
Advanced Robotics, Vol. 15, No. 8, pp. 815–832 (2001)
Ó VSP and Robotics Society of Japan 2001.

Full paper

Cooperative Q-learning: the knowledge sharing issue

MAJID NILI AHMADABADI1;2;¤, MASOUD ASADPOUR1;2

and EIJI NAKANO3

1 Robotics and AI Laboratory, Department of Electronic and Computer Engineering,
Faculty of Engineering, University of Tehran, Tehran, Iran

2 School of Intelligent Systems, Institute for Studies on Theoretical Physics and Mathematics,
Tehran, Iran

3 Advanced Robotics Lab., GSIS, Tohoku University, Japan

Received 29 January 2001; accepted 11 April 2001

Abstract—A group of cooperative and homogeneous Q-learning agents can cooperate to learn faster
and gain more knowledge. In order to do so, each learner agent must be able to evaluate the expertness
and the intelligence level of the other agents, and to assess the knowledge and the information
it gets from them. In addition, the learner needs a suitable method to properly combine its own
knowledge and what it gains from the other agents according to their relative expertness. In this
paper, some expertness measuring criteria are introduced. Also, a new cooperative learning method
called weighted strategy sharing (WSS) is introduced. In WSS, based on the amount of its teammate
expertness, each agent assigns a weight to their knowledge and utilizes it accordingly. WSS and the
expertness criteria are tested on two simulated hunter–prey and object-pushing systems.

Keywords: Learning; cooperation; expertness; knowledge sharing.

1. INTRODUCTION

Parallelism, scalability, simpler construction and cost effectiveness are among the
main characteristics of multi-agent systems [1, 2]. Having these attributes, multi-
agent systems are used to solve complicated problems, search in large domains,
execute sophisticated tasks, and make more fault-tolerant and reliable systems.

In most of the existing systems, agents’ behavior and coordination schemes are
desinged and � xed by the designer. But, an agent with limited and � xed knowledge
and behavior cannot be suf� ciently effective in a dynamic, complex or changing
environment. Therefore, to have all bene� ts of implementing a multi-agent system,
each agent and the team must learn to cope with the new, unseen and changing
situations.

¤To whom correspondence should be addressed. E-mail: mnili@ut.ac.ir



816 M. Nili Ahmadabadi et al.

Figure 1. A cooperative learning system.

In approximately all of the present multi-agent teams, agents learn individually.
However, the main favorable attributes of multi-agents systems can also be used in
the learning process. In other words, agents are not required to learn all things from
their own experiences.

Each agent can observe the others, and learn from their situation and behavior.
Moreover, agents can consult with more expert agents or get advice from them.
Agents can also share their information and learn from this data, i.e. the agent can
cooperate in learning. Figure 1 shows an example of such a system.

Cooperative learning can be observed in human and some animal societies. As a
result of having more knowledge and information acquisition resources, cooperation
in learning in multi-agent systems may result in a higher ef� ciency compared to
individual learning [2]. Researchers have shown an improvement in learning even
when simple cooperative learning methods are used [3].

Cooperative learning has not been intensively investigated. In almost all of multi-
agent learning papers, cooperation is uni-directional between a � xed trainer agent
and a learner. We believe all agents can learn something from each other provided
that some proper measures and methods are implemented.

One of the most important issues for the learner agent in cooperative learning
is evaluation of the information and the knowledge it gets from the others. Also,
assessment of the behavior and the intelligence level of the other agents is another
important problem to be addressed. In other words, the learner agent must evaluate
the level of intelligence or the expertness of the other agents. In addition, a proper



Cooperative Q-learning 817

method must be devised for each agent to combine its own knowledge and that of
the others according to their relative expertness.

These three issues are very complicated in general. Therefore, in this paper, we
pay attention to � nding solutions for homogeneous, independent and cooperative
Q-learning agents.

Related research is reviewed in the next section. Then, a new cooperative
learning strategy, called weighted strategy-sharing (WSS), is introduced. Later,
individual learning is explained and some expertness measures are devised. The
WSS method and the effects of implementing the expertness measures are studied
on the hunter–prey and object-pushing problems in Sections 4 and 5. A conclusion
of this paper is given in the last section.

2. RELATED WORK

Samuel [4] used the Competitive Learning algorithm to train a Checker game player.
In his method, the cooperator agent has the role of the enemy or the evaluator and
tries to � nd the weak strategies of the learner. In the Ant Colony System [5], some
ants learn to solve the travelling salesman problem by non-verbal communication
through pheromones on the edges of a graph.

Imitation [6] is one of the cooperative learning methods. In imitation, the learners
watch the actions of a teacher, learn them and repeat the actions in similar situations.
This method does not affect the performance of the teacher [7]. For example, in [6],
a robot perceives a human doing a simple assembly task and learns to reproduce it
again in different environments. Hayes and Demiris [8] have built a robotic system
in which a learner robot imitates a trainer that moves in a maze. The robot learns to
escape from the maze later.

Yamaguchi et al. [9] have developed a robotic imitation system to train ball-pusher
robots. In this system, agents learn individually based on Reinforcement Learning
and they have the ability to imitate each other. In their research, three methods
for imitation are used: Simple Mimetism, Conditional Mimetism and Adaptive
Mimetism.

In Simple Mimetism all agents imitate each other with an imitation rate when
they are neighbors. In this method, the Inter-Mimetism Problem occurs when two
neighbors wait to imitate each other and do nothing. This problem is solved by
Conditional Mimetism in which only the low-performance agent (performance is
measured based on sum of the rewards and the punishments received in n previous
actions) imitates the other one. Adaptive Mimetism is similar to Conditional
Mimetism and the imitation rate is adjusted based on the difference between the
performances of two neighbor robots.

Cooperation in learning can also be done when agents share their sensory data
and play the role of a scout for each other [3]. Episode Sharing can be used
to communicate the (state, action, reward) triples between the Reinforcement



818 M. Nili Ahmadabadi et al.

Learners [3]. Tan showed that sharing episodes with an expert agent could
signi� cantly improve the group learning [3].

In the Collective Memory method, the learners put the learnt strategy or experi-
enced episodes on a shared memory [10] or have a unique memory and update it
cooperatively [3].

A Cooperative Ensemble Learning System [11] has been developed as a new
method in neural network ensembles. In that study, a linear combination of outputs
of concurrent learning neural networks is used as a feedback to add a new penalty
term to the error function of each network.

Provost and Hennessy [12] developed a Cooperative Distributed Learning System
which is used when the training set is huge. First, the training set is divided into
k smaller training subsets and k rule-learning agents learn local rules from these
subsets. Then, the rules are transmitted to other agents for evaluation. A rule will
be accepted as a global rule if it satis� es the evaluation criterion.

Maclin and Shavlic [13] used an Advice Taking scheme to help a Connectionist
Reinforcement learner. The learner accepts advice in the form of a simple computer
program, compiles it, represents the advice in a neural network form and adds it to
its current network.

In most of the reviewed research, cooperation is uni-directional between a pre-
de� ned trainer and a pre-speci� ed learner agent. However, in the real world, all of
the agents may learn something from each other; even from the non-experts.

In the strategy-sharing method [3], members of a multi-agent system learn from
all of the agents. The agents learn individually by the Q-learning version of
Reinforcement Learning. At de� ned times, the agents gather the Q-tables of the
other agents and adopt the average of the tables as their new strategy.

In this system, all of the agents’ knowledge is equally used and the agents do not
have the ability to � nd good teachers. Moreover, it seems that simple averaging of
the Q-tables is non-optimal when the agents have different skills and experiences.
Additionally, the Q-tables of the agents become equal after each cooperation step.
This decreases the agents’ adaptability to environment changes [9].

To overcome these drawbacks, we have developed a new strategy-sharing method
based on expertness detection where the agents assign some weights to the other
agents’ Q-tables.

3. WSS METHOD

In the WSS method (Algorithm 1) it is assumed that members of a group of
n homogeneous agents are learning in some distinct environments, so their actions
do not change the others learning environment (and do not produce the Hidden State
Problem [14]).



Cooperative Q-learning 819

Algorithm 1. WSS algorithm for agent ai .

(1) Initialize

(2) while not EndOfLearning do

(3) begin

(4) If InIndividualLearningMode then

(5) begin {Individual Learning}

(6) xi :D FindCurrentState./

(7) ai :D SelectAction./

(8) DoAction.ai/

(9) ri :D GetReward./

(10) yi :D GoToNextState./

(11) v.yi/ :D Maxb2actionsQ.yi; b/

(12)
Qnew

i .xi; ai/ :D .1 ¡ ¯i/Q
old
i .xi; ai/

C ¯i.ri C °iV .yi//

(13) ei :D UpdateExpertness.ri/

(14) end

(15) else {Cooperative Learning}

(16) begin

(17) for j :D 1 to n do

(18) ej :D GetExpertness.Aj /

(19) Qnew
i :D 0

(20) for j :D 1 to n do

(21) begin

(22) Wij :D ComputeWeights.i; j; e1 : : : en/

(23) Qold
j :D GetQ.Aj /

(24) Qnew
i :D Qnew

i C Wij ¤ Qold
j

(25) end

(26) end

(27) end

The agents are learning in two modes: Individual Learning Mode and Cooperative
Learning Mode (lines 4 and 15 of Algorithm 1). At � rst, all of the agent are in
the Individual Learning Mode. Agent i executes ti learning trials, based on the
one-step Q-learning version of reinforcement learning (different tis causes different
experiences). Each learning trial starts from a random state and ends when the
agent reaches the goal. At the time when a speci� ed number of individual trials



820 M. Nili Ahmadabadi et al.

is performed (which is called the cooperation time) all agents stop the Individual
Learning Mode and switch to Cooperative Learning Mode.

In the Cooperative Learning Mode, each learner assigns some weights to the other
agents according to their expertness values (Section 3.2). Then, it takes a weighted
average of the others’ Q-tables and uses the resulted table as its new Q-table. (In
Algorithm 1, multiplication .¤/ and Summation .C/ operators must be speci� ed
according to the knowledge representation method. For example, in the one-step
Q-learning method, ¤ is the scalar matrix multiplication operator and C represents
the matrix summation.)

3.1. Individual learning based on reinforcement learning

In this paper, one-step Q-learning is used for the Individual Learning Mode.
Reinforcement learning is one of the simplest and widely used learning method,

and has many similarities to human experiences. In this method, the learner
perceives something about the state of its environment and, based on a prede� ned
criterion, chooses an action. The action changes the world’s state and the agent
receives a scalar ‘reward’ or ‘reinforcement’, indicating the goodness of its new
state. After receiving the reward or the punishment, it updates the learnt strategy
based on a learning rate and some other parameters.

In the one-step Q-learning algorithm [15, 16] the external world is modeled as a
Markov Decision Process with discrete time � nite states. Next to each action, the
agent receives a scalar ‘reward’ or ‘reinforcement’.

The state-action value table, the Q-table, which estimates the long-term dis-
counted reward for each state / action pair, determines the learned policy of the agent.
Given the current state and the available actions ai , a Q-learning agent selects ac-
tion ‘a’ with the probability .P / given by the Boltzmann distribution (line 7 of
Algorithm 1):

P .ai jx/ D
eQ.x;ai /=¿

P
k2actions

eQ.x;ak/=¿
; (1)

where ¿ is the temperature parameter and adjusts the randomness of the decision.
The agent executes the action (line 8), receives an immediate reward r (line 9),
moves to the next state y (line 10) and updates Q.x; a/ as (line 12):

Q.x; a/ Ã .1 ¡ ¯/Q.x; a/ C ¯
¡
r C ° V .y/

¢
; (2)

where ¯ is the learning rate, ° .0 ° 1/ is a discount parameter and V .x/ is
given by (line 11):

V .y/ D max
b2actions

Q.y; b/; (3)

Q is improved gradually and the agent learns when it searches the state space.



Cooperative Q-learning 821

3.2. Measuring the expertness

In the WSS Method, weights of each agent’s knowledge must be properly speci� ed
so that the group learning ef� ciency is maximized.

The expertness measuring criterion can signi� cantly affect the learning ef� ciency.
This can be also observed in human societies — in those, a learner evaluates the
others’ knowledge with respect to their expertness. In other words, each learner
tries to � nd the best evaluation method to � nd out how much the others’ knowledge
is reliable.

Different mechanisms for choosing the expert agents are used. Most researchers
have a pre-speci� ed expert agent(s). For example, in [3], the expert agent is
prede� ned and it is not changed when learning. This expert agent, which is trained
or pre-programmed, does not learn and only helps the learners.

In the strategy-sharing method [3], the expertness of the agents are assumed to be
equal. Nicolas Meuleau [17] used user judgment for specifying the expert agent.
This method requires continuous supervision by a human being.

In [18] different but � xed expertness values are assumed for the agents. Differ-
ences in the expertness values can be due to having initial knowledge, different
experiences, different learning algorithms or different training sets. It is noteworthy
that the difference in the expertness values may change during the learning process
and cannot be assumed to be constant.

Yamaguchi et al. [9] speci� ed the expert agents by means of their successes
and failures during their current n moves. In their work, the expertness value of
each agent is the algebraic sum of the reinforcement signals it received for its
current n moves. This means that agents with more successes and fewer failures
are considered to be more expert. This method is not optimal in some situations.

For example, an agent that has faced many failures has some useful knowledge to
be learnt from it. In fact, this agent may not know the ways to reach the goal, but
it is aware of those not leading to the target. Also, the expertness of an agent at the
beginning of the learning process — that has not faced many failures — is less than
those that have learned for a longer time and have naturally faced more failures.

3.2.1. Some experness evaluation criteria. Considering the above discussions,
six methods for measuring the agents’ expertness are introduced in this paper. These
methods are:

(i) Normal .Nrm/: Algebraic sum of the reinforcement signals.

(ii) Absolute .Abs/: Sum of absolute value of the reinforcement signals.

(iii) Positive .P/: Sum of the positive reinforcement signals.

(iv) Negative .N/: Sum of absolute value of the negative reinforcement
signals.

(v) Average Move .AM/: Inverse of the number of moves each agent does to
reach the goal.



822 M. Nili Ahmadabadi et al.

(vi) Gradient .G/: The change in the received reinforcement signals since
the last cooperation time.

3.3. The weight-assigning mechanism

In this paper, to decrease the amount of communication required to exchange
Q-tables, the learner uses only the Q-tables of more expert agents. Therefore, partial
weights of the less expert agents are assumed to be zero.

Learner i assigns the weight to the knowledge of agent j as:

Wij D

8
>>>>><

>>>>>:

1 ¡ ®i if i D j ,

®i

ej ¡ ei

nX

kD1

.ek ¡ ei/

if ej > ei ,

0 otherwise,

(4)

where 0 ®i 1 is the impressibility factor and shows how much agent i relies
on the others knowledge. ei and ej are the expertness value of agents i and j

respectively, and n is the total number of the agents.
Substitution of this formula in weighted averaging formula (line 24 of Algo-

rithm 1) results in the following:

Qnew
i Ã .1 ¡ ®i/ ¤ Qold

i C ®i ¤
X

j2Exprt.i/

0

BBBB@
ej ¡ ei

nX

kD1

.ek ¡ ei/

¤ Qold
j

1

CCCCA
(5)

Exprt.i/ D fj jej > eig:

3.4. Special cells communication

Two mechanisms called Positive Only (PO) and Negative Only (NO) are introduced
to eliminate the communication of some cells. In PO, agents send only positive-
value cells of their Q-tables to others and the expertness of the agents is measured
by positive criterion. In NO, agents communicate only negative-value cells of their
Q-tables to others and the expertness is measured by negative criterion.

4. SIMULATION RESULTS ON THE HUNTER–PREY PROBLEM

The ‘Hunter and prey’ problem [3] is one of the classical problems to study the
learning process and is a suitable testbed for comparing different learning methods.
In this paper, all experiments consist of three hunters, that search independently in
a 10 £ 10 environment to capture a prey agent. Hunters can move with a speed
between 0 and 1 and the prey can move with a speed between 0 and 0.5. The



Cooperative Q-learning 823

prey is captured when its distance from the hunter is less than 0.5 (which is called
the reward � eld). Upon capturing the prey, the hunter receives CR reward and
¡P punishment otherwise.

Each agent has a visual � eld in that it can locate the other agents and the
environment. In the studied experiments, the visual � eld of the hunter is 2 and
that of the prey is set as 2. A greater visual � eld helps the prey to escape before the
hunter sees it.

The states of the hunter are speci� ed with respect to the prey .x; y/ coordinates
in its local coordination frame. If the hunter is not in its visual � eld, a default state
is considered. Actions of the hunter consist of rotations and changing its velocity:
a D .V ; µ/. The distance, the velocity difference and the direction difference are
divided into sections of 1 distance unit, 0.5 velocity units, and 45± , respectively.

In order to complicate the learning problem and to clearly show the differences in
ef� ciency of the learning algorithms and the expertness measures, simulations are
performed on a simple and a complex version of the hunter–prey problem. In the
simple version, similar to other research, the moving pattern of the prey is irregular
and random. In the complex version, the prey moves based on the potential � eld
model and escapes from the hunter. We call this agent intelligent.

In the potential � eld model, there are four walls around the environment, and
the prey and the hunter are assumed to be electropositive materials. Therefore, the
prey selects the path with minimum potential. The repulsive force of the hunter is
considered 1.5 times that of the walls. The hunter and each wall are modeled as a
spot and a linear load, respectively. An example of computing the resultant force on
the prey is showed in Fig. 2.

In an environment with intelligent prey, each hunter’s movements may affect the
prey. So, if several hunters learn together in an environment, the effects of each
individual hunter on the others’ learning cannot be easily calculated. So, only one
hunter is in the environment in each trial. Also, to create agents with different
expertness, the agents have different learning times (tis). The � rst hunter learns
six trials, then the second one is permitted to do three trials and, � nally, the last
hunter does one learning trial. In the other cases the hunters have equal tis. The
total number of individual learning trials is 1000 and cooperation occurs after each
50 individual learning trials. The reward and punishment signals are one of six
pairs: (10, ¡0:01), (10, ¡0:1), (10, ¡1), (5, ¡0:01), (5, ¡0:1) and (5, ¡1).

In the simulations, each learning trial ends when the hunter captures the prey. At
the beginning of each individual learning trial, agents are in a random situation. The
one-step Q-learning parameters are set to ¯ D 0:01; ° D 0:9 and T D 0:4. Q-table
values are initialized to zero and all agents have ®i D 0:7. Also, for trial n, the
average number of hunter actions to capture the prey over past n trials is calculated.

4.1. Equal experiences

The average number of moves using six mentioned reinforcement values and the
introduced expertness measuring criteria are shown in Figs 3 and 4 for individual



824 M. Nili Ahmadabadi et al.

Figure 2. An example of computing the resultant force.

Figure 3. Average number of moves in the random prey and equal experience case.



Cooperative Q-learning 825

Figure 4. Average number of moves in the intelligent prey and equal experience case.

Table 1.
Improvement (%) in the equal experience case

Prey SA Nrm Abs P N PO NO G AM

Random ¡0:047 ¡1:36 ¡0:141 0.375 0.235 ¡4:972 ¡23:358 0.704 2.111
Intelligent ¡3:136 ¡3:339 0:936 ¡1:95 ¡0:156 ¡17:663 ¡65:096 ¡1:264 ¡0:452

and cooperative learning methods. Also, improvements gained in learning over the
independent learning method are given in Table 1.

All of the cooperative learning methods (except PO and NO) have approximately
the same results as independent learning. PO and NO are the worst methods,
because these methods change the probability distribution of actions in Boltzmann
selection function and make the selection probability of positive-value and negative-
value actions closer, thus the probability of selecting an inef� cient action rises.
NO is worse than PO, because even a signi� cant difference of two negative-value
actions makes little change in the selection probability of the actions. However, a
little difference of two positive-value actions can raise the probability of choosing
the better action signi� cantly.

4.2. Different experiences

The average numbers of moves for the six described reinforcement values are shown
for each cooperation method in Figs 5 and 6. The improvement percent of each
method is given in Table 2.



826 M. Nili Ahmadabadi et al.

Figure 5. Average number of moves in the random prey and different experience case.

Figure 6. Average number of moves in the random prey and different experience case.

Table 2 shows that Abs, P and N result in improvement in all cases. In the
random-prey case, where the number of punishments is less than in the intelligent-



Cooperative Q-learning 827

Table 2.
Improvement (%) in the different experience case

Prey SA Nrm Abs P N PO NO G AM

Random ¡2:735 ¡15:307 7:582 9:933 8:301 0:845 ¡5:777 ¡7:486 ¡6:286
Intelligent ¡7:572 ¡51:153 13.9 14.244 14.44 ¡1:676 ¡44:841 ¡47:49 ¡0:654

prey simulator, P criterion has the best results; however, in intelligent-prey case,
N criterion works better.

N and G have the worst results. These criteria make the mistake in assigning
expertness to the agents. It is due to the fact that the experienced agents have
performed more actions and, consequently, have received more punishments.
Therefore, their expertness becomes negative and less weight is assigned to their
knowledge.

The Average Move criterion has negative impact in the random-prey case and
has approximately no effect in the intelligent-prey system. In this criterion, the
difference in the agents’ expertness is small, even when they have considerably
different numbers of moves.

NO has a negative effect on learning in both cases and PO causes no improvement.
Simple Averaging (SA) has a negative impact in both systems, because it assigns
equal weights to the agents with different expertness.

Four samples of hunting the intelligent prey are shown in Fig. 7. Circles show
agents; agent 1 is the intelligent prey, and agents 2 and 3 are the hunters using the
P expertness measure.

5. LEARNING TO PUSH AN OBJECT COOPERATIVELY

In the object-pushing problem, simulated in this paper, two robots learn to push an
object toward a target area cooperatively (Fig. 8). Pushing forces .F1 and F2 ) are
applied to the object horizontally at points A and B. The friction coef� cient is � xed
and the friction force is uniformly distributed over the object surface. The pushing
velocity is slow and the inertia forces are neglected. Therefore, considering Fig. 8,
linear (a ) and angular (®) accelerations can be computed as:

a D
F1 ¢ cos.µ1 ¡ 450/ C F2 ¢ cos.µ2 ¡ 450/ ¡ Fs

M
; (6)

® D
F1 ¢ r ¢ sin.µ1/ ¡ F2 ¢ r ¢ sin.µ2/

I
; (7)

where M is mass of the object and I is its moment of inertia. Mechanical parameters
are set to M D 1 (kg), I D 1; r D 1 (m), ¹s D 0:5 and g D 9:8 (N/kg).

To avoid Structural Credit Assignment [19], a common Q-table for two robots is
used. In other words, each action (ap ) is a joint action of two robots: ap D .ap1; ap2/.



828 M. Nili Ahmadabadi et al.

Figure 7. Four samples of hunting the intelligent prey. Circles show agents; agent 1 is the intelligent
prey, and agents 2 and 3 are the hunters using the P expertness measure.

States of the group are speci� ed in the object coordinate system and relative to
the target: s D .x; y; µ/. Ranges of x; y and µ are divided into segments of 1 (m),
1 (m) and 45 .±/, respectively. The environment is 10 £ 10, and since x and y can
be between 10 and ¡10, the robots have 8 £ 20 £ 20 D 3200 states. The actions of
the robots are speci� ed based on the amount and angle of the forces.

Each force is applied for 4 s and the robots follow the object until it stops. The
target position is at .8; 8/ and the initial position of the object is .2; 2/. If the object
crosses the walls, the robots are positioned at the initial point. Each learning trial
starts from the initial position and ends when the robots take the object into the
target area or their number of actions exceeds 2000.

To implement cooperative learning, three groups of such systems are used. Their
learning trials are divided based on t1 D 6, t2 D 3 and t3 D 1, and cooperation times



Cooperative Q-learning 829

Figure 8. The object pushing model.

occur after each 100 learning trials. The maximum number of trials is 50 000, and
other parameters are ® D 0:7; ¯ D 0:01; ° D 0:9 and T D 0:4.

To de� ne suitable reinforcement signals, the average number of randomly selected
moves of each group to arrive at the target (i.e. without learning) is computed.
It was approximately 200 moves. Then the rewards are set to 10 and three
cases of punishments are assigned such that sum of the received punishments are
approximately lower than .¡0:01 £ 200), equal to .¡0:05 £ 200) or greater than
.¡0:1 £ 200) the reward .C10/.

5.1. The simulation results

A sample of the learned path for pushing the object is shown in Fig. 9.
The average number of moves to push the object into the target area after 50 000

learning trials is shown in Table 3 for each reinforcement function. It is shown that
SA has little positive effect on the learning, compared to independent learning. Also,
in all cases, WSS based on N, Abs, P and N criteria have better results than SA.
When the punishments are greater than the rewards at the beginning of learning, N is
the best criterion and P is the worst one among the four above-mentioned expertness
measures. However, in the case where the rewards are greater than the punishments,
P is the best criterion and N is the worst one. Also when the punishments and the
rewards are approximately equal, Abs has the best results. Since any little difference
in the rewards and the punishments signi� cantly affects the weights in this case, the
N criterion has the worst results. Naturally, P and N have approximately the same
results in this case.



830 M. Nili Ahmadabadi et al.

Figure 9. A sample of the learned object-pushingpath.

Table 3.
Average number of moves to push the object to the target area

Reward, Punishment Independent SA N Abs P N

10; ¡0:01 25.0 24.8 20.6 21.4 20.6 21.5
10; ¡0:05 27.9 26.9 21.4 20.8 21.0 21.1
10; ¡0:1 27.3 26.4 20.7 21.8 22.5 20.5

6. CONCLUSION

In this paper, a cooperative learning method, named WSS is introduced. Also, some
criteria to evaluate the expertness of the agents are given. In addition, based on the
expertness measures, a suitable weight-assigning formula is devised for the learners
who learn from the more expert agents. The method and the measures are tested on
hunter–prey and object-pushing problems.

Results show that the strategy-sharing method has no effect (or little effect)
on the learning of a multi-agent system when the agents have equal experiences.
Agents with different levels of expertness learn better when they implement the
WSS method.

SA, G, N and Average Move have a positive effect on the group learning when
the learning problem is simple. In the other case (e.g. intelligent-prey case) these
expertness measures have a negative impact. PO and NO criteria have completely
negative effect, and are not useful for the tested cooperative learning problems.



Cooperative Q-learning 831

The introduced criteria are sensitive to the reward, but the Abs criterion has the
minimum sensitivity because it has the properties of both P and N measures.

When the sum of the received rewards is greater than the punishments at the
beginning of learning, the P criterion is the best among Abs, N, P and N criteria,
and N has the worst results. In contrast, when the sum of the received punishments
is greater than the rewards, N is the best and P is the worst.

When the difference of the rewards and the punishments is small, the N measure
has the worst results. P and N have approximately the same impact, and Abs is the
best method.

REFERENCES

1. M. Nili Ahmadabadi and E. Nakano, A ‘constrain and move’ approach to distributed object
manipulation, in: IEEE Trans. Robotics and Automat. 17 (2), 157–172 (2001).

2. P. Stone and M. M. Veloso, Multiagent systems: a survey from a machine learning perspective,
Auton. Robot. 8 (3), 345–383 (2000).

3. M. Tan, Multi-agent reinforcement learning: independent vs. cooperative agents, in: Machine
Learning, Proc. 10th Int. Conf., Amherst, MA, pp. 330–337 (1993).

4. A. Samuel, Some studies in machine learning using the game of checkers, Computer and
Thought (1963).

5. M. Dorigo and L. M. Gambardella, Ant colony system: a cooperative learning approach to the
traveling salesman problem, IEEE Trans. Evolutionary Comput. 1, 53–66 (1997).

6. Y. Kuniyoshi, M. Inaba and H. Inoue, Learning by watching: extracting reusable task knowledge
from visual observationof human performance, IEEE Trans. Robotics Automat. 10 (6), 799–822
(1994).

7. P. Bakker and Y. Kuniyoshi, Robot see, robot do: an overview of robot imitation, in: Proc. AISB
Workshop on Learning in Robots and Animals, pp. 3–11 (1996).

8. G. Hayes and J. Demiris, A robot controller using learning by imitation, in: Proc. 2nd Int. Symp.
on Intelligent Robotic Systems, A. Borkowski and J. L. Crowley (Eds), pp. 198– 204, LIFTA-
IMAG, Grenoble, France (1994).

9. T. Yamaguchi, Y. Tanaka and M. Yachida, Speed up reinforcement learning between two agents
with adaptive mimetism, in: Proc. IEEE /RSJ Int. Conf. on Intelligent Robots and Systems,
Grenoble, France, pp. 594–600 (1997).

10. A. Garland and R. Alterman, Multiagent learning through collective memory, in: Proc.
AAAISS ’96, Stanford, Univ., CA, pp. 33–38 (1996).

11. Y. Liu and X. Yao, A cooperativeensemble learning system, in: Proc. 1998 IEEE Int. Joint Conf.
on Neural Networks (IJCNN ’98), Anchorage, pp. 2202–2207 (1998).

12. F. J. Provost and D. N. Hennessy, Scaling up: distributed machine learning with cooperation, in:
Proc. AAAI ’96, Menlo Park, CA, pp. 74–79 (1996).

13. R. Maclin and J. W. Shavlic, Creating advice-taking reinforcement learners, Machine Learning
22, 251–282 (1996).

14. H. Friedrich, M. Kaiser, O. Rogalla and R. Dillmann, Learning and communication in multi-
agent systems, Distributed Arti� cial Intelligence Meets Machine Learning, Lecture Notes in AI
1221 (1996).

15. C. J. C. H. Watkins, Learning from delayed rewards, PhD Thesis, King’s College (1989).
16. C. J. C. H. Watkins and P. Dayan, Q-learning (technical note), Machine Learning: Special Issue

on Reinforcement Learning 8, May (1992).



832 M. Nili Ahmadabadi et al.

17. N. Meuleau, “Simulating co-evolution with mimetism, in: Proc. First Eur. Conf. on Arti� cial
Life (ECAL-91), pp. 179– 184. MIT Press, Cambridge (1991).

18. E. Alpaydin, Techniques for combining multiple learners, in: Proc. of Engineering of Intelligent
Systems ’98 Conf., E. Alpaydin (Ed.), ICSC Press, Teneriffe, Spain, Vol. 2, pp. 6–12 (1998).

19. C. Claus and C. Boutilier, The dynamics of reinforcement learning in cooperative multiagent
systems, in: Proc. AAAI ’97 Workshop on Multiagent Learning, Providence, pp. 13–18 (1997).

ABOUT THE AUTHORS

Majid Nili Ahmadabadi was born in 1967 and graduated from Sharif University
of Technology, Iran in 1990. He received his MSc and PhD degrees in Information
Sciences from the Graduate School of Information Science, Tohoku University,
Japan in 1994 and 1997 respectively. In 1997, he joined the Advanced Robotics
Laboratory at Tohoku University. Later he moved to the Department of Electrical
and Computer Engineering, Faculty of Engineering, University of Tehran where
he is the Head of the Robotics and AI Laboratory. He is also a Senior Researcher
at the Institute for Studies on Theoretical Physics and Mathematics. He initialized

the Iranian National Robot Contests in 1999 and is the President of the Executive Committee of these
games. His main research interests are distributed robotics and arti� cial intelligence, mobile robots,
and cooperative learning in multi-agent systems.

Masoud Asadpour was born in Iran in 1975 and received his BSc in Computer
Software Engineering from Sharif University of Technology, Iran in 1977. He
received his MSc in AI and Robotics from the University of Tehran, Iran in
1999. He is a Researcher at the Institute for studies on Theoretical Physics and
Mathematics. His research interests are cooperative learning, cooperative robotics
and multi-agent systems.

Eiji Nakano was born in 1942, graduated from the University of Tokyo in
1965 and � nished his graduate course in 1970. In the same year, he joined
the Mechanical Engineering Laboratory of the Ministry of International Trade
and Industry, and started research into robotics. In 1987, he moved to Tohoku
University as a Professor in the Faculty of Engineering. In 1993, he moved to the
Graduate School of Information Sciences of the same university where he is the
Head of the Advanced Robotics Laboratory. He founded the Robotics Society of
Japan and acted as its Director from 1983 until 1987. He was a Director of the

Society of Instrument and Control Engineers in 1988– 89. He initialized the IntelligentRobot Contest
in 1989 and is the President of the Executive Committee of these games. He has been the Director
of the Society of Biomechanism (1995–97), the Chairman of the Committee of the Development of
Forestry Robot in the Forestry Ministry of Japan (1990– ), the Chairman of the Board of Directors
of the Central Committee of International Robot Games Festival (1999– ), and the President of the
Research and Development Consortiumof IntelligentPatient Care System(1999– ). His main research
interests are of� ce messenger robots, the applicationof intelligent robot technologies for the disabled,
mobile robots for rough terrains, omni-directionalmobile robots, multiple cooperative robot systems,
self-adjustable manipulators, and practical visual sensing systems.


