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Abstract

This master thesis presents a new efficient method of acoustic echo cancel-
lation targeted at speech recognition for robots. The proposed algorithm
features a new double-talk detector, an enhanced initialization and a new
noise estimation method. The DTD algorithm is based on the normalized
cross-correlation method, uses noise power estimation to be more robust in
noisy environment and reacts more accurately to double-talk. The new ini-
tialization method switches between two different DTD algorithms to prevent
problems during filter convergence. The simple, yet robust Geigel DTD is
used during adaptive filter convergence, whereas the program switches to
the newly developed DTD after convergence. Finally, the new noise estima-
tion algorithm relies on the output auto-correlation to correctly estimate the
noise.

To improve speech recognition performance, center clipping is applied on
the output of the echo canceler, to further remove the residual echo. White
noise is also added to the output signal, in order to make the signal power
more stable, which helps the speech recognition engine.

Evaluation of the proposed algorithm has been done on a large set of
sequences and results have shown that the new algorithm can increase the
word recognition rate by up to 80%.
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Chapter 1

Introduction

1.1 The robot PaPeRo

PaPeRo[1], which stands for Partner-type Personal Robot, is an autonomous
robot prototype, targeted at home usage. The main goal of the PaPeRo
project is to study human-machine interaction. Therefore, the robot’s de-
sign has been focused on enhancing communication with humans rather than
featuring complicated mechanics, like moving legs, and so on.

Figure 1.1: An external view of PaPeRo

Targeted essentially at home usage, the robot has a simple and smooth
shape (c.f. figure 1.1), with a nice design and attractive colors. Its body
contains the main part of the hardware and also includes three wheels, which



2 Introduction

allows it to move. On top of its body, its moving round head is the main
component for interaction with people. PaPeRo is able to change its face
appearance in order to express its “emotions” and “feelings”, or show that it
is paying attention. The robot can also see, thanks to its two CCD cameras,
placed in its eyes, hear with its microphone located on the forehead, speak
using its two speakers located on its body and access the Internet using a
IEEE 802.11 wireless access, among others.

From the hardware point of view, PaPeRo is, in fact, an enhanced PC,
since its main hardware components are a Pentium 500MHz CPU, 192 MB
of memory, a 6GB hard disk and a battery, all originating from laptop parts.
The additional devices like cameras, or mechanisms for its head, are con-
nected to the main-board using USB or IEEE1394. PaPeRo software runs
on Windows 98, however a more recent version of the robot featuring Win-
dows 2000 is planned.

To integrate itself in a home environment, PaPeRo is able to perform the
following functions, among others:

• estimate the direction of a sound source, using its three microphones
around the neck

• avoid obstacles using its 2 CCD cameras and real-time visual recogni-
tion

• detect and recognize faces, as well as estimate the distance that sepa-
rates it from a human

• recognize speech, even in a home and noisy environment

• communicate with other devices using, for example, a TV remote con-
troller or an Internet access point, etc.

1.2 Speech recognition

One of PaPeRo’s most important components for enabling human interac-
tion is speech recognition. Since the robot is targeted at use in the home
environment, where the acoustic conditions are far from the ideal, it must
feature a robust speech recognition engine that can achieve its task in difficult
conditions.

Among the elements that might disturb speech recognition, the most
prominent are the background noise and the echo. Since the robot’s mi-
crophones and speakers are located in a close range, the sound originating
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from the speaker is captured by the microphone as echo, as shown in Fig-
ure 1.2. This echo will reach the speech recognition engine, which will be
disturbed in two ways. First, the engine might be lead to recognize words
pronounced by the robot. Second, if the echo occurs when someone is speak-
ing to PaPeRo, the echo will act as a strong noise that will seriously affect
the speech recognition engine’s performance. The main difference between
the background noise and the echo of the robot’s voice is that the latter is
relatively predictable. It does indeed depend highly on how the voice is syn-
thesized. Hence the idea of using an acoustic echo cancellation technique to
remove this annoying echo and thereby improve the robustness of the speech
recognition.

PaPeRo’s voice
(echo)

human voice
(near-end speech)microphone

speakers

Figure 1.2: The echo problem for speech recognition

1.3 Echo cancellation

The goal of this master thesis is to develop a robust and reliable echo canceler
to be used by the robot PaPeRo, in order to improve its voice recognition
performance. It is based on the echo cancellation technique that is widely
used in telephony or tele-conferencing, among others.

In this report, we describe the work done on the acoustic echo canceler
and present the achieved outcomes. Chapter 2 introduces the theoretical as-
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pects of echo cancellation. Then Chapter 3 describes the conventional echo
cancellation algorithm, that was available at the beginning or this thesis,
as well as its flaws. In Chapter 4, we present new improvements that we
have brought to the original algorithm, in order to achieve better echo can-
cellation. Chapter 5 discusses some techniques that, combined with an echo
canceler, help the speech recognition engine in its task. After this, Chapter
6 demonstrates the improvements brought by the new techniques developed
during this master thesis. Finally, Chapter 7 concludes this report.



Chapter 2

Principle of acoustic echo
cancellation

In this chapter we review the main principle and theoretical aspects behind acous-
tic echo cancellation. After a brief historical review, we introduce the NLMS
algorithm, and the most recent Affine Projection algorithm, used to perform
adaptive filtering. We then focus on the important function of double-talk de-
tection and present some of the recent algorithms developed for this purpose,
i.e. the Geigel DTD and the methods based on cross-correlation and normalized
cross-correlation.

2.1 Prehistory - echo suppression

The need for echo suppression first appeared with long-distance telephony.
Every telephone set in a given geographical area is connected to a central
office by a two-wire line, which serves for communication in either direction.
The use of the same two wires for both transmission and reception results in
considerable saving of wires as well as of local switching equipment. However,
for long-distance calls, a separate path is necessary for each direction of
transmission. There are two reasons for this. First, long circuits require
amplification, and amplifiers are one-way devices. Second, for reasons of
economy, most long-distance calls are multiplexed, multiplexing requires that
signals in the two directions be sent over different slots. Thus, on long-
distance calls, it is necessary to connect the four-wire circuit to the two-wire
circuit. A device that accomplishes this is called a hybrid. Figure 2.1 shows
a typical long-distance telephone circuit. There are two hybrids involved in
such a circuit, one at each end. In this configuration, an impedance mismatch
appears most of the time at the hybrid level. Therefore, a portion of the signal
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gets reflected as an echo, as illustrated in Figure 2.1.

hybrid
B

hybrid
A

BA

2-wire4-wire2-wire

echo of A’s speech

A’s speech

Figure 2.1: A typical long-distance telephone circuit

The echo generated by the hybrid is heard at the other end of the tele-
phone circuit. This echo disturbs the conversation, because the users expe-
rience difficulties to talk while hearing a delayed echo of their own voice.

At the beginning, this problem has been addressed by inserting a loss in
each direction of transmission. This attenuates the signal by L dB, while at
the same time attenuating the echo by 2L dB. However, for circuits exceeding
about 3000 kilometers, this results in an unacceptably low signal level at the
receiver. For those long telephone circuits, a device called echo suppressor
was developed in the early 1920’s. It consists basically of two voice-activated
switches, placed at the 4-wire termination, at each end of the long-distance
connection. Figure 2.2 shows a simplified view of an echo suppressor.

hybrid
B

in
hi

bi
t

ac
ti

va
te

B

from A

compare
control

Figure 2.2: Schema of an echo suppressor

For the most part of the conversation, A and B speak separately, there-
fore A’s echo can be prevented to go back to A by simply breaking the path
after hybrid B when A is talking. To deal with double-talk situations (i.e.
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when both talkers are speaking at the same time), the switch is prevented
from opening whenever a comparator decides that the signal after hybrid B
is mostly B’s speech. However, the decisions that control the switches can
not be made with perfect accuracy and even in the best echo suppressors,
some amount of chopping of the initial portions of interrupter’s speech is un-
avoidable. In addition, echo is not eliminated during double-talk sequences.
Nevertheless, echo suppressors have been used for over 50 years on circuits
with round-trip delay up to about 100 ms.

2.2 Adaptive echo cancellation

The year 1965 saw a new type of telephone circuit being invented with the
advent of commercial communication satellites. Apart from making possible
communications over a very long distance, this new system also introduced an
additional delay of about 240ms. Combined with the delay of the terrestrial
line, this could result in delays as long as about 600ms. In conversations
happening with such long delays, the frequency of interruption becomes much
higher. The old echo suppressor, with its poor performance during double-
talk, was thus not adapted anymore for the new circuit. Therefore, since the
early 1960’s, more efforts have been made to find a new approach to echo
removal. At that time, a major advance was made in echo suppression with
the invention of the adaptive echo canceler [2]. The key idea of this technique
is to artificially generate a copy of the echo, which will be subtracted from
the real echo, in order to remove it. Figure 2.3 illustrates the principle of
the echo canceler. Far-end speech x(t) enters the hybrid, which produces
an echo y(t). This echo is coupled with the near-end signal in the return
signal m(t). The echo canceler is placed at the end of the four-wire line, just
before the hybrid. It uses an adaptive filter ĥ that tracks the real echo path
h, using x(t) as a reference signal, and produces an echo replica ŷ(t). This
echo replica is then subtracted from the signal m(t), in order to cancel the
echo. If the echo replica perfectly matches the real echo, the output signal
e(t) should then consist only of the near-end speech.

Since the echo path is unknown and can change during a conversation, the
filter ĥ has to be adaptive, so as to continuously track the echo path changes.
This is usually done using an adaptive filter with the Normalized least mean
square (NLMS) or Affine projection algorithm (APA), which will be discussed
further in this chapter. The adaptive filter tries to build an echo replica by
adjusting its coefficients, in such a way that the output signal e(t) is driven
to 0. However, this is only possible when the signal m(t) consists only of
echo. During double-talk periods (i.e. when far-end and near-end speeches
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m(t)

x(t)

e(t)

hybrid

ŷ(t)

ĥ

Figure 2.3: Adaptive echo canceler

occur at the same time), the near-end speech acts as a disturbing noise and
will cause the adaptive filter to diverge. Therefore, the echo canceler must
suspend filter adaptation when it senses double-talk. For that purpose, a
function called double-talk detector (DTD) is added to the echo canceler.
This will be discussed in more details in Section 2.5.

2.3 Acoustic echo cancellation

Historically, the first application of echo cancellation was the suppression of
the echo created by the hybrid in telephone networks (called network echo
cancellation). Nowadays, the increasing popularity of hands-free telephony
and tele-conferencing (audio or video) have induced a new use of echo can-
cellation: acoustic echo cancellation. The latter application, indeed, incor-
porates a loudspeaker and a microphone, placed such that the microphone
picks up the signal radiated by the loudspeaker and its reflections at the
borders of the enclosure. As a result, the electroacoustic circuit may become
unstable and produce howling. Moreover, users of the system are annoyed by
listening to their own speech delayed by the round-trip time of the system,
hence the need of attenuating the acoustic path between the loudspeaker
and microphone. Figure 2.4 shows an acoustic echo canceler with a double-
talk detector. The signal n(t) represents the background noise and v(t) the
near-end speech, i.e. the voice of PaPeRo’s user.

Although the principle of acoustic echo cancellation stays basically the
same as network echo cancellation, there are some significant differences that
drive the problem even more complex. First of all, the echo path is much
longer in the acoustic case. To have a good approximation of the acoustic
echo path, a filter of about 1000 taps is needed, whereas a size of a few dozens
taps is enough in the network case. Additionally, the acoustic echo path is
much more subject to changes than the network one. Movement of objects,
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x(t)

y(t)ŷ(t)

m(t)

v(t)

n(t)
e(t)

DTD

−
+

ĥ

h

Figure 2.4: Acoustic echo canceler with double-talk detector

such as human bodies, doors, and the locations of the microphone and speaker
can all modify the acoustic impulse response. Finally, the background noise
in the near-end signal is usually stronger.

2.4 Coefficients adaptation algorithms

Adaptive filtering is the heart of echo cancellation. Several different algo-
rithms are commonly used to carry out this task. Among them, the Nor-
malized least mean square (NLMS) algorithm is the most widely employed,
although the Affine projection (AP) and Recursive least squares algorithms
are also used for their good convergence characteristics. In the rest of this
section, we are going to introduce the basic principles behind the NLMS and
AP algorithm.

2.4.1 NLMS

To introduce this algorithm, we will use figure 2.4 as a basis. Let us suppose
that we use an N-tap FIR adaptive filter to model the real echo path. We
define the filter coefficients as follows:

ĥT = [ĥ0, ĥ1, . . . , ĥN−1] (2.1)
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Then we also define the reference signal (i.e. the far-end speech) at time i
using a vector notation

xT
i = [xi, xi−1, . . . , xi−N+1] (2.2)

Now, if we denote the echo path by an FIR filter with hi, 0 ≤ i < ∞, then
we can define h as the N first coefficients of the echo path.

h = [h0, h1, . . . , hN−1] (2.3)

The echo yi is the convolution of the reference signal x with the echo path h
as

yi =
∞∑

m=0

hmxi−m (2.4)

and in the same way, the echo replica is the convolution of the reference
signal with the adaptive filter ĥ as

ŷi =
N−1∑
m=0

ĥmxi−m (2.5)

Having defined all these, we can now express the error signal as

ei = yi − ŷi + vi + ni =
∞∑

m=0

hmxi−m −
N−1∑
m=0

ĥmxi−m + vi + ni

= (h− ĥ)x + zi (2.6)

where

zi =
∞∑

m=N

hmxi−m + vi + ni (2.7)

represents the unmodeled echo tail as well as the background noise ni and a
possible near-end signal vi. For the purpose of analyzing a given adaptation
algorithm, it is often necessary to assume that the reference signal xi and
echo yi are jointly wide-sense stationary. For this case, define

p = E[xiyi] (2.8)

Φ = E[xix
T
i ] =




R0 R1 . . . RN−1

R1
. . .

...
...

RN−1 . . . R0


 (2.9)
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where
Rj = E[xixi+j] (2.10)

are the autocorrelation coefficients of the reference signal.
Supposing that there is no other near-end signal than echo, the goal of

the adaptive filter is to minimize the mean-square error J = E[e2
i ]. Since it

is a quadratic function, we can find the minimum by canceling its derivative.

∂E[e2
i ]

∂ĥk

= 2E
[
ei

∂ei

∂ĥk

]

= 2E
[
ei

∂(yi −
∑N−1

m=0 ĥmxi−m)

∂ĥk

]

= 2E[ei · (−xi−k)] (2.11)

We now need to set (2.11) to 0.

∂E[e2
i ]

∂ĥk

= 2E[ei · (−xi−k)]

= 2E[(yi −
N−1∑
m=0

ĥmxi−m) · (−xi−k)]

= 2E
[ N−1∑

m=0

ĥmxi−mxi−k − yixi−k

]

= 2
( N−1∑

m=0

E[ĥmxi−mxi−k]− E[yixi−k]
)

= 2
( N−1∑

m=0

ĥmRm−k − pk

)
(2.12)

= 0

Canceling this last equation leads to

N−1∑
m=0

ĥmRm−k = pk (2.13)

or
ĥ = Φ−1p (2.14)

Equation (2.14) defines the filter that best approximates the echo path,
in order to remove the echo. However, the echo path is usually changing all
the time, which implies that one needs to perform the costly matrix inversion
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at almost each iteration. This problem leads to the idea of adaptive filtering,
which tracks the echo path by iteratively adapting the filter coefficients ĥk.
Thus, the basic adaptive equation is

ĥn+1 = ĥn + αndn (2.15)

where αn is called the step size and dn is the search direction.

Our goal is to minimize the mean square error J = E[e2
i ]. Since the gradi-

ent ∇J is in the direction of maximum rate of increase of J , the search direc-
tion should be −∇J . From (2.12), we know that ∂J

∂ĥk
= 2(

∑N−1
m=0 ĥmRm−k −

pk). Reordering terms and using matrix equation, we can write:

∇J = 2(Φĥ− p) (2.16)

Thus, from equations (2.15) and (2.16), we can derive the following method

ĥn+1 = ĥn − 2αn(Φĥn − p). (2.17)

Yet we assumed the knowledge of Φ and p, however these statistics are not
known and even changing. Thus, we should also update Φ and p over time,
which is still computationally expensive. Therefore, the idea of least mean
squares (LMS) is to make a further approximation and replace the gradient
of the mean square error by its instantaneous value:

∇Ji =
δE[e2

i ]

δĥi

≈ δe2
i

δĥi

. (2.18)

Now, let us compute the following derivative

δe2
i

δĥi

= 2ei
δ(yi − ĥT

i · xi)

δĥi

= −2ei · xi. (2.19)

Thus, we obtain the LMS algorithm as

ĥn+1 = ĥn + αn · en · xn (2.20)

where the step size αn has to be carefully chosen. When it is large, it in-
creases the convergence speed, with possible instability. When set small, the
convergence is slower, with less noisy ĥi.
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From LMS to NLMS

A common modification to the LMS algorithm is to normalize the step-
size to eliminate an undesirable dependence of convergence speed on the
input signal power. Further, if the step-size αn is kept constant and the
signal power is increased, eventually, the algorithm becomes unstable. This
is particularly a problem in speech applications, where the input signal power
varies considerably. The step-size is therefore normalized by an estimate of
the reference signal power

αn =
a

σ2
xn

+ b
(2.21)

where αn is the step-size at sample n, a and b are some well chosen constants,
and σ2

xn
is an estimate of the reference signal power at time n. This modified

version is commonly referred to as normalized least mean square (NLMS)
algorithm.

2.4.2 Affine projection (AP) algorithm

Despite its low complexity, the NLMS algorithm suffers from slow conver-
gence in case of a colored signal like speech. In order to improve convergence
time, without adding too much complexity, the affine projection algorithm
was developed [3]. The derivation of this algorithm is based on a geometri-
cal interpretation of NLMS. Let us define the following notations, so as to
introduce the principles of this algorithm:

1. For a = [a1, · · · , aN ]T and b = [b1, · · · , bN ]T , 〈a,b〉 =
∑N

k=1 akbk

2. ‖a‖ =
√
〈a, a〉

3. Πj = {h|h ∈ RN , 〈h,xj〉 = yj}

Definition (1.) is the scalar product of two vectors in RN and Πj, defined in
(3.), is the set of all coefficient vectors which give the output equal to yj for
the input vector xj. It forms a hyperplane in the N -dimensional Euclidean
space.

Using a geometrical interpretation, we can describe the NLMS algorithm
as follows:

ĥ0 =arbitrary value
loop

ŷj = 〈 ĥj, xj〉
ej = yj − ŷj

∆ĥj =
ej

‖xj‖2xj



14 Principle of acoustic echo cancellation

O

θ

θ
xj

Πj

xj−1

h

Π j
∩Π j−

1

ĥj
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Figure 2.5: Geometrical interpretation of NLMS

ĥj+1 = ĥj + α∆ĥj

end loop

where α is called a step size and should be in the interval ]0; 2[. As we can see
in Figure 2.5, the convergence speed of the coefficient vector highly depends
on the angle between Πj−1 and Πj. If this angle is close to 0 or π, then the
convergence speed is decreased. The angle θ between xj−1 and xj is given by

cos θ =
〈xj−1, xj〉

‖xj−1‖ · ‖xj‖ (2.22)

One could also notice that this is precisely the equation of the input signal
auto-correlation. Thus, when θ is close to 0, cos θ approaches 1. Therefore,
for correlated signals like speech, NLMS will converge quite slowly. This is
an undesirable property, since acoustic echo cancellation is used to suppress
speech signals most of the time.

To address this problem of convergence, affine projection algorithm has
been developed. The idea behind this new algorithm was to make the con-
vergence speed independent of the angle θ between xj−1 and xj. This can be
done by slightly modifying the NLMS algorithm. In Figure 2.5, the vertical
line that goes from ĥj−1 to ĥj should go to Πj−1 ∩ Πj instead, to keep the
convergence speed constant. Then, according to Figure 2.6, the following
algorithm can be derived:

ĥ =arbitrary value
loop
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x̃j−1 =
〈xj−1,xj〉
‖xj−1‖2 xj−1

uj = xj − x̃j−1

ŷj = 〈 ĥj, xj〉
ej = yj − ŷj

∆ĥj =
ej

〈uj ,xj〉uj

ĥj+1 = ĥj + ∆ĥj

end loop

O

θ

θ
xj

Πj

Πj−1

xj−1

ĥj+1

Π j
∩Π j−

1

h

ĥj

Figure 2.6: Geometrical interpretation of AP

Looking at the NLMS and the new algorithm, we can notice that ĥj+1

is the orthogonal projection of ĥj on Πj in NLMS, and the orthogonal pro-
jection on Πj ∩ Πj−1 in the new algorithm. From that point of view, the

new algorithm can be extended the following way. Let us call PΠ(ĥ) the
orthogonal projection of ĥ on Π. Filter adaptation can be modified this way

ĥj+1 = PΠj∩Πj−1∩···∩Πj−p+1
(ĥj) (2.23)

We then can see that the vector ĥj+1 is the solution to a set of equations

with ĥ as the unknown, which minimizes ‖ĥ− ĥj‖.




〈xj, ĥ〉 = yj

〈xj−1, ĥ〉 = yj−1
...

〈xj−p+1, ĥ〉 = yj−p+1

(2.24)
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Defining

Xj = [xj,xj−1, · · · ,xj−p+1]
T

yj = [yj, yj−1, · · · , yj−p+1]
T

we can rewrite the set of equations using vector notation

Xj · ĥ = yj (2.25)

Letting X+
j be the Moore-Penrose generalized inverse of Xj, the system

can be solved as

ĥj+1 = ĥj + X+
j (xj −Xjĥj) (2.26)

Based on the above equation and introducing the step size α, the following
adaptive algorithm is developed.

ĥ0=initial value
loop

∆ĥj = X+
j (xj −Xjĥj)

ĥj+1 = ĥj + α∆ĥj

end loop

This algorithm is called the Affine projection algorithm (APA) and p is its
order. According to this definition, NLMS is the first-order APA.

2.5 Double-talk detection

As already stated in Section 2.2, tracking of the echo path is possible only
when the near-end signal consists solely of echo. During double-talk periods,
the near-end speech v(n) is also present in the microphone input signal and
acts as an interference to the adaptive filter. If we go on adapting coefficients
during double-talk, the adaptive filter will be disturbed and may diverge from
its converged state. Therefore, a double-talk detector is used in adaptive
echo cancelers to detect double-talk periods, and adaptive filter coefficient
adjustment is stopped during these periods to prevent the echo canceler from
being disturbed by the near-end speech signal.

Double-talk detection plays an important part in adaptive echo cancella-
tion. The basic requirement for a double-talk detector is that it can detect
double-talk quickly and accurately. Besides, it should also have the ability to
distinguish double-talk from echo path variation and quickly track variations
in the echo path.
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2.5.1 Geigel DTD

Geigel DTD was the first method proposed for double-talk detection [4]. Its
principle is based on a simple power comparison. Since the echo is supposed
to be an attenuated version of the reference signal, if the near-end signal
becomes higher than a certain level, we can assume that we are dealing with
a double-talk situation. Therefore, the Geigel DTD algorithm is defined
as follows: near-end speech is declared, and thus coefficients adaptation is
stopped, when

m(k) >
1

2
max{x(k − 1), x(k − 2), . . . , x(k −N)} (2.27)

where m(k) is the microphone input signal and x(k) represents the reference
signal. This method was specifically designed for echo cancellation in the
telephone network and thus the factor of 1/2 is based on the assumption that
there is at least a 6 dB loss through the hybrid. A so-called hangover time,
Thold is also specified such that if double-talk is detected, then the adaptation
is inhibited for this duration beyond the detected end of double-talk.

One of the main advantages of this method is its simplicity; it does not
require a high computation power. However, although this detector works
fairly well, detection errors do occur, and these result in frequent divergence
of the adapted filter coefficients, which in turn gives rise to a large amount
of uncanceled echo.

Moreover, it is not well adapted to acoustic echo cancellation, where the
attenuation of the echo path may not be predicted as in the network case,
and can be very different depending on the situation.

2.5.2 DTD based on cross-correlation

A more advanced technique for double-talk detection has been proposed by
Ye and Wu [5]. This method uses the cross-correlation of the reference signal
x(n) and the error e(n) to detect near-end speech. If we assume that the
echo canceler has converged at time n, the echo will be perfectly canceled
and it is then obvious that

E[e(n)x(n)] = 0. (2.28)

If we further assume that near-end speech v(n) is uncorrelated with the
reference signal, we can see that this previously computed expectation is not
disturbed by double-talk.

E[e(n)x(n)] = E[v(n)x(n)] = 0 (2.29)
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However, in case of variations in the echo path, the echo will not be com-
pletely removed and E[e(n)x(n)] will differ from 0.

Based on the above considerations, this technique proposes to continu-
ously compute E[e(n)x(n)] and to update the adaptive filter coefficients only
when it is significantly different from 01. If this solution has the advantage
of accurately distinguishing double-talk from echo-path change, it is however
not suited for acoustic echo cancellation purpose, since in the latter case, the
echo-path is constantly changing.

A similar idea has been proposed in [6]. The cross-correlation of x and
m is used to discriminate double-talk. The cross-correlation coefficients are
defined as follows:

γmx(n) =
|E[x(n)m(n)]|2

E[x(n)2]E[m(n)2]
(2.30)

Based on this definition, a decision variable is then formed as

ξ(1) ≡ 1

I + 1

I∑
i=0

γmx(i) (2.31)

The decision rule for detecting double-talk is:

• if ξ(1) > T ⇒ single-talk

• if ξ(1) < T ⇒ double-talk

where T is a threshold level.
This method yields better results than Geigel DTD. It is also better than

the cross-correlation between x and e, because it actually detects double-talk,
as the former rather detects echo-path changes.

2.5.3 DTD based on normalized cross-correlation

Although the method based on cross-correlation of x and m is quite good,
it suffers from a major drawback: the value of the threshold T , used for
decision, is hard to define and will strongly vary among experiences. In
order to address this issue, a new DTD technique derived from the cross-
correlation method was introduced [7]. The goal of this new method is to
derive a new normalized cross-correlation vector between x and m, so as to
use a decision variable with a fixed threshold.

Let us suppose that the echo-path is finite, therefore y(n) = hTx(n).
Supposing that there is no other near-end signal than echo, we can derive

σ2
m = hTRxxh (2.32)

1It means that the echo-path has changed and filter adaptation is needed.
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where σ2
m = E[m(n)2] and Rxx = E[x(n)xT (n)]. Defining

rxm = E[x(n)m(n)] = Rxxh (2.33)

we can rewrite equation (2.32) as

σ2
m = rT

xmR−1
xx rxm. (2.34)

However, in the general case, the microphone signal can include some near-
end speech (v(n) 6= 0) and we can thus rewrite the previous equation as

σ2
m = rT

xmR−1
xx rxm + σ2

v . (2.35)

The new decision variable is then obtained by dividing equation (2.34) by
σ2

m and taking the square root:

ξ(2) ≡
√

rT
xm(σ2

mRxx)−1rxm. (2.36)

Since the matrix inversion R−1
xx is a very CPU-consuming operation, we

can make the following approximation in order to speed up computations:

R−1
xx rxm = h ∼= ĥ (2.37)

where h is the real echo path, and ĥ is the approximation of the echo path
by the adaptive filter. Note that this approximation only holds if we suppose
that the adaptive filter has converged, hence ĥ ∼= h. Replacing (2.37) in
(2.36), we obtain

ξ(2) =

√
rT

xmσ−2
m ĥ. (2.38)

Furthermore, knowing that rT
xm = hT ·E[x(n)xT (n)] and that ĥ ∼= h, we can

expand (2.38)

ξ(2) =

√
ĥT · E[x(n)xT (n)] · ĥ

σ2
m

=

√
E[ŷ(n)xT (n)] · ĥ

σ2
m

=

√
E[ŷ2(n)]

σ2
m

=

√
σ2

ŷ

σ2
m

. (2.39)

From Figure 2.4, we know that the microphone signal is composed from echo,
near-end speech and background noise. Therefore, we can finally write the
DTD decision variable in this form

ξ(2) =

√
σ2

ŷ

σ2
v + σ2

n + σ2
y

. (2.40)
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If we consider the noise term as being negligible, it is easy to see that in
absence of near-end speech (σ2

v = 0), ξ(2) will be close to 1. When near-end
speech is present, ξ(2) is smaller than 1. Therefore, in order to discriminate
double-talk, we just need to set a threshold T and compare the decision
variable ξ(2) with T . When ξ(2) < T , we can assume that double-talk is
taking place. Moreover, due to the normalized form of the decision variable
ξ(2), the threshold T is now independent of the data.



Chapter 3

The conventional algorithm

In this chapter, we describe the conventional acoustic echo cancellation algorithm
that we started with, at the beginning of the project. We explain how it has been
analyzed and what problems have been identified.

3.1 Program structure

At the beginning of our project, we had an echo cancellation program pre-
viously written by a former internship student at NEC. This program was
written in C and was performing echo cancellation using a fast version [8] of
the Affine Projection algorithm. In order to avoid the disturbing influence
of background noise on coefficient adaptation, the algorithm also featured an
adaptive step-size based on noise estimation [9] [10]. To control the adap-
tive step-size, the algorithm included a simple background noise estimation
process. It also implemented a double-talk detector using the normalized
cross-correlation method [7].

The program was designed as a standalone command line executable,
that took two audio sequences in text format (one representing the reference
signal, i.e. the robot’s voice and the other the signal from the microphone).
When invoked with correct arguments, the program performed echo cancel-
lation on the microphone signal using the reference signal and output the
result in a new file.

3.2 Program analysis

Although the program seemed to perform echo cancellation correctly, the
performance was still far from expectation. Therefore, our first task in this
project was to evaluate the initial program, so as to determine what was
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wrong and what could be added or modified in order to improve its perfor-
mance.

In order to ease the analysis of the program, some scripts and makefiles
were first developed to display the program’s internal variables. All the plots
of variables were made with Gnuplot1, which was chosen for its quality and
its capacity to be invoked by a script. A few audio sequences, originating
from different environments, were provided to test the program.

3.3 Identified problems

Apart from some minor bugs, our analysis revealed a series of problems that
were compromising the echo cancellation process. We describe them in details
in the following sections.

3.3.1 Inappropriate initialization

One of the main problems of the initial program resulted from the fact that
very little care had been given to initialization. When started, the program
was forcing the double-talk detector output to 1 (no double-talk) during a
few samples, hence forcing filter coefficients adaptation. Then, the program
performed normal echo cancellation with the help of the normalized cross-
correlation based DTD.

Two fundamental problems can occur due to this inadequate initializa-
tion phase. First of all, and most obviously, it is possible that a double-talk
sequence takes place when the program is started. Since DTD is forced to
1 at the beginning, regardless of what happens in the input signals, filter
coefficients would be adapted during double-talk, which would result in di-
vergence, precisely at a time where fast convergence would be greatly needed.

Second, the use of the normalized cross-correlation based DTD is inade-
quate when the adaptive filter has not converged. One needs to recall that,
in order to avoid computing the inverse of the matrix Rxx, the following
approximation has been used in the derivation of the DTD algorithm (see
Section 2.5.3)

R−1
xx rxm = h ∼= ĥ (3.1)

This approximation implicitly assumes that the adaptive filter has converged
and is valid at this condition only. It is obviously not the case during the ini-
tial convergence of the adaptive filter, and therefore, the output of the DTD
will not be reliable at that time. As we will demonstrate later, when the

1http://www.gnuplot.info
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approximation (3.1) is not valid, the value of the DTD decision variable ξ(2)

will be lowered, resulting in false alarms. Although a few false alarms is not
very disturbing during the echo cancellation process, it becomes more critical
if it happens during the initial convergence phase. At the beginning, we need,
indeed, to adapt the coefficients as fast as possible. However a wrong DTD
decision would prevent coefficient adaptation and rather delay the filter con-
vergence. In the worst case, the filter misadaptation could prevent the DTD
from working correctly, which would in turn prevent coefficient adaptation.
Thus, if no care is given to initialization, the program could enter a fatal
loop that would ruin the complete echo cancellation process.

3.3.2 Inaccurate background noise estimation

In order not to be disturbed by background noise, the algorithm implements a
variable step-size controlled by the noise level [9]. However, there is no easy
way to accurately obtain the background noise level. The only data that
the program can use are the reference (x) and the microphone (m) signals.
Although the background noise is included in the microphone signal, it is
most of the time mixed with echo or near-end speech. Therefore, the only
way to estimate the noise level is to identify periods of the microphone signal
that are free from echo and near-end speech and update the average noise-
power during this time. In the worst case, if echo or near-end speech is
present at all time, there is no way of estimating noise. Using the output
signal instead of the microphone signal for noise estimation is possible. The
advantage of doing so is that, since echo is supposed to be canceled, there
should be more noise-only sequences. However, even when echo is canceled,
there might still be some residual echo, due to the unmodeled tail of the
echo path. Moreover, especially in acoustic echo cancellation, the echo path
is changing all the time, which will increase the amount of residual echo
present in the output signal.

The strategy used in the initial algorithm was to perform background
noise estimation using the output signal. Estimation was carried out only
when the reference signal power was under a defined threshold, hence trying
to avoid the effect of residual echo on noise estimation. However, although
this method is simple in implementation, it is obviously not good enough to
ensure accurate noise estimation. No attention is given to near-end speech,
and it is very likely that noise estimation occurs during a near-end speech
period, whose power is normally much higher than that of the background
noise. In such a case, noise power will be greatly over-estimated, resulting in
considerably slow coefficient adaptation.

Moreover, in the next chapters, we will see that the enhancements that
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will be brought to the conventional algorithm make extensive use of noise
estimation and especially require it to be precise. Therefore, it becomes
obvious that the conventional noise estimation can not be used in its present
form and must be improved.

3.3.3 The double-talk detector

Although the double talk detector was build upon recent and proved tech-
niques, analysis showed that it did not perform as good as we expect. In
the ideal case, the decision variable ξ(2) should be bigger than the threshold
T when no near-end speech is present, and smaller than T in case of near-
end speech. However, we were able to notice that this ideal behavior was
biased in a few situations. In case of silence (i.e. no near-end speech neither
echo) a false alarm was systematically happening, thus preventing coefficient
adaptation.

It was also noticed that the quality of DTD was highly correlated with the
echo power, or rather the power ratio of near-end speech to echo. During high
power echo periods, double-talk detection quality is degraded and some near-
end speech periods are chopped and even missed. This resulted in complete
words being highly distorted and not recognizable by the speech recognition
engine. Obviously this was not acceptable and needed to be fixed.
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New algorithms

In this chapter, we describe the new algorithms that have been developed in
order to correct the flaws from the conventional echo canceler and improve its
performance. These include an enhanced algorithm initialization, that allows the
echo canceler to react properly to any input signal, a new DTD algorithm that is
robust to the background noise and reacts more accurately to near-end speech,
and a new noise estimation method, more precise and reliable. We focus on the
theoretical aspects and will present the results in a later chapter.

4.1 Better initialization

In the previous chapter, we have seen that the simple initialization done in
the original program was not good enough to ensure the correct functioning
of the echo cancellation process. Although the algorithm is working on a few
signals, we have also found some other signals on which the echo cancellation
was completely failing, due to inadequate initialization. In this section, we
investigate a better way to perform the algorithm initialization, such that
echo cancellation is guaranteed to work with any input.

The double-talk detector based on normalized cross-correlation, as imple-
mented, does not work well when the adaptive filter has not converged, due
to the approximation (2.37) used to avoid a matrix inversion. Therefore, it is
not advised to use this DTD algorithm during the initial convergence phase.
One might think that a solution to this problem would be to suppress the ap-
proximation and to compute the original equation (2.36) instead. However,
this would imply continuously computing a matrix inversion, which is not
feasible with PaPeRo’s hardware, especially since acoustic echo cancellation
requires a long filter with over 1000 taps.

Yet, one could not do without a double-talk detector during the con-



26 New algorithms

vergence phase. Therefore, a solution would be to use another method for
double-talk detection that does not depend on the convergence state of the
adaptive filter. Geigel DTD typically fulfills these conditions. Thus using
Geigel DTD instead of the normalized cross-correlation method would cer-
tainly reduce problems during the adaptive filter convergence, however its
lower performance compared to the latter technique would alter the overall
echo cancellation. Hence, a good trade-off can be to use Geigel DTD dur-
ing the initialization phase, and then switch to the more powerful normal-
ized cross-correlation DTD, once the adaptive filter has reached convergence.
This way, we would avoid bad behavior of the DTD due to immature filter
coefficients.

4.1.1 Geigel DTD for acoustic echo cancellation

The main advantage of Geigel DTD is its very easy implementation. We will
remind here its original definition as in [4]

m(k) >
1

2
max{x(k − 1), x(k − 2), . . . , x(k −N)} (4.1)

This detector only relies on power comparison, and the powers that it needs
are already computed for other parts of the algorithm. However, one problem
of using Geigel DTD in acoustic echo cancellation as opposed to network echo
cancellation, is that we can not predict the power loss from the reference
signal to the echo. This can vary from one sequence to another, and even
during a single sequence, if the room conditions are changing. Therefore, if
we want to use this technique for acoustic echo cancellation, we need to be
able to evaluate the power ratio of reference over echo signal. This can be
recursively computed using a forgetting factor δ, such that it is averaged over
the last few samples, without using a large amount of memory

rj+1 = δrj + (1− δ)
σ2

x

σ2
y

(4.2)

where σ2
y and σ2

x are the power of the echo and the reference signal respec-
tively, and δ is the forgetting factor, usually defined in [0.9, 1[ depending
on how smooth the averaging should be. Note that we use the l2 norm in-
stead of the l∞ norm found in the original Geigel definition. Now that we
have an estimation of the power ratio of reference over echo signal, we can
define a customized version of the Geigel DTD, adapted for acoustic echo
cancellation. The decision variable for Geigel DTD would then be

ξ(G) = σ2
x − βσ2

m · rj (4.3)
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where rj is the power ratio of reference over echo signal at time j, defined in
(4.2) and σ2

m is the power of the microphone signal. The double-talk decision
is then very easy: when ξ(G) is positive, we consider that there is no near-end
speech and declare double-talk only when ξ(G) gets negative, which means
that the microphone signal is stronger than the expected echo and that it
probably contains near-end speech in addition to echo. The factor β used in
(4.3) is there to avoid oscillating between the two states, since the ratio rj

is only an approximation. Thus small fluctuations of echo intensity will not
trigger uselessly the double-talk detection.

The advantage of this simple double-talk detection is that it only depends
on the input signal itself and does not rely on other mechanisms inside the
algorithm. Therefore, it is independent and its performance will not be
affected if other parts of the algorithm do not behave correctly.

4.1.2 Detecting adaptive filter convergence

Now that we have derived a simple double-talk detection that works even
when the adaptive filter has not fully converged, we can integrate it into
the echo cancellation algorithm, along with the normalized cross-correlation
DTD. However, we still need to determine the right moment at which we
should switch between the two DTD algorithms. The normalized cross-
correlation DTD is reliable once the adaptive filter has converged to a reason-
able approximation of the echo path. Therefore, we need a way to determine
when the initial convergence phase is over.
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Figure 4.1: Evolution of the sum of filter coefficients. We can see that con-
vergence is happening around sample 20000

To achieve this purpose, we have based our reasoning on the following
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idea. Before starting the echo cancellation algorithm, the adaptive filter
coefficients are all initialized to 0. Then, they are iteratively updated until
they reach a value close to the real echo path. Once the adaptive filter
has finished its initial convergence, the coefficients update will be limited to
the tracking of the echo path. Therefore, unless a sudden change occurs in
the echo path, coefficient adaptation should be relatively small. Based on
this discussion, we can design a method for detecting when the adaptive filter
approximately converges. Let us define Σn as the sum of the filter coefficients
at time n.

Σn =
N∑

i=0

|ĥi(n)| (4.4)

Once convergence is reached, the coefficients’ sum Σ should vary little, as
shown in Figure 4.1. Thus, its gradient should approach 0. Hence the idea of
comparing the gradient ∆Σ to a threshold: if ∆Σ stays below the threshold
during a predefined number of samples Ns, then we can assume to have
reached a stable situation, and declare convergence. To compute the gradient
of the coefficient’s sum Σ, it is enough to calculate the normalized difference
between two consecutive sums and make an average over a few samples:

∆Σn =
L∑

i=0

(
Σn−i − Σn−i−1

Σn−i

) (4.5)

By carefully choosing the comparison threshold as well as the averaging win-
dow L, we can thus determine with enough accuracy the time at which the
adaptive filter has reached convergence. It is therefore possible to switch at
the right time between Geigel and normalized cross-correlation DTD.

4.1.3 Overall initialization algorithm

Having found a robust DTD to be used during convergence and being able
to determine when the convergence phase is over, we can now picture the
overall initialization algorithm. This is illustrated in Algorithm 1.

The first while loop in lines 1-3 is there to avoid doing anything before the
first reference sequence appears. In line 4 a variable called cmpt is initialized.
This will be used to check that ∆Σ has been below the threshold T long
enough to assume convergence. Then the repeat loop from line 5 to 17
performs echo cancellation using Geigel DTD. Line 6 computes the power
ratio of echo over reference signal and line 7 computes the decision variable
of Geigel DTD. In line 9, adaptive filter’s coefficients adaptation is carried out
only if no double-talk is suspected. The if loop of lines 12 to 16 increments
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Algorithm 1 Initialization algorithm

1: while σ̂2
x < T1 do

2: no adaptation
3: end while
4: cmpt ⇐ 0
5: repeat

6: r ⇐ δr + (1− δ)
σ2

y

σ2
x

7: ξ ⇐ σ2
x − βσ2

m · r
8: if ξ > 0 then
9: coefficient adaptation

10: end if
11: update σ̂2

n, Σ and Σγ
12: if ∆Σ < T then
13: cmpt ⇐ cmpt +1
14: else
15: cmpt ⇐ 0
16: end if
17: until cmpt > Ns

18: AEC using normalized cross-correlation DTD

the variable cmpt if the gradient of Σ is small enough or reset it to 0 if it is
not the case. Once we get out of the repeat loop (line 17), the initialization
is over, and we will then carry out AEC using normalized cross-correlation
DTD.

4.2 Noise-robust double-talk detection

In the previous chapter, it has been noticed that the DTD algorithm, al-
though built upon the reliable technique of normalized cross-correlation, was
not giving satisfactory results, and had therefore to be modified. In this sec-
tion, we will present the improvements that have been brought to the original
algorithm.

4.2.1 Noise-robust DTD

In the paper that introduced the normalized cross-correlation method [7],
developments have been mainly focused on the theoretical aspect, and back-
ground noise has been ignored, or at least considered as negligible. In normal
operation mode, the noise power σ2

n should be much smaller than both echo
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and near-end speech powers (σ2
y and σ2

v). If it is not the case, echo cancel-
lation is simply impossible, because the noise would be much too disturbing
to allow the adaptive filter to track the echo.

Therefore, during single talk and double-talk, the noise power is negligible
compared to the echo and near-end speech, and equation (2.40) could be
approximated as follows

ξ(2) =

√
σ2

ŷ

σ2
v + σ2

n + σ2
y

≈
√

σ2
ŷ

σ2
v + σ2

y

(4.6)

However, during a silence (i.e. when there is neither echo nor near-end
speech), the noise term becomes important in comparison to echo and near-
end speech powers, and ξ(2) will move towards 0, hence detecting double-talk.
One could argue that this is a minor problem, because during silences, the
filter does not need to be adapted anyway. But if we consider that all the
powers are averaged over at least 512 samples, it means that the double-talk
detector reacts with a small delay to the input signal. Thus, there usually
is a small latency at the beginning of echo, during which the filter adapta-
tion is prevented. Figure 4.2 shows this problem in more practical terms.
The signal on top represents the DTD decision variable. When it reaches its
maximum, adaptation is carried out, and when it is at its lower value, the
filter is not adapted. The other signal is the echo. We can see that, whenever
there is no echo, adaptation is prevented. This is probably harmless in most
situations, but in case the echo path has changed during the silence, it could
stop adaptation and then lead to a wrong detection of double-talk.
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Figure 4.2: Unwanted behavior of the DTD decision variable due to back-
ground noise
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In order to solve this problem, a rather simple approach has been chosen.
It is not possible to remove the noise term appearing in the denominator of
equation (2.40), because it is included in the microphone signal. However,
we could add an estimation of the background noise power in the numerator,
so that it balances the influence of the noise term in the denominator. This
is shown in equation (4.7).

ξ(3) ≡
√

σ2
ŷ + σ2

n̂

σ2
v + σ2

n + σ2
y

(4.7)

The term σ2
n̂ appearing in the numerator is the estimation of the noise power.

Since the noise signal usually varies very slowly, it is possible to have a good
estimation of its power.

In order for the echo cancellation to be realizable, the background noise
must be significantly lower than the echo itself. In this conditions, the ad-
ditional noise power term added to the numerator of equation (4.7) will not
modify significantly the value of the decision variable ξ(3) in single-talk or
double-talk situations. However, during silences, the new term brings a sig-
nificant contribution, and prevent a false alarm from the DTD. In silence,
there is neither echo nor near-end speech, therefore v(t) = 0, ŷ(t) = 0 and
y(t) = 0. Thus equation (4.7) becomes

ξ(3) ≈
√

0 + σ2
n̂

0 + σ2
n + 0

≈ 1 (4.8)

Hence, with this modified DTD equation, the decision variable will show
a correct behavior as will be illustrated in a later chapter.

4.2.2 Undesired echo influence

In order to accurately and quickly detect double-talk, one would want the
decision variable ξ(3) to move close to 0 as soon as near-end speech signal
appears in the microphone. However, looking closely at equation (4.7), we
find that when near-end speech is weak compared to echo, the value of ξ(3)

is close to 1. Let us suppose that echo and near-end speech have the same
power. If we ignore the noise, the value of ξ(3) would then become

ξ(3) =

√
x

x + x
=

√
1/2 ≈ 0.71 (4.9)

If we want to detect double-talk in this case, we need to set the threshold
T to a value higher than 0.71. Figure 4.3 illustrates the influence of echo
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Figure 4.3: Influence of the echo power on ξ(3)

power on the DTD decision variable. Note especially how ξ(3) is influenced
by the echo around sample 129000 and 132000, causing partial coefficient
adaptation too early.

4.2.3 Filter misadaptation influence

However, setting the threshold to a high value can also have unexpected
consequences. One has to remind that we derived equation (4.7) by doing
the assumption that the adaptive filter has fully converged, hence ĥ = h.
In reality, though, this is never absolutely true, because ĥ is a finite length
filter, and h is infinite. Moreover, the echo path is always changing a little,
and the filter is therefore adapting all the time. Thus, rather than assuming
the equality between ĥ and h (and respectively between ŷ and y), we could
write

σ2
y = σ2

ŷ + ∆ (4.10)

If we replace equation (4.10) in (4.7) we obtain

ξ(3) =

√
σ2

ŷ + σ2
n̂

σ2
v + σ2

n + σ2
ŷ + ∆

(4.11)
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Figure 4.4: Adaptive filter misadaptation influences the DTD decision vari-
able

Now, we can see that the misadaptation of the filter is contributing to change
the value of ξ(3). Figure 4.4 shows the variable ξ(3) between two sections of
double-talk. We can see that instead of staying all the time to 1, it lowers a
little from time to time, due to filter misadaptation.

Therefore, setting the threshold too high would be a bad idea, because
all the fluctuations of ξ(3) would be interpreted as double-talk. On the other
hand, if we set it too low, we risk to miss some double-talk section, especially
in the presence of large echo.

4.2.4 Suppressing echo influence

Double-talk detection would be much more efficient if we did not consider
echo, but just near-end speech, as expressed in the following equation

ξ(3) =

√
σ2

n̂

σ2
v + σ2

n

. (4.12)

Unfortunately, we do not have an access to the near-end speech signal sep-
arately, and the only signals we have are the reference signal x(n) and the
microphone signal m(n). To have a close approximation to equation (4.12),
we might want to subtract the echo power from both the numerator and the
denominator of equation (4.7), using echo replica:

ξ(4) ≡
√

σ2
ŷ + σ2

n̂ − σ2
ŷ

σ2
v + σ2

n + σ2
y − σ2

ŷ

=

√
σ2

n̂

σ2
v + σ2

n + σ2
y − σ2

ŷ

(4.13)

We must yet recall that echo and echo replica are not equal. Using equation
(4.10) we obtain

ξ(4) =

√
σ2

n̂

σ2
v + σ2

n + σ2
ŷ + ∆− σ2

ŷ

=

√
σ2

n̂

σ2
v + σ2

n + ∆
(4.14)
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Figure 4.5: Subtracting the echo power can have unexpected results

which is close to equation (4.12), except for the misadaptation term ∆. This
additional term is though disturbing a lot the behavior of the DTD decision
variable in case of single-talk. Since the noise power is supposed to be quite
weak, the smallest echo-path change will seriously lower the value of ξ(4),
resulting in double-talk detection. This fact is well illustrated in Figure 4.5,
where double-talk occurs from sample 265000 to 270000 and from 293000
to the end of the graph. The rest of the graph contains only single-talk.
Although the decision variable reacts quickly and accurately to double-talk
sections, it is seriously disturbed by echo-path change during single-talk.

4.2.5 Weighted echo power

Considering all these facts, we wanted to find a method that would reduce
the influence of the echo on the DTD decision variable, without having the
undesirable consequences of equation (4.14). The solution is a compromise
between the full subtraction of the echo power and the conventional DTD
equation (4.7). The idea is to weight the echo power term, instead of trying
to suppress it. This is obtained in the following way: starting from equation
(4.7), we subtract (1− ε) · σ2

ŷ from the numerator and denominator, where ε
is a well chosen constant in range ]0; 1[.

ξ(5) ≡
√

σ2
ŷ + σ2

n̂ − (1− ε) · σ2
ŷ

σ2
m − (1− ε) · σ2

ŷ

=

√
ε · σ2

ŷ + σ2
n̂

σ2
m − (1− ε) · σ2

ŷ

(4.15)

Supposing that the adaptive filter has converged, we can further write

ξ(5) ĥ=h≈
√

ε · σ2
ŷ + σ2

n̂

σ2
v + σ2

n + ε · σ2
ŷ

. (4.16)

Using equation (4.16), the DTD decision variable will be much more influ-
enced by the near-end speech than before. If we suppose the echo power
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equal to the near-end speech power, and if we use ε = 0.1, then the average
value of ξ(5) will be

ξ(5) =

√
0.1x

x + 0.1x
=

√
0.1/1.1 ≈ 0.3 (4.17)

Compared to the previous value of 0.71, this represent a good improvement
in double-talk detection. Practical results on real signals will be shown in
Chapter 6.

4.3 Robustness to echo

Although the newly introduced DTD equation is enhancing the double-talk
detection accuracy, as we will show in Chapter 6, it also has an important
drawback: it makes the DTD decision variable also more sensitive to echo-
path changes. This is not a problem when those changes occur during double-
talk or silence, however it could lead to a critical situation in case of single-
talk. To illustrate this fact, we will proceed from the new weighted DTD
equation (4.15) and introduce again the filter misadjustment from equation
(4.10).

ξ(5) =

√
ε · σ2

ŷ + σ2
n̂

σ2
v + σ2

n + σ2
y − (1− ε) · σ2

ŷ

=

√
ε · σ2

ŷ + σ2
n̂

σ2
v + σ2

n + σ2
ŷ + ∆− (1− ε) · σ2

ŷ

=

√
ε · σ2

ŷ + σ2
n̂

σ2
v + σ2

n + ε · σ2
ŷ + ∆

(4.18)

If we consider the single-talk case, we can assume that there is no near-end
speech (σ2

v = 0) and that the noise power is negligible compared to the echo
power. Therefore, we can simplify equation (4.18) as follows

ξ(5) =

√
ε · σ2

ŷ

ε · σ2
ŷ + ∆

(4.19)

If we do the same simplifications on equation (4.11) representing the old,
non-weighted decision variable, we obtain

ξ(3) =

√
σ2

ŷ

σ2
ŷ + ∆

(4.20)



36 New algorithms

-25000

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 90000  95000  100000  105000  110000  115000  120000  125000  130000

va
lu

e

microphone signal

-15000

-10000

-5000

 0

 5000

 10000

 15000

 90000  95000  100000  105000  110000  115000  120000  125000  130000

va
lu

e

reference signal

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 90000  95000  100000  105000  110000  115000  120000  125000  130000

D
T

D
 v

al
ue

xi

-25000

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 90000  95000  100000  105000  110000  115000  120000  125000  130000

va
lu

e

samples

output signal

Figure 4.6: Misdetection of double-talk, caused by echo-path change

Observing equations (4.19) and (4.20), we see that the misadaptation term
∆ is more disturbing in equation (4.19), especially if ε is small.

This theoretical observation can, in fact, lead to concrete problems in
echo cancellation. Let us suppose that we have a change in the echo path
that happens in a silence. At that time, the adaptive filter will not be able
to track the echo path change, since we are missing the echo signal. When
the echo starts to take non-zero values again, it will be a strong and sudden
echo path change, that will influence the DTD decision variable. If this
variable crosses the decision threshold, the algorithm will declare double-
talk and will stop coefficient adaptation, precisely at a time when adaptation
is highly needed. Figure 4.6 shows a signal which causes this problem. The
echo between samples 110000 and 115000 is considered as double-talk and
therefore not removed.
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4.3.1 Variable ε parameter

To solve this problem, we have based our reasoning on two facts.

1. the echo-path influence is a real problem only during single-talk sections

2. during silence we do not need to weight the echo power (since it is 0
anyway)

Therefore, the idea to overcome this problem is to make the weighting pa-
rameter ε variable in 0 < εmin < ε < εmax < 1. During the silence, we will
increase ε to its maximum value εmax, and during echo, we will decrease it up
to εmin. This behavior is summarized in Algorithm 2, where κ is a constant
slightly higher than 1, used to smoothly increase or reduce ε.

Algorithm 2 Variation of the weighting factor ε

if echo == 0 then
if ε < εmax then

ε ⇐ ε · κ
end if

else
if ε > εmin then

ε ⇐ ε/κ
end if

end if

1

echo

ε

εmax

εmin

Figure 4.7: Variation of the parameter ε depending on the echo

Figure 4.7 illustrates clearly how the algorithm works. It ensures that at
the beginning of an echo section, the variable ε will be close to its maximum
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value, and thus make the DTD decision variable rather insensitive to echo-
path changes. In Chapter 6, we will show how this method is actually working
on real signals, helping to avoid a misdetection of double-talk.

The choice of the two constants εmin and εmax is a delicate problem. It is
clear that εmin can not be made as small as we want, otherwise we will repeat
the problems encountered when trying to subtract completely the echo power
from the DTD equation. To select an appropriate value for both constants,
we have relied on experiences. The evaluations have shown that the best
echo cancellation was happening with εmin around 0.07. A value of 0.5 for
εmax seems large enough to avoid too much sensitivity to echo path changes.

4.4 Accurate background noise estimation

Background noise estimation is not a very easy task, because we do not have
access to the noise as a separate signal. It is rather mixed with echo and
near-end speech in the microphone input signal m(t). Nevertheless, several
parts of our echo cancellation algorithm rely on noise estimation, and it is
therefore important to execute this task with sufficient accuracy.

The conventional algorithm was using the output signal to compute an
estimation of the noise power, trying to locate noise-only sequences with
the help of a simple heuristic method. However, as we have already seen
in Section 3.3.2, the rules were too simple and noise estimation was often
computed while near-end speech was present in the microphone signal. This
resulted in over-estimation of the noise, which disrupted correct working of
other processes relying on noise estimation.

To improve noise estimation, we thus need to discriminate noise-only
sections accurately. Instead of identifying noise-only periods, it is easier to
detect the presence of echo and near-end speech and stop noise estimation
during this period. Choosing the error signal e(t) instead of the microphone
signal m(t) for noise estimation is generally better, since echo is attenuated
in the former, and a misdetection of a noise section would disrupt less noise
estimation.

In order to stop noise estimation in the presence of residual echo, we rely
on the criterion defined in [9]. We stop estimation if the power of the output
signal is higher than the power of the echo replica

σ2
e > σ2

ŷ. (4.21)

This condition ensures that the echo is weaker than the background noise,
and thus the residual echo power will be negligible compared to the noise
power. However, used alone, this condition does not prevent to compute
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Figure 4.8: Auto-correlation of the output signal

noise estimation during near-end speech sections. Hence the need of an
additional condition detecting the near-end speech.

For this purpose, an obvious way would be to rely on DTD and stop
noise estimation when near-end speech is detected. We have discarded this
technique, however, because it produces an additional loop in the program.
The DTD would depend on the noise power estimation, that would in turn
depend on the DTD. This kind of inter-dependence should be avoided, be-
cause it could lead to instability. Moreover, DTD tends to miss sometimes
the beginning of a near-end speech section, when the power is small. While
this is not a real problem for the echo cancellation, it is much disturbing for
noise estimation. Indeed, it causes the noise power to be overestimated at
the beginning of the near-end speech, and then be held at the wrong value
during the whole near-end speech period, because the estimation is stopped.

Therefore, we have instead chosen to rely on the auto-correlation of the
output signal. The near-end speech is a highly correlated signal whereas
the background noise is mainly uncorrelated. Therefore, using the auto-
correlation of the output signal allows to accurately distinguish near-end
speech from background noise. The computation of output signal’s auto-
correlation is done by taking the average of the product of two consecutive
samples over a chosen averaging window. This averaging window should not
be defined too large, such that we have a quick enough response.

ρn =
W∑
i=0

e(n− i)e(n− i− 1) (4.22)

As shown in Figure 4.8, near-end speech and noise section have different
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auto-correlation levels, allowing to easily distinguish them. A good threshold
should be set just above the noise auto-correlation level, so as to detect near-
end speech with a minimum delay. However, the overall auto-correlation
level depends on near-end speech and echo power, which can vary much from
one signal to another. Thus, setting a good threshold is difficult. Hence the
need for normalization of auto-correlation.

Using Geigel DTD, already described in Section 4.1.1, we can roughly
avoid near-end speech and compute an approximation of noise auto-correla-
tion. This is done using a small forgetting factor to obtain a smooth approx-
imation.

λn = (1− δ)λn−1 + δ · e(n)e(n− 1) (4.23)

By dividing the output auto-correlation ρn by the approximation of the
noise auto-correlation λn, we obtain a normalized version of output auto-
correlation. In this signal, the noise auto-correlation is very close to 1, as
shown in Figure 4.9, independent of the overall signal power. Therefore,
setting a threshold to a value slightly higher than 1 will allow to quickly
detect near-end speech in the output signal.

One can wonder why not use the autocorrelation technique for DTD, if
it has proved to detect near-end speech accurately. The answer is that this
technique can not distinguish near-end speech from residual echo. Thus,
this method can easily confuse residual echo with near-end speech. It is not
a problem for noise estimation, since we also want to avoid residual echo,
anyway. However, in the case of DTD, this would prevent the filter from
convergence and disturb echo cancellation. Therefore, this method is not
suited for double-talk detection.
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4.4.1 Variable forgetting factor

Computing averages using a forgetting factor has the advantage of using
a small amount of memory, compared to averaging with a sliding window.
This advantage is especially important when we want an average over a large
number of samples. Therefore, this method is particularly well suited for
noise estimation, since we want a smoothed yet precise estimation. However,
using a forgetting factor is always a trade-off between speed and smoothness.
Using a small forgetting factor results in a smooth estimation with slow
response to significant changes. A larger forgetting factor has exactly the
opposite effect.

For noise estimation, however, both speed and smoothness would be
needed, in order to obtain a good estimation. At the beginning of the pro-
cess, it is necessary to quickly converge towards a reasonable value for noise
power, whereas during the rest of the process, we would like a precise and
slow varying estimation. Hence the idea of using a variable forgetting factor
for noise estimation. This would be set to a value close to 1 at the beginning,
and will then be progressively lowered as the estimation is approaching the
true value of the noise power.

In order to know when to reduce the size of the forgetting factor, we rely
on the variations of the gradient of noise estimation. Every time this gradient
changes its sign, the forgetting factor is slightly reduced until it reaches its
final value. Therefore, the estimation reaches quickly a value close to the
real noise power and then continues adaptation smoothly. This technique
is explained in Algorithm 3, in which τ represents a constant a little higher
than 1 used to slowly reduce the forgetting factor δ.

Algorithm 3 Variable forgetting factor

1: gradient sign ⇐ 1
2: if sgn(gradient) 6= gradient sign then
3: if δ > δmin then
4: δ ⇐ δ/τ
5: end if
6: gradient sign ⇐ sgn(gradient)
7: end if
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Chapter 5

Enhancement on speech
recognition

Our acoustic echo cancellation algorithm is specifically targeted at speech recog-
nition. Therefore, we have also added several parts to our algorithm, that are
not found in usual echo cancellation algorithms, whose goal is to help the speech
recognition engine to perform its task. Center-clipping is performed to get rid
of the residual echo. Moreover, white noise is added to the output signal to
stabilize its power.

5.1 Non-linear residual echo removal

No matter how good an adaptive echo canceler is, the echo will never be
perfectly canceled and some attenuated version of the echo, called residual
echo, will still be present in the output signal. This is inherent to the principle
of adaptive echo canceler, which generates an echo replica using an FIR filter.
Since echo path is an FIR filter with infinite number of taps, even when the
adaptive filter matches the echo at best, some echo components will still
pass through the system, due to the unmodeled echo tail. This echo replica
still has some speech characteristics and is therefore disturbing the speech
recognition.

One common way to remove this undesired residual echo is to use a non-
linear center clipping method on the output signal of the echo canceler. The
principle of this method is fairly simple: it removes every sample that is below
a given threshold Tc. Since the residual echo is generally a very low power
signal, it should be removed by this method. During non-speech sections, the
background noise is also suppressed by center-clipping. To make the method
adapt to different signals, the threshold Tc for center clipping is variable and
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depends on the noise power estimation.
However, applying uniformly center clipping on the output signal from

echo cancellation is not conceivable, because it would be applied also to near-
end speech sections, distorting them and making them unrecognizable by the
speech recognition engine. Therefore, center-clipping should be applied se-
lectively on the non-speech section, so as to avoid damaging near-end speech.
To achieve this purpose, we use the DTD signal to prevent performing center
clipping during double-talk sections. Unfortunately the double-talk detection
is not always perfect and it happens that it misses some parts of the double-
talk period, particularly the beginning and the end, when the signal power is
weak. When such a miss happens, the corresponding near-end speech signal
will be distorted, not to say removed if its power is weak.

To overcome this problem, we have designed a method that applies center-
clipping selectively on different parts of the signal. Near-end speech power is
generally much higher than residual echo power. Thus, most of its samples
are higher in magnitude and power than the center clipping threshold. On the
other hand, when it comes to the residual echo, the majority of its samples
should be below the threshold Tc.

Therefore, we can base the decision whether clipping a sample or not, on
the power of the previous samples. If the majority of them are higher than
the threshold Tc, we are probably dealing with a near-end speech section,
and it is better not to clip the current sample. The following algorithm
summarizes the center-clipping decision method.

Algorithm 4 Selective center-clipping

if majority of n past samples < Tc then
clip current sample

else
let current sample untouched

end if

With this algorithm, near-end speech that was not detected by DTD has
little distortion, and at the same time most of the residual echo is canceled.

5.2 White noise addition

Center-clipping described in the previous section is a successful way to get rid
of the annoying residual echo. To further boost the results of the voice recog-
nition, we have also tried to add white noise to the output signal. Indeed,
white noise addition in the non-speech section helps the speech detection
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of the voice recognition program, by making the signal power more stable.
However, white noise addition should not be added uniformly on the whole
output signal. Its power should depend on the output signal. We should
add less white noise during near-end speech section, so as not to distort the
speech signal. During non-speech section, the added white noise should be
stronger, so as to cover the possible residual echo. For deciding whether to
add strong or weak white noise, we rely again on the DTD decision variable.
The overall white noise power depends on the logarithm of the output sig-
nal power. This technique is derived from a noise suppression program for
PaPeRo.

One important issue about white noise addition was whether to place
it before or after center-clipping, and whether both methods were efficient
when used together. After some experiments, we found out that the best
configuration was to first add white noise and then perform center clipping.
Both methods used together in that configuration give better results than
each of them separately.
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Chapter 6

Evaluation

In this chapter, we show the results achieved by the new echo cancellation al-
gorithm. In a first part, we illustrate by concrete examples, how the new devel-
opments can contribute to improve the quality of echo cancellation. We then
present the method we have designed for evaluation of the algorithm. In the
next section, the results of the evaluation are shown and analyzed. Finally, we
present an overview of the final acoustic echo cancellation algorithm.

6.1 Echo cancellation

6.1.1 New initialization model

In chapter 3 we have seen how the too simple initialization performed in
the initial program could lead to instability. Figure 6.1 illustrates more
concretely this problem. The left signal (6.1(a)) represents the microphone
input signal on which echo cancellation is performed. The bursts up to
sample 70000 are echo, whereas the next are near-end speech. The signal on
the right (6.1(b)) is the output signal after echo cancellation. We can notice
that echo is not canceled but rather amplified. This phenomenon can be
explained as follows: the original algorithm forced filter adaptation during
the first samples of the signal. Since there is only noise, and since the noise
estimation is initializing at this time, the variable step-size for coefficient
adaptation will not prevent adaptation and the filter will adapt to the noise.
Then, the DTD will be disturbed by the filter’s wrong adaptation and will
prevent further adaptation during echo sections.

In such a case, the new initialization method will avoid this problem. As
we can see in Figure 6.2(b), the new program first stops filter adaptation until
the first echo period is seen (around sample 12000). Then it uses Geigel DTD
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Figure 6.1: Results of a bad initialization

to carry out double-talk detection, until the adaptive filter has converged to a
stable value (around sample 40000). Double-talk detection is then performed
by the normalized cross-correlation method.
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Figure 6.2: Echo cancellation with correct initialization

Thanks to this new initialization method, the echo cancellation program is
more robust, and can be used in different environments with various signals,
without requiring a special set-up from the user. There is no need of providing
an echo-only signal at the beginning, so that the filter can adapt at the first
time. The algorithm can rather deal with any kind of signals and ensure
convergence.
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6.1.2 New DTD

In Section 4.2.1, we saw that the original definition of the double-talk de-
tector based on normalized cross-correlation was not designed to cope with
background noise, and was reacting incorrectly during silences. Therefore
we designed a new DTD equation using noise estimation. In Figure 6.3, we
display the DTD decision variable ξ(4) applied to the same signal as figure
4.2, using the new DTD equation. The double-talk detector does not detect
double-talk during silences, and reacts accurately to every near-end speech
section.
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Figure 6.3: DTD decision variable using the new equation with estimated
noise term

The second point in the new DTD algorithm was the weighting of the
echo term, in order to limit its influence on the decision variable. Figure
4.3 showed how echo was disturbing double-talk detection when the original
equation was used. Figure 6.4, displays the decision variable by the new
DTD definition, applied on the same signal as in Figure 4.3.

The new decision variable does not suffer anymore from a too strong
influence from the echo signal. Although, this influence is still noticeable, it
does not disturb the double-talk detection. If we set the threshold for double-
talk detection around 0.6 or 0.7, the double-talk period will be accurately
detected from the beginning to the end.
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Figure 6.4: DTD decision variable using the weighted echo term is less dis-
turbed by echo sequences

6.1.3 New noise estimation method

In Chapter 3, we discussed the simple noise estimation algorithm used by the
original AEC algorithm and its consequences. We saw that the simple rule it
was using was not good enough to avoid estimating the noise during near-end
speech. Figure 6.5(a) concretely illustrates the consequences of estimating
noise power at the wrong moment. Noise is much over-estimated all along the
signal, and particularly around samples 50000 and 150000, where it reaches
a high value. One should look at the scale to have a good measure of how
wrong the estimation is, knowing that the true value of background noise
power for this signal is about 70000.

To improve this result, we have relied on output auto-correlation to avoid
estimating noise during near-end speech. This makes the estimation much
more accurate, as shown in Figure 6.5(b). The estimation now always stays
in the range of the true noise power and does not reach unrealistic values.
However, although the estimation is now reasonable, it is not as smooth as
we could expect. In order to get a smoother noise estimation, the easiest
solution is to lower the forgetting factor. However, as already explained in
Chapter 3, this also slows down the tracking of the estimation. Since the
background noise is a rather stable signal, whose magnitude does not change
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Figure 6.5: Noise estimation using different methods

fast, this is acceptable, except for the initial tracking, where the estimation
will converge much too slowly towards the true value. This problem is shown
in Figure 6.5(c), where noise estimation is done using output auto-correlation
and a very small forgetting factor. Finally, Figure 6.5(d) shows the noise
estimation on the same signal, using a variable forgetting factor. This time,
we can combine both fast tracking and smooth estimation in the steady state.

6.2 Evaluation for speech recognition

The goal of the acoustic echo canceler for PaPeRo is to enhance speech recog-
nition. Therefore, an important criterion to measure the performance of our
algorithm is the word recognition rate of the speech recognition engine, af-
ter echo cancellation. For this evaluation purpose, a total of 240 sets of
echo and reference signals have been recorded in real conditions with PaP-
eRo. The recording consists of PaPeRo continuously talking, and someone
speaking words to the robot for recognition. The reference signal is the syn-
thetic voice of the robot, and the echo is captured by PaPeRo’s microphones.
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No echo AEC & AEC & no AEC & no AEC &
low echo loud echo low echo loud echo

Head mic. 0.5m 94.2% 91.3% 86.5% 26.6% 13.7%
1.5m 93.1% 88.7% 81.4% 19.6% 10.0%

Neck mic. 0.5m 92.7% 87.3% 82.1% 14.3% 8.0%
1.5m 91.7% 84.5% 76.4% 9.1% 5.6%

Table 6.1: Results of the evaluation in word recognition rate

Each recorded file features 50 words pronounced at a regular interval. The
sequences were recorded using different parameters to simulate the real-life
conditions: several different speakers were used as near-end speech, males,
females and children. The speaker was placed at 0.5m and 1.5m from the
robot. Also the recordings were done using two different volume levels for
PaPeRo voice, one high and another relatively low. The near-end signal was
recorded by two different microphones, one located on the robot’s head and
the other one on its neck.

To evaluate the new algorithm, the following procedure has been taken.
First, echo cancellation is performed on every evaluation sequence, thus pro-
ducing 240 new output sequences. Then speech recognition is applied to
every output sequence. The speech recognition engine produces then for
each sequence a text file containing the recognized words. Finally, another
C program was used to compare the results of the speech recognition with
reference files comprising the true word sequences pronounced by the corre-
sponding speakers.

To take care of the whole evaluation process automatically, a set of bash1

scripts have been written. This was needed, since the process is relatively
long and can take up to two hours.

6.3 Word recognition rate improvement

Figure 6.6 and Table 6.1 display the results in word recognition rate of the
evaluation on the new algorithm.

Several things can be learned from the voice recognition results. First
and most obvious, we can see that echo cancellation improves the speech
recognition rate as much as 80% in different recording conditions.

Then, we can notice, as we could have expected, that the louder the
echo, the lower the word recognition rate. This can be partly explained

1http://www.gnu.org/software/bash/bash.html
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Figure 6.6: Results of the evaluation in word recognition rate

by the fact that double-talk detection is more difficult when both near-end
speech and echo have almost the same power. Also, coefficient adaptation
is stopped during double-talk, and therefore if the echo path changes during
this time, a loud echo will produce a more disturbing residual echo. For the
same reason, the word recognition rate is usually lowered as the speaker gets
far from the robot. When the distance between the speaker and the robot
increases, the near-end speech will get weaker compared to the echo, hence
more difficulties in detecting near-end speech.

Finally, we can see that the overall results of voice recognition for the
signal without echo is 92.95%, and 85% for the signal with echo cancellation.
Therefore, there is less than a 10% difference between the clean speech and
the noisy one. It means that the objective expressed in the introduction are
reached, although there is still place for improvement.
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Figure 6.7: Overview of the echo cancellation algorithm

6.4 Algorithm overview

After having described individually the new developments and enhancements
brought to the AEC algorithm in Chapters 4 and 5, we will briefly see here
how all pieces are put together to form the echo cancellation program. Figure
6.7 depicts an overview of the new echo canceler.

Figure 6.8 illustrates the sequence of operations to perform echo cancel-
lation. First an echo replica is generated using the current adaptive filter
coefficients, and the output signal is created by subtracting the echo replica
from the microphone signal. Then auto-correlation of the output signal is
computed, using Geigel DTD. Based on output auto-correlation, noise-only
sequences are then identified. If the microphone signal consists only of noise,
then noise estimation is performed. After this, double-talk detection is real-
ized using Geigel DTD during the convergence phase, or normalized cross-
correlation DTD after convergence. If no near-end speech signal is present,
the filter coefficients are then adapted. After that, convergence detection
is done. Finally, white noise is added and center clipping is applied to the
output signal.

This whole sequence is then repeated to process the next sample. This
loop should continue as long as echo cancellation is desired.
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Chapter 7

Conclusion

7.1 Conclusion

In this report, we have presented our master thesis work at NEC Corpora-
tion. During the 6 months of the internship, we have developed an acous-
tic echo canceler to improve the speech recognition of the robot PaPeRo.
Starting from an acoustic echo cancellation algorithm written by a former
internship student, we have analyzed it and identified its flaws, which were
compromising its performance. We have then developed various techniques
to correct and enhance the original program. Among the newly developed
features, a new double-talk detection algorithm based on normalized cross-
correlation has been developed. This noise-robust algorithm provides a fast
and accurate response to double-talk, preventing near-end speech to disturb
the echo cancellation process. A new background noise estimation algorithm
has also been developed, providing a smooth yet precise noise power estima-
tion for the other parts of the echo cancellation algorithm. Special care has
been given to the algorithm initialization, in order to ensure that the echo
cancellation can be performed on any signal in any conditions. Finally, a cen-
ter clipping method has been implemented along with the AEC algorithm to
further remove the residual echo that pass through echo cancellation. White
noise has also been added to the output signal, in order to make the signal
power more stable and thereby improve speech recognition results.

Validation of the developed algorithm has been done through a series of
evaluations over a large set of echo sequences. The application of the newly
developed echo cancellation algorithm on sequences corrupted by echo has
proved to enhance word recognition rate of the speech recognition engine
by more than 70%. The results of the speech recognition on noisy signals
are therefore within 10% degradation from those for noiseless signal, which
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fulfills the objective of this master thesis work.
Thanks to the new methods developed during this master thesis, the echo

cancellation algorithm for PaPeRo is now more robust in difficult conditions.
Echo is removed better, with minimal distortion to the near-end speech,
which is critical to reach good speech recognition performance.

7.2 Future work

Among the future work that can still be done about the echo cancellation
algorithm, one interesting feature would be to automatically detect the op-
timal adaptive filter length for every signal, so as to optimize convergence
speed without compromising echo cancellation.

Although, PaPeRo is soon moving to a new and more powerful hardware,
some work could be done to optimize the resource consumption of the AEC
algorithm, in order to be nice to the other processes running on the robot.

Despite the fact that the algorithm has been widely tested, a series of
evaluations in which people and the robot move, in order to constantly change
the echo path, could be of interest.



Bibliography

[1] Yoshiro Fujita. Personal robot papero. Journal of Robotics and Mecha-
tronics, 14(1):60–63, 2002.

[2] M. M. Sondhi. An adaptive echo canceller. Bell System Technical Jour-
nal, 46:497–511, 1967.

[3] Kazuhiko Ozeki and Tetsuo Umeda. An adaptive filtering algorithm
using an orthogonal projection to an affine subspace and its properties.
Electronics and Communications in Japan, 67-A(5):126–132, February
1984.

[4] Donnald L. Duttweiler. A twelve-channel digital echo canceler. Com-
munications, IEEE Transactions on, 26(5):647–653, May 1978.

[5] Hua Ye and Bo-Xiu Wu. A new double-talk detection algorithm based
on the orthogonality theorem. IEEE Transactions on Communications,
39:1542–1545, November 1991.
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