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ABSTRACT

This paper addresses the problem of the interpolation of 2-dspheri-
cal signals from non-uniformly sampled and noisy data. We propose
a graph-based regularization algorithm to improve the signal recon-
structed by local interpolation methods such as nearest neighbour
or kernel-based interpolation algorithms. We represent the signal as
a function on a graph where weights are adapted to the particular
geometry of the sphere. We then solve a total variation (TV) mini-
mization problem with a modified version of Chambolle’s algorithm.
Experimental results with noisy and uncomplete datasets show that
the regularization algorithm is able to improve the result of local in-
terpolation schemes in terms of reconstruction quality.

Index Terms— Spherical Function, Signal Reconstruction,
Regularization, Chambolle algorithm

1. INTRODUCTION

Signal processing on non-classical manifolds become increasingly
important with the developpement of new types of signals andsens-
ing modes. In particular, omnidirectional audio or visual informa-
tion, as well as many 2-d signals, can be efficiently mapped onthe
sphere in order to preserve the intrinsic geometry information. How-
ever, the data is generally captured as a irregularly sampled and noisy
signal, while efficient processing of such signals on the 2-dsphere
is generally performed on uniform or equiangular grids. It is there-
fore necessary to implement an interpolation step in order to map the
function on a regular structure.

Conventional algorithms based on nearest neighbour interpola-
tion generally fail to exploit global signal information. On the other
hand, methods based on the Spherical Fourier transform [1] may fail
to exploit efficiently the local signal information. Locally weighed
linear and nonlinear regression methods [2] overcome theselimita-
tions, at the price however of an increased computational complexity.

We propose in this paper a graph-based regularization algorithm
that builds on top of local interpolation methods for improved in-
terpolation performance. The graph structure is very appealing for
modeling the high dimensional data. It provides a lot of flexibility
for the representation of different data structures and fast processing
algorithms. Graph-based algorithms have been used in classical im-
age processing problems such as inpainting or denoising, and more
recently for optical flow estimation on the sphere [3]. We formu-
late here a total variation (TV) minimization problem on a graph for
the interpolation of non-uniform and noisy samples on the sphere.
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We solve the problem with a modified version of Chambolle’s al-
gorithm [4] that is adapted to the specific geometry of the sphere.
Conducted experiments on geodesic data and omnidirectional image
demonstrate that the regularization algorithm is able to improve sig-
nificantly the performance of local interpolation methods even with
noisy input data. We note that this paper does not discuss on selec-
tion of parameter values for the algrithm, which can furtherimprove
the final result.

Potential applications to this framework are numerous. In par-
ticular, many real geodesic signal measurements in astronomy, me-
teorology, oceanography, etc., as well as omnidirectionalaudio or
visual information are easily mapped and processed on the sphere,
due to the signal characteristics.

This paper is organized as follows. Section 2 provides the nec-
essary definitions of discrete operators on graphs. The discrete reg-
ularization of 2-d spherical functions is presented in Section 3. Sec-
tion 4 gives experimental results for the interpolation of noisy and
nonuniformly sampled data on the sphere.

2. PRELIMINARIES

2.1. Graph representation

We represent the spherical function as a signal on a graph foreffi-
cient processing. A graphΓ = (V, E) is composed from the set of
verticesV that describe items and a set of edges that describe pair-
wise connections between pairs of verticesE ⊆ V × V . We focus
on undirected graphs, where for each edgee = (u, v) ∈ E draws
e = (v, u) ∈ E. We assume that the graph is connected (for every
vertex there exists a path to any other vertex of the graph), and that
the graphΓ has no self-loops. A graph is weighted if weights de-
fined asw : E → R

+ are assigned to the graph edges (w > 0 if
(u, v) ∈ E), wherew(u, v) = w(v, u).

In this work, we denote withH(V ) the Hilbert space of real
function on vertices, wheref : V → R

+ assigns a real number to
each vertex of the graph. A function on the graph edges is denoted
by h ∈ H(E), whereh : E → R

+ assigns a real value to each edge.
Discrete operators for data processing on graph have been introduced
in [5] and [6]. We recall here the main definitions that are necessary
in our regularization framework.

• The degree functiond : V → R
+ on the vertices is defined

asd(u) =
X

v∼u

w(u, v), wherev ∼ u denotes all verticesv

connected tou by the edges(u, v).

• The edge derivative of functionf along e at the vertexu,
∂f

∂e
|u : H(V ) → R

+ is defined by:



∂f

∂e
|u =

q

w(u,v)
d(u)

f(u) −
q

w(u,v)
d(v)

f(v).

• The graph gradient is an operator▽ : H(V ) → H(E) de-
fined by:

(▽f)(u, v) =
q

w(u,v)
d(v)

f(v) −
q

w(u,v)
d(u)

f(u), ∀(u, v) ∈ E.

• The norm of the gradient measures the roughness of a func-
tion around a vertex. A local variation off at each ver-
tex v is defined with the operator||▽|| : R

N → R
+ as:

‖▽vf‖ =

s

X

e⊣v

(
∂f

∂e
|v)2, wheree ⊣ v denotes the set of

the edges incident with vertexv.

• The graph divergence operator is given as:div : H(E) →
H(V ) which satisfies the property
< ▽f, h >H(E)=< f,−div(h) >H(V ).

• The graph Laplacian is the operator△ : H(V ) → H(V )
defined by:△f = − 1

2
div(||▽f ||). Combined with previous

definitions, it can be rewritten as:

△f(v) = f(v) −
X

u∼v

w(u, v)
p

d(u)d(v)
f(u).

• The graph curvatureK : H(V ) → H(V ) is defined by:
Kf = 1

2
div( ▽f

||▽f ||
).

2.2. TV regularization on graphs

Equipped with the above definitions, we can now describe the total
variation (TV) minimization problem on a graph. Originally, TV-
based plane image restoration models were introduced by [7]and
written as the following optimization problem

min
f∗

Z

Ω

|▽f∗|df∗, s.t. ||f∗ − f ||22 ≤ σ2, (1)

where| · | represents Euclidean distance,Ω denotes image domain,
f is the observed image,f∗ is estimated function andσ2 is variance
estimate of the noise.

Rather then solving the above constrained minimization prob-
lem, it is more convenient to solve the unconstrained problem:

min
f∗

Z

Ω

|▽f∗|df∗ +
1

2λ
||f∗ − f ||22, (2)

whereλ is a positive constant.
The above problem can be formulated as a discrete optimization

problem for data on a graph. Given{f, f∗} onV andp onE, Cham-
bolle [4] proved that the solution to Eq. (2) is a functionf∗ given by
f∗ = f − λ · div(p), where the termλ · div(p) is computed from a
following minimization problem:

min{||λ · div(p) − f ||2 | p ∈ E, |p(u,v)|2 ≤ 1,∀u, v ∈ f}. (3)

The problem of Eq. (3) can be solved by the semi-implicit algorithm,
which is giving as a final result a following iterative procedure:

p
(n+1)

(u,v)
=

p
(n)
(u,v) + τ (▽(div(p(n)) − f

λ
))(u,v)

1 + |τ (▽(div(p(n)) − f

λ
))(u,v)|

(4)

The functionp is initialized as a zero-valued matrix, the parameter
0 < τ ≤ 1/(Kf)2 dictates the algorithm convergence speed and
the parametern denotes iteration steps of the algorithm. Note that
several solutions have been proposed for duality-based algorithms in
TV regularized image restoration [8]. In this paper, we use Cham-
bolle’s algorithm due to its fast convergence.

3. GRAPH REGULARIZATION OF SPHERICAL
FUNCTIONS

Fig. 1. Illustration of samples of a 2-d spherical function: a grid
point A(θ,φ) and its neighboring samples.

We define here a graph-based representation for functions onthe
2-d sphere and we adapt the above regularization framework to the
specific geometry of the problem. Points on a 2-d sphere (defined as
a sphere whose radiusr = 1) are defined with an azimuth angleθ ∈
[0, π] and a zenith angleφ ∈ [−π, π). The spherical function can be
represented on a graph, where we assign the function sample values
f to vertices of the graph. As the graph is constructed on a regular
(equiangular) grid, we have to perform an a priori interpolation for
samples that are missing in the input dataset. The functionf on
the graph is therefore defined from the noisy input samples when
they are available, or from values that have been estimated by local
interpolation methods.

The values of the edge weight function are given from the
geodesic distances between samples. We draw edges only be-
tween neighbouring samples, where neighbours are defined as
pairs of points with a small geodesic distance. In this work,we
consider the four nearest samples on the regular grid as neigh-
bors. The weights between function samples are dependent on
the desired reconstruction resolution(2Nθ × 2Nφ). The samples
(θi, φi) on a regular grid are typically chosen from the set of val-
ues: θi ∈ { π

2Nθ+1
, 2π

2Nθ+1
, . . . , 2Nθπ

2Nθ+1
}, while φi ∈ {−π,−π +

2π
2Nφ

, . . . , π− 2π
2Nφ

}. An interpolation pointA(θi, φi) and its neigh-

bors are illustrated on Fig. 1. The geodesic distance among neigh-
bors with the sameθi value is given bywa = 2π sin θ

2Nφ
, while neigh-

bors with sameφi angle have a geodesic distance ofwb = π
2Nθ+1

.
The degree function on the graph finally reads:

d(u) =
X

v∼u

w(u, v) = 2wa + wb
up + wb

down. (5)

The regularization problem then consists in computing a func-
tion f∗ on the sphere from noisy or a priori interpolated samples
fi(θi, φi), wherei = 1, . . . , q with q the total number of samples.
In other words, we have to estimatef∗ in the presence of noiseǫi,
i.e.,:

fi = f∗(θi, φi) + ǫi. (6)

The objective is to find a set of valuesf∗ on verticesV ∗ that
preserves the edges and that is simultaneously close to the input data
samples on the sphere, for each of the local set of neighbors in the



subgraphs. This is formalized as the following optimization prob-
lem:

min
f∗

{ ||f
∗ − f ||2
2λ

+ |▽f∗|}, (7)

wheref∗ is the unknown function, andf is a noisy input set. This
problem is a discrete version of problem given with Eq. (2). The first
term is measuring a fidelity to initial data, while the secondone is
preserving the sharp discontinuities (edges) of the spherical function.

In our formulation, we assume that the underlying analog func-
tion on a 2-d sphere is differentiable and that the vertex points that
are connected are ’close’. The latter condition is fulfilledby enabling
only the local connections for each point on the equiangulargrid.

Discrete values of the function samples and gradient and diver-
gence operators on a graph defined in the previous section arethere-
fore obtained by analog function sampling and discretization of the
corresponding analog operators. In particular, whenu is a grid point
and{(u+1)a, (u+1)b, (u−1)a, (u−1)b} are its neighboring points
in the longitude and latitude direction, the gradient and divergence
operators on the spherical grid are given as follows.

The gradient is defined as a 2-d vector(▽f)(u) = (▽fa
(u), ▽fb

(u)),
where:

▽fb
(u) =

(

0, if θi = θmax = 2Nθπ

2Nθ+1
,

q

wb(u,u+1)
d(u)

f(u) −
q

wb(u,u+1)
d(u+1)

fb(u + 1), otherwise.

▽fa
(u) =

s

wa(u, u + 1)

d(u)
f(u) −

s

wa(u, u + 1)

d(u + 1)
fa(u + 1) (8)

The computation of the divergence relies on a functionh on
the graph edges that satisfy the property:< ▽f, h >H(E)=<
f,−div(h) >H(V ). We choose a Laplacian function△f(u) =
−div(▽f(u)), since it fulfills this property. It is defined by:

△fb
(u) =

(

f(u), if θ = θmin = π
2Nθ+1

,

f(u) − wb(u,u−1)√
d(u)d(u−1)

fb(u − 1), otherwise.

△fa
(u) = f(u) − wa(u, u − 1)

p

d(u)d(u − 1)
fa(u − 1). (9)

Equipped with these operators, we can solve the TV-minimization
problem on the graph with Chambolle’s algorithm [4]. The iterative
procedure of Eq. (4) is used to compute the valuesp

(n)
(u,v), where

the initial valuep
(0)

(u,v)
= 0, ∀(u, v) ∈ V . The resulting solution is

f∗ = f − λdiv(p(iter)), whereiter is a parameter that denotes a
total number of iterative steps.

Critical point of the regularization algorithm is the estimation
of parameter values. Though there are several known methodsfor
their optimization [CITE], in this work we simply use a trial-error
method to set the parameters and we keep it fixed throughout the
experiments.

4. EXPERIMENTAL RESULTS

We compare the reconstruction results of a graph-based regulariza-
tion method with the local interpolation methods whose parameters
are chosen in order to minimize the reconstruction error. The near-
est neighbour (NN) interpolation method and a kernel regression
method (KerInt) described in [2] are the local interpolation meth-
ods used in our experiments. The latter approach approximates the
function on a 2-d sphere with a Taylor series expansion. We use

the Gaussian kernel function projected on the 2-d sphere by inverse
stereographic projection. The variance of the Gaussian function rep-
resents a geodesic distance on the sphere. For each interpolation
point, the set of neighboring points are the points whose geodesic
distance to the interpolation point is smaller than the kernel variance
σ. The samples are weighted locally, according to their distance to
the interpolation point.

Experiments are conducted for spherical functions whose value
points lie on the uniform grid (ground-truth values). We usea dataset
representing the topography of the Earth1 and a synthetic omnidi-
rectional image. The datasets are normalized to values in the range
[0, 1] and down-sampled to a size256 × 256.

We add an Gaussian noise to the sample values. Then we re-
move randomly a certain percentagek of pixels from the original
image and estimate missing sample values of the spherical function
from the remaining samples. This permits to analyze the perfor-
mance of the proposed interpolation algorithm for uncomplete and
noisy datasets on the sphere. We measure the performance with re-
spect to the original data in means of the Peak-Signal-to-Noise-Ratio
(PSNR), defined withPSNR(dB) = 10log10(

MAX2

MSE
) (MAX is

maximum pixel intensity value), theMSE =
1

10

10
X

i=1

MSErd(i)

and the Mean-Square-Error of random matrix interpolation errors is

MSErd =
1

2Nθ × 2Nφ

2Nθ
X

u=1

2Nφ
X

v=1

(Ou,v − Iu,v)
2 (O is original data

matrix andI is the interpolation result).
Fig. 2 illustrates the performance of the different interpolation

methods for the Earth topology data whenk ∈ {5, 10, . . . , 55} per
cents of the original image samples are missing and in the pres-
ence of additive noise with Signal-to-Noise-RatioSNR(dB) ∈
{25, 30}. To achieve statistically significant results we form a set
of 10 randomly chosen interpolation points for each choice ofk.
We clearly see that the proposed regularization method permits to
improve the performance of local interpolation methods. Wesee that
the regularization peforms better when combined with the kernel-
based approach (GrKerInt) rather than the NN-based interpolation
method (GrNNInt), especially for a smaller number of missing
points, since its input data set is more accurate.

Fig. 3 illustrates the results of the kernel-based method and
the graph-based method combined with kernel-based interpolation
for the Earth topology data when the added noise has aSNR =
30dB. Fig. 4 represents the same experiments with the synthetic
image. Both figures confirm the benefits of the proposed regulariza-
tion methods for different kinds of data.

5. CONCLUSIONS

This paper proposes a graph regularization-based method for inter-
polation of a spherical function from non-uniform and noisysam-
ples. Our method achieves better performance in terms of PSNR
than baseline nearest neighbour or kernel-based methods, especially
for a small percentage of missing data. In addition, the proposed so-
lution based on an adaptation of Chambolle’s algorithm results in a
fast algorithm whose complexity is similar to baseline methods. The
framework proposed in this paper can further be extended to signal
manifolds different from the sphere, when the graph representation
is properly adapted to the corresponding geometry.

1Available from the National Geophysical Data Center, NOAA US De-
partment of Commerce under data announcement 88-MGG-02.
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Fig. 2. PSNR values reconstruction with the proposed (GrNNInt,
GrKerInt) and baseline methods (NN, KerInt) for different number
of input point andSNR ∈ {25, 30} dB. The values are averaged
over 10 randomly chosen interpolation sets.
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Fig. 3. Reconstruction results,SNR = 30dB, zero order Taylor
expansion andk = 5% of missing data: (a) Kernel interpolation,
σ = 0.02, PSNR = 27.94dB; (b) Graph regul. with Kernel in-
terp. data,(σ, iter., τ, λ) = (0.02, 150, 25e−4, 1e−5), PSNR =
30.52dB
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Fig. 4. Reconstruction results,SNR = 30dB, zero order Taylor
expansion andk = 5% of missing data: (a) Kernel interpolation,
σ = 0.02, PSNR = 27.95dB; (b) Graph regul. with Kernel in-
terp. data,(σ, iter., τ, λ) = (0.02, 200, 25e−4, 1e−5), PSNR =
28.55dB
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