
An Easy to Use Bluetooth Scatternet Protocol for fast Data Exchange in
Wireless Sensor Networks and Autonomous Robots

Rico Möckel, Alexander Spröwitz, Jérôme Maye, Auke Jan Ijspeert

Abstract— We present a Bluetooth scatternet protocol (SNP)
that provides the user with a serial link to all connected
members in a transparent wireless Bluetooth network. By
using only local decision making we can reduce the overhead
of our scatternet protocol dramatically. We show how our
SNP software layer simplifies a variety of tasks like the
synchronization of central pattern generator controllers for
actuators, collecting sensory data and building modular robot
structures. The whole Bluetooth software stack including our
new scatternet layer is implemented on a single Bluetooth and
memory chip. To verify and characterize the SNP we provide
data from experiments using real hardware instead of software
simulation. This gives a realistic overview of the scatternet
performance showing higher order effects that are difficult to
be simulated correctly and guaranties the correct function of
the SNP in real world applications.

I. INTRODUCTION

During the past a couple of wireless standards were
developed each including its own strengths and weaknesses
like WLAN, Infrared and Zigbee. However we believe that
Bluetooth [1] is the best choice when developing wire-
less sensor networks that need a good tradeoff between
power consumption and data rate as well as for autonomous
robots that need a flexible and powerful communication
infrastructure while being powered from a limited source
like a battery. We believe this for the following reasons:
(1) Implementations of the latest Bluetooth standard 2.0
reported power consumptions of more than 10 times less
than for WLAN. That is why Bluetooth is very interesting
for embedded systems that are battery powered and there
for have limited energy resources. (2) Latest Bluetooth
implementations report communications speeds of up to
3Mbit/s. Already the former Bluetooth standard 1.2 supports
data rates of up to 600kbit/s and could provide wireless
serial links with a baud rate of about 115200. That is why
Bluetooth is much more applicable to robotics than e.g.
Zigbee which currently only supports data rates of 20-250
kbit/s. (3) Bluetooth is using a very robust communication
protocol called Frequency Hopping. This allows Bluetooth
networks to operate reliably in noisy environments and in
parallel to other wireless communication networks. (4) In
contrast with infrared, Bluetooth devices do not have to
be in the visual range of each other to support a wireless
link. (5) For any wireless standard there remains to be a

Rico Möckel is with the Institute of Neuroinformatics at the Uni/ETH
Zürich. moeckel@ini.phys.ethz.ch

Alexander Spröwitz, Jérôme Maye and Auke Jan Ijspeert are with
the School of Computer and Communication Science at the Ecole
Polytechnique Fédérale de Lausanne (alexander.sproewitz,
jerome.maye, auke.ijspeert)@epfl.ch.

tradeoff between communication range, data rate and power
consumption. The Bluetooth standard tries to support users
by providing three different classes of Bluetooth devices
that provide communication ranges from 10m to 100m
and consume a 1mw to 100mE of power, respectively. For
wireless applications that need bigger communication ranges
Bluetooth can be suitable if intermediate devices forward
messages. (6) Bluetooth is a standard that makes sure that
every certified Bluetooth device can communicate with every
other certified Bluetooth. It gets continuously improved by a
group of companies organizing themselves in the so-called
Bluetooth interest group. (7) Because Bluetooth devices are
manufactured in high numbers and due to the fact that
Bluetooth is operating in the license-free frequency band the
price for Bluetooth devices is very low. (8) Many Bluetooth
software stacks are available; some of them even for free.
That is why the time for the development of new Bluetooth
software and protocols is dramatically reduced. However,

Fig. 1. (a) Piconet with master device number 8 and 7 slaves (number
1-7). (b) To form a Bluetooth network with more than 8 actively connected
devices, a scatternet has to be created. There for device number 3 becomes
a master/slave device. It acts like a slave for the original piconet with master
number 8 and like a master device for the devices number 9-12.

although free Bluetooth software stacks are available the
development of software based on Bluetooth can remain to
be a pain. This has two main reasons: (1) For interfacing the
Bluetooth stack the user still needs quite a lot of knowledge
about the wireless standard. (2) Because Bluetooth was
originally designed as a cable replacement with a central
host device Bluetooth networks have some major restrictions:
As shown in Figure 1(a) up to 8 Bluetooth devices can be
connected to form a so-called piconet. In this piconet one
Bluetooth device acts as the central controlling device called
master while the other 7 devices act as slaves. The master
is controlling the whole communication in the piconet and
only the master device can directly send data to the other
devices. The network structure becomes even more difficult
if more than 8 devices shall be connected. In this case as
shown in Figure 1(b) a slave device has to act as a master in
another piconet and a so-called scatternet, a composition of



piconets, is formed. In this scatternet only directly connected
devices know about each other and can directly send data to
each other.

There are many approaches to the question on how to
build up a scatternet in the literature. Please see [2], [3], [4],
[5], [6] and [8] for examples. However many of them like
in [8] are more of theoretical value for a user that wants to
build up a real wireless sensor network or a robot hardware
infrastructure. Since that protocols are mostly simulated in
software a user has to face a couple of challenges: (1) First
the designer has to find the right protocol for his purpose.
This is already a challenge since some protocols propose
changes to the Bluetooth standard and therefore do not work
with the available hardware, produce too complex networks
or use some random techniques that do not guarantee the
connectivity of all Bluetooth devices like in [4]. Other
protocols like in [3] use the possibility to park slaves in
a network. These parked slaves cannot actively take part in
the communication process but have to wait until another
device is parked and they are recovered by the master of their
piconet into active mode. The main problem of scatternet
formation is that a general approach normally does not solve
the specific problem of the system designer but creates a huge
overhead [7] just for creating a wireless infrastructure to send
some data. That is why our protocol focuses on providing
the necessary functionality like transparent data submission
and remote control of the Bluetooth network by reducing
the overhead as much as possible. (2) The second challenge
that a user has to face is to find the necessary hardware
for providing the Bluetooth network. Given a considerable
number of Bluetooth devices on the market this is not a
simple problem. Especially when taking into account that
many embedded devices do not support the whole Bluetooth
standard like scatternet functionality but need some external
microcontroller or embedded PC. Furthermore there are scat-
ternet protocols like in [5] that inquire additional hardware
like a GPS receiver. For our protocol no additional hardware
than a Bluetooth chip is necessary. (3) Finally a system
designer has to solve the problem of the implementation
of the scatternet protocol. This includes the choice for an
embedded Bluetooth stack that is supporting all necessary
functionality. We chose the ZV4002 embedded Bluetooth
device from Zeevo that is running the whole Bluetooth stack
plus our protocol on-chip. When using the same Bluetooth
chip and our firmware and connecting it via a serial interface
to your favorite microcontroller your system is ready for
Bluetooth including scatternet functionality.

The SNP is automatically learning the shortest path to
the receiver and creates only a minimal overhead to the
Bluetooth stack. To make sure that our scatternet protocol
works together with avaible hardware and protocol stacks
we tested the SNP in real applications and provide data not
from simulation but from experiments with real hardware.
This has the clear advantage that we can show second order
effects like from parallel communication of different piconets
or communication overhead from devices that act in two
piconets at the same time that is difficult to be simulated

correctly and often ignored. So we provide a simple and
robust wireless interface that can be copied by any designer
of a robot or a wireless sensor network system in terms of
hardware and firmware and that is characterized and reliably
working in real world applications.

Section II explains the mechanism of the scatternet pro-
tocol while section III describes possible applications and
shows how we successfully applied our scatternet protocol
to modular robots and sensor networks. Section IV concludes
and gives some outlook over future work.

II. SCATTERNET PROTOCOL

We developed a new scatternet protocol (SNP) layer that
makes the Bluetooth communication transparent. A user who
wants to send data to any other device in a Bluetooth network
simply sends a packet with the address of the receiver
into the network. The SNP is responsible for finding the
shortest path through the network and to guarantee that the
packet is received by the target device. When the network
is changed the SNP is adapting and learning new paths.
Only local information is used to find the shortest path.
The SNP extracts the routing information by looking at
the data packets that are passing the Bluetooth device it
is running on. The SNP also supports broadcasts and gives
full remote control for all connected Bluetooth devices. This
allows a user to control all Bluetooth devices in a scatternet
from a single host device. To support these functionalities
we added three new mechanisms to the original Bluetooth
stack: (1) SNP addresses are new user defined addresses. (2)
SNP packets are responsible to carry the payload through
the scatternet. (3) SNP friend tables contain local routing
information that is used to forward the SNP packets towards
the receiver.

Fig. 2. SNP packets. The header contains 5 Bytes specifying the command,
the SNP addresses of the receiver and sender, the number of hops a packet
was traveling as well as 1 Byte giving the amount of payload that the packet
contains.

A. SNP Addresses

A Bluetooth-MAC address contains 6 Bytes. This is nec-
essary to give a unique address to every Bluetooth device on
the planet. However, only up to 256 Bluetooth devices can
be actively connected in a scatternet at a time. To reduce the
overhead of addressing a Bluetooth device when using the
SNP layer we decided to support the user by the opportunity
to give every Bluetooth device a new SNP address using
1 Byte. SNP addresses between 0 and 254 can be given
to the Bluetooth devices by the user. Address number 255
is reserved for broadcasts. An internal SNP routing table
maps the user-defined SNP addresses to the Bluetooth-MAC
addresses.



B. SNP Packets

When data should be sent from one Bluetooth device
to another through a scatternet special packets have to be
formed. An overview of the packets used for the scatternet
protocol is given in Figure 2. The overall overhead for a SNP
packet header is 5 Bytes containing (1) a SNP command, (2)
the SNP address of the receiving device, (3) the SNP address
of the sending device, (4) a hopping counter and (5) 1 Byte
specifying the amount of payload that belongs to the packet.
Up to 255 Bytes of payload can follow after the header. If
more data should be sent, more than one packet has to be
created.

The SNP command field contains the command that
should be executed by the SNP layer. For a user 3 different
commands are relevant: (1) The SNP command s stands for
packets that contain data. These packets are forwarded by
each Bluetooth device on the path from the sender to the
receiver which transmits the packet via UART to a host
device. (2) The SNP command c is used to tell a Bluetooth
device to connect another one. (3) The SNP command d is
used to tell a Bluetooth device to disconnect another one.
It is important to mention that the SNP layer forwards all
packets to the receiver without looking at the command field.
That is why a remote control of all Bluetooth devices in
the scatternet becomes very simple. By specifying the SNP
address of the receiver device this can be forced to execute
any command in the same way as it would be directly
connected to the host via UART. To also get feedback during
remote control, a remote address can be specified to which
all devices send their error and status messages.

The hopping counter is initialized to 0 once a packet
is created for the first time. It is incremented every time
the packet is received by a new Bluetooth device in the
scatternet. That is why the hopping contains how far a device
is away in the scatternet. This information is essential for
updating the SNP routing tables and for finding the shortest
path in the communication network. A maximum of hops
can be specified. If the hopping counter reaches this value
the packet is deleted and not forwarded any more. This
mechanism can be very useful to avoid infinite loops in more
complicated network graphs that also include cycles.

Fig. 3. The friend table contains the necessary information for the SNP
protocol.

C. SNP Friend Table

To allow automatic packet forwarding as well as to de-
termine the mapping of Bluetooth-MAC addresses and SNP
addresses, we implemented internal routing tables that we
call SNP friend table. An example of a friend table of a

Bluetooth device with the SNP address 8 that is connected
to another Bluetooth device with the SNP address 2 is shown
in Figure 3. Column 1 of the SNP friend table stores all SNP
addresses the Bluetooth device knows about while column
2 determines the corresponding Bluetooth-MAC addresses.
Column 3 in the friend table stores the SNP address of the
device to which a packet has to be forwarded. To reduce
the overhead of the SNP layer and to use as much local
information as possible the Bluetooth devices do not store
the whole structure of the communication network. The only
information that is necessary to be stored about the network
is to which device a packet has to be forwarded to send
the data to the receiver device. This strategy that is based on
local information and decision making is one of the powerful
strengths of our SNP layer. It minimizes the overhead for
communication between devices as well as the information
that has to be stored in each device and supports a fast and
parallel decision making process. No additional exchange
of information between Bluetooth devices is necessary to
find out to which device the packet has to be forwarded to.
Column 4 in the friend table in Figure 3 (a) determines the
minimum number of hops that are necessary to send a packet
to a receiver device. This information is useful when the
shortest path to the receiver should be automatically learned
as we will describe later. We set the forward address and the
number of hops to 255 if a device is not connected. Since
in Figure 3 device number 2 is directly connected the SNP
address of device number 8 is copied into the column 3 that
stores the forward address and a 1 is stored in column 4 since
device number 2 is only one hop away. To make the scatternet

Fig. 4. (a) If a packet should be send to a device to which the path is
unknown, the packet as well as a search packet gets broadcasted. (b) The
answer packet from the receiver is used to update the friend table.

protocol as robust as possible a Bluetooth device broadcasts
the message to all directly connected devices (except to the
device it received the message from) every time it should
send data to another device to which the path is unknown.
Imagine device number 8 belongs to the same network like
device number 2 and 7 as shown in Figure 4(a) but does not
know about device number 7. In this case device 8 sends
all packets that are addressed for device 7 to all directly
connected neighbors to make sure that the device 7 gets the



packet if it belongs to the network. This broadcast makes
the scatternet protocol very robust but can also comprise a
huge overhead in a complicated network. To minimize the
overhead device 8 also broadcasts a search packet with the
receiver address 7. If device number 7 receives the search
packet it directly sends back an answer packet to device
number 8 which device number 8 uses to update its friend
table. As shown in Figure 4(b) it stores device number 5 as
the forward address because it received the answer message
over this device and a 2 for the number of hops that device
number 7 is away. The number of hops is determined from
the hopping counter field in the answer packet.

The hopping counter is useful when the shortest path
to the receiver should be automatically learned like in our
scatternet protocol. To determine the shortest path also in a
communication network that contains cycles every Bluetooth
device checks the header of every packet it receives, even if
this packet has only to be forwarded. If the packet comes
from an unknown device the friend table gets updated. That
is why device number 7 in Figure 4 does not have to send
a search message if it wants to send some data to device
number 8. The original message from device number 8 is
already used to learn the path to this device. For updating
the path to another device, different strategies can be used.
(1) To make the protocol as robust as possible the last known
path can be used. (2) To learn the shortest path the hopping
counter of a packet can be compared with the hopping
counter in the friend table. The friend table gets only updated
if the number of hops in the friend table is bigger than
the number of hops stored in the packet. (3) However, to
find the optimal path more effort has to be made since the
optimal path in a communication network with cycles does
not necessarily need to be the shortest path if there is already
a lot of traffic on that path while other paths are unused. To
reduce the overhead of our scatternet protocol we decided to
always learn the shortest path.

Fig. 5. To reduce the protocol overhead device 4 and 5 exchange a part
of their friend table when they get connected. Device 4 forwards its friend
table into the network Net2. Device 5 forwards its friend table into the
network Net1. In case that Net1 and Net2 get divided because device 4 and
5 get disconnected device 4 and 5 inform the member of Net1 and Net 2
about all disconnected devices of Net2 and Net1 respectively.

D. GotConnected and GotDisconnect Packets

Especially when two big Bluetooth scatternets should be
merged learning the routing tables by sending search and
answer packages can mean a huge overhead. To avoid unnec-
essary messages we decided to introduce GotConnected and
GotDisconnected packages. When merging two Bluetooth
networks or dividing a network into two smaller ones the

directly connected or disconnected devices send a part of
their friend table to the newly connected device or inform the
remaining members of their network about the disconnected
devices, respectively.

If e.g. like shown in Figure 5 two Bluetooth networks
Net1 and Net2 should be merged by directly connecting
device 4 of Net1 and device 5 of Net2, device 4 sends a
GotConnected package into Net2. This package contains the
SNP addresses and hop values of the members of Net1 in
the friend table of device 4. Device 5 reads this package and
updates its friend table accordingly now knowing that e.g.
a message with the receiver address 1 has to be forwarded
towards device 4. Afterwards device 5 broadcasts the connect
message to the members of Net2. Since Net2 contains a cycle
the GotConnected message would be forwarded until the
maximum allowed number of hops is reached. To avoid this
each Bluetooth device looks into the GotConnected package
and stops forwarding it if it does not contain new infor-
mation. E.g. device 6 in Net2 will receive the GotConnected
message both from device 7 and 8. If it receives the message
from device 7 first, device 6 will update its friend table
accordingly. When device 6 receives the message a second
time from device 8 the GotConnected packet does not contain
any new information and device 6 will not have to update
its friend table again and delete that message.

In the case that a huge Bluetooth network like in Figure 5
should be separated into two sub-networks Net1 and Net2 by
disconnecting the devices 4 and 5, these devices will send a
GotDisconnected packet towards the remaining members of
their network. E.g. in a network like shown in Figure 5 device
5 will send a packet towards device 7 and 8 to inform them
that not only device 4 but also all the other members of Net1
got disconnected. Device 7 and 8 will update their friend
tables accordingly resetting all entries of these devices by
setting the entries for the forward address and the number of
hops to 255. To avoid unnecessary packet forwarding in term
of cycles in the network the GotDisconnected packet only
gets forwarded by a device that has to update its friend table
accordingly like in the case of the GotConnected packet.

III. DISCUSSION AND RESULTS

We implemented and tested our scatternet protocol on the
embedded Bluetooth device ZV4002 which was developed
and distributed by Zeevo Inc. The ZV4002 contains both the
analog Bluetooth components and an ARM microcontroller.
Zeevo provides an embedded Bluetooth stack that is directly
running on the ARM. The stack is certified for the Bluetooth
standard 1.2 and supports data rates of up to 600kbit/s. We
implemented our scatternet protocol layer on top of the serial
port profile. With this strategy we are able to provide a
full Bluetooth scatternet protocol encapsulated in a single
chip. This simplifies the design of a robot or sensor that
should contain a wireless Bluetooth interface dramatically.
A designer does not need to create a completely new system
but can choose his favorite sensor or microcontroller and
connect it via a serial interface to the Bluetooth chip.



The SNP is well suited for sensor networks where the
information of several sensors has to be collected and the
maximum distance between devices is less than 100m. In
combination with our SNP Bluetooth allows the formation
of transparent networks of up to 255 devices. Since we do
not use special Bluetooth modes like parking all sensors of
the network can continuously stay active and e.g. send their
data to a central monitoring device. For sensor networks that
need direct communication over distances bigger than 100m
other communication systems have to be used. However our
SNP can help here to support transparent communication.

Fig. 6. Example of a tripod robot (right), the corresponding CPG configu-
ration (red lines) and the SNP setup (blue, dashed lines). We implemented
a CPG controller for each actuator and exchanged the CPG state variables
via the Bluetooth scatternet.

We successfully applied our SNP to the field of modu-
lar robots. We implemented a central pattern generator in
each module and coupled the controller via the Bluetooth
network. Central pattern generators (CPGs) are biological
neural networks capable of producing coordinated patterns
of rhythmic activity while being initiated and modulated by
simple input signals. Therefore they are ideally suited for
controlling actuators.

We implemented the CPG model as a system of N coupled
amplitude-controlled phase oscillators, one per actuator. An
oscillator i is implemented as follows:

φ̇i = ωi +∑
j
(wi j r j sin(φ j−φi−ϕi j) (1)

r̈i = ar(
ar

4
(Ri− ri)− ṙi) (2)

ẍi = ax(
ax

4
(Xi− xi)− ẋi) (3)

θi = xi + ri cos(φi) (4)

where θi is the oscillating set-point (in radians) extracted
from the oscillator, and φi, ri and xi are state variables
that encode respectively the phase, the amplitude, and the
offset of the oscillations (in radians). The parameters ωi,
Ri and Xi are control parameters for the desired frequency,
amplitude and offset of the oscillations. The parameters wi j
and φi j are respectively coupling weights and phase biases
which determine how oscillator j influences oscillator i. An
oscillator i receives the value of state variables φ j and r j
of neighbor modules j via the Bluetooth communication
protocol. The parameters ar and ax are constant positive gains
(ar = ax = 20 [rad/s]). The equations were designed such
that the output of the oscillator θi in Equation (4) exhibits

limit cycle behavior i.e. produces a stable periodic output.
From any initial conditions, the state variables ri and xi will
asymptotically and monotonically converge to Ri and Xi. This
allows one to smoothly modulate the amplitude and offset
of oscillations.

An example robot configuration of a modular robot that
we successfully tested is given in Figure 6. We constructed
a tripod from robot modules each containing a servo motor.
Each actuator is controlled through a CPG that is imple-
mented on an ARM microcontroller on each robot module.
We believe that this experiment provides a good way of
showing the power of our SNP since to allow coordination
between the CPG controllers they have to be coupled. During
the experiments we coupled 6 CPGs over our Bluetooth
scatternet protocol by sending packets containing the internal
state variables φ j and r j of a CPG to the coupled neighbors
every 250ms. Furthermore, we used the Bluetooth network
to send commands to the devices and monitor internal states.

Fig. 7. Test setup for measuring the delays in the Bluetooth scatternet. M
is a master, S a slave and M/S is a device that acts as a slave in one piconet
and as a master in another piconet, respectively.

To evaluate the performance of the SNP further we ar-
ranged up to 10 Bluetooth modules in a chain as shown
in Figure 7. We connected one microcontroller both to the
beginning (C1) and end (C2) of the chain and measure
the time that a packet takes from C1 to C2 and back to
C1. Figure 8 shows the mean delay and standard deviation
measured for packets containing 7, 25 and 48 Bytes in
a chain of 2 to 10 Bluetooth devices. We repeated the
experiments 20 times. The graphs in Figure 8 show no visible
difference for the different packet sizes. We believe that the
reason can be found in the Bluetooth stack. Since the lower
level protocol layers add 72 bits of access code and a 54 bit
header to the data before transmission the different packet
sizes do not have a huge impact. Thus for short packets
the transmission time mostly depends on the number of
hops between sender and receiver but not on the amount
of data. Figure 8 shows further that the transmission delays
are broadly spread and the standard deviation increases with
the number of hops. This can be explained by the non-
deterministic time and frequency sharing in the scatternet.
Within a piconet the master is responsible for selecting a
specific sequence for the frequency hopping and for assign-
ing time slots to its slaves to make sure that all slaves are
synchronized. Depending on when a packet is received by a
slave it might be able to transmit it directly to its master or
it might have to wait until it got a time slot. Further delays
occur because of the frequency sharing between different
piconets. Since the frequency sequences of different piconets
are not synchronized, overlaps in the frequency band and
packet collisions occur. This explains why e.g. sending data
within a scatternet with four hops does not just need double



the amount of time of the data transmission in a piconet with
two hops but introduces additional delays. We measured e.g.
a mean delay of 27ms fors a 5-Byte packet using two hops
but 88ms in a four-hop scatternet. The serial communication
and computation on the microcontroller takes approximately
2.2ms. So the transmission in the four-hop scatternet should
just take 51.8ms. We believe that the additional delay of
36.2ms can be explained by the non-synchronized frequency
hopping of the neighboring piconets and the fact that the
devices that act both as master and slaves have to listen in
two piconets.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

Amount of hops

R
es

po
ns

e 
tim

e 
be

tw
ee

n 
en

d 
no

de
s 

in
 [m

s]

 

 
7 Byte
25 Byte
43 Byte

Fig. 8. Delays for transmission of data packets in the wireless Bluetooth
scatternet for different numbers of hops in the network.

IV. CONCLUSION AND FUTURE WORK

We presented a protocol layer that supports transparent
wireless communication in Bluetooth scatternets and showed
how our protocol can be used in real robot and sensor
network applications. By using our protocol the original
Bluetooth standard is getting more flexible and allows a
user virtually to use Bluetooth like a communication network
where all communication devices are directly connected with
each other. A user does not have to take care about the
physical structure of the Bluetooth network but simply sends
a message into the network. Defining the address of the
receiver the user can be sure that the message gets received.
By using only local decision making we can reduce the
overhead of our scatternet protocol dramatically.

The only phase remaining where a user has to think about
the physical structure of the Bluetooth network is when
the user is building up or changing the network structure.
Although we are already supporting the user during this
phase by allowing the user to build up complex network
structures via remote control this can remain a challenge.
That is why we are currently investigating in a new Bluetooth
Optimization Protocol (BOP) that will be responsible for
building up efficient scatternets based on the activity in the
network.

V. ACKNOWLEDGMENT

We gratefully acknowledge the technical support of André
Guignard, Andres Upegui, Elmar Dittrich, Adamo Mad-
dalena, André Badertscher and Peter Brühlmeier in the
design and construction of the robot modules.

REFERENCES

[1] J. Haartsen, ”BLUETOOTH - the universal radio interface for ad hoc
wireless connectivity,” Ericsson Review, vol.3, pp. 110–117, 1998.

[2] G. Záruba, S. Basagni and I. Chlamtac, ”BlueTrees—Scatternet For-
mation to enable Bluetooth-based personal area networks”, Proceed-
ings of the IEEE International Conference on Communications, vol.
1, pp. 273–277, June 2001.

[3] C. Petrioli, S. Basagni and I. Chlamtac, ”Configuring BlueStars: Mul-
tihop scatternet formation for Bluetooth networks”, IEEE Transactions
on Computers, no. 52, vol. 6, pp. 779–790, 2003.

[4] Z. Wang, R. J. Thomas and Z. Haas, ”BlueNet—A new scatternet
formation scheme”, Proceedings of the 35th Hawaii International
Conference on System Science, pp. 9, January 2002.

[5] X. Li and I. Stojmenovic, ”Partial Delaunay triangulation and degree
limited localized Bluetooth scatternet formation”, Proceedings of AD-
HOC NetwOrks and Wireless, September 2002.

[6] C. Petrioli and S. Basagni, ”Degree-constrained multihop scatternet
formation for Bluetooth networks”, Proceedings of the IEEE Globe-
com, vol. 1, pp. 222–226, November 2002.

[7] S. Basagni, R. Bruno, G. Mambrini, C. Petroli, ”Comparative Perfor-
mance Evaluation of Scatternet Formation Protocols for Networks of
Bluetooth Devices”, IEEE Transactions on Wireless Networks, vol. 10,
pp. 197–213, 2004.

[8] R. Kapoor, M. Y. Sanadidi, M. Gerla. ”An Analysis of Bluetooth
Scatternet Topologies”, IEEE International Conference on Commu-
nications, vol. 1, pp. 266–270, May 2003.

[9] R. Möckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A.
J. Ijspeert. Exploring adaptive locomotion with YaMoR, a novel
autonomous modular robot with Bluetooth interface. Industrial Robot,
vol. 33(4), pp. 285–290, 2006.

[10] A. Spröwitz, R. Möckel, J. Maye, A. J. Ijspeert, ”Learning to move in
modular robots using central pattern generators and online optimiza-
tion”, submitted to: International Journal of Robotics Research (under
review).


