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ABSTRACT

This paper addresses the problem of the interpolation osgheri-
cal signals from non-uniformly sampled and noisy data. Véppse
a graph-based regularization algorithm to improve theaigecon-
structed by local interpolation methods such as neareghbeur
or kernel-based interpolation algorithms. We represemsifnal as
a function on a graph where weights are adapted to the plarticu
geometry of the sphere. We then solve a total variation (T\i-m
mization problem with a modified version of Chambolle’s altion.
Experimental results with noisy and uncomplete dataseiw shat
the regularization algorithm is able to improve the restilboal in-
terpolation schemes in terms of reconstruction quality.

Index Terms— Spherical Function, Signal Reconstruction,
Regularization, Chambolle algorithm

1. INTRODUCTION

Signal processing on non-classical manifolds become asangly
important with the developpement of new types of signalssams-
ing modes. In particular, omnidirectional audio or visug#brma-
tion, as well as many 2-d signals, can be efficiently mappethen
sphere in order to preserve the intrinsic geometry infoionatHow-
ever, the data is generally captured as airregularly sahgpid noisy
signal, while efficient processing of such signals on thespidere
is generally performed on uniform or equiangular gridssthere-
fore necessary to implement an interpolation step in oa@erap the
function on a regular structure.

Conventional algorithms based on nearest neighbour iolgrp
tion generally fail to exploit global signal information.n@he other
hand, methods based on the Spherical Fourier transformdyfail
to exploit efficiently the local signal information. Localveighed
linear and nonlinear regression methods [2] overcome tl@dta-
tions, at the price however of an increased computatiomapbexity.

We propose in this paper a graph-based regularizationitigor
that builds on top of local interpolation methods for impedvin-
terpolation performance. The graph structure is very dpppéor
modeling the high dimensional data. It provides a lot of fdity
for the representation of different data structures angdiasessing
algorithms. Graph-based algorithms have been used incdhgn-
age processing problems such as inpainting or denoisirgrane
recently for optical flow estimation on the sphere [3]. Wenior
late here a total variation (TV) minimization problem on agh for
the interpolation of non-uniform and noisy samples on theesp.
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We solve the problem with a modified version of Chambolles al
gorithm [4] that is adapted to the specific geometry of theesph
Conducted experiments on geodesic data and omnidirettioage
demonstrate that the regularization algorithm is able forave sig-
nificantly the performance of local interpolation methoudsrewith
noisy input data. We note that this paper does not discusslen-s
tion of parameter values for the algrithm, which can furiihgsrove
the final result.

Potential applications to this framework are numerous. dr p
ticular, many real geodesic signal measurements in astrgnme-
teorology, oceanography, etc., as well as omnidirectiaoaio or
visual information are easily mapped and processed on thersp
due to the signal characteristics.

This paper is organized as follows. Section 2 provides tlee ne
essary definitions of discrete operators on graphs. Theetésceg-
ularization of 2-d spherical functions is presented in Bec3. Sec-
tion 4 gives experimental results for the interpolation ofsy and
nonuniformly sampled data on the sphere.

2. PRELIMINARIES

2.1. Graph representation

We represent the spherical function as a signal on a grapéffier
cient processing. A graphi = (V, E) is composed from the set of
verticesV that describe items and a set of edges that describe pair-
wise connections between pairs of vertides— V' x V. We focus

on undirected graphs, where for each edge (u,v) € E draws

e = (v,u) € E. We assume that the graph is connected (for every
vertex there exists a path to any other vertex of the graptu) tleat

the graphl’ has no self-loops. A graph is weighted if weights de-
fined asw : E — R™ are assigned to the graph edges % 0 if
(u,v) € E), wherew(u,v) = w(v,u).

In this work, we denote witl#(V") the Hilbert space of real
function on vertices, wher¢ : V' — R assigns a real number to
each vertex of the graph. A function on the graph edges istddno
by h € H(E), whereh : E — R™ assigns a real value to each edge.
Discrete operators for data processing on graph have beediced
in [5] and [6]. We recall here the main definitions that areassary
in our regularization framework.

e The degree functiod : V — R™ on the vertices is defined
asd(u) = Y w(u,v), wherev ~ u denotes all vertices
connected ta: by the edgegu, v).

e The edge derivative of functioff alonge at the vertexu,
211, H(V) — R is defined by:



8 | = /M) f(u) — | /2] £ (1),

e The graph gradient is an operator: H(V) — H(E) de-
fined by:
(V) (,0) = /222 () — | /2088 f(u), ¥(u,v) € E.

e The norm of the gradient measures the roughness of a func-

tion around a vertex. A local variation of at each ver-
tex v is defined with the operatdiv|| : RY — R* as:

Vo fll = E (?M)Q, wheree - v denotes the set of
e
e—v

the edges incident with vertex

e The graph divergence operator is given dsv : H(E) —
‘H(V') which satisfies the property
<V h >ymy=< f,—div(h) >3-

e The graph Laplacian is the operatdr : H(V) — H(V)
defined by:Af = —Zdiv(||V f||). Combined with previous
definitions, it can be rewrltten as

'LU ’U
Af(v Z bl (u).
e The graph curvaturéC : H( ) — H(V) is defined by:

Kf = 3div(mm).

2.2. TV regularization on graphs

Equipped with the above definitions, we can now describedts t
variation (TV) minimization problem on a graph. OriginalljV-
based plane image restoration models were introduced bsnd]
written as the following optimization problem
H}in/‘ [Vfe|df*, st || — fl3 < o2, 1)
Q
where| - | represents Euclidean distanéedenotes image domain,
f is the observed imagg; is estimated function and? is variance
estimate of the noise.
Rather then solving the above constrained minimizatior{pro
lem, it is more convenient to solve the unconstrained prable
. * * 1 * 2
min VfoldfT + — — , 2
vin [ 194714 + g5 17" = 111 @
where) is a positive constant.
The above problem can be formulated as a discrete optiroizati
problem for data on a graph. Givérf, f/*} onV andp on E/, Cham-
bolle [4] proved that the solution to Eq. (2) is a functiphgiven by

= f—X-div(p), where the tern\ - div(p) is computed from a
following minimization problem:

fIP I p € B, Ipunl> < L,Vu,v € f}. (3)

The problem of Eq. (3) can be solved by the semi-implicit atgm,
which is giving as a final result a following iterative procee:
(n)

Plupwy T 7(V(div(p (n)) ))(u )
L+ |7 (V(div(p™) = £)) uw|

min{||\ - div(p) —

(n+41) _
Pluwy =
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3. GRAPH REGULARIZATION OF SPHERICAL
FUNCTIONS

X

Fig. 1. llustration of samples of a 2-d spherical function: a grid
point A(0,¢) and its neighboring samples.

We define here a graph-based representation for functiotiseon
2-d sphere and we adapt the above regularization framewdhet
specific geometry of the problem. Points on a 2-d sphere @tkfs
a sphere whose radius= 1) are defined with an azimuth angle=
[0, 7] and a zenith angleé € [—=, 7). The spherical function can be
represented on a graph, where we assign the function sawpiesv
f to vertices of the graph. As the graph is constructed on daegu
(equiangular) grid, we have to perform an a priori intergiolafor
samples that are missing in the input dataset. The functiam
the graph is therefore defined from the noisy input samplesnwh
they are available, or from values that have been estimatéachl
interpolation methods.

The values of the edge weight function are given from the
geodesic distances between samples. We draw edges only be-
tween neighbouring samples, where neighbours are defined as
pairs of points with a small geodesic distance. In this wavk,
consider the four nearest samples on the regular grid asneig
bors. The weights between function samples are dependent on
the desired reconstruction resoluti®Ny x 2N,). The samples
(6:, ¢:) on a regular grid are typically chosen from the set of val-
ues: §; € {2N9+1’ 2N9+1,...,22N99f1} while ¢; € {—m, —7 +

2= .. 7r——¢} An interpolation pointA(6;, ¢;) and its neigh-

bors are illustrated on Fig. 1. The geodesic distance ameighn
bors with the samé; value is given byw® = %, while neigh-

bors with samep; angle have a geodesic distanceudf = ﬁ
The degree function on the graph finally reads:
d(u) = w(u,v) = 20" + wyy, + Wiewn- ®)

v~U

The regularization problem then consists in computing &-fun
tion f* on the sphere from noisy or a priori interpolated samples
fi(0:,¢:), wherei = 1,..., g with ¢ the total number of samples.
In other words, we have to estimafé in the presence of noiss,

The functionp is initialized as a zero-valued matrix, the parameter;
0 < 7 < 1/(Kf)? dictates the algorithm convergence speed an
the parameten denotes iteration steps of the algorithm. Note that

Ji=f(0i,0:) + . (6)

several solutions have been proposed for duality-baseditims in
TV regularized image restoration [8]. In this paper, we ubarg-
bolle’s algorithm due to its fast convergence.

The objective is to find a set of valugs on verticesV* that
preserves the edges and that is simultaneously close toghedata
samples on the sphere, for each of the local set of neighbdteei



subgraphs. This is formalized as the following optimizatrob-

e [Failk
H}LH{T + IV (7)
where f* is the unknown function, andl is a noisy input set. This
problem is a discrete version of problem given with Eq. (2)eTirst
term is measuring a fidelity to initial data, while the secame is
preserving the sharp discontinuities (edges) of the spdldtinction.

In our formulation, we assume that the underlying analog-fun
tion on a 2-d sphere is differentiable and that the vertertsahat
are connected are 'close’. The latter condition is fulfillgcenabling
only the local connections for each point on the equiangyrdit:

Discrete values of the function samples and gradient aret-div
gence operators on a graph defined in the previous sectidhexee
fore obtained by analog function sampling and discretiratf the
corresponding analog operators. In particular, whéna grid point
and{(u+1)*, (u+1)°, (u—1)*, (u—1)"} are its neighboring points
in the longitude and latitude direction, the gradient angjence
operators on the spherical grid are given as follows.

The gradient is defined as a 2-d veatorf) (u) = (V f(,,), Vf(”u)),
where:

fb 07 if aL = gmaw = %7
Vi = ol (o .
“ 7@(;(,;)“) flw) =4/ 71”2((1;’;‘31) f%(u+ 1), otherwise.

01t = [ ) - [ ) @

The computation of the divergence relies on a functioon
the graph edges that satisfy the property: Vf,h >3 p)=<
f,—div(h) >3 (vy. We choose a Laplacian functiof f(u) =
—div(V f(u)), since it fulfills this property. Itis defined by:

b f(uw), #0=0min = 2N:;r+17
— b
Afuy = flu) — 2= gy, 1), otherwise.

T Valwatu—1)
a _ wa(uv u— 1) a _
ANfiwy = f(u) 7d(u)d(u = 1)f (u—1). 9

Equipped with these operators, we can solve the TV-minitiuza
problem on the graph with Chambolle’s algorithm [4]. Theatere
procedure of Eq. (4) is used to compute the valpgé,u), where
), = 0,Y(u,v) € V. The resulting solution is
f* = f — Miv(p'*"), whereiter is a parameter that denotes a
total number of iterative steps.

Critical point of the regularization algorithm is the esétion
of parameter values. Though there are several known metobods
their optimization [CITE], in this work we simply use a triatror
method to set the parameters and we keep it fixed througheut t
experiments.

the initial valuep

4. EXPERIMENTAL RESULTS

We compare the reconstruction results of a graph-basedarega:
tion method with the local interpolation methods whose peaters
are chosen in order to minimize the reconstruction erroe fidar-
est neighbour (NN) interpolation method and a kernel resjoes
method (KerInt) described in [2] are the local interpolatimeth-
ods used in our experiments. The latter approach approgsiiae

the Gaussian kernel function projected on the 2-d spherevgyse
stereographic projection. The variance of the Gaussiattifumrep-
resents a geodesic distance on the sphere. For each iatéwpol
point, the set of neighboring points are the points whosalgsio
distance to the interpolation point is smaller than the &evariance
o. The samples are weighted locally, according to their distao
the interpolation point.

Experiments are conducted for spherical functions whokesva
points lie on the uniform grid (ground-truth values). We askataset
representing the topography of the Earétnd a synthetic omnidi-
rectional image. The datasets are normalized to valuesinathge
[0, 1] and down-sampled to a si266 x 256.

We add an Gaussian noise to the sample values. Then we re-
move randomly a certain percentageof pixels from the original
image and estimate missing sample values of the sphericetidun
from the remaining samples. This permits to analyze theoperf
mance of the proposed interpolation algorithm for uncomepénd
noisy datasets on the sphere. We measure the performariteswit
spect to the original data in means of the Peak-Signal-ticéNBatio

(PSNR), defined withP SN R(dB) = 10logio( MAX ) (MAX is

10
maximum pixel intensity value), the/SE = 1—10 ZMSETd(i)
i=1

and the Mean-Square-Error of random matrix intérpolatitmre is

1 2Ny 2Ny
2 . ..
MSEra = 57— o, ;;(Ou,v I..)? (O'is original data

matrix and! is the interpolation result).

Fig. 2 illustrates the performance of the different intdation
methods for the Earth topology data where {5, 10, ...,55} per
cents of the original image samples are missing and in the- pre
ence of additive noise with Signal-to-Noise-Rat$aVR(dB) €
{25,30}. To achieve statistically significant results we form a set
of 10 randomly chosen interpolation points for each choicé: of
We clearly see that the proposed regularization method ifgetm
improve the performance of local interpolation methods.sékethat
the regularization peforms better when combined with thmdde
based approach (GrKerint) rather than the NN-based integipn
method (GrNNInt), especially for a smaller number of migsin
points, since its input data set is more accurate.

Fig. 3 illustrates the results of the kernel-based methatl an
the graph-based method combined with kernel-based irlggipo
for the Earth topology data when the added noise h&asVa&R =
30dB. Fig. 4 represents the same experiments with the synthetic
image. Both figures confirm the benefits of the proposed regata
tion methods for different kinds of data.

5. CONCLUSIONS

hThis paper proposes a graph regularization-based metmodtéo-

polation of a spherical function from non-uniform and nogm-
ples. Our method achieves better performance in terms ofRPSN
than baseline nearest neighbour or kernel-based metremksially

for a small percentage of missing data. In addition, the gsed so-
lution based on an adaptation of Chambolle’s algorithmIteso a
fast algorithm whose complexity is similar to baseline noelth The
framework proposed in this paper can further be extendejials
manifolds different from the sphere, when the graph repitasen

is properly adapted to the corresponding geometry.

1Available from the National Geophysical Data Center, NOAS De-

function on a 2-d sphere with a Taylor series expansion. Ve uspartment of Commerce under data announcement 88-MGG-02.



PSNR of the Graph, Gauss. Kernel and Nearest Neighbor methods;

— GrKerint., SNR :25d8]
- - ~GrNNint., SNR :25d8
t., SNR :250B.
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28f- - = Kerlnt., SNR :304B
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Fig. 2 PSNR values reconstruction with the proposed (GrNNInt,
GrKerlInt) and baseline methods (NN, KerInt) for differeninmber
of input point andSNR € {25,30} dB. The values are averaged

over 10 randomly chosen interpolation sets.

(b)

Fig. 3. Reconstruction results§NR = 30dB, zero order Taylor
expansion and = 5% of missing data: (a) Kernel interpolation,
o = 0.02, PSNR = 27.94dB; (b) Graph regul. with Kernel in-

terp. data,o, iter.,7, \) = (0.02, 150, 25¢~*,1e7®), PSNR =
30.52dB
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(b)

Fig. 4. Reconstruction results§NR = 30dB, zero order Taylor
expansion and = 5% of missing data: (a) Kernel interpolation,
o = 0.02, PSNR = 27.95dB; (b) Graph regul. with Kernel in-
terp. data,o, iter.,7,\) = (0.02,200,25¢~*,1e7°), PSNR =
28.55dB
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