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Abstract— Decision trees, being human readable and hierarchi-
cally structured, provide a suitable mean to derive state-space ab-
straction and simplify the inclusion of the available knowledge for
a Reinforcement Learning (RL) agent. In this paper, we address
two approaches to combine and purify the available knowledge
in the abstraction trees, stored among different RL agents in a
multi-agent system, or among the decision trees learned by the
same agent using different methods. Simulation results in non-
deterministic football learning task provide strong evidences for
enhancement in convergence rate and policy performance.

I. INTRODUCTION

The existing learning methods suffer from the curse of
dimensionality, requiring a large number of learning trials as
state-space grows. RL [1], despite its strength in handling
dynamic and non-deterministic environments, is an example of
such learning methods. On the other hand, agents in a multi-
agent system —although dealing with more dynamic and as a
result tougher learning task— confront with two rich sources
of knowledge which, if appropriately exploited, could greatly
expand the horizon of the learning process: the acquired
knowledge from subtasks, and the learned knowledge from
colleagues. If agents encounter a multitude of subtasks over
their entire learning time, there is not only an opportunity
to transfer knowledge between them, but also a chance to
generalize subtasks and construct a hierarchy among them.

It is believed that, the curse of dimensionality can be
lessen, to a great extent, by implementation of state abstraction
methods and hierarchical architectures. Moreover, incremental
improvement of agent’s performance becomes much simpler.
Most of the proposed approaches require a pre-designed sub-
task hierarchy ( HAM [2], MaxQ [3] ). In addition to requiring
intensive design effort for explicit formulation of the hierarchy
and abstraction of the states, the designer should, to some ex-
tent, know how to solve the problem before s/he designs the hi-
erarchy and subtasks. To simplify this process, automated state
abstraction approaches use decision-trees and incrementally
construct the abstraction hierarchy from scratch [4] [5] [6].

Every learning agent in a multi-agent system constructs it’s
own abstraction hierarchy, however due to confronting with
different situations or heterogeneity in the abstraction method
that each agent utilizes, those hierarchies might be quite differ-
ent in essence. Moreover, wider spatial and temporal coverage
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of a group [7] brings a potential benefit out of sharing,
adopting, adapting, and applying the stored knowledge in a
way that, helps individuals to build more accurate abstractions.

Many researches have been inspired by cooperative learning
schemes in human and animal society. Advice taking [8],
imitation [9], ensemble learning [10], and strategy sharing [11]
are among many recent researches. However, none of them ad-
dress utilization of both hierarchical and cooperative learning
methods. In this paper, we present two methods to combine
the output or the structure of the abstraction trees. The trees
are learned online by different RL agents in the society, or
by the same agent but with different abstraction methods. We
also introduce the methods to balance and prune the merged
decision trees, in order to purify and condense the shared
knowledge, and prepare it for further developments.

Our paper is structured as follows: The next section
overviews the recent works on Cooperative RL, Hierarchical
RL, and combining decision trees. In the third section, we
introduce the necessary formalism and notations. The fourth
section describes the new algorithms. The fifth section de-
scribes the simulation task and results. Conclusions and future
works are discussed finally.

II. LITERATURE SURVEY
A. Cooperative Reinforcement Learning

Cooperative Learning attempts to benefit from the knowl-
edge, learned by different agents, through explicit and implicit
exchange of the learned rules, gathered information, etc.
Cooperative RL aggregates different approaches from sensor
sharing to strategy sharing. In its very basic form, agents
serve as a scout by sharing sensory data in order to augment
their eyesight [12]. In Episode Sharing [12], agents share
(state, action, reward, next state) triples letting their colleague
explore in a virtual world. Simple Strategy Sharing [12] blends
Q-table of agents into one unique table through averaging the
corresponding cells. However it homogenizes the Q-tables that
is unsuitable when the agents’ levels of expertise are different.

Weighted Strategy Sharing (WSS) [11], [13], [14] tries to
resolve the problem by introducing some expertness measures
and assigning different weights to the Q-tables accordingly.
The proposed expertness is evaluated as a function of the
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history of the received rewards and punishments, action-
values (e.g. entropy functions [15]), or state transitions [16].
Extensions of WSS [15]-[17] try to discover the areas of
expertise by measuring their expertness in state-level. Being
too much elaborated, these methods becomes impractical when
state space enlarges.

In this paper decision trees help us categorize similar
states to one group by abstraction techniques. This provides
the chance to enlighten the expertness assessment in state-
level and decrease the amount of communication. Moreover,
since decision trees are more human readable than Q-tables,
combination of them would result in interpretable rule sets.

B. Hierarchical Reinforcement Learning

Techniques for non-uniform discretization of state space are
already known e.g. Parti-game [18], G algorithm [19], and U-
Tree [4]. U-Trees use decision tree to incrementally derive
the abstraction hierarchy. Continuous U-Tree [5] extends U-
Tree to work with continuous features. We show in [6] that
the existing U-Tree based methods ignore explorative nature
of RL. This imposes a bias on the distribution of the samples
saved for introducing new splits in U-Trees. As a consequence,
finding a proper split point becomes more and more difficult
and the introduced splits are far from optimality. Moreover,
since U-Tree-based techniques have been excerpted in essence
from decision tree learning, the splitting criteria that they
utilize are very general. By reformulation of state abstraction
with different heuristics, some specialized criteria are derived
in [6] and their efficiency is compared to widely used ones,
like Kolmogorov-Smirnov and Information Gain Ratio tests.

C. Combining Decision Trees

Hall et al [20] describe an approach in which, decision trees
are learned from disjoint subsets of a large data set. Then,
in a combination process the learned trees are converted to
rule sets, similar rules are combined into a more general one,
and contradicting ones are resolved. Although suitable for off-
line classification, it is not applicable to continuous online
learning, since the final rule set is not (in general) convertible
back to a decision tree. This is necessary in our case for
further improvement and learning. Moreover, generalization
and conflict resolution techniques are context-dependent and
must be adapted to our case.

Another direction of combining multiple trees, known as
ensemble methods, is to construct a linear combination of
outputs of some model fitting methods, instead of using a
single fit. Bagging [21] involves producing different trees
from different sample sets of the problem domain in parallel
and then aggregating the results on a set of test instances.
Boosting [22] is another technique that involves generating a
sequence of decision trees from the same data-set, whereby
attention is paid to the instances that have caused error in
the previous iterations. Ultimate output of the ensemble is
specified by majority voting or weighted averaging.

We will apply both merge and ensemble techniques to state
abstraction task. However, in our merge algorithm, generaliza-

tion and conflict resolution will be solved by applying coop-
erative learning techniques to leaf combination procedure.

III. FORMALISM

We model the world as a MDP, which is a 6-tuple
(S,A,T,v,D,R) , where S is a set of states (here can be
infinite), A = {a1,...,a4|} is a set of actions, T' = { P, }
is a transition model that maps S x A x S into probabilities
in [0,1], v € [0,1) is a discount factor, D is the initial-state
distribution from which the start state is drawn (shown by
so ~ D), and R is a reward function that maps S x A x S
into real-valued rewards. A policy m maps from S to A, a value
function, V', on states or an action-value function(also called
Q-function), (), on state-action pairs. The aim is to find an
optimal policy 7* (or equivalently, V* or Q*) that maximizes
the expected discounted rewards of the agent. Each state s
is a sensory-input vector (x1,...,x,), where x; is a feature
(called also a state-variable, or an attribute).

An abstract state S is a subset of state space S, such that all
states within it have “close” values. Value of abstract state S
is defined as the expected discounted reward return if an agent
starts from a state in .S and follows the policy 7 afterwards:

VT(S) =Y {P6IS) Y [m(s,0) > P (RS, +4VT (D (D)
s€eS acA s’

where 7 (s, a) is the selection probability of action a in state s

under policy 7, PZ, is the probability that environment goes

to state s’ after doing action a in state s, and R, is the

expected immediate reward after doing action a in state s and

going to state s’. Action-value Q7 (S, a) is similarly defined:

Q7(S,a) =D [P(sIS) Y P/ (RI, +VT ()] @
A. U-Tree s€3 s

The U-Tree [4] [5] abstracts the state space incrementally.
Each leaf L; of the U-Tree corresponds to an abstract state
S;. Leaves store the action-values Q(S;, a;) for all available
actions a;. The tree is initialized with a single leaf, assuming
the whole world as one abstract state. New abstract states are
added if necessary. Sub-trees of the tree represent subtasks of
the whole task. Each sub-tree can have other sub-sub-trees that
correspond to its sub-sub-tasks. The hierarchy breaks down to
the leaves, that specify the primitive sub-tasks.

The procedure for construction of the abstraction tree loops
through a two phase process: sampling and processing. During
the sampling phase the algorithm behaves as a standard RL,
with the added step of using the tree to translate sensory
input to an abstract state. A history of the transition steps, i.e.
T; = (84, a4,74, s;) composed of the current state, the selected
action, the received immediate reward, and the next state is
recorded. The sample is assigned to a unique leaf based on
the value of the current state. Each leaf have a list per action
—with fixed capacity— for recording the sampled data-points.

After some learning episodes the processing phase starts. In
this phase a value is assigned to each sample:

V(Ty) = ri 9V (8it1) » V(Sig1) = maxQ(Siy1,0)  (3)
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where 5;,1 is the abstract state that s;.; belongs to. If a
significant difference among the distribution of sample-values
within a leaf is found, the leaf is broken up to two leaves. To
find the best split point, the algorithm loops over the features.
The samples within a leaf are sorted according to a feature,
and a trial split is virtually added between consecutive pairs
of the feature values. This split divides the abstract state into
two sub-sets. A splitting criterion compares the two sub-sets,
and returns a number indicating the difference between their
distributions. If the largest difference among all features is
bigger than a confidence threshold, then the split is introduced.
This procedure is repeated for all leaves.

B. Splitting Criteria

Instead of applying very general splitting criteria, our work
incorporates three criteria that have been derived for Hierarchi-
cal RL [6]: SANDS (State Abstraction in Non-Deterministic
Systems), SMGR (Softmax Gain Ratio), and VAR (Variance
Reduction). These criteria offer different levels of heterogene-
ity in splits, since SANDS and SMGR is shown to have some
sort of similarities [6].

1) SANDS: SANDS tries to maximize the expected reward
return after introducing a split, by finding a point that well
differentiates both value and selection probability of actions,
before and after introducing the split. Given a U-Tree that
defines a policy, T, it is enhanced to a policy, 7, by splitting the
partition S (one of the leaves) to partitions, S; and Sy, so that
the expected reward return of the new tree is maximized. We
show the best split should maximize the following term [6]:

2

SANDS(S) = max ) (7] — 7 pf 4)
A

where /1% approximates Q7 (S;, a) by averaged value of sam-
ples of action a that belong to S; and p¢ is the fraction of
samples of action a that belong to S;. #¢ and 7% are selection
probabilities of action a for s € S; and s € S, respectively.
They are approximated using /i and Boltzmann distribution.
2) SMGR: SMGR tries to find the splits that results in more

certainty on the selection probability of actions:

—#%log 7% + 37, p#d log 7
2 ~ ~
— > i1 A§ log pf

where 7%, 7, and p¢ are defined as in SANDS. We prove that
SMGR scales SANDS and combines it with a penalty term.

3) VAR: The VAR criterion is developed on the basis
of Mean Square Error (MSE) reduction. We can prove that
selecting the split that maximizes the following goal function,
results in minimizing MSE on the action-value functions of
the abstract state S over the whole action set A:

SMGR(S) = max
acA

®)

VAR(S) = max pf p§ (A5 — i5)” (©6)

where pf and fif are defined like SANDS.

Learning Agent

Fig. 1. Ensemble of abstraction trees jointly selects the next action

IV. COMBINING ABSTRACTION TREES

Cooperative learning among abstraction trees could be re-
alized by combining either their output or their structure.
The former is called Ensemble Learning. For the latter, we
introduce a new algorithm to merge, balance and prune the
abstraction trees. It is called CLASS, which stands for Com-
bining Layered Abstractions of State Space.

A. Ensemble Learning

We use the idea of Bagging [21] and Boosting [22], and
let the learning agent construct multiple abstraction trees in
parallel from the same learning episodes (Fig. 1). It is hoped
that, the ensemble guide the abstraction trees to get special-
ized in different areas of state-space by introducing splits in
different axis. In action-selection phase, the agent combines
the probability distribution of actions, proposed by each tree
by simple averaging. The action is, then, selected according to
this combined distribution. Finally, the reinforcement signal is
feeded back to all trees. Combining the output via averaging
is reasonable, since all trees receive the same reinforcement
signals and therefore their expertness measures are equal.

B. CLASS

The CLASS algorithm includes applying the sequence of
merge, balance, and pruning procedures to the abstraction
trees. The goal is to put the knowledge, acquired from different
sources, together and purify it. However, the balance and the
pruning algorithms are not constrained to cooperative learning.
They could be applied to any abstraction tree in general.

The CLASS algorithm starts by merging the two abstraction
trees. Then, the resulted tree is balanced and pruned. Another
sequence could be to apply the balance and the pruning
procedures twice, once to the abstraction trees before merge,
and once to the resulted tree after merge. Our experiences
show that, this way the resulted tree after merge is more
lightweight. As a consequence, the balance procedure, which
is the bottleneck of the algorithm, is accomplished faster.

1) Merge: Given the abstraction trees, 77 and T5, learned
on the same state-space, a new decision tree 75 = T + 15 is
formed from pairwise intersection of the leaves of 77 and T5.
The merge algorithm is non-commutative i.e. in general 77 +
Ty # To+T7. However, the final partitions are same. Merging
can be illustrated by simply overlaying the two partitions on
top of each other, as shown in left column of Fig. 2 for a
simple 2D state-space. T} and 75 are different abstractions of
the same state-space, and 73 shows the overlayed partitions.
The following pseudo-code describes the merge algorithm:
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Inserted
sub-tree

Fig. 2. An example for merging abstraction trees. top and middle: input
abstraction trees, bottom: merge result

Node MergeTree (Node rl, Node r2) {
if (rl.Boundary overlaps with r2.Boundary) {
if (r2 is Leaf) MergeLeaf (rl, (Leaf)r2);
else {
rl = MergeIntNode (rl, (IntNode)r2);
rl = MergeTree(rl, ((IntNode)r2) .Left);
rl = MergeTree (rl, ((IntNode)r2) .Right);
}}
return rl;
} Node MergeIntNode (Node nl, IntNode n2) {
if (nl.Boundary overlaps with n2.Boundary ) {
if (nl is Leaf) {
if (nl.Boundary is splittable by n2.Split) {
Create a new internal node
with the same split as n2;
Place nl & its duplicate as children
of the new internal node;
return the new internal node;
}
}else{
nl.Left = MergelIntNode (nl.Left,n2);
nl.Right = MergeIntNode (nl.Right,n2);
+}
return nl;
void Mergeleaf (Node nl, Leaf 12) {
if (nl.Boundary overlaps with 12.Boundary) {
if (nl is Leaf)
Combine nl.QFunctions with 12.QFunctions;
else(
MergeLeaf (nl.Left,12);
MergeLeaf (nl1.Right,12);

138

It is assumed in the algorithm that a node is either a leaf or
an internal node. Every node has a boundary which specifies
its corresponding hypercube in the state-space e.g. boundaries
of the hypercube marked as 3 in Fig. 2 (top) is [zg —
x1,y2 — y3]. Hypercubes that correspond to leaves are basic
hypercubes whereas the ones that correspond to internal nodes
are complex. Internal nodes denote splits points. A univariate
split, X = a, is a hyperplane that breaks a hypercube from
point a along X axis to two smaller hypercubes (From now
on, we refer to univariate splits as “split” simply). Internal
nodes have two children specified by left (X < a) and right
(X > a). A hypercube is splittable by the split, X = a, if the
split point, a, is between (and not on) the start and the end
points of the hypercube’s boundary on the split axis, X.

x0 x1

Fig. 3. An example to show efficiency of balance and pruning in state ab-
straction. left:actual partitions, middle:inefficient partitioning, right:balanced
tree in terms of similarity between Q-functions of leaves.

The merge algorithm starts by traversing 75 in pre-order
(First the root, then the left sub-tree, finally the right sub-
tree) and inserting the visited nodes one by one into 77, if
required (MergeTree function, see also Fig. 2-right column).
If the boundary of a leaf of T} is splittable by a split in 75,
that split is initiated in 7} by replacing the leaf with a sub-
tree, consisting the split as root, and the leaf and its copy as
children (MergeIntNode function, see also the inserted sub-
tree in Fig. 2). Merging the leaves of T5 is done by combining
their Q-functions with the one of the overlapping leaves of T}
(MergeLeaf function). Leaf combination process is carried out
by applying WSS and expertness measures (sec. 1I-A).

2) Balance: Mapping from partitions to abstraction trees
is not always one-to-one. While only one representation is
possible for T5 (Fig. 2-mid), multiple trees can represent 7}
(Fig. 2-top). Structure of the trees, produced by abstraction
methods, depends on the algorithm and sequence of the
incoming samples. The structure is not important for the final
policy (all represent same policies). But, it is crucial for
traversing or pruning the trees.

For decision trees that are constructed from off-line data,
restructuring is not relevant. however, when constructing ab-
straction trees from online data, we must be able to restructure
them, since the already introduced splits might be inefficient.
Fig. 3 (left) shows a simple case where, the whole state-space
is representable by a split at x; and two abstract states. Now
if by chance, the sampled data points are distributed like the
dark circles, the abstraction algorithm might introduce a split
at y;, followed by the splits at #; (Fig. 3-mid). In reality, this
happens very often, since samples are very few comparing to
the size of the state-space.

Utile Distinction Memory [23] partially solves this problem
by virtually generating all potential splits. When the agent is
insured of the efficiency of a virtual split, it is upgraded to
an actual one. This method is not applicable to continuous
features as the number of potential splits grows enormously.
A possible solution would be the combination of balance
and prune mechanisms. The balance algorithm restructures the
tree so that, inefficient splits are shifted down to leaves and
removed by the pruning procedure. The following pseudo-code
describes the balance algorithm:

void Balance (Tree tree) {
NodeList[] list = new NodelList[tree.LeafCount];
for(int 1i=0;i<tree.LeafCount;i++)
list[0] .Add (tree.Leaf[i]);
for(int i=2;i<=tree.LlLeafCount;i++)
for(int 3=1/2;3>0;j--){
NodeList nl=list[j-1], n2=list[i-j-11;
if (nl!=n2)
for (int p=nl.Count-1;p>=0;p—-)
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{YSyﬂ Ysy3 | 5+C
) o )

Fig. 4. Balanced version of 73 in Fig. 2 in terms of depth

for (int g=n2.Count-1;g>=0;g--)
Combine (list,nl([p]l,n2[ql);
else
for (int p=nl.Count-1;p>0;p—-)
for (int g=p-1;9>=0;9--)
Combine (list,nl[p],n2[qgl);
}
Build tree recursively from list[tree.LeafCount-1][0];
} void Combine (NodeList[] list,Node nl,Node n2) {
if (nl and n2 are combinable) {

nl2 = nl combined to n2;
best = list.FindNode (nl2.Boundary)
if (best != null){

if (nl2.BalanceFactor > best.BalanceFactor)
list.Replace (best,nl2);
}else list.Add(nl2);
b

It tries every possible tree to find the best balanced one
for the whole space. However, it does not recursively break
the whole state-space in top-down manner. Instead, in order to
reduce the time order of the algorithm, it combines the smaller
hypercubes and build bigger ones in a bottom-up manner. In
top-down manner, some sub-problems (i.e. balancing subsets
of state-spaces) are solved multiple times, while in bottom-up
manner, they are solved once, saved and reused afterwards.

The algorithm starts from leaves. They are tried in turn and
combined with other combinable leaves to form complex hy-
percubes (Balance function). Two non-overlapping hypercubes
are combinable, if their combination also forms a hypercube,
i.e. they are neighbors and their boundaries are same in all
except one axes, e.g. leaf 4 in Fig. 2 (top-left) has two
neighbors: 3 and 5, however it is combinable only with 3.

A list records the root split for the sub-spaces that have
been balanced up to now e.g. this list stores X = x; as the
root split of [zg — z2,y0 — ya4) in Fig. 2 (mid). If two
hypercubes are combinable, then this list is checked to see
whether their combination proceeds to a more balanced tree
for the combined sub-space or not. If so, the new combination
replaces the existing one (Combine function). Finally, the best
root split for the whole space is turned out. Putting this split
as the root of the balanced tree, we can recursively build the
whole tree by finding the boundaries of the sub-spaces at left
and right side of the root split. The list is recursively looked
up to find the root split of these two sub-spaces and so on.

Different balance factors generate different types of bal-
anced trees. By choosing the inverse of average path-length
from leaves to root as the balance factor, the balanced tree
would have the shortest depth among all possible trees. Fig. 4
shows the balanced version of T3 in Fig. 2 in terms of this
factor. Combining path-length with the fraction of samples that
belong to a specific node, generates abstraction trees that are
optimized for search purpose.

Fig. 5. Simulation task and a screen-shot from the simulator

3) Prune: To restructure the abstraction trees for pruning,
the balance factor could be defined as a similarity measure
on the action-values of the sibling nodes. According to this
measure, nodes with similar action-values are placed in vicin-
ity. If the similarity between the sibling leaves is more than a
threshold, they could be replaced (including their immediate
parent) by a single leaf. In this paper, similarity of two nodes
is defined as a binary function: one, if the greedy actions (The
action with the highest action-value) of the nodes are equal,
and zero otherwise. The balance factor for an internal node is
recursively defined as: the similarity between its children (0
or 1), plus sum of the balance factors of its children.

The greedy action of a leaf is easily specified from its
action-values. Since internal nodes do not hold the action-
values, their equivalent values have to be computed. The
action-values of an internal node, S, is a weighted sum
of the action-values of its children, S; and Ss: Q(S,qa) =
Zle P(5;19)Q(S;,a),Va € A where the weights are estimated
by the fraction of samples that belong to the child, out of the
total samples in S. Fig. 3 (right) shows the balanced version of
the abstraction tree at its left, according to this balance factor.
The split at y; is moved down and the more efficient split, =1,
is placed at root. Since the children of y; splits, both represent
the same action-values, they can be replaced by one leaf.

V. SIMULATION RESULTS

The learning task is a simplified football task in an 8 x 6 grid
(Fig. 5). A learning agent plays against an intelligent opponent
and learns to deliver the ball to the right goal. The opponent
is programmed manually to move toward the ball, pick it and
carry it to the left goal. Meanwhile, with certain probability
(here 40%) it selects a wrong action, to leave a bit chance for
the learner to score. Players can choose among 6 actions: {Leff,
Right, Up, Down, Pick, Put}. If a player selects an action that
results in touching the boundaries or going to a pre-occupied
position by another player, the action is ignored. If owner of
the the ball hits the other player or the boundaries, the ball is
freed. States of the learner consist of  and y coordinates of
the ball and the players, plus the status of the ball from {Free,
Picked}, and two additional states for left and right goal i.e.
85752(= 2 x (7 x 5)3 + 2) states.

Learning experiment consists of 100,000 episodes. The last
10,000 episodes are referred as fest phase. Episodes start by
placing the players and the ball in random (and unoccupied)
positions. Episodes last up to 1000 steps. Steps include one
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TABLE I
RESULTS OF INDIVIDUAL AND ENSEMBLE LEARNING

TABLE I
PERFORMANCE OF CLASS ALGORITHM

movement by each player in turn. An episode is finished if,
either players score or the maximum number of steps is passed.
The learner receives +1 for correct scores, -0.1 for wrong
scores or scores by the opponent, and -0.0001 otherwise. All
methods use SARSA with decaying e-greedy for sampling
phase. Learning rate, «, is 0.1 and discount factor, 7, is 0.95.
Exploration rate, €, is initialized to 0.1 and is decayed by
multiplying with 0.99999 after each episode. Leaf sample size
is 360 (60 samples per action). For each state abstraction
criteria, different confidence thresholds are tried, in order to
find the best range of thresholds in terms of convergence. The
best range is then divided to 10 equal-size sub-ranges and
simulations are executed with these 10 thresholds.

A. Ensemble Learning Results

Table I shows the final results for individual and ensemble
learning experiments, in both homogeneous and heterogeneous
cooperation cases. The individual learning experiments refer to
the experiments that engage only one abstraction tree. In this
category, for every split criterion and confidence threshold, 10
simulation runs (with different random seeds) are executed.
Ensembles engage two abstraction trees in parallel. In this
category, all possible combinations of the splitting criteria
and the confidence thresholds, that has been used in the
individual experiments, are tried in turn. Heterogeneity, here,
refers to the difference between the two splitting criteria used
in the ensemble. For example, SMGR-VAR is considered as a
heterogeneous cooperation between SMGR and VAR. While,
VAR-VAR is considered as a homogeneous cooperation and
refers to the ensembles in which, both trees use VAR criterion.

The first column of Table I shows the average number of
leaves per trees at the end of learning. The rest show the
number of actions, sum of the received rewards, and the score
ratio, averaged per episodes for learning and test phases. These
phases let us compare convergence rate and performance of
the learned policies, respectively. Score ratio is the scores of
the learner divided by the scores of the opponent. If a method
effectively learns both attack and defence strategies, it would
have higher ratios.

Table I shows the ensembles, almost in all cases, have
better results than the individual methods, in terms of both
convergence rate and performance of the learned policy. The

leaf/ action reward score ratio leaf act- | rew- | score
Method tree Irn tst Irn tst | I tst Method merge prune red.% ion ard | ratio
SANDS 1723 | 1364 432 | 679 894 | 32 139 SANDS-SANDS 4551 2244 50.7 | 37.2 | 904 17.6
SMGR 1665 | 123.6 369 | .718 931 | 43 183 SMGR-SMGR 4629 2254 51.3 | 329 | 952 30.3
VAR 1827 | 1792 547 | 663 919 | 33 179 VAR-VAR 4281 2033 525 | 45.7 | 929 22.8
ind. avg. | 1738 | 1464 449 | .687 915 | 3.6 16.7 homog. avg. 4487 2177 51.5 | 38.6 | .928 23.6
SANDS-SANDS | 1660 428 223 | 7798 919 | 5.0 157 SANDS-SMGR 6794 3175 533 | 33.6 | .940 25.4
SMGR-SMGR 1729 572 239 | 801 942 | 55 221 SANDS-VAR 5584 2454 56.1 | 395 | 921 20.1
VAR-VAR 1864 615 235 | 784 912 | 47 140 SMGR-VAR 7507 2964 60.5 | 369 | .941 26.1
homog. avg. | 1751 538 232 | .794 924 | 51 173 hetrog. avg. 6628 2864 56.6 | 36.7 | .934 23.9
SANDS-SMGR 1666 375 214 | 862 956 | 7.5 273
SANDS-VAR 1740 | 455 212 | 787 920 | 47 154 | average number of actions for the ensembles are less than
SMGR-VAR 1780 | 40.1 214 | 837 943 | 64 228 | (he jndividual cases, both in learning and test phases. Also,
hetrog. avg. | 1729 41.0 213 | .829 940 | 6.2 219

the received rewards and the score ratios are all higher in
both phases. The average number of leaves per trees are
close to the individual cases (Note that the total number of
leaves in the ensembles are bigger than individual cases),
though, in heterogeneous category, they are slightly smaller.
The ensembles that involve VAR criterion are exceptions.
Although their convergence is faster than the individual cases,
performance of the final policy degrades in some ensembles.
In VAR-VAR and SANDS-VAR, the score ratios are smaller
than VAR. Perhaps in some situations, multiple paths exist for
catching the ball. If one policy tries e.g. to approach the ball
first in x direction and then in gy, while the other one tries the
opposite, combining these conflicting policies could result in
selecting an inefficient action and losing time. Meanwhile, the
opponent catches the ball and scores it.

Heterogeneous ensembles have, in average, better results
than homogeneous ones both in convergence rate and policy
performance. SANDS-SMGR and SMGR-VAR are the two
top methods among all. This can be due to the variety in the
split axis. If the trees break a sub-space along different axis,
the combined output is like a linear multi-variate split.

B. CLASS Results

The second category of tests concern the CLASS algorithm.
All possible two-combinations of the trees, saved from in-
dividual learning experiments, are selected and the CLASS
algorithm is executed on them. Since, agents in our simulation
task have equal learning episodes, simple averaging is used
for leaf combination (however, the expertness measures had
similar results). Then, the resulted tree is tested in the same
simulation task for 30,000 episodes. Table II displays the
average number of leaves of the trees after merge, followed
by the average number of leaves after balance and pruning the
merged trees, and the percentage of reduction in the size of
the trees. The next columns summarize the number of actions,
sum of the received rewards, and score ratio averaged per
episodes. Table II shows the combined trees by CLASS always
find faster policies, that gain more scores and rewards than
their individual versions (Table I), e.g. SANDS-VAR policies
accomplish the task in 39.5 actions, that is quite faster than
SANDS (43.2) and VAR (54.7).

Like ensembles, performance of the heterogeneous combi-
nations of the splitting criteria is very close to the best of their
homogeneous combinations, e.g. SMGR is the best method
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among the individual cases. Combining it with itself (SMGR-
SMGR) results in the best method among all. However, its
heterogeneous combination with SANDS or VAR, also have
close performance to SMGR-SMGR. So, in cases where no
idea about the performance of the individual methods exists,
the best choice would be to mix them with a cooperative
method, like Ensemble Learning or CLASS. The mixture
would automatically benefit from their best. Thus, heteroge-
neous cooperative learning could simplify method selection or
parameter tuning for learning algorithms.

Like ensembles, heterogeneous combinations have better
performance than homogeneous ones, except in the number
of leaves. In homogeneous cases, the input trees have more
similar splits. As a result, the merged trees are smaller. Our
analyzes emphasize that, the size of the merged trees are
linearly increasing with the product of the size of the input
trees. Pruning the trees reduce their size to less than half. The
percentage of size reduction is higher in heterogeneous case,
in which the trees are also bigger.

CLASS algorithm creates smaller trees than ensembles with
almost better performance in terms of the received rewards and
the score ratio. However, policies found by the ensembles are
around 15 actions faster. This means, although their policies
are fast in attack, they are inefficient in defence and let the
opponent score more. CLASS results, however, have better
defence and episodes are, thus, prolonged.

VI. CONCLUSION

In this paper two approaches to create cooperation between
different sources of knowledge via ensembles of abstraction
trees and via applying merge, balance, and pruning tech-
niques were presented. The abstraction trees could come from
different abstraction methods or different agents. Simulation
results in non-deterministic football task provided strong evi-
dences for faster convergence rate and more efficient policies
compared to individual learning. Heterogeneous split criteria
resulted in more efficient and faster converging ensembles and
merged trees than homogeneous ones. Mixing heterogeneous
methods with cooperative learning resulted in a system that
its performance is close to the best method.

Ensemble learning and tree merging create bigger trees than
individual learning. Merging the trees, that are created by ho-
mogeneous criteria, result in smaller trees than heterogeneous
ones. Since homogeneous criteria generate similar splits, they
can be factored out. Generating bigger trees could be fine as
far as memory consumption does not matter e.g. in real-robot
learning where faster convergence is more important.

We would like to apply these algorithms to a realistic soccer
task. We look, also, for better abstraction methods that create
still smaller trees. This is a big drawback of the current
methods when they are applied to complex tasks.
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