line for (;, marked with diamond), and (iii) ITG-
TEM with the contribution from nonadiabatic passing elec-

trons (dashed line for ¥ and solid line for L;, marked with
filled circle). It is clear that the ITG-adiabEl mode is desta-
bilized by the trapped electrons. The increase in the growth

7| s Temperature .
0.2 ’ ! v 051 1
§ e Density 4
v ‘ |
0 = - i T T T O L i i i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
s s

FIG. 1. (Color online) Equilibrium profiles for global ITG stability studies
(parameters for Table I). Normalized density, temperature, 7;, (left), safety
factor ¢, and magnetic shear § profiles as functions of the normalized radius
s=r/a. Note that 7 peaks at s=p/a=s,=0.6

rate can be attributed to the following facts: (i) the presence
of nonideal effects such as magnetic drift resonances,lo (i1)
trapped electrons cannot respond adiabatically to the local
variation in the scalar potential and consequently cannot take
part in charge cancellation,'" and (iii) an increase in the real
frequency reduces the ion Landau damping leading to an
increase in the growth rate.'> As can be seen, the growth rate
peaks at around kgle_=0.5 corresponding to toroidal mode
number n=8. The plot for ITG-TEM, along with a nonadia-
batic contribution from passing electrons, shows opposite ef-
fect of reducing the growth rate as compared to ITG-TEM
without nonadiabatic passing electrons. However, the growth
rate is still at higher value than the ITG-adiabEl mode. Be-
cause of the nonadiabatic response of the passing electrons
near the k=0 surfaces to a perturbation, the electrons simply
cannot respond and short circuit the charge separation instan-
taneously because of which the mode gets finite amount of
time to grow unstable. This sets the growth rate of ITG-TEM
with nonadiabatic passing electrons higher than the ITG-

do’ v /(DdO

o /4o

r

FIG. 2. (Color online) Growth rate ¥ and real frequency (;, for 7;(s9)=2 (i)
for pure ITG with adiabatic electron model (squares), (ii) ITG-TEM without
nonadiabatic passing electrons (diamond), and (iii) ITG-TEM with nonadia-
batic passing electrons at 7,(s,)=2.0 (filled circles).
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FIG. 3. (Color online) Two dimensional eigenmode structure of global ITG
at n=8, 7;(sy)=2 for (a) pure ITG with adiabatic electrons, (b) ITG-TEM
without nonadiabatic passing electrons, and (c) ITG-TEM with nonadiabatic
passing electron at 7,(sy)=2.

adiabEl mode. The fact that it has growth rate lower than that
of the ITG-TEM without nonadiabatic passing electrons can
be explained as follows: the inclusion of trapped electrons
increases the real frequency of the ITG-adiabEl mode such
that there is an upshift of phase velocity w,/k;, making ion
Landau resonance regime narrower and thus increasing the
growth rate. However, the inclusion of nonadiabatic passing
electrons, in addition, increases the real frequency further
thereby upshifting the phase velocity more. This makes the
mode Landau resonate dominantly with electrons leading to
a electron Landau damping of the growth rate. However this
damping is not sufficient enough to compensate for the in-
crease in the growth rate produced due to weaker Landau
resonance with ions. This can be attributed to the fact that the
upshift of the real frequency, when passing nonadiabatic
electrons are included, is not drastic, and only a fraction of
the electrons resonate with the upshifted phase velocity of
the mode. Hence stabilization due to Landau resonance of
passing nonadiabatic electrons is weaker than the destabili-
zation due to off-resonance of ions. This sets the growth rate
of ITG-TEM with nonadiabatic passing electrons in between
the ITG-adiabEl and ITG-TEM without nonadiabatic passing
electrons. (For example, reader can see Fig. 6 of Ref. 27.)
The corresponding eigenmode structures for the three cases
of (i) the ITG-adiabEl mode, (ii) ITG-TEM without nonadia-
batic passing electron, and (iii) ITG-TEM with nonadiabatic
passing electrons are presented in Fig. 3. The mode structure
is quite global so that it can pass through several mode ra-
tional surfaces. It reiterates our argument of pronounced
nonadiabaticity of passing electrons near the k=0 surfaces.
One can see the changes in the eigenmode structure as one
looks from Fig. 3(a) to Fig. 3(c). The mode acquires more

z/a

FIG. 4. (Color) Closeup of two dimensional eigenmode structure for (a)
pure ITG with adiabatic electrons, (b) ITG-TEM without nonadiabatic pass-
ing electrons, and (c¢) ITG-TEM with nonadiabatic passing electrons at 7,
=2(s)-
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FIG. 5. (Color online) Poloidal Fourier components for electrostatic modes
shown in Fig. 3. (a) ITG with adiabatic electrons, (b) ITG-TEM mode with-
out nonadiabatic passing electrons, and (c) ITG-TEM mode with nonadia-
batic passing electrons at 7,=2(s,). Note that at each radial location, there
are several poloidal harmonics coupled. A few locations where k,, ,=0 (i.e.,
ng=m) are indicated on the top axis. Nonadiabatic electrons introduce sharp
structure near these points.

and more global nature spreading toward good-curvature re-
gion as one goes from case (i) to case (ii) and finally to case
(iii).

A close-up look of the eigenmode structures on the po-
loidal plane is demonstrated in Fig. 4. As can be seen, the
inclusion of nonadiabatic passing electrons introduces
shorter scales in the eigenmode structures. These electrons
near the k=0 surfaces cannot quench the charge separation
by moving along the field lines. So at those surfaces the
charge separation leads to stronger EXB drift and pro-
nounced instability. This causes the linear eigenmode struc-
ture to break to shorter length scale. The increased strength
of the electric field near these surfaces is apparent if one
looks at Fig. 5, where the amplitude of the potential corre-
sponding to each poloidal harmonics is documented along
the minor radius for the three cases. The position of the mode
rational surfaces (where m=ngq) is shown in the upper axis.
Spikes in the potential are visible at those places where k;
=0, i.e., at the mode rational surfaces. One can easily see the
coupling of poloidal harmonics at each radial location. The
corresponding potential amplitudes in the Fourier space is
shown in Fig. 6 for (i) the ITG-adiabEl mode, (ii) ITG-TEM

1 6 (@) 1 6 (b)
4
0.8 1
7
06 3
0.4
2
0.2 1
0

0 0
krpLi krpLi

FIG. 6. (Color online) Radial Fourier harmonics for each poloidal mode for
the electrostatic mode shown in Fig. 3 for (a) pure ITG with adiabatic
electron response and (b) ITG-TEM without nonadiabatic passing electrons.
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FIG. 7. (Color online) Radial Fourier harmonics for each poloidal mode for
the electrostatic mode shown in Fig. 3(c) for ITG-TEM with nonadiabatic
passing electrons at 7,(s)=2.0.

without nonadiabatic passing electrons, and in Fig. 7 for the
ITG-TEM with nonadiabatic passing electrons. Figure 8
documents the mode-averaged measure of k, along with its
two components k4 and k, for the three cases. The introduc-
tion of trapped electrons to the ITG-adiabEl mode and then
nonadiabatic passing electrons to ITG-TEM enhances the ef-
fective k; by bringing multiscale structures. Because of the
increase in the mode-averaged perpendicular wave number
k, one requires more radial mode numbers for good reso-
lution as well as convergence (Fig. 7). Since the effect of the
nonadiabatic passing electrons is to introduce short multi-
scale structures into the global eigenmode, thereby increas-
ing effective k|, one would like to see how it can affect the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 8. (Color online) Eigenmode-averaged normalized mode numbers
(kgpr ) (squares), (k.p; ) (diamonds), and (k| p; ) (stars) at 7,(s;)=2: (a) pure
ITG Iwith adiabatic elé:ctron response, (b) ITG—TEM without nonadiabatic
passing electrons, and (c) ITG-TEM with nonadiabatic passing electrons at
7:(59)=2.0.
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FIG. 9. (Color online) Mixing length estimate for transport coefficient
Dy =7v/{k>) in gyro-Bohm units as a function of kgp; ; 7(sg)=2 for (a)
pure ITG with adiabatic electron response (solid line with squares), (b)
ITG-TEM without nonadiabatic passing electrons (divided by 8) (solid line
with diamonds), and (c) ITG-TEM with nonadiabatic passing electrons at
7.(50)=2 (dashed line with filled circles).

transport. Here we use the simple mixing length estimation
for transport coefficient, where one requires calculating the
parameter D), =7/(k>), with y and (k%) being the growth
rate and mode averaged square of perpendicular wave num-
ber, respectively. This D,,; is here plotted in gyro-Bohm
units in Fig. 9 against kgp; . While the transport coefficient
first increases with kgpLi and peaks at k‘gpLi:O.4 and then
starts falling for ITG-adiabEl, it, on the other hand, decreases
monotonically with kgp; for ITG-TEM without nonadiabatic
passing electron response. To note that the Dy, =y/ (ki) in
this case is divided by 8 to show it in the same figure. The
inclusion of nonadiabatic passing electron physics into ITG-
TEM reduces the transport but keeps the dependence on
kgpLi same. Since the radial length scale of perturbation is
shortened as is apparent from Fig. 4, the step size over which
particles and energy can be thrown away is reduced. This
leads to the decrease in the transport coefficient for the ITG-
TEM with nonadiabatic passing electron response below the
ITG-adiabEl level.

An 7; scan for fixed 7,=2.0 for the three cases is docu-
mented in Fig. 10. The ITG-adiabEl mode becomes weaker
and weaker as 7; is decreased and finally subsides. ITG-
TEM without nonadiabatic passing electrons, on the other
hand, transforms itself from dominantly ITG mode to domi-
nantly TEM, as one reduces #,. The reason is that with de-
creasing 7, the free energy that drives the ITG mode be-
comes lesser and lesser, but the finite 7, provides the free
energy to the trapped electrons so that mode inherent to
trapped electrons starts becoming unstable. The transition oc-
curs at 7,~1.6. Nonadiabatic passing electrons resist the
transition of the mode from ITG to TEM character and retain
the real frequency in the ion diamagnetic direction with no
critical 7;.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



052507-6 Chowdhury et al.
35 ‘ :
‘w‘ ¢ 4 +*
30f e "Q’W . “ X 2 i
25} 1
3 20} |
3 ()
;: 15} %000000- 0-0-0 ¢
S ol ok
§ 10 A x|
o

FIG. 10. (Color online) Growth rate % and real frequency w, vs 7; at
7.(50)=2 (i) for pure ITG with adiabatic electrons (squares), (ii) ITG-TEM
without nonadiabatic passing electrons (diamonds), and (iii) ITG-TEM with
nonadiabatic passing electrons (filled circles).

B. Pure TEM

TEMs are sustained by the trapped electron population
in the bad-curvature region of a tokamak. Similar to the pass-
ing particles, the trapped particles can also produce unstable
modes in the presence of density or temperature inhomoge-
neities. TEM produced due to the presence of electron den-
sity gradient is driven by charge separation, while that pro-
duced due to the presence of ETG is driven by
compressibility. The passing fraction of electrons, when con-
sidered to respond adiabatically, can maintain the growth rate
at a lower value. Recently, TEM in the presence of passing
electrons has been studied nonlinearly in Ref. 16 which
shows the signature of the persistence of the linear mode
structure in the nonlinear regime. Here we shall show that
the nonadiabatic fraction of passing electrons significantly
alters the stability properties of TEM.

We start with the kgp, scan of the real frequency and
growth rate normalized by wg=vy(5=50)@,/a’ for the
TEM for two cases, namely, (i) TEM without nonadiabatic
passing electrons and (ii) TEM with nonadiabatic passing
electrons in Fig. 11. The dashed line with squares represents
the growth rate for case (i), while the solid line with squares
represents the corresponding real frequency. The dashed line
with open circles is for growth rate for case (ii), with solid
lines with open circles representing the corresponding real
frequency. The scan reveals that nonadiabatic passing elec-
trons destabilizes the TEM further. TEM whether produced
due to density gradient or temperature gradient has EXB drift
at its root. When one considers passing electrons to be adia-
batic, the moment charge separation is produced; these elec-
trons move to the region of finite charge separation and wipe
out the space charge, thus denying the possibility of building
up of EXB advection or reducing it. Nonadiabatic passing
electrons, on the other hand, take finite time, especially near
the k=0 surfaces, to reach the region of EXB advection,
thereby allowing finite time for the mode to grow. TEM thus
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FIG. 11. (Color online) Growth rate ¥ (dashed line) and real frequency w,
(solid line) for 7,(s)=2 (i) for pure TEM without nonadiabatic passing
electron model (squares) and (ii) pure TEM with nonadiabatic passing elec-
tron model at 7,(sy) = 7,(sy)=2.0 (open circles).

gets enhanced when one considers the fraction of nonadia-
batic passing electrons. One can expect similar effect of
nonadiabaticity of passing electrons on density gradient
driven TEM also.

Next we look at the change in the mode structures of
TEM in the presence of these electrons. The global mode
structures for the two cases without and with nonadiabatic
passing electrons are shown in Fig. 12 with a close-up view
presented in Fig. 13. It is clear that the modes span through
several mode rational surfaces. Nonadiabatic passing elec-
trons have strong effect near these surfaces, leading to a
strong rise in the radial perturbed electric field. This breaks
up the mode structure at these surfaces. Similar to the ITG-
TEM case, the mode rotates toward the good-curvature re-
gion. The local rise in the perturbed radial electric field near
mode rational surfaces becomes clear when one looks at the
potential amplitude across the minor radius, corresponding to
different poloidal harmonics in Fig. 14, without and with
nonadiabatic passing electrons. Strong poloidal coupling is
well demonstrated in both cases where at each radial position
the mode has contribution from several neighboring compo-

FIG. 12. (Color online) Two dimensional eigenmode structure for (a) TEM
without nonadiabatic passing electron response and (b) TEM with nonadia-
batic passing electron response at n=7 and 7,(so) = 7,(s0) =2.
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0.2 04 06 08
(r-R)/a

FIG. 13. (Color) Closeup of two dimensional eigenmode structure of (a)
TEM without nonadiabatic electron response and (b) TEM with nonadia-
batic passing electron response for n=7 and 7,=2(s,), 7,=2(s¢)-

nents. Figures 15 and 16 document the potential in the Fou-
rier space for the two cases. Production of short scales in the
eigenmode structure rises the effective averaged k, from the
adiabatic passing electron case to nonadiabatic passing elec-
tron case, as can be seen in Fig. 17. Estimation of transport
via electron channel for which TEM is believed to be an
obvious candidate is shown in Fig. 18 using simple mixing
length estimation, where D, =v/{k*) is plotted in gyro-
Bohm units versus kePL,» The transport coefficient decreases
monotonically with increasing kgpLi for both cases. However,
Dy is reduced when one introduces a nonadiabatic fraction
of passing electrons to the adiabatically responding passing
electron TEM. The reduction in the transport similar to the
ITG-TEM case can be understood as due to decreased trans-
port step size caused by the nonadiabaticity of passing elec-
trons.

IV. CONCLUSION

We have investigated the effects of nonadiabaticity of
passing electrons on ITG-TEM and TEM using a global gy-
rokinetic spectral code EM-GLOGYSTO. The model includes
both passing and trapped particles, profile variations, true ion
to electron mass ratio, arbitrary order FLR effects, transit/
trapped particle resonances, and poloidal and radial coupling.
A comprehensive description of ITG, ITG-TEM, and pure
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FIG. 14. (Color online) Poloidal Fourier components for electrostatic mode
shown in Fig. 12. Note that at each radial location, there are several poloidal
harmonics coupled. A few locations where &, ,=0 (i.e., ng=m) are indi-
cated on the top axis. Nonadiabatic electrons introduce sharp structure near
these points.
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FIG. 15. (Color online) Radial Fourier harmonics for each poloidal mode
for the electrostatic mode shown in Fig. 12(a) for TEM without nonadiabatic
passing electron response.

TEM including all relevant species is presented. The major
findings are as follows.

(1) For the low n or global modes, nonadiabatic passing
electrons stabilize the ITG-TEM. However, it has delete-
rious effect on pure TEM leading to an increase in the
growth rate.

(2) For both ITG-TEM and TEM, the spatial mode struc-
tures exhibit multiscale feature. Because of the drastic
rise in the phase velocity near the k=0 surfaces, passing
electrons fail to respond adiabatically near these sur-
faces, leaving open charge separation and pronounced
EXB drift. This breaks up the mode structure near the
k=0 surfaces.

FIG. 16. (Color online) Radial Fourier harmonics for each poloidal mode
for the electrostatic mode shown in Fig. 12(b) for TEM with nonadiabatic
passing electron response. For numerical convergence we have tested with
larger number of radial harmonics and observed that the results are con-
verged (not shown).
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FIG. 17. (Color online) Eigenmode-averaged normalized mode numbers
(kgpr) (squares), (k.p,) (diamonds), and (k, p, ) (stars) as a function of
k(,pL_Iat 7:(s0)=2: (a) TEM without nonadiabatic passing electron response
and (b) TEM with nonadiabatic passing electrons at 7,(sg)=2.0.

(3) The existence of multiscale features in the spatial mode
structure makes effective k, higher, which eventually
reduces the mixing length based estimation of transport
of the corresponding modes below the level predicted by
their respective adiabatic electron models.

As is observed, a mixing length based estimate leads to
an important reduction in diffusivity. Nonlinear global simu-
lations will be necessary to confirm this fact, considering that
there are situations where nonlinear effects tend to introduce
larger scales, e.g., in the case of inverse cascades and where
mixing length estimates have proven wrong.
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FIG. 18. (Color online) Mixing length estimate for transport coefficient
D=7/ {k%) in gyro-Bohm units as a function of kypy;: 7;(s9)=2 for (a)
pure TEM without nonadiabatic passing electron response (dashed line with
squares) and (b) pure TEM with nonadiabatic passing electron response at
7.(s9)=2 (dashed line with open circles).
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It is perhaps worth noting that a flux-tube model with
correct implementation of magnetic shear and boundary con-
ditions along the magnetic field line should also be able to
reproduce the fine radial structures at the mode rational sur-
faces resulting from nonadiabatic passing electron dynamics.
However, to our knowledge, such features have not been
clearly pointed out in the past literature.

Equilibrium flows, as well as electromagnetic and
Shafranov shift effects, can in certain cases be important for
the instabilities that were studied in this paper. ETG modes
with full electron and ion dynamics is another area of inter-
est. We hope to address some of these issues in future work.
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