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Abstract

Nowadays, the global increase of energy demand and the necessity to satisfy high safety

standards, have led engineers and scientists to focus their efforts in order to understand and

describe fundamental phenomena that are crucial for a correct design of the new generation

nuclear power plants.

In this framework, the present thesis aims at providing a first insight of the mechanisms

of deposition of aerosol particles inside a closed geometry where relatively strong currents

are present due to turbulent natural convective flows.

Direct Numerical Simulations were conducted coupling high-order pseudo-spectral code

with a Lagrangian particle tracker.

Laminar flows were computed in two and three dimensions in order to benchmark the code

with published reference data.

A parametric study was performed for three different aerosol micro-size particle diameters

and two super-critical Rayleigh numbers in a square cavity. An extended analysis of the

turbulent flows is provided in terms of first and second order statistics, time-averaged mo-

mentum and energy budgets, and moreover, important terms appearing in the transport

equations of turbulent kinetic energy and temperature variance are also briefly discussed.

Furthermore, the evolution in time of particle concentration for the three different di-

ameters is considered. The text provides information about the deposition velocity, the

deposition patterns on the cavity surfaces, the influence of lift and thermophoretic forces

and the fractal dimension.

The same size dependent parametric study for the three different sets of micro-size par-

ticles was carried out in a fully three-dimensional closed cubic cavity for one super-critical

Rayleigh number. A detailed investigation of the turbulence was performed by means of

statistical quantities, signal processing and conditional averaging, in order to get a general

view of the complexity of the flow and its characteristics.

Further on, the sedimentation process is studied in the same way as for the two dimensional

case.

Finally a simple theoretical deposition model is provided in order to interpret the numeri-

cal results for the aerosol phase.

Keywords: DNS, natural convection, particle tracking, turbulence, aerosol deposition,

two-phase flows.
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Sommario

Oggigiorno, il crescente aumento della richiesta di energia su scala globale e la necessità di

soddisfare elevati standard di sicurezza, hanno indotto ingegneri e scienziati a concentrare

i loro sforzi nel tentativo di comprendere e descrivere fenomeni che sono fondamentali e

cruciali per una corretta progettazione di impianti nucleari di nuova generazione.

In questo contesto, la presente tesi vuole fornire una prima interpretazione dei meccanismi

di deposizione di particelle d’aerosol confinate in un volume chiuso nel quale sono presenti

forti correnti turbolente, quest’ultime causate da moti di convezione naturale.

Simulazioni numeriche dirette (DNS) sono state effettuate utilizando un codice pseudo-

spettrale accoppiato con un tracciatore Lagrangiano.

Il codice è stato testato comparando i risultati ottenuti per flussi laminari con dati pub-

blicati in letteratura specializata.

È stato condotto uno studio parametrico, in cavità quadrata, per tre diversi diametri di

particelle e due valori super-critici del numero di Rayleigh. I moti turbolenti sono stati

analizati in modo esteso dal punto di vista statistico in termini di momenti di primo e sec-

ondo ordine, bilanci delle medie temporali delle equazioni di conservazione della quantità di

moto e dell’energia, e inoltre i termini più significativi presenti nell’equazioni di trasporto

dell’energia cinetica turbolenta e della varianza della temperatura sono brevemente dis-

cussi. Oltre a ciò, l’evoluzione temporale della concentrazione dei tre set di particelle è

stata presa in esame. Il testo fornisce informazioni riguardanti importanti quantità come la

velocitá di deposizione e la dimensione frattale dei cluster di particelle; inoltre l’influenza

della forza di lift e della termoforesi sono discussi come anche il pattern mostrato dalle

particelle depositate sulle superfici della cavità.

Il medesimo studio parametrico basato su tre diversi diametri di particella è stato

condotto in una cavità cubica per un unico numero di Rayleigh super critico. Lo studio

dettagliato e approfondito della turbolenza e‘ stato effettuato usando strumenti statistici,

trattamento del segnale e conditional averaging in modo da caratterizzare la complessità

del moto fluido in esame.

Il processo di deposizione del’aerosol è stato studiato in maniera analoga al caso bidimen-

sionale.

Infine, un semplice modello teorico di deposizione è stato proposto per l’interpretazione

dei risultati numerici ottenuti.

Keywords: DNS, convezione naturale, tracciamento di particelle, turbolenza, deposizione

di aerosol, flussi bifase.
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Introduction

In present years the upcoming problem concerning energy production and environmental

pollution have convinced engineers, physicists and researchers to focus their efforts on dif-

ferent aspects of nuclear energy production processes and nuclear power plant safety. In

particular, the increased safety requirements of the new generation nuclear power plants

have led to investigate the mechanisms of deposition of radioactive aerosol inside closed

containment like the heat exchanger of the steam generator or inside larger containment

buildings. In fact, in the case of a severe nuclear accident the high temperature and

pressure in the primary side can induce the rupture of one or more pipes of the heat

exchanger in the steam generator. The pressure drop between the water in the primary

and the secondary sides causes the cooling water to be released in form of micro-size

droplets inside the secondary loop that under normal conditions drives the steam at the

turbines for the production of electric energy. The released aerosol water drops contain a

small amount of metallic contaminants coming from the fuel rods of the radioactive core

[GSDK04]. Moreover, in the steam generator, due to the presence of cold surfaces, where

water steam condenses, and hot surfaces (the heat exchanger tube bundle for example), it

has been shown that there is formation of recirculating natural turbulent convective cur-

rents that affect particle deposition. The resulting multiphysics two-phase flow presents

an intrinsic complexity due to the thermal coupling between the carrier phase energy and

the momentum, through the buoyancy force, that leads to different dynamics concerning

the turbulence generation and dissipation with respect to the isothermal flows. Moreover,

since the geometry is closed, there is always coexistence and interaction of laminar, tran-

sitional and turbulent structures that together with the bounding walls produce a highly

inhomogeneous and anisotropic turbulent structures. On the other hand, the particle de-

position and segregation phenomena besides gravitational deposition may be affected by

other aspects, like turbophoresis (i.e. settling due to turbulence) and/or thermophoresis

(i.e. settling induced by local temperature gradients in the carrier phase), that are difficult

to be addressed by experimental measurements and deserve to be studied in detail.

For these reasons the tools of choice for studying thoroughly these complex dynamics are

Direct Numerical Simulation (DNS) using pseudo-spectral collocation methods coupled
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with a Lagrangian Particle Tracking (LPT) code. The first numerical technique allows to

avoid any type of turbulent modeling because it involves the direct solution of the tran-

sient, non-linear Navier-Stokes equations, providing very accurate results for all the flow

scales avoiding numerical diffusion problems. The second methodology allows to include

the most important forces acting on the particle surface and to describe each single par-

ticle trajectory in order to distinguish the phenomenology that links flow patterns with

the different mechanisms of deposition, both in a qualitative and quantitative ways. The

main outcome of this investigation is to provide a more rigorous understanding of particle

settling in a turbulent flow cavity. The study underlines the most important factors that

affect the particle sedimentation as well as the influence of particle inertia and turbulence.

Furthermore it addresses the importance of each single force in the transport of particles

towards and away from the walls. The present research will also provide an insight of the

turbulence production mechanisms and will help in understanding the relation between

coherent structures and turbulent heat transfer at the walls, and it will characterize the

turbulence anisotropy inside the cavity. Last but not least it provides a numerical database

useful in further possible works for modeling turbulence closure relations of LES or RANS

models [JH96].

The actual problem involves very complex geometries (see Fig.1 for instance), turbulent

natural convective flows that may reach high Rayleigh numbers (i.e. RaH ≈ 1012 ÷ 1015)

and the range of particle diameters spans from 1 to 5 micro-meters. It is a matter of fact

that the real problem cannot be studied without making drastic simplifications due to the

undersized capabilities of high performance computing centers. Anyway, in order to be able

to simulate some of the most important mechanisms of aerosol depletion in natural con-

vective flows, in the present work the geometry has been modeled as a cube (≈ 1[m] high),

the maximum Rayleigh number presented in the three dimensional case is 109 (RaH = 1010

in 2-D simulations) and the aerosol particles were characterized by a minimum diameter

of dp = 15[µm] and a maximum one of 35[µm]. Finally, the presented results might be

of interest for other disciplines, besides nuclear engineering, such as electronic engineering

concerning electronic device cooling process, or civil engineering concerning the transport

of micro-size dust (the so called PM10) inside buildings with natural convective flows gen-

erated by wall heaters or simply heat transfer due to solar irradiation or even in solar

heating technologies.
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Fig. 1: Steam generator cut view of the actual geometry and proportions.

Literature review

Continuous phase

In thermal convective flows it is common to distinguish between forced and natural con-

vective flows depending on the relative strength of the inertial forces against the buoyancy

ones: if the inertia is larger then the buoyancy, the temperature can be approximated as a

passive scalar which is convected by the unaffected fluid flow (which is treated as isother-

mal) and governed by the temperature transport equation. On the contrary, if the buoyant

force is much larger then the inertial term, the temperature is strongly coupled with the

momentum equation through the buoyancy term leading to a completely different flow with

respect to the isothermal one. Furthermore, in heat transfer flows, depending on the driv-

ing temperature difference, the physical properties can be considered constant or variable

with the temperature: in the first case the Navier-Stokes equations are simplified using the

Boussinesq approximation; otherwise, for a non-Boussinesq flow, a set of equations that de-

scribe the variations of the physical properties, like the Sutherland’s laws, and the equation

of state have to be included. If inertia and buoyancy are of the same order of magnitude

3



INTRODUCTION

then it is possible to speak about mixed convection. Typical examples of forced convective

flows are those occurring inside liquid-liquid heat exchangers, or liquid cooling systems of

electronic devices or also of internal combustion engines and atmospheric wind among the

others. Typically forced flows do assume external devices or energy source that drive the

motion like fans, pumps, etc. Examples of natural convective flows are those occurring in

room heating, melting processes, reacting flows, cooling towers where the distribution of

temperature causes the fluid motion. In the present work the attention will be focused on

natural convective flows inside a cavity heated from aside. Unlike the cavities heated from

below (also referred as Rayleigh-Bénard cavities) that have received great attentions in

the last century, there is a lack of knowledge in the literature regarding the Differentially

Heated Cavity (DHC) in the turbulent regime. Basically this is due to the fact that in the

latter case the flow turns unstable for Rayleigh numbers that are four orders of magnitude

larger than those that characterize the first bifurcation of Rayleigh-Bénard problems in

three dimensional geometry requiring more powerful computational resources and longer

computing time.

The 2-D benchmark configuration stated in [dVD83, dVDJ83] received many contributions

in the years. Since the pioneering work conducted by de Vahl Davis [dVD83, dVDJ83], who

provided the reference solutions for Prandtl number Pr = 0.7 (air) and values of Rayleigh

number ranging from 103 up to 106 in the laminar case, using a second order central

difference method with extrapolation to the limit and a streamfunction-vorticity formu-

lation for the momentum equation, Le Quéré [Le 91] presented very accurate solutions

for 106 ≤ Ra ≤ 108 in the laminar regime employing pseudo-spectral Chebyshev colloca-

tion method in order to solve the Navier-Stokes and energy transport equations written

in primitive variables under the Boussinesq approximation. Noteworthy findings are the

detachment region at the horizontal adiabatic walls and the large zone of linear thermal

stratification of the core. For increasingly higher Rayleigh numbers the flow eventually

turns to unsteadiness. The onset of the first transition to periodicity and the physical de-

scription of the instability mechanism are still an open question. Paolucci and Chenoweth

[PC89] supposed an internal wave breaking mechanism due to hydraulic jump instability of

the impinging vertical jets. Their simulations were based on a low-Mach-number approxi-

mation of the governing equations and weakly non-linear analysis. On the other hand Ravi

et al. [RHH94] showed that the theory of hydraulic jump does not explain the presence of

the detachment region and moreover, in clear contrast, the low rate of viscous dissipation

at the adiabatic horizontal walls. In [JH96], Kelvin-Helmholtz instability is addressed as

the first mechanism which yields to periodicity. Moreover, Le Quéré and Benhia [LQB98]

conducted DNS calculations around the transitional regime up to Ra = 1010. Their main

findings are the identification of the critical Rayleigh number Rac for the 2-D square cav-

ity, Ra2D
c = 1.82 × 108 and the fact that the linear stratified core region becomes smaller
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because of the enhanced turbulent mixing. Furthermore they provided first and second

order time averaged statistics for velocity, temperature and turbulent kinetic energy and

temperature variance and the respective dissipation fields. Large eddy simulation (LES) is

presented in [PD01] for Ra = 1.58× 109. The filtered governing equations are discretized

employing a second order central differencing finite-volume technique and second order

Crank-Nicolson time integration. Two different subgrid scale models (SGSs) are compared

with experimental results provided in [TK00a, TK00b] where the adiabatic horizontal walls

are replaced with high conductive walls, on the other hand in the numerical simulations

the experimental temperature profile has been imposed. Both the SGSs capture the global

feature of the mean flow with improvements if the dynamic model is used, whereas the

second order statistics show discrepancies with the experimental measurements. Several

other works have investigated different aspect ratios (Ar = 4 in [RSH06, PQ01] and Ar = 8

in [XLQ02, Gel04]) and non-Boussinesq fluids [LMP92, SP95, SP97, MTN97]. It has been

found that for aspect ratios larger than five the critical Rayleigh number (Rac) decreases.

The same behavior for Rac appears to be valid for non-Boussinesq solutions in comparison

with the Boussinesq ones, furthermore the typical center-symmetry property of the flow

does not hold any longer. The treatment of heat transport in fluids with variable physical

properties can be tackled basically with two approaches: the so-called Low-Mach number

approximation and the fully compressible formulation of the governing equations. The

first approach, used in [SP97, SP95, LMP92], discards the presence of acoustic phenomena

that characterize the solution of compressible flows, with the net advantage of yielding

less limitations on the mesh resolution and the integration time-step. This technique in

fact makes use of a derived pressure in the momentum equations which is equal to the

deviation from the average thermodynamic pressure and the hydrostatic component in the

isothermal cavity (see [LMP92]). In addition the equation of state and the Sutherland’s

laws has to be included in the model.

From the experimental point of view only a few works have been published so far [TK00a,

TK00b, MLHJ03], mainly for the three following reasons: first difficulties arising in the

matching of perfectly adiabatic horizontal walls, secondly, the three-dimensional nature of

the flow in the experimental facilities which also leads to earlier transition to unsteadiness,

and last the effect of second order effects like variable physical properties and radiation, the

latter reduces the core temperature stratification and enhances the flow at the horizontal

walls diminishing the Rac [WXL06].

The problem of natural convection in a 3-D differentially heated cavity has been stud-

ied by only a few research groups. A first study of the three dimensional laminar flow

structures has been published in [MdVD77]: the vector-potential formulation of the gov-

erning equations were discretized by means of a second-order finite difference method on

a 153 grid. Subsequent studies concerning the laminar cubical benchmark case, ranging
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from Rayleigh number 103 up to 107 and Prandtl number 0.71, include [FHKF91, TLB00,

PSC03, WS04, BH06]. In Fusegi et al. [FHKF91] and Tric et al. [TLB00] the governing

equations have been written in primitive variables, whereas a thermal lattice Boltzmann

formulation has been used in [PSC03], vorticity-vector potential in [WS04] and finally

vorticity-velocity in [BH06]. Moreover, it is worth to say that only Peng et al. have not

expressed the energy equation into its temperature form but they have considered the

internal energy as an unknown variable. The discretization techniques employed include

finite differences [FHKF91, WS04, BH06] and pseudo-spectral method [TLB00] among the

others. The largest grids contain 1113 points [TLB00] and 1203 [WS04]. The main re-

sult to be pinpointed is that the flow at the mid-plane presents a strong similarity with

the two dimensional calculations and the 3-D effects are more influent at low Rayleigh

number. Due to prohibitive computational costs for DNS only few studies have dealt

with three-dimensional computations introducing spanwise homogeneous direction, reduc-

ing the overall cost of the computation but at the same time neglecting the influence of

the spanwise walls. For instance, an extensive study of 2-D and 3-D turbulent quanti-

ties obtained by DNS, using spectro-consistent spatial discretization and adaptive central

difference time splitting scheme, in a cavity with aspect ratio 4 and spanwise periodic

boundary conditions, for 6.4 × 108 ≤ Ra ≤ 1010 has been presented in [TSOPS07]. They

concluded that the 2-D and 3-D mean fields are similar but the turbulent intensity and

eddy ejection process are rather stronger in the two-dimensional case leading to turbulent

activity also in the core region and higher levels of turbulent kinetic energy and dissipation

rate. To the author’s knowledge only [JH96, TLB00, ?, dXD03] reported accurate results

of direct numerical simulations in a fully enclosed cubical domain at slightly sub-critical

and critical Rayleigh numbers (Rac ≈ 3.3 × 107), in order to address the identification of

the mechanism which yields the first transition to unsteadiness (due to Kelvin-Helmholtz

instability of the turning and detaching impinging jets at the horizontal walls away from

the lateral walls), and supercritical Rayleigh number for characterizing the time averaged

flows and turbulence intensity (Ra = 1.5× 109). The time-averaged results reported in [?]

are in good agreement with the experimental profiles of vertical velocity component and

temperature along the horizontal line at half-height of the midplane, but on the other hand

discrepancies occur for the temperature vertical profile, as well as temperature variance

profiles probably due to the fact that in the experimental set up the lateral walls were not

perfectly adiabatic and also radiative effects between the walls might influence the vertical

thermal stratification leading also to a different temperature variance distribution.

From the experimental viewpoint there exist very few published works [MP96, MP97,

LHB98, LHB99, MLHJ03, MJHL08, ?], with the Rayleigh number going from 104 up to

1.69× 109. Most of these works do not present adiabatic horizontal walls because of prac-

tical difficulties encountered in the realization of four contiguous perfectly insulated walls.
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The group of Leong [LHB98, LHB99, MLHJ03, MJHL08] has then stated that the exper-

imental setup should have perfect conducting horizontal walls, imposing in such a way a

linear temperature profile between the two vertical active walls. Hence, any comparison

between experimental data and numerical results obtained with adiabatic conditions are

just qualitatively useful. Anyway, attempts to resolve numerically the same DHC using

experimental temperature profiles did not yield much improvements particularly for turbu-

lent flows [?], but good agreement was registered for laminar case [MJHL08]. Furthermore,

another cause of discrepancies may be the change in the physical properties (in the ex-

perimental setup when increasing the Rayleigh number) and Leong et al. [LHB98] have

suggested that simulations involving variable fluid properties would be more accurate. At

the author’s knowledge there are no publications of three dimensional computations of

turbulent flows with physical variable properties in a differential heated cavity. Last but

not least, as already mentioned above the heat transfer due to radiation could also affect

the global energy balance.

Dispersed phase

In the last decades multiphase flows have attracted the attention of the scientific community

because of their importance, their intrinsic complexity and the variety of the transporta-

tion mechanisms that characterizes every sort of fluid motion from the atmospheric wind

transport of smog and pollutants, transport of sediment produced by rivers, to industrial

applications like boilers, electrostatic precipitators, direct injection of fuel in combustion

engines, or even medical and biological flows as aerosol in the pharynx or vascular blood

flows for instance.

There exist two important approaches for describing the dynamics of multiphase flows,

namely Eulerian and Lagrangian. The first one implies the solution of a set of partial

differential equations that describe the conservation of mass, momentum and energy of the

different phases thought as a continuum, i.e. a unique mixture. One advantage is that

the numerical methods used for solving a single-phase fluid flow are directly applicable.

On the other hand the source terms that govern the exchange of mass, momentum and

energy between the different phases need to be modeled from experiments or theoreti-

cal investigations and could lead to complicated models in the case of turbulent reacting

flows. This approach is very useful when the fraction of volume or mass between the

phases is very large. The Lagrangian approach, on the other hand, implies the integration

of a system of ordinary differential equations that describes the equation of motion and

energy conservation for each particle. This technique is appropriate for dispersed flows

with low volume fraction and implies the use of experimental of theoretical formulas for

the forces that act on the particle surface if the pointwise approximation is used. Re-
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cently, simulations that involve the use of moving mesh that fully resolve the dynamics

of the fluid flow around the particle surface without any modeling have been performed

but due to the high computational costs the number of particles is not sufficient to be

statistically meaningful for capturing the mechanisms of deposition, segregation and other

issues. Depending on the volume fraction, and the tendency of particles to form clusters,

the most simple Lagrangian formulation that consider only the effect of the fluid forces on

the particle surfaces (one-way coupling) may not be sufficient and the two-way coupling

or the four-way coupling are needed. The first one, in fact, considers also the influence

of the particle motion on the fluid, whereas the last one introduces also particle-particle

collisions. Over the last decade, research on particle-laden turbulent flows has shown that

particle concentration may be highly non-uniform. This behavior is commonly indicated

by the term preferred segregation and more widely it indicates the mechanisms of particles

to organize themselves into clusters located in particular regions under the action of the

carrier turbulent flow [SE91, FKE94, RE01, PMRS05]. It has been found [EF94] that

preferential segregation in homogeneous turbulence occurs in regions of low vorticity and

high strain. Moreover, there is experimental evidence and numerical studies have con-

firmed [PMB92, UO96, MA02] that particle-laden turbulent flows bounded by solid walls

are characterized by net fluxes of particles directed toward the walls with peaks of ex-

tremely high concentration regions close to the surfaces. All these effects may have critical

consequences in industrial applications and it is the result of the interaction of particle

inertia with turbulent coherent structures. If the transport of heavy particles has been ob-

ject of numerous experimental and numerical studies (for a review [Elg94, GB98, Sol05]),

there is a deep lack of knowledge in segregation and sedimentation processes inside closed

cavities. In [TCLY06, TCL+08] stereo imaging and signal processing techniques are used

to reconstruct and visualize the pathlines of macroscopic neutrally buoyant particles in

three-dimensional lid driven cavity flow at low Reynolds number (Re = 470). Spiral mo-

tions from the mid plane to the sidewalls and back are depicted and particle fluid structure

selectivity is also encountered. In [ABH08] proper orthogonal decomposition (POD) of

the relevant fluid flow modes based on LES computation is coupled with a Lagrangian

particle tracker that uses standard Runge-Kutta method for the integration of the particle

equation of motion (PEM). The main advantage of the proposed method is to decrease

drastically the computational costs in comparison with LES and DNS but no quantitative

information is provided. Oresta et al. [OLVS06] have conducted three-dimensional DNS

in the Rayleigh-Bénard configuration at Ra = 2 × 108 in a slender cylinder coupled with

Lagrangian particle tracking. The set of governing equations for the continuous phase

written in cylindrical coordinates are discretized using a finite difference approach in space

and a third-order Runge-Kutta (RK) time integration technique; the PEM is integrated

as well using third-order RK method. The advection-diffusion model proposed for the dis-
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persed phase describing the time evolution of particle concentration along the vertical axis

for three different particle diameters is in excellent agreement with the DNS data. At the

author knowledge the only published study on numerical and experimental visualization

of neutrally buoyant particles inside a differential heated cavity is [YKHK96] using high

Prandtl number fluid. One of their finding is that particles in both cases remain suspended

in closed recirculating spiraling loops at the hot wall. They state that the effect of the

spanwise velocity is important for the particle trapping. Finally, concerning the nuclear

engineering and safety, experimental campaigns have depicted aerosol particles settling

rate greater than expected under quiescent conditions, settling rate weakly dependent on

particle inertia and finally particles preferred deposition on horizontal surfaces when the

carrier fluid velocity is increased (see [CHGR+03, GSDK04]).

Thesis outline

The present work is structured into four chapters that are the core of the work accomplished

by the author and follow the present introductive pages:

Chapter 1 is devoted to the description of the physical and mathematical models of the

governing equations for natural convective flows and dispersed aerosol particles of a

two-phase flow problem.

Chapter 2 describes the numerical methods employed for the discretization in space and

time of the partial differential equations (PDEs) that govern the motion of a homo-

geneous, Newtonian, incompressible fluid under the Boussinesq assumptions, as well

as space interpolation and time integration needed to solve the ordinary differential

equations (ODEs) of the particle equation of motion.

Chapter 3 presents several topics concerning the two dimensional calculations. First of

all different solutions of the benchmark configurations are compared with published

data. First and second order statistics are shown at very high Rayleigh numbers for

unsteady and chaotic regimes. Furthermore mean momentum and energy budgets

are presented and discussed. Finally the deposition mechanisms of three different

size of particle swarms are investigated in detail.

Chapter 4 addresses the three dimensional problem of the benchmark configuration at

three different Rayleigh numbers. The discussion of first and second order moments is

carried out for a regime that is weakly chaotic. The same analysis performed for the

two dimensional cavity is also reported for the three dimensional case. The mech-

anisms of production and dissipation are described both for the turbulent kinetic

9
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energy and temperature variance. Moreover a first incursion into the coherent tur-

bulent structures and the anisotropy map are included. In the last part the settling

of micro-size particles is studied as for the two dimensional case and a theoretical

model is proposed.

In the last and conclusive chapter a summary of the work performed is provided together

with the most important findings and the possible future developments and the improve-

ments.

10



Chapter 1

Theoretical backgrounds

The present chapter is devoted to the description of the physical and mathematical models

of the governing equations for natural convective flows and dispersed aerosol particles of a

two-phase flow problem.

The first part deals with the equations which govern the motion of continuous, incom-

pressible, viscous Newtonian, homogeneous fluid. The Oberbeck-Boussinesq approximation

is employed in order to simplify the problem and its validity range is discussed in detail.

The identification of dimensional groups which allows a more general approach to the prob-

lem is also discussed and the resulting system of dimensionless equations is given.

The second part concerns the description of the motion of heavy solid aerosol particles

in a Lagrangian fashion. On the base of the relative importance of the forcing terms a

simplified equation of motion is derived which takes into account the influence of local

quantities and temperature gradients. Finally, the corresponding version of dimensionless

equations is also provided.

1.1 Continuous phase

1.1.1 Governing equations

In continuum mechanics the motion of fluids is described by the conservation laws of mass,

momentum and energy. Together with the constitutive laws for the stress tensor and the

conductive heat flux they describe entirely the behavior of any kind of fluid which undergoes

motion. In the present case the fluid is considered Newtonian, i.e. the stress tensor σ is

a linear function of the rate of strain tensor S := 1/2[∇u + (∇u)T ] (the superscript T

indicates the transpose) as expressed by Eq.(1.1)

σ = −pI + τ = −pI + 2µ

(
S− 1

3
tr(S)I

)
(1.1)
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CHAPTER 1. THEORETICAL BACKGROUNDS

where p is the pressure, τ is the viscous stress tensor, the proportionality constant µ is the

dynamic viscosity, u = {ui}di=1 (d = 1, . . . , 3) is the velocity and I is the unit tensor, while

the constitutive law for the specific conductive heat flux hc is described by the Fourier law

hc := −λ∇T (1.2)

where λ is the thermal conductivity and T is the local temperature. The governing equa-

tions written in vector notation result1:

• mass conservation
∂ρ

∂t
+ ∇ · (ρu) = 0 (1.3)

• momentum conservation

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ ∇ · τ + ρf (1.4)

• energy conservation

ρ

(
∂ei
∂t

+ u ·∇ei

)
= ∇ · (λ∇T)− p∇ · u + Φ + Q̇ (1.5)

where the fluid density is indicated by ρ, the specific internal energy by ei, whereas the term

f refers to external body forces per unit of mass, Φ is the power per unit of volume dissipated

by the internal viscous stresses (negligible for air and water under normal situations) and

can be written as follows

Φ = tr(τ∇u) (1.6)

and Q̇ corresponds to the volumetric internal generated/dissipated power due to chemical or

nuclear reactions for instance. Note that in Eq.(1.5) the work done by the non-equilibrium

component of pressure is neglected [Bat67] meaning that the change of pressure of the

moving fluid goes through successive thermodynamic quasi-equilibrium states.

It is useful to considering the fluid as an ideal diatomic gas with equation of state

p

ρ
= RT (1.7)

where R is the specific gas constant, with constant γ = 1.4 ratio of specific heat at

constant pressure cp and constant volume cv. It follows that all the fluid thermodynamic

1The angular momentum is conserved thanks to the property of the symmetric stress tensor σ = σT .
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1.1. CONTINUOUS PHASE

and physical properties depend only on two state variables, for instance (T, p), and they

have to be determined from experimental measurements or from the kinetic theory of gases.

In the following a possible formulation of thermodynamic and physical properties is given:

β = −1

ρ

(
∂ρ

∂T

)
p

=
1

T
(1.8)

µ = µ0
T0 + S0

T + S0

(
T

T0

)3/2

(1.9)

λ =
15

4
Rµ

(
4

15

γ

γ − 1
+

1

3

)
(1.10)

where in Eq.(1.9) accordingly to the Sutherland’s law µ0, T0 and S0 are the reference

dynamic viscosity, the temperature and the Suttherland’s constant which depend on the

gas.

Providing appropriate initial and boundary conditions, the system of coupled equations

Eq.(1.3)-(1.5) is difficult to solve. In order to simplify the complexity of the problem

formulated above, it is useful to introduce the Oberbeck-Boussinesq (OB) approximation

[Obe79, Bou03]. The latter is based on the following assumptions:

1. The density ρ is assumed constant in the mass, momentum and energy equations

except when it causes buoyant forces;

2. All other fluid properties, like µ and λ, are assumed constant;

3. The viscous dissipation is assumed negligible, i.e. Φ ≈ 0.

The first hypothesis allows to rewrite Eq.(1.3) as

∇ · u = 0 (1.11)

which imposes the velocity field to be divergence-free and corresponds to the conservation of

mass written for an incompressible fluid. Another important consequence is that acoustic

phenomena are in this way discarded from the problem and that γ = cp/cv = 1 and

consequently cp = cv = c (see also [Pan84]).

In the present study the forcing term in Eq.(1.4) represents only the buoyancy force and

is simply given by

f = g (1.12)

where g is the gravitational acceleration. The further simplification relies on first-order

Taylor expansion of the density as a function of temperature only, in other words

ρ ≈ ρR +

[(
∂ρ

∂T

)
p

]
TR

(T − TR) = ρR[1− βR(T − TR)] (1.13)
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where with the subscript “R” are indicated the quantity measured at the reference tempera-

ture TR. Finally, using Eq.(1.13) in the right hand side (rhs), applying the second and third

Oberbeck-Boussinesq hypotheses to Eqs.(1.3)-(1.5), neglecting every source/dissipation of

internal heat Q̇, and recalling that the internal energy of a substance can be expressed by

ei = cRT , the simplified set of governing equations reads

∇ · u = 0 (1.14)

∂u

∂t
+ u ·∇u = − 1

ρR
∇p+ νR∆u + [1− βR(T − TR)]g (1.15)

∂T

∂t
+ u ·∇T = κR∆T (1.16)

where νR = µR/ρR is the kinematic viscosity at the reference temperature and κR =

λR/(ρR cR) refers to the thermal diffusivity of the fluid at the reference temperature.

1.1.2 Validity of the Oberbeck-Boussinesq approximation

The simplified problem expressed by Eq.(1.14)-(1.16) is attractive for several applications

characterized by natural or mixed convection but it has been shown to be a good ap-

proximation only under certain restrictions [GG76, Nie04, NS06]. In fact a measure of

the error introduced by the hypothesis of constant density in the continuity equation can

be estimated considering the ratio between the material derivative of the density and the

divergence of the velocity field
Dρ
Dt

−ρ∇ · u (1.17)

that for an incompressible flow should be sufficiently small (D/Dt = ∂/∂t+ (u ·∇) being

the material derivative).

Consider the exact differential of density for a perfect gas is

dρ =

(
∂ρ

∂T

)
p

dT +

(
∂ρ

∂p

)
T

dp = ρ(−βdT + αdp) (1.18)

where α is the isothermal compressibility coefficient. Furthermore the density rate of

change of a particle fluid volume with velocity u is straightforward

dρ

dt
=
∂ρ

∂t
+ u ·∇ρ =

Dρ

Dt
, (1.19)

by substitution of Eq.(1.18) in Eq.(1.19) and using the definition of speed of sound a2 =

γ/(ρ α) [Pan84] it is possible to obtain the following equation for the rate of change of

density
Dρ

Dt
= ρ

(
−βDT

Dt
+

γ

ρ a2

Dp

Dt

)
. (1.20)

14



1.1. CONTINUOUS PHASE

The second term in the r.h.s. can be dropped since in natural convection the acoustic

phenomena are negligible, meaning that the convective velocity is small in comparison

with the speed of sound (the Mach number Ma = |u|/a < 0.3) and the pressure evolves

slowly in comparison with the acoustic pressure waves. Finally, introducing appropriate

scales for length LR, velocity UR and temperature difference ∆T , Eq.(1.17) leads to

Dρ
Dt

−ρ∇ · u =
βDT
Dt

∇ · u ≈
β∆T (Ur/LR)

UR/LR
≈ β∆T. (1.21)

The last result implies that OB approximation is valid only if the product β∆T is suffi-

ciently small. Gray et Giorgini [GG76] derived Eqs.(1.14)-(1.16) with a different approach,

based on the linearization, in terms of T and p, of all the thermo-physical properties ap-

pearing in Eqs.(1.3)-(1.5) and simplifying terms with second order of magnitude (another

different approach based on an asymptotic analysis can be found in [Boi00]). From their

work the validity of the OB approximation is subject to thirteen constraints listed below

ε1 = βR∆T ≤ ε ε2 = αRρRgLR ≤ ε

ε3 = cR∆T ≤ ε ε4 = dRρRgLR ≤ ε

ε5 = rR∆T ≤ ε ε6 = sRρRgLR ≤ ε

ε7 = mR∆T ≤ ε ε8 = nRρRgLR ≤ ε

ε9 = eR∆T ≤ ε ε10 = fRρRgLR ≤ ε

ε11 =
βRgLR
cpR

≤ ε

ε11
TR
∆T
≤ ε ε11

(
PrR
RaH

)1/2

≤ ε(PrRRaH)−1/2

where cR, dR, eR, fR,mR, nR, rR, sR are fluid property coefficients defined in Gray et

al. and the parameters PrR and RaH are the Prandtl and Rayleigh numbers expressed

respectively by

PrR =
νR
κR

(1.22)

RaH =
gβR∆TL3

R

νRκR
. (1.23)

Now, consider the case of air at standard conditions for temperature and pressure (STP)

TR = 293.15 [K] and PR = 101.325 [kPa] (accordingly to the National Institute of Stan-

dards and Technology, see App.(1.A)), then the three most restrictive limitations2 are

ε1 = βR∆T ≤ 0.1 (1.24)

2ε = 0.1 is supposed to give a satisfactory description of the flow employing the OB formulation.
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CHAPTER 1. THEORETICAL BACKGROUNDS

ε2 = ρRαRgLR ≤ 0.1 (1.25)

ε12 =
αRgLR
cpR

(
TR
∆T

)
≤ 0.1 (1.26)

which lead to the validity range reported in Fig.(1.1). In experimental setups [Nie04,
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Fig. 1.1: Region of validity of the OB approximation in air (TR = 293.15 [K], PR =

101.325 [kPa]) App.(1.A).

NS06], on the basis of a comparison to the Boussinesq problem at onset, the condition in

Eq.(1.24) can be relaxed up to βR∆T < 0.2. Here, it is important to stress that the validity

range obtained depends basically on the thermo-physical properties of the real fluid at the

reference conditions which in general are evaluated at the mean temperature TR = TH+TC

2
,

where TH and TC are respectively the temperature at the hot and cold surfaces, whereas

PR can be taken equal to the initial pressure when the fluid is at rest. A recent study

[PL07], based on thermodynamic second law analysis and accurate numerical simulations,

has pinpointed that the energy equation written in its enthalpic form (i.e. retaining the

work done by internal viscous forces and the term due to pressure work) allows to fulfil both

the OB approximation applied only to mass and momentum equations, while satisfying at
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Fig. 1.2: Extended region of validity of the OB approximation in air (TR = 293.15 [K],

PR = 101.325 [kPa]) App.(1.A).

the same time the second law of thermodynamics which is otherwise discarded in the usual

form. Their main result is that a more strict condition should apply to ε12, i.e.

αRgLR
cpR

(
TR
∆T

)
≤ 0.02 (1.27)

Finally, the range of validity of the BO approximation with the new modified conditions is

shown in Fig.1.2. In the next chapters the following condition has been chosen ε1 ≤ 0.15,

ε2 ≤ 0.1 and ε12 < 0.02.

1.1.3 Dimensionless Boussinesq equations

In order to reduce the number of thermo-physical parameters involved in the momentum

and energy transport it is useful to write Eqs.(1.14)-(1.16) in dimensionless form introduc-

ing appropriate dimensional groups and governing dimensionless parameters. This will also

provide a simpler way to understand and generalize the results obtained for a particular

case in the space of the dimensionless parameters which represent, for similarity, infinite

realizations with different fluids characterized by the same dimensionless parameters.

The proper way to define the dimensional groups is to consider the steady two dimensional
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boundary layer (BL) problem. In fact it is well known that bounded natural convective

flows always present boundary layers at the walls where, depending on the Prandtl number

PrR, the viscous forces balance buoyancy or inertia. A schema of the two dimensional BL

is shown in Fig.(1.3) where (x1, x2) are the position coordinates normal and parallel to

the vertical wall respectively, H is the height of the wall, δT is the thermal BL thickness

defined as the loci where the fluid temperature is T = 0.99TR. From a scaling analysis (see

also [Bej84, Le 87]) of the energy equation it follows that

Fig. 1.3: Temperature boundary layer along a heated vertical wall.

u1
∆T

δT
, u2

∆T

H︸ ︷︷ ︸
convection

∼ κR
∆T

δ2
T︸ ︷︷ ︸

conduction

, (1.28)

on the other hand the same reasoning applied to the conservation of mass yields to

u1

δT
∼ u2

H
. (1.29)

Substituting Eq.(1.29) into Eq.(1.28) and rearranging

u2 ∼ κR
H

δ2
T

(1.30)

where δT is still unknown. Looking at the importance of each term appearing in the vertical

component of the momentum equation, where the inter-play between inertia, viscous force
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(friction) and buoyancy is stressed hereafter,

u1
u2

δT
, u2

u2

H︸ ︷︷ ︸
inertia

; νR
u2

δ2
T︸ ︷︷ ︸

friction

∼ gβR∆T︸ ︷︷ ︸
buoyancy

. (1.31)

then dividing all the terms by the buoyancy scale gβR∆T and using Eq.(1.30), it follows

that

1

PrR RaH

(
H

δT

)4

;
1

RaH

(
H

δT

)4

∼ 1. (1.32)

The latter clearly shows the dependency on the Prandtl number of the relative magnitude of

viscous and inertia forces compared to the buoyancy. In the case of high-PrR fluids (PrR �
1) inertia has a secondary role respect the friction which can be supposed in equilibrium

with the buoyancy. Therefore the thermal boundary layer thickness is straightforward

given by

δT ∼
H

Ra
1/4
H

(1.33)

and the appropriate vertical velocity scaling becomes

u2 ∼
κR
H
Ra

1/2
H . (1.34)

On the other hand for low-PrR fluids (PrR � 1) the inertial terms are in equilibrium with

the buoyancy, hence it immediately follows

δT ∼
H

(PrR RaH)1/4
(1.35)

and

u2 ∼
κR
H

√
(PrR RaH). (1.36)

The reader should note that for PrR ≈ 1 both inertia and friction are of the same order

of importance and cannot be neglected in the simplified equations of the boundary layer.

Furthermore both scalings tend to one equation respectively, i.e.

δT ∼
H

Ra
1/4
H

(1.37)

u2 ∼
κ

H

√
RaH . (1.38)

In order to write in dimensionless form Eqs.(1.14)-(1.16) it is useful to introduce five dimen-

sional groups for length (LF), time (tF), velocity (UF), pressure (PF) and temperature
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TF, as follows

lF = H, tF =
H2

κR
√
RaH

, uF =
κR
H

√
RaH

pF = ρR

(κR
H

)2

RaH , T
F = ∆T.

(1.39)

The dimensionless form of the Boussinesq equations Eqs.(1.14)-(1.16) obtained by scaling

each variable by its dimensional group is given by

∇̂ · û = 0 (1.40)

∂û

∂τ
+ û · ∇̂û = −∇̂p̂+

Pr√
RaH

∆̂û− PrΘ g

|g|
(1.41)

∂Θ

∂τ
+ û · ∇̂Θ =

1√
RaH

∆̂Θ (1.42)

where û is the dimensionless velocity, τ is the dimensionless time, p̂ = (p−ρRg ·x)/pF the

dimensionless pressure, Θ = (T − TR)/TF the dimensionless temperature.

1.2 Aerosol dispersed solid phase

The term aerosol defines the solution of dispersed solid or liquid particles suspended in

gaseous fluid, commonly air. It refers to the two-phase system simultaneously. The size

of the dispersed phase ranges from few nano-meters to 100 micro-meters and usually the

volume fraction φ, defined as the ratio of the total volume occupied by Np solid particles,

each one of volume Vp, and the total volume of the aerosol phase V , is very low

φ =
1

V

Np∑
i=1

Vp,i ≤ ε. (1.43)

with ε typically of the order of 10−6 (see also [[CST98, Cro05]]). In this range of applica-

tion, the two phases can be treated with a simple one-way coupling approach, i.e. mass,

momentum and energy of the dispersed phase are affected by the carrying fluid but the

changes in the hydrodynamics of the latter, due to the suspended particles, are negligible

as well as particle-particle collisions. Thus, a Lagrangian description of each particle is

feasible and required to describe in detail the mechanisms of segregation, dispersion and

deposition.
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1.2. AEROSOL DISPERSED SOLID PHASE

1.2.1 Governing equations

The conservation laws for a rigid, solid, point-wise, spherical particle of diameter dp
(App.(1.B)) written in vector notation are [MR83, CST98]:

• mass conservation

mp = ρpVp = const. (1.44)

• momentum conservation3

mp
dv

dt
= mpg + 3πµdp(1 +Re0.687

p )(u− v) + (∇ · σ)Vp+

+ CLρ[(u− v)× ω]Vp − 3πµdpνCT
∇T

T
+
ρ

2

(
Du

Dt
− dv

dt

)
Vp+

+
3

2
d2
p

√
πρµ

[∫ t

0

(
du

dϑ
− dv

dϑ

)
dϑ√
t− ϑ

+
(u− v)0√

t

] (1.45)

• energy equation4

mpcd
dTp
dt

= Nudπλddp(T − Tp) (1.46)

where mp is the particle mass, ρp the particle material density, Vp the particle volume, v

the particle velocity, Rep is the particle Reynolds number, ω = ∇× u the fluid vorticity,

CL and CT are constants for the lift and thermophoretic forces calculated as in [GLS05]

and [Cro05] respectively, cd the particle material specific heat, Nup is the Nusselt number

and finally λp is the particle material conductivity. Here below are given the relations for

Rep and Nup [CST98]

Rep =
ρ(1− β∆TΘ)dp|u− v|

µ
(1.47)

Nup = 2 + 0.6Re1/2
p Pr1/3 (1.48)

All the fluid variables are measured at the particle position yp and in last term of the r.h.s.

of Eq.(1.45)
du

dϑ
=

(
∂u

∂ϑ
+ v ·∇u

)
yp

. (1.49)

The r.h.s. of Eq.(1.45) describes, by order of appearence, the effect of gravity, steady-state

Stokesian drag, stress gradient (also called pressure gradient), lift, thermophoresis, added

3Second order Faxen’s terms are negligible since the size of the particle is of the order of few microns.
4The particle internal thermal resistence is here neglected since the Biot number Bi = Nupλ/λp � 1

(see also [CST98, CC99]).
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mass (or virtual mass) and Basset historical force, which apart from the introduction of lift

and thermophoretic forces corresponds to the Basset-Boussinesq-Oseen equation. These

equations are valid in the limit of small particles dp/ηK � 1 (ηK being the Kolmogorov

length scale), but at the same time the Knudsen number should be large Knp = 2l/dp � 1

(l being the mean free path of the fluid molecules) for considering the fluid phase as a

continuum around the particle. Both conditions ensure that the flow around the particle is

Stokesian, i.e. Rep � 1, or at least does not exceed O(1).The significant forces for heavy

particles (ρd/ρ� 1 as occurs in aerosol two-phase flows) are drag and gravity [ET92], since

the others are order of magnitude smaller. In the present work also lift and thermophoretic

forces are retained in the model because of the strong velocity and temperature gradients

in the boundary layers close to the vertical heated and cooled walls. Moreover the energy

equation Eq.(1.46) is discarded in view of the non-reactive nature of the aerosol phase here

considered and the relatively low temperatures involved. Finally, the particle trajectory is

obtained by time integration of the kinematic definition of linear velocity

v =
dyp
dt

. (1.50)

where yp indicates the particle position in a Eulerian frame of reference.

1.2.2 Dimensionless particle equation of motion

For the same reasons described in Sec.1.1.3 it is important to identify appropriate dimen-

sional groups in order to correctly describe the motion of the aerosol solid phase. The most

important parameter for particle dynamics is the relaxation time τd =
ρdd

2
p

18µ
which appears

in the momentum equation Eq.(1.45) if divided by the mass of the particle mp. This quan-

tity is a characteristic measure of the response time of the particle dynamic system spent to

adapt its velocity given a sudden change in the fluid velocity. It is straightforward to think

that the sudden changes of the fluid velocity in a turbulent flow is directly induced by the

velocity field fluctuations. Therefore the time scale associated with the characteristic time

of turbulence or eddy turn-over time is commonly employed, for instance the Kolmogorov

time scale τη =
√
ν/〈ε〉 in homogeneous and isotropic turbulence (〈ε〉 being the rate of

dissipation of the turbulent kinetic energy), or wall quantities in the case of fully developed

turbulent forced flows in channels/pipes τ+ = ν/u2
τ (uτ =

√
τw/ρ and τw is the shear stress

at the wall). At the author’s knowledge there is no appropriate scaling describing natural

convective flows inside enclosures where a vast range of regimes (i.e. laminar, transitional

and fully chaotic) occurs at the same time at different locations in the domain, moreover

the presence of the temperature as active scalar increases the complexity in identifying

the correct scaling since further mechanisms of production and dissipation of turbulence

are introduced [Bol62]. For these reasons the same dimensional scaling quantities given
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in Eq.(1.39) are used, which allow to adimensionalise the simplified particle equation of

motion (PEM):

dv̂

dτ
=

Pr

β∆T

[
1− ρ

ρd
(1− β∆TΘ)

]
g

|g|
+

(1 +Re0.687
p )

St
(û− v̂)+

+ CL
ρ

ρd
(1− β∆TΘ)[(û− v̂)× ω̂]− CT

Pr

St
√
RaH

β∆T

[1− (β∆TΘ)2]
∇Θ

(1.51)

v̂ =
dŷp
dτ

(1.52)

where St = τd/t
F is the so called Stokes number. The values of the Stokes number used

in the present work are of the order O(10−3), the particle Reynolds number is always less

than unity. It should be noticed that the actual aerosol phase would be characterized by

Stokes numbers St ≈ 10−4 or less, which are very time demanding from the computational

point of view using the Lagrangian approach. Only the buoyancy term coming from the

pressure gradient has been retained, and the local fluid density at the particle position is

approximated using the dimensionless version of Eq.(1.13) in order to take into account

the non-homogeneity of the temperature field which modifies the fluid density, and as a

consequence the drag, the buoyancy and the lift forces, leading to sensible changes in

particle segregation and deposition patterns in the case of long time integration.
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Appendix

1.A Thermo-physical properties of air

Property Symbol Value

Gas constant R 287 [J(kg K)−1]

Density ρ 1.2043 [kg m−3]

Dynamic viscosity µ 1.81× 10−5 [kg(m s)−1]

Thermal conductivity λ 2.56× 10−2 [W (m K)−1]

Specific isobaric heat capacity cp 1003.55 [J(kg K)−1]

Sepcific isochore heat capacity cv 716.55 [J(kg K)−1]

Isobaric thermal expansion coefficient β 3.41× 10−3 [K−1]

Isothermal compressibility α 9.87× 10−6 [Pa−1]

Tab. 1.1: Thermo-physical properties of air at TR = 293.15 [K], pR = 101.325 [kPa].
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1.B Aerosol particle aerodynamic diameter

There exists several definitions of equivalent diameter dp for arbitrary shaped small-size

aerosol particles [Dav79]. Among the others, the most important one is the so called

aerodynamic diameter which is described as the diameter of a sphere with density ρw =

1000 [kg m−3] and having the same terminal velocity v̂p of the particle in a controlled

quiescent environment. The settling velocity can be obtained simplifying a slightly modified

version of Eq.(1.45) supposing only drag and gravity forces in equilibrium [Cro05]:

v̂p =
ρpd

2
egCc(de)

18µχ
(1.53)

where Cc(de) and χ are respectively the Cunningham and the dynamic shape factors:

the first takes into account for the effect of slip-velocity between the particle and the

sorrounding fluid in the limit of Kne = 2l/de � 1, whereas the second for the irregular

shape is given in Tab.(1.2). The diameter de introduced in Eq.(1.53) is the equivalent

diameter of a sphere with the same volume of the particle. Concluding the aerodynamic

diameter dp is given by

dp = de

√
ρpCc(de)

ρwχCc(dp)
≈ de

√
ρp
ρwχ

(1.54)

where the approximated formula is valid if Knp ≈ Kne >> 1.

Shape Aspect ratio Dynamic factor χ

Sphere 1 1

Oblate spheroid 2 1.04

4 1.18

10 1.49

Prolate spheroid 2 1.05

4 1.20

10 1.58

Cube 1 1.08

Cylinder (orientation averaged motion) L/d = 2 1.09

L/d = 5 1.23

L/d = 10 1.43

Tab. 1.2: Dynamic shape factors χ from [Dav79, Cro05].
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Chapter 2

Numerical methods

The aim of the present chapter is to describe the numerical methods employed for the

discretization in space and time of the dimensionless partial differential equations (PDEs)

set Sec.1.1.3 as well as space interpolation and time integration needed to solve the ordinary

differential equations (ODEs) given in Sec.1.2.2 and their solution.

As before the chapter organization is twofold: the first part describes the Chebyshev

pseudo-spectral method on which relies the spatial discretization of the continuous phase

problem, followed by the continuous-in-time solver for the solenoidal velocity field and

auxiliary pressure field. Finally the time discretization technique is discussed. The second

part discusses the choice of local Lagrangian polynomial interpolation for measuring the

fluid quantities at the particle position and the time scheme implemented for the integration

of the PEM.

2.1 Methodology for the continuous phase

2.1.1 Space discretization

Pseudospectral Chebyshev collocation method

The choice of high-order spectral methods is justified by the fact that they are character-

ized by very low numerical diffusion and dispersion in comparison with other low-order

methods [CHQZ88]. Furthermore, it can be shown ([GO77]) that, for a infinite differ-

entiable function, spectral methods guarantee exponential convergence, while low-order

method present algebraic convergence only; as a consequence spectral methods provide the

same accuracy of lower order methods with much less degrees of freedom, hence gaining in

computing time if optimized numerical techniques, like FFT [DL82], are employed. The

theory presented in the following refers to [GO77, CHQZ88, Pey02].
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Consider the general one dimensional linear mixed initial-boundary value model prob-

lem in the domain Ω = Ω ∪ ∂Ω = [−1,+1] expressed by

∂u(x, τ)

∂τ
= M(x, τ)u(x, τ) + f(x, τ), x ∈ Ω, τ ∈ [τ0, ϑ] (2.1)

u(x, τ0) = u0(x), x ∈ Ω (2.2)

B(x)u(x, τ) = u(x, τ), x ∈ ∂Ω, t ∈ [τ0, ϑ] (2.3)

where M(x, τ) is the time-dependent second-order linear differential operator which in-

cludes spatial derivatives of the solution u(x, τ), f(x, τ) is the forcing term, B(x) represents

the linear (time-independent) boundary operator on the domain frontier with boundary

condition u(x, τ) and initial condition u0(x). Furthermore, at each time τ the unknown

function u(x, τ) is an element of a Hilbert subspace HB characterized by the inner product

(u, v) for all u, v ∈ HB and norm ||u|| = (u, u)1/2 for which Eq.(2.3) is satisfied. In this

framework it is possible to search for an approximated solution uN in the finite dimension

space HN
B that is solution of a minimization problem: at each instant τ ∈ [τ0, ϑ] the

approximated solution must satisfies

(RN , ψj)w =

∫
Ω

[
∂uN(x, τ)

∂τ
−M(x, τ)uN(x, τ)+

− f(x, τ)

]
ψjwdx = 0, j = 0, . . . , N

(2.4)

where RN is the residual of the PDE due to the choice of a finite subspace of dimension N

in HB, ψj are the test functions and w is the weighting function associated with the basis

functions of the subspace HN
B . In the case of the collocation method the test functions are

translated Dirac delta functions ψj = δ(x − xj) that leads the residual to be zero at the

nodal or collocation points xj, i.e. for j = 0, . . . , N and t ∈ [t0, ϑ]. Therefore Eq.(2.4)

becomes
∂uN(xj, τ)

∂τ
−M(xj, τ)uN(xj, τ)− f(xj, τ) = 0. (2.5)

In the present work the family of basis (or trial) functions which are orthogonal with

respect to the inner product in HN
B are the Chebyshev polynomials of first kind

Tk(x) = cos kΘ, k = 0, . . . , N (2.6)

where Θ = cos−1 x and −1 ≤ x ≤ 1. With the aid of the trigonometric identity cos(k +

1)Θ + cos(k − 1)Θ = 2 cosΘ cos kΘ it is possible to define the recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x) (2.7)

together with T0(x) = 1 and T1(x) = x (for more details about Chebyshev polynomial

properties [MH03]). The representation of the first six Chebyshev polynomials is given
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Fig. 2.1: First Chebyshev polynomials Tk(x) of first kind for k = 0, . . . , 5.

in Fig.2.1. The Chebyshev truncated expansion of the solution uN(x, t) is defined as the

following series

uN(x, t) :=
N∑
k=0

bk(τ)Tk(x) (2.8)

where bk(τ) are the expansion coefficients, also called spectral coefficients. After substitu-

tion of Eq.(2.8) in Eq.(2.4) and rearranging, the resulting semi-discrete system of ODEs

written for the spectral coefficients reads

N∑
k=0

ḃk(τ)Tk(xj)−
N∑
k=0

bk(τ)M(xj, τ)Tk(xj) = f(τ, xj) j = 0, . . . , N (2.9)

where ḃk = dbk(τ)/dτ . Hence, if backward Euler scheme is used to discretize the time-

derivative with step-size ∆τ then Eq.(2.9) can be recasted in

N∑
k=0

[ η0

∆τ
−M(xj, τ)

]
Tk(xj, τ)bk(τ) = f ′(xj, τ) j = 0, . . . , N (2.10)

where η0 is a constant introduced by the time-splitting method employed as well as the

source term f ′(xj, τ) now takes into account of both the forcing f(xj, τ) and the ex-

plicit part coming from the time discretization. Finally the algebraic linear system can

be solved for the spectral coefficients inverting the matrix A = {ajk}Nj,k=0 = {[η0/∆τ −
M(xj, τ)]Tk(xj, τ)}Nj,k=0. The solution in the physical space is straightforward obtained

using Eq.(2.8).

The collocation method allows also to formulate the problem using directly the nodal values
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uN(xj, τ) as unknowns instead of the spectral coefficients. This is possible if the approxi-

mation of the spatial derivatives of order p = 1, 2 contained in M(xj, t) are evaluated at the

nodal points with the aid of interpolation polynomials. Introducing the Gauss-Lobatto-

Chebyshev (GLC) nodes xj defined as the roots of the following polynomial equation of

order N + 1

(1− x2)
dTN(x)

dx
= 0 − 1 ≤ x ≤ 1, (2.11)

it is possible to describe the variable uN(x, τ) in a Lagrangian fashion using the polynomials

hi(x) defined by

hi(x) =
(−1)i+1(1− x2)dTN (x)

dx

ciN2(x− xi)
(2.12)

which satisfy the condition hi(xj) = δij. Thus, the variable u is approximated by the

truncated Lagrangian series of order N given by

uN(x, τ) =
N∑
k=0

ûk(τ)hk(x). (2.13)

Further on, if u
(p)
N (xj, τ) is the p-th spatial derivative of the approximated function at the

nodal point xj, then is possible to write

u
(p)
N (xj, τ) =

N∑
k=0

d
(p)
k,juN(xk, τ) j = 0, . . . , N (2.14)

where

d
(p)
k,j =

(
dphk(x)

dxp

)
xj

=

{
dp

dxp

[
(−1)k+1(1− x2)

ckN2(x− xk)
dTk(x)

dx

]}
xj

(2.15)

with

ck =


2 if k = 0

1 if 1 ≤ k ≤ N − 1

2 if k = N

. (2.16)

For advection-diffusion transport equations, the coefficients d
(p)
k,j are also used to compute

explicitly non-linear advective terms which are eventually added to the source f ′(xj, t). If

Dirichlet boundary conditions are applied the resulting algebraic linear system reads
1 0 . . . 0

A(N−1)(N−1)

0 . . . 0 1


︸ ︷︷ ︸

A′


uN(x0)

uN(x1)
...

uN(xN−1)

uN(xN)


︸ ︷︷ ︸

u

=


u(x0, τ)

f ′(x1, τ)
...

f ′(xN−1, τ)

u(xN , τ)


︸ ︷︷ ︸

f ′′

τ ∈ [τ0, ϑ]. (2.17)
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Fig. 2.2: Example of Gauss-Lobatto-Chebyshev point distribution (N = 6) on the unit

semi-circle.

where A(N−1)(N−1) = {ajk}N−1
j,k=1 contains linear combinations of d

(p)
jk and is generally full.

The formulae for the first- and second-order collocation derivative coefficients read as

follows (see [Pey02]):

• First-order derivative

d
(1)
jk =

cj
ck

(−1)j+k

(xj − xk)
, 0 ≤ j, k ≤ N, j 6= k (2.18)

d
(1)
jj = − xj

2(1− x2
j )
, 1 ≤ j ≤ N − 1 (2.19)

d
(1)
00 = −d(1)

NN =
2N2 + 1

6
, (2.20)

• Second-order derivative

d
(2)
jk =

(−1)j+k

ck

x2
j + xjxk − 2

(1− x2
j )(xj − xk)2

, 1 ≤ j ≤ N − 1, (2.21)

0 ≤ k ≤ N, j 6= k

d
(2)
jj = −

(N2 − 1)(1− x2
j ) + 3

3(1− x2
j )2

, 1 ≤ j ≤ N − 1 (2.22)

d
(2)
0j =

2
3

(−1)j

cj

(2N2 + 1)(1− xj)− 6
(1− xj)2

, 1 ≤ j ≤ N (2.23)

d
(2)
Nj =

2
3

(−1)N+j

cj

(2N2 + 1)(1 + xj)− 6
(1 + xj)2

, 0 ≤ j ≤ N − 1 (2.24)

d
(2)
00 = d

(2)
NN =

N4 − 1
15

. (2.25)

Finally, it may be useful to recall that

d
(2)
jk =

N∑
i=0

d
(1)
ji d

(1)
ik . (2.26)
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Extension to multidimensional domain

The extension of the previous results to multidimensional domain Ω = [−1, 1]d with d = 2, 3

is possible thanks to the introduction of the tensor product operator which allows significant

simplifications in the application of the linear operator to the vector u = {ui}di=1 [DFM02].

First of all the GLC collocation points of a tensorized domain are given by

G(N1...Nd) :=
d⊗
i=1

GNi
(xi) (2.27)

where GNi
(xi) are the i-th one-dimensional set of Ni ordered GLC points in the xi space

direction. The approximated vector function u(N1...Nd)(x, τ) is expressed by the tensor

product of the independent one dimensional basis functions Ti(xi)

u(N1···Nd)(x, τ) =

N1∑
i1=0

· · ·
Nd∑
id=0

b(i1···id)(τ)T1(x1) · · ·Td(xd) (2.28)

where the spectral coefficients b(i1···id)(τ) = u(xi11 , . . . , x
id
d , τ). Examples of tensorized

Chebyshev basis functions for the case d = 2 and N1 = N2 = 3 are given in Fig.(2.3).

Finally, also the derivation operators are described by tensorized products of the operators

D̃
(p)
i as shown below for d = 2

D(p)
x1

= Ix2
⊗ D̃(p)

x1
, D(p)

x2
= D̃

(p)

x2
⊗ Ix1

, (2.29)

and for d = 3

D(p)
x1

= Ix3
⊗ Ix2

⊗ D̃(p)

x1
, D(p)

x2
= Ix3

⊗ D̃(p)

x2
⊗ Ix1

, D(p)
x3

= D̃
(p)

x3
⊗ Ix2

⊗ Ix1
. (2.30)
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2.1.2 Solver

In order to solve Eqs.(1.29)-(1.28) the projection-diffusion technique described in [BKL94,

LL00, LPLD06] is used. Briefly, this method relies on a non-splitting consistent formula-

tion of the Boussinesq equations which provides an efficient and accurate way of computing

the instantaneous pressure field, thus ensuring the incompressibility of the velocity field

without the introduction of spurious modes.

Let u∗ be the intermediate acceleration vector defined by the relation

u∗ :=
∂u

∂τ
− Pr√

Ra
∆u, (2.31)

then the first step consists of solving the following problem projecting the intermediate

field in a divergence-free space:

• projection step

u∗ + ∇p = −u ·∇u + PrΘ
g

|g|
in Ω′ (2.32)

∇ · u∗ = 0 in Ω (2.33)

u∗ · n =

(
∂u

∂τ
− Pr√

Ra
∆u

)
· n on ∂Ω (2.34)

where n is the unit vector normal to ∂Ω and Ω′ := {Ωi}di=1 are subdomains without

the boundaries in the xi direction.

The second and last step simply employs the definition of u∗ and together with the velocity

boundary conditions results

• diffusion step

∂u

∂τ
−∆u = u∗ in Ω (2.35)

u = 0 in ∂Ω. (2.36)

Applying the spatial discretization described in the previous section the problem Eq.(2.32)-

(2.34) is written as

u∗ + G p = f ′(u) in Ω (2.37)

D · u∗ = 0 in Ω (2.38)

where the matrices D· and G are the divergence and the restricted gradient collocation

operators respectively, whereas f ′(u) represents the modified r.h.s. of Eq.(2.32) containing
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also the terms coming from the discretized boundary conditions Eq.(2.34). Finally, the

substitution of Eq.(2.37) in Eq.(2.38) leads to the pseudo-Poisson operator for the pressure

D ·G′p = D · f ′(u) (2.39)

providing that
∂p

∂n
=

[
[G× (G× u)] + PrΘ

g

|g|

]
· n. (2.40)

Because the velocity field u is unknown the above problem is not yet solvable and an

extrapolation technique is needed.

The fully discretized problem

The discretization in time of Eqs.(2.32)-(2.36) is based on a second order backward differ-

entiation formula (BDF2) for the pure diffusive second step, where the diffusive terms are

treated implicitly for stability reasons, whilst the non-linear advective terms are extrapo-

lated with second order time accurate formula [KIO91]. Concerning the time discretization,

the first projection step Eq.(2.39) can now be written for the time level τ = (n + 1)∆τ

(∆τ being the discrete advancing time-step)

D ·G′pn+1 = D · f ′ n+1
(u) (2.41)

where the source term f ′(u), containing the boundary conditions for the pressure Eq.(2.39)

which now reads

∂pn+1

∂n
=

[
−

(
Je−1∑
i=0

ζi[G× (G× un−i)]

)
+ PrΘn+1 g

|g|

]
· n (2.42)

whereas for internal nodes f ′′(u) is equal to

f ′
n+1

(u) =

[
−

(
Je−1∑
i=0

ζi[u
n−i ·G un−i]

)
+ PrΘn+1 g

|g|

]
(2.43)

Je being the order of the extrapolator and ζi the associated weights given in Tab.(2.1).

Finally, the second step discretized in time and space becomes

H′u un+1 =

[
−
∑Ji−1

i=0 ξiu
n−i

∆τ
−

(
Je−1∑
i=0

ζiu
n−i ·G un−i

)
+ PrΘn+1 g

|g|
−Gpn+1

]
(2.44)

H′u = Pr√
Ra

D ·G− η0

∆τ
I being the modified Helmholtz operator that contains the Dirichlet

boundary condition u = 0 on the nodes of the boundaries ∂Ω, η0 and ξi are constants
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depending on the order Ji of the implicit BDF scheme (Tab.(2.1)). The discretization of

the energy equation can be recasted as a Helmholtz problem where the operator

H ′Θ =
1√
Ra

D ·G− η0

∆τ
I (2.45)

contains temperature Dirichlet and Neumann boundary conditions depending on the prob-

lem set-up. In general it will look like

H ′Θ Θn+1 =

[
−
∑Ji−1

i=0 ξiΘ
n−i

∆τ
−

(
Je−1∑
i=0

ζiu
n−i ·G Θn−i

)]
. (2.46)

The inversion of the full matrices on the l.h.s. is performed with the fast-diagonalization al-

gorithm by Haldenwang et al. [HLAD84] which allows the filtering of the spurious pressure

modes [ABG95] arising in the pressure operator in Eq.(2.41). The algorithm to perform

the inversion of the Helmholtz operators is briefly described in the following few steps:

• Preprocessing stage: computation of the one-dimensional matrices Bi of order Ni−1

with i = 1, . . . , d, coming from the matrix multiplication in the Helmholtz operator

D ·G =
∑d

i=1 Bi, and successive diagonalization of these matrices to produce the Ei

and Λi, the eigenvector and eigenvalue matrices respectively. Then it is possible to

recast the 3D Helmholtz problem for a general discretized scalar quantity φ (which

can be the temperature or a component of the velocity field) as a matrix tensor

product

(E3⊗E2⊗E1)(Λ3⊗I2⊗I1+I3⊗Λ2⊗I1+I3⊗I2⊗Λ1)(E−1
3 ⊗E−1

2 ⊗E−1
1 )φ = f ′ (2.47)

• Computation of the modified source f ′ term which has to include the boundary

conditions;

• Scanning each spatial direction successively, one applies the corresponding E−1
i op-

erator to the r.h.s. to produce the term of the full diagonal representation;

• The solution is recovered, by the successive application of the Ei operators and by

the appropriate use of the boundary conditions.

Finally, it is important to note that, due to the explicit treatment of the non-linear terms,

the integration time-step has to respect the Courant–Friedrichs–Lewy (CFL) condition

which in the present work is computed as follows

CFL = max

{∣∣∣∣u1(xi)∆τ

∆x1,i

∣∣∣∣+ · · ·+
∣∣∣∣ud(xi)∆τ∆xd,i

∣∣∣∣}N
i=0

< CFLMAX (2.48)
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where N =
∏d

i=1Ni is the total number of collocation points, ∆xk,i represents the distance

between two neighboring points measured along the k-th direction and CFLMAX is the

maximum CFL number allowed by the chosen explicit extrapolation scheme [Ler99].

The implemented algorithm uses Ji = Je = 2 after the first time-step, whereas Ji = Je = 1

for the first one. First the temperature field Θn+1 is solved from Eq.(2.46) and then the

pressure pn+1 from Eq.(2.41) and finally velocity field un+1 from Eq.(2.44).

Weights Order 1 Order 2 Order 3 Order 4

η0 1 3/2 11/6 25/12

ξ0 1 2 3 4

ξ1 0 −1/2 −3/2 −3

ξ2 0 0 1/3 4/3

ξ3 0 0 0 −1/4

ζ0 1 2 3 4

ζ1 0 −1 −3 6

ζ2 0 0 1 4

ζ3 0 0 0 −1

Tab. 2.1: The weights (η0, ξi) for the implicit BDF schemes and (ζi) for the explicit ex-

trapolation schemes.
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2.2 Methodology for the aerosol dispersed phase

2.2.1 Interpolation

As seen in the previous chapter, the PEM requires the knowledge of flow quantities mea-

sured at the particle position Yd in order to be solved. This information can be retrieved

by simply interpolating the solution fields at the Eulerian grid nodes. Hence two possible

approaches can be considered:

• direct summation or spectral interpolation;

• local interpolation.

The first choice is straightforward since the Chebyshev pseudo-spectral method employed

for the continuous phase provides direct access to the spectral representation of the solu-

tion fields with the advantage to conserve the full spectral accuracy when determining the

interpolated quantities with no need of any searching algorithm; the main disadvantage

is that the computational costs increase as O(NpN
dlogN) (d = 1, . . . , 3 being the domain

space dimension supposing N1 = · · · = Nd = N and Np the number of particles) [YP88].

The second technique is the most commonly used in the literature and requires a searching

algorithm to find the closest GLC grid point from the particle position in order to define

the local knots of the cell where to perform the interpolation. It has been shown that

globally the second technique only requires O(NpK
2d) (K being the number of knots of

the local interpolation method in each direction) for a Lagrangian interpolation method on

a rectilinear grid. Balachandar et al. [BM89] and Kontomaris et al. [KHM92] showed that

6th-order Lagrangian interpolation gives sufficiently accurate results on Lagrangian statis-

tics of homogeneous isotropic turbulence. The homogeneous periodic boundary conditions

applied in that case allows to always consider an optimal cell centered interpolation around

the particle (see particle a in Fig.2.4). On the other hand the presence of wall boundaries

in non-homogeneous turbulent flows forces to use one-side interpolation with a (slight)

increment in the interpolation error, or to decrease the order of the interpolator up to

linear interpolation when the wall distance of the particle is less than the wall distance

of the corresponding first node inside the fluid domain, with an increase of the interpola-

tion error. More complex interpolation schemes designed to avoid this problem involves

direct summation in the non-homogeneous direction (hence preserving the spectral accu-

racy), combining Lagrangian, Hermite or cubic polynomial, with Chebyshev interpolation

[KHM92]. In the present case this latter approach would lead to full spectral interpolation

because the domain is fully confined.

On the basis of the results reported in the literature the interpolation based on 6th-order

Lagrangian polynomial (which uses the GLC grid points of the fluid mesh) has been cho-
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ab

c

i,j

6,6

1,61,1

Fig. 2.4: Schematic representation of the local grid used by a sixth order Lagrangian inter-

polator for three different particles away and close to the boundaries.

sen with one-side interpolation (see particles b-c in Fig.2.4) and the description of the

methodology is briefly presented in the following.

Lagrangian interpolation

Given K distinct nodes xi with i = 0, . . . , K − 1 belonging to the interval [x0, xK−1] and

the corresponding values f(xi, t) = fi(t) of the function f = f(x, t) to be interpolated,

then the Lagrangian polynomial interpolation of order K of f , is given by

INf(x, τ) =
K−1∑
i=0

fi(τ)li(x) (2.49)

where li are the characteristic polynomials expressed by

li(x) :=
K−1∏
j=0
j 6=i

x− xj
xi − xj

(2.50)

which satisfies the property li(xj) = δij. Figure 2.5 shows the characteristic functions

for K = 6 where the knots are uniformly spaced. Furthermore, Lagrangian polynomial

interpolation satisfies the general property of interpolants, i.e.

INf(xi, τ) = f(xi, τ) (2.51)

which expresses the exactness of the interpolated function at the knots where the function

is known.
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Fig. 2.5: Lagrangian characteristic functions li for K = 6 and i = 1, . . . , N .

Moreover, the extension to multidimensional domains where tensorization applies is straight-

forward:

the d-dimensional versions of Eq.(2.49) becomes

I(K1···Kd)f(x, t) =

K1∑
i1=0

· · ·
Kd∑
id=0

f(i1···id)(t)l1(x1) · · · ld(xd). (2.52)

where Ki are the orders of the interpolators in each spatial direction and the characteristic

functions li can be easily computed from Eq.(2.50) for each direction, respectively (Fig.2.6).

Finally a 6-th order Lagrangian interpolator with one-side interpolation on the GLC nodes
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Fig. 2.6: Two-dimensional representation of Lagrangian characteristic functions l3l5 (a),

l5l4 (b) with K1 = K2 = 6 and uniformly spaced knots.

has been chosen.
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2.2.2 Time integration

A general ODEs system of N scalar equations can be reduced to its autonomous form by

the introduction of the new differential equation ẋN+1 = 1 (where the upper dot means

time derivation) together with the appropriate initial conditions

ẋ = f(x), x(τ0) = x0. (2.53)

In order to integrate Eq.(2.53) a classical Explicit 4th-order Runge-Kutta (ERK4) scheme

has been chosen for its properties of large stability and good convergence. A brief descrip-

tion of the algorithm is given in the following. More details about the theoretical aspects

of the Runge-Kutta methods are in [But87, QSS07].

Explicit Runge-Kutta method

The idea behind the derivation of Runge-Kutta (RK) methods is to impose that the highest

number of terms of the Taylor expansion of the numerical solution of the ODE system

x̃(τ) coincide with the terms appearing in the Taylor expansion of the exact solution x(τ).

Usually this leads to an infinite number of possible combinations of coefficients for each

RK method of order r. It is also worth to recall that RK methods are one-step algorithms

with multiple internal time-level evaluations (stages). Moreover, the convergence order q

of an explicit RK method with r stages cannot be greater than r, in particular it has been

shown that the optimum occurs for r = q = 4 whilst if r ≥ 5 then q < r [But87].

The general form of a RK method with r internal stages and integration time step ∆τ

reads

x̃n+1 = x̃n + ∆τ
r∑
i=1

biki (2.54)

with the coefficients

ki = f

(
x̃n +

r∑
j=1

aijkj

)
, i = 1, . . . , r (2.55)

where x̃n+1 is the numerical solution of the ODE system at the (n + 1)-th time step and

x̃n is the numerical solution at the previous iteration. The algorithm is fully determined

by the coefficients b = (bi) and A = (aij) collected in the Butcher array as shown below

c A

bT

≡

c1 a11 a12 · · · a1r

c2 a21 a22 a2r

...
...

. . .
...

cr ar1 ar2 · · · arr
b1 b2 · · · br

(2.56)
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where the elemets of c = (ci) indicate the position within the step and satisfy

ci =
r∑
j=1

aij, i = 1, . . . , r (2.57)

whereas the elements of b = (bi) shows how the final result depends on the derivatives

computed at the various stages and for consistency must verify the following condition

r∑
i=1

bi = 1. (2.58)

If the matrix A is strictly lower triangular, i.e. the coefficient aij are equal to zero for

j ≥ i then the method is explicit and needs only a total number of coefficients equal to

r(r + 1)/2.

Finally, the corresponding Butcher array for a classical ERK4 is provided

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

. (2.59)

and the array of coefficients ki can now be explicitly evaluated by

ki = f

(
x̃n +

i−1∑
j=1

aijkj

)
, i = 1, . . . , r. (2.60)

It is possible to define the linear model problem in the form

ẋ = λx, x(τ0) = x0 (2.61)

for which the ERK4 integration scheme presents the following stability region Fig.2.7

([But87]). A direct measure of the maximum time-step ∆τ allowed for the integration

of the PEM would require also the knowledge of characteristic of the linearized dynamics

of the flow system (because of the drag, lift and thermophoretic forces that depends on the

flow quantities) which is out of the scope of this thesis. Anyway, in order to choose the

appropriate integration time-step, a set of tests have been run. The most strict criterion

among the CFL condition for the fluid, the stability conditions of the ERK4 method and

the Nyquist sampling theorem in relation to the particle relaxation time, has yielded a

time-step around one tenth of the time-step required by the CFL condition of the fluid and

at least one third of the particle relaxation time. The exact values for each case considered

in this work will be specified later on in the text.
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Fig. 2.7: Stability region for ERK4 method: points in the complex plane contained inside

the closed curve are stable.
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Chapter 3

Differentially heated cavity: Two

dimensional investigations

Several topics are discussed in the present chapter. First of all, the benchmark setup is

described and laminar steady-state results obtained for three different Rayleigh numbers

(105, 106 , 107) are compared with those already published in the literature. A detailed

description of the main flow patterns and characteristic quantities, namely velocity and

temperature profiles, temperature stratification, Nusselt number and wall shear stress is

provided.

In the second part of the chapter the attention is focused on unsteady chaotic flows at

high Rayleigh numbers (Ra = 109, 1010), and the study of first and second order moments

are provided, including important terms appearing in the mean Navier-Stokes equations

and in the turbulent kinetic energy and temperature variance transport equations like the

production and rate of dissipation of the turbulent kinetic energy and temperature vari-

ance. The reader should be aware that these quantities give information which is not truly

related to the actual turbulent flow which is intrinsically three-dimensional but illustrate

in first approximation the trend and the basic features of the chaotic flows at high Rayleigh

numbers.

The third and last section deals with the depletion mechanisms for three sets of aerosol

particles of different sizes for the two unsteady chaotic cases above mentioned. The evolu-

tion in time of the particle number fraction and the deposition profiles at the bottom wall

are presented. The influence of lift is discussed in more detail since it will be shown that

is the reason of particle deposition on the vertical cold wall, and also the thermophoretic

effect will be addressed.
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Fig. 3.1: Schematic representation of the square DHC with boundary conditions.

3.1 Steady laminar flows

Differentially heated cavities (DHC) are closed systems where two opposite vertical walls

are differentially heated while the rest is considered adiabatic. The heating process is the

only responsible mechanism of the motion of the contained working fluid which is subject

to a local change of density at the thermally active walls, resulting in a buoyancy driving

force that induces a large recirculation of fluid.

3.1.1 Benchmark configuration

Since the pioneering work of de Vahl Davis and Jones [dVD83, dVDJ83] in the eighties

the thermal flow in the two dimensional heated square cavity filled by air (Pr = 0.71)

became a numerical benchmark problem because it is a simple setting for testing accuracy

and efficiency of numerical methods for solving the incompressible Navier-Stokes equations.

The schema of the geometry configuration in the dimensionless space is shown in Fig. 3.1

for a dimensionless square domain Ω = [−0.5,+0.5]2 together with the thermal and velocity

boundary conditions. The dimensionless governing equations are here recalled (the symbol

“ˆ” has been dropped for the sake of simplicity)

∇ · u = 0 (3.1)

∂u

∂τ
+ u · ∇u = −∇p+

Pr√
RaH

∆u− PrΘ g

|g|
(3.2)
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∂Θ

∂τ
+ u · ∇Θ =

1√
RaH

∆Θ (3.3)

with the following boundary conditions for velocity and temperature

u(x1 = ±0.5, x2, τ) = 0 ∀x2 ∈ [−0.5,+0.5], (3.4)

u(x1, x2 = ±0.5, τ) = 0 ∀x1 ∈ [−0.5,+0.5], (3.5)

Θ(x1 = ±0.5, x2, τ) = ∓0.5 ∀x2 ∈ [−0.5,+0.5], (3.6)

∂Θ

∂x2

(x1, x2 = ±0.5, τ) = 0 ∀x1 ∈ [−0.5,+0.5]. (3.7)

The initial conditions imposed are

u0 = u(x1, x2, τ = 0) = 0 in Ω, (3.8)

Θ0 = Θ(x1, x2, τ = 0) = −x1 in Ω (3.9)

the latter corresponds to the steady solution of the one-dimensional Fourier law in a ho-

mogeneous linear solid material and is used up to RaH = 105, whereas for RaH > 105 the

fields are initialized using the fields obtained from previous calculations at lower Rayleigh

number. The comparison of several quantities obtained in the present work with those

provided in [dVD83, Le 87, Le 91, TLB00] is performed spanning three orders of magni-

tude of the Rayleigh number, namely RaH = 105, 106, 107, and the results are reported

in Tab.3.2. The quantities under investigation are:

• The maximum of the absolute value of velocity components |u1|Max, |u2|Max in the whole
domain and their location (x1, x2)Max;

• The maximum of the absolute value of the horizontal velocity component along the vertical
centerline |u1|0,Max and its location x2,Max;

• The maximum of the absolute value of the vertical velocity component along the horizontal
centerline |u2|0,Max and its location x1,Max;

• The maximum of the absolute value of the stream-function |ψ|Max in the whole domain
and its location (x1, x2)Max;

• The stream-function value at the center of the cavity |ψ|0;

• The maximum of the local Nusselt number at the hot wall NuH,Max;

• The mean Nusselt number at the hot wall NuH ;

• The mean Nusselt number at the vertical centerline NuM ;
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Here, the stream-function is defined in such a way that

u1(x1, x2) =
∂

∂x2

ψ(x1, x2), (3.10)

u2(x1, x2) = − ∂

∂x1

ψ(x1, x2), (3.11)

whereas the local Nusselt number is defined as

Nu := −∇Θ +
√
RaHuΘ (3.12)

and its space averaging along a line L, lying on the plane (x1, x2), of length L and unit

normal vector n, is given by

NuL =
1

L

∫
L

NuL · n dl. (3.13)

The maximum values and their location are searched using a multidimensional Newton’s

method coupled with a 6th-order Lagrangian interpolation for the present results, whilst

Richardson’s extrapolation has been used in [dVD83] where several solutions have been

computed with a second-order central difference scheme on different grids ranging from

11 × 11 to 81 × 81. In [Le 91], the pseudo-spectral solutions have been interpolated on

a uniform Cartesian 1001 × 1001 grid and the values reported correspond to the maxima

on the new discretized domain; Tric et al. [TLB00] have used a second-order Lagrangian

interpolation technique on the Chebyshev grid. The values and positions obtained are in

excellent agreement with the published references. The only discrepancy is encountered in

the Nusselt number 1 at the vertical centerline. It is known that in the present configuration

from the first law of thermodynamic the latter quantity has to be equal to the Nusselt

number at the hot wall. The present work and the one of Tric et al. perform better than

the others which show a lack of convergence in their calculations since a larger error is

registered in the two Nusselt numbers.

It is known that steady solutions of the Oberbeck-Boussinesq equations in symmetric

geometries present the so called centro-symmetry properties (see also [CGS02]) expressed

by

(ui, p,Θ)(x1, x2) = −(ui,−p,Θ)(+0.5− x1,+0.5− x2). (3.14)

The latter relation has been used in order to assert the convergence of the computation.

The error in the centro-symmetry for a general quantity φ is evaluated as

Ecs(|φ|) =
|φ(x1, x2)| − |φ(+0.5− x1,+0.5− x2)|

|φ|Max

≤ ε (3.15)

1Gauss-Lobatto-Chebyshev quadrature rule is employed in the present work.
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RaH = 105 RaH = 106 RaH = 107

(N1 = N2 = 129) (N1 = N2 = 129) (N1 = N2 = 129)

||Ecs||∞ ||Ecs||1 S ||Ecs||∞ ||Ecs||1 S ||Ecs||∞ ||Ecs||1 S

u1 1.214E− 11 4.675E− 12 1.44E−10 9.529E−10 2.278E−10 1.29E−9 5.404E−8 5.293E−9 4.27E−9

u2 6.347E−12 2.448E−12 1.04E−10 7.483E−10 1.312E−10 8.97E−10 2.866E−8 2.697E−9 2.61E−8

p 1.852E−11 1.855E−12 1.23E−10 1.603E−9 8.525E−10 2.94E−10 7.344E−8 4.023E−8 4.16E−9

Θ 2.160E−11 3.446E−12 4.39E−9 8.839E−10 5.639E−10 1.59E−8 3.202E−8 2.256E−8 4.81E−8

Tab. 3.1: Max-norm, 1-norm of the error in the centro-symmetry property and spectral

coefficient ratio S for each field at Ra = 105, 106, 107.

that should be less than a certain ε fixed here at 10−7. Together with this, the ratio of the

smallest to the largest spectral coefficients S is also used to assert the convergence of the

computation. It is commonly accepted that the order of magnitude of S should be less

or equal to O(10−4) even for turbulent flows. In the present work this condition is fully

satisfied. Tab.3.1 shows the max-norm (||φ||∞) and 1-norm (||φ||1 =
∫

Ω
|φ|dΩ) of the error

in the centro-symmetry at the different Rayleigh numbers for the different grids.
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Present [dVD83] [Le 91] [Le 87] [TLB00]

R
a

H
=

1
0

5

Grid 129× 129 Extrapolated – 65× 65 51× 51

|u1|Max 0.1388 – – – –

(x1, x2) (0.2034,−0.3894) – – – –

|u2|Max 0.2171 – – – –

(x1, x2) (0.4340,−0.0017) – – – –

|u1|0,Max 0.1099 0.1098 – 0.1099 0.1097

(x2) (0.3546) (0.3550) – (0.3550) (0.354)

|u2|0,Max 0.2170 0.2169 – 0.2171 0.2169

(x1) (0.4341) (−0.4340) – (−0.434) (−0.4340)

|ψ|Max 0.0304 0.0304 – 0.0304 –

(x1, x2) (0.2155,−0.1015) (−0.2150, 0.1010) – (−0.2150, 0.1010) –

|ψ|0 0.0288 0.0288 – 0.0288 –

NuH,Max 7.720 7.717 – 7.720 –

(x2) (−0.4179) (−0.4190) – (−0.4180) –

NuH 4.5216 4.509 – 4.522 4.522

NuM 4.5216 4.519 – 4.523 4.522

R
a

H
=

1
0

6

Grid 129× 129 Extrapolated 73× 73 65× 65 51× 51

|u1|Max 0.1287 – – – –

(x1, x2) (0.3115,−0.4374) – – – –

|u2|Max 0.2211 – – – –

(x1, x2) (0.4633, 0.0310) – – – –

|u1|0,Max 0.0648 0.0646 0.0648 0.0648 0.0648

(x2) (0.3499) (0.3500) (0.3500) (0.3500) (0.3410)

|u2|0,Max 0.2206 0.2206 0.2206 0.2206 0.2205

(x1) (0.4622) (−0.4620) (−0.4620) (−0.4625) (−0.4620)

|ψ|Max 0.0168 0.0168 0.0168 0.0168 –

(x1, x2) (0.3496,−0.0467) (−0.3490, 0.0470) (−0.3500, 0.0470) (−0.2150, 0.1010) –

|ψ|0 0.0164 0.0163 0.0164 0.01639 –

NuH,Max 17.535 17.925 17.536 17.536 –

(x2) (−0.4607) (−0.4622) (−0.4610) (0.480) –

NuH 8.825 8.817 8.825 8.825 8.825

NuM 8.825 8.799 8.852 8.826 8.825

R
a

H
=

1
0

7

Grid 129× 129 – 81× 81 – 51× 51

|u1|Max 0.1229 – – – –

(x1, x2) (0.3771,−0.4661) – – – –

|u2|Max 0.2218 – – –

(x1, x2) (0.4793, 0.3495) – – – –

|u1|0,Max 0.0470 – 0.0470 – 0.0470

(x2) (−0.3793) – (0.379) – (0.379)

|u2|0,Max 0.2211 – 0.2211 – 0.2214

(x1) (0.4787) – (−0.4790) – (−0.479)

|ψ|Max 9.5339× 10−3 – 9.5387× 10−3 – –

(x1, x2) (0.4140) – (−0.414) – –

|ψ|0 9.2850× 10−3 – 9.2850× 109 – –

NuH,Max 39.3947 – 39.3947 – –

(x2) (−0.4820) – (−0.4820) – –

NuH 16.5231 – 16.523 – 16.522

NuM 16.5231 – 16.523 – 16.522

Tab. 3.2: Comparison of 2d DHC flow results with the benchmark data of [dVD83, Le 91,

Le 87, TLB00] for RaH = 105, 106, 107.
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Results and discussion

The velocity, pressure, temperature fields together with the stream-function and vorticity

are shown in Figs.3.2-3.4. First of all, it should be noted that for Rayleigh number RaH =

105 the velocity fields are characterized by interacting large horizontal boundary layers

(BLs) with their maxima located at x1 ≈ ±0.2 close to the horizontal adiabatic walls.

Moreover, the vertical BLs attached at the vertical walls already do not interact together

and present maxima around mid-height. The temperature and pressure fields show the

tendency to stratify in the core region, even if only the temperature field shows high

gradients close to the vertical walls, stressing that the heat does not diffuse directly into

the core but is convected by the flow in the upper/lower part of the cavity. The stream-

function ψ presents two centro-symmetric lobes where it reaches its maxima. At Rayleigh

RaH = 106 the horizontal BLs begin to split as shown in Fig.3.3(b), the high velocity

regions become smaller and is shifted towards the upper and lower turning corners. The

vertical BLs get narrowed as expected according to Eq.(1.33) and counter-flow is found

in the immediately outer part of the vertical BLs. An increased stratification is depicted

in the central region, even if the temperature near the adiabatic walls tends to be more

uniform along the horizontal direction. The beginning of the formation of a hook-like

structure can be seen in the stream-function Fig.3.4(b) (refer to the schema in Fig.3.1.1)

where the two lobes now are completely separated. A further increasing of the Rayleigh

number (RaH = 107) results in a very small increase of the maximum vertical velocity,

thanks to the appropriate scaling, whereas the vertical boundary layers become thinner.

In the outer part of the vertical plumes the presence of counter-flow is enhanced since the

lobes leave the central region which is now almost quiescent. The horizontal BLs almost

disappear because of the diffusion of momentum and temperature in the upper and bottom

regions where the adiabatic walls reduce the stratification effect. The hook-like pattern
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is now well established as it can be noted in Fig.3.4(c). Concerning the vorticity it is

important to note that the maximum values are always located at the vertical boundaries,

whereas at the horizontal adiabatic walls the zones of relatively high local vorticity get

smaller in size.

More in detail, Fig.3.5 shows the vertical velocity component at the hot wall for three

different heights (x2 = −0.3, 0,+0.3) versus the scaled dimensionless distance from the

wall

x− := d Ra
1/4
H (3.16)

where d is the given simply by

d = x1 + 0.5 (3.17)

It should be noted that the scaling proposed in Eq.(1.38) well represents the behavior at

high Rayleigh numbers along the whole height of the cavity even if for x2 = +0.3 the

agreement is less satisfactory in the outer part of the BLs due to the presence of the

developing hook-like structure. Besides that, although the scaling is perfectly respected

at mid-height for all the Rayleigh, in the case of RaH = 105, the discrepancies are more

important at the top and the bottom. The latter behavior is related to the difference in

the temperature distribution in the regions closed to the horizontal adiabatic walls, which

presents higher gradients in the horizontal direction than the cases at higher Rayleigh as

already depicted in Fig.3.3(a). Moreover, a sensible discrepancy is encountered between

the experimental [KJ83] and the computed profiles at half height. This behavior has been

related to the fact that, in the experiment, the horizontal walls are not perfectly insulated as

it will be shown later. The temperature BLs are shown along the vertical hot wall in Fig.3.6.

It should be noted how the scaling proposed in Sec.1.1.3 for the thermal BL now performs

well along the whole height and very close to the wall. Small discrepancies are encountered

at the top corner where the hook-like structure is present. Temperature profiles on the

vertical mid-line are presented in Fig.3.7 together with experimental results performed

at RaH = 1.89 × 105 by Krane et al. in [KJ83]. It is evident from the experimental

results that the horizontal walls were not perfectly adiabatic showing how it is difficult to

perform a direct comparison. It has been shown [SXJ+04] that even applying experimental

temperature profile at the top and bottom walls does not solve completely the problem,

suggesting that another effect can be the source of error in the computation like the presence

of heat transfer due to radiation. To the author’s knowledge there are very few works in the

literature dealing with radiation in the differentially heated cavity flow [CCO04, WXL06,

BBAHZ08] and the results do not clarify completely the issue. Moreover, it is worth to

say that the absolute value of the temperature at the horizontal walls increases with the

Rayleigh number due to stratification ς = ∂Θ/∂x2. In Fig.3.9 the shear stress at the
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vertical hot wall, defined by

τw :=
Pr√
RaH

(
∂u1

∂x2

+
∂u2

∂x1

)
x1=−0.5

(3.18)

and at the top horizontal wall, expressed by

τw :=
Pr√
RaH

(
∂u2

∂x1

+
∂u1

∂x2

)
x2=+0.5

(3.19)

is plotted against the half perimeter length l starting from the left-bottom corner (x1 =

x2 = −0.5) to the right-upper one clockwise (see schema in Fig.3.1.1). It is interesting

to observe that the maximum value of τw at vertical hot wall (0 ≤ l ≤ 1) occurs before

the location of the vertical velocity maximum, meaning that there is a play between the

thickening and the increase of the vertical velocity which gives the maximum of the shear

stress before the location of maximum velocity. Downstream the peak of shear stress, for

RaH > 105 and 0.5 ≤ l ≤ 0.8, there is a region characterized by linear decrease since the

vertical component of velocity diminishes whereas the boundary layer continues to increase

its thickness. At the ceiling (1 ≤ l ≤ 2) it deserves attention the case RaH = 107 where

the shear stress is equal to zero, showing the beginning of detachment. Another point to

stress is that the length of low shear stress gets larger with increasing the Rayleigh number,

meaning that the horizontal momentum transfer at the top wall (and symmetrically at the

bottom one) is strongly influenced by the adiabatic boundary condition which tends to

increase the isothermal zones in the vicinity of the horizontal boundary, thus avoiding the

formation of a thermal BL and as a consequence the formation of a natural convective BL.

Finally, the scaled local Nusselt number defined in Eq.(3.12) is presented in Fig.3.10.

It clearly appears that the maximum of the heat transfer occurs upstream at the very

beginning of the BL formation. For a large section of the wall the Nusselt number decrease

almost exponentially (linear zone) up to the point where the flow turns inside the cavity

transferring momentum from the vertical component of velocity to the horizontal one.

Further downstream the Nusselt number dramatically reduces.

3.2 Chaotic flows

Above the critical Rayleigh number Ra2d
c = 1.82×108 (see also [XL06]) the DHC flows get

unsteady and reach the chaotic regime forRaH ≥ 109. In order to study the statistical prop-

erties of these chaotic systems, two large databases have been created at RaH = 109, 1010

using as initial conditions interpolated fields from solutions obtained at lower Rayleigh.
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Fig. 3.5: Vertical velocity component profiles at different heights x2 = −0.3, 0.0,+0.3 with

respect to x−.
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RaH N1 = N2 min(∆xi) max(∆xi) ∆τ Sampl. freq. Ave. time max(S)

109 257 3.8× 10−5 6.1× 10−3 2.5× 10−3 10 1050.0 1.40× 10−8

1010 321 2.4× 10−5 5.0× 10−3 1.0× 10−3 20 1760.0 9.88× 10−6

Tab. 3.3: Computational parameters: polynomial degrees N1, N2, minimum and maximum

grid size ∆xi, integration timestep ∆τ , number of frames per unit of time, aver-

aging time and ratio of spectral coefficients .

The possible influence in the statistics of a change in the boundary conditions at the ini-

tial stage of the computations has been avoided letting this numerical perturbations fading

away before starting the sampling of the database. The number of iterations needed to dis-

sipate the effect of a change in the boundary conditions depends on the difference between

the Rayleigh numbers employed and the grid, but in general it is of the order O(
√

∆RaH)

(see [PI80, LQB98]). The averaging time is taken sufficiently large to ensure low residuals

in the time-averaged momentum and energy equations as will be discussed further on in

the text. A summary of the computational parameters is provided in Tab.3.3. The author

would like to stress again that these statistical quantities give informations which are not

truly related to the actual turbulent flow which is intrinsically three-dimensional but illus-

trate in first approximation the trend and the basic features of the chaotic flows at high

Rayleigh numbers.

Mean fields

According to the Reynolds decomposition, statistically steady fields with variables in time

and space φ(x, τ) can be easily described as the sum of their mean value in time 〈φ(x)〉
and their fluctuating component φ′(x, τ) resulting in

φ(x, τ) = 〈φ(x)〉+ φ′(x, τ). (3.20)

In the following all the quantities indicated with 〈·〉 and · ′ represent the time averaged

and fluctuating part of the field under investigation. The flow structures that characterize

the laminar regime are also present in the averaged fields [LQB98], for instance the two

separate velocity and thermal boundary layers at the active walls, the recirculating pock-

ets at the downstream corners, the temperature stratification in the core region and the

global centro-symmetry. The comparison of the mean horizontal component of velocity

〈u1〉 shown in Fig.3.11(a) and Fig.3.11(d) puts in evidence counter rotating currents in the

core between the linear stratified zone and the lower and upper almost isothermal ones

for the highest Rayleigh number. These counter rotating currents represent a departure

from the laminar or slightly turbulent regimes previously published in the literature when
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adiabatic horizontal walls are present, while it has been detected at lower Rayleigh num-

bers in [PD01] and other works where linear or experimental temperature profiles have

been imposed as boundary condition at the horizontal walls. The vertical velocity profiles

in Fig.3.11(b) and Fig.3.11(e) differ from the fact that at RaH = 1010 the BL thickness

drastically increases around x2 = 0.25 at the hot wall and symmetrically at the cold wall.

Thus, in those zones the loss of momentum is due to the transfer of momentum from the

mean fields to the fluctuating ones which eventually will enhance the chaotic mixing and

will influence the shear stress and the heat transfer at the walls. It is also important to

note that the temperature stratified zone gets narrowed due to the diffusion which enlarges

the almost isothermal upper and lower regions close to the adiabatic walls (Fig.3.12(a) and

Fig.3.12(c)). For a more detailed discussion about the influence of the stratification and the

sustainment of the internal gravity waves refer to [LQB98]. Moreover, the time-averaged

stream-function shows two completely different patterns: for RaH = 109 (Fig.3.12(b)) the

two recirculating pockets are still close to the upper-left and bottom-right corners, on the

other hand for RaH = 1010 the recirculating pockets are shifted towards the mid height

(Fig.3.12(d)). Further on, the pressure field in Fig.3.11(f) at the highest Rayleigh presents

modifications at the active walls where the transition of the BLs occurs. Time-averaged

vertical velocity 〈u2〉 and temperature 〈Θ〉 profiles at the hot wall are shown for three

different altitudes (x2 = −0.3, 0.0, 0.3), as function of the variable x− defined as the

distance from the wall scaled by Ra
−1/4
H , see Fig.3.13-3.14. The thermal scaling proposed

in Eq.(1.37) works for the laminar or quasi-laminar regime (x2 < 0.1) of the develop-

ing boundary layer, for both velocity and temperature, but when the layer becomes fully

chaotic (RaH = 1010) the present scaling fails. In fact the intense mixing registered at

x2 = 0.3 provokes a large decrease in the peak velocity, the absence of temperature local

minima and a sensible increase of the BL thickness. One issue dealing with the boundary

layer scaling is that in such closed geometries the turning of the impinging jets induced by

the horizontal walls leads to a transfer of momentum from one velocity component to the

other avoiding a single behavior in the transfer of momentum and heat in the boundary

layer. In conclusion, the lack of momentum of the vertical boundary layer of the mean

fields, when progressively reaching downstream the horizontal walls, is not only due to

turbulent mixing, as occurs in natural convective boundary layers along an infinite flat

plane, but also because of the interplay between the two components of velocity during the

turn (this point will be discussed later on). This is also a reason for the inadequacy of the

turbulent scales proposed so far in the literature.

The time-averaged temperature profiles along the vertical centerline are shown in Fig.3.15.

It is clear that the linear stratified core region tends to reduce with the increase of the

Rayleigh number and as observed in the laminar case (see Fig.3.7), the absolute value

of the mean temperature at the horizontal walls increases. This leads to a configuration
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where hotter and colder environments get closer in the middle, where secondary counter

flows arise.

A simple way to identify the extension of the laminar boundary layers at the active walls

is to look at the local transfer of momentum and heat. In fact, the transition region at

the vertical layers is characterized by a sudden decrease of the mean shear stress and also

the enhanced convective heat transfer due to the ejection of unsteady hot/cold buoyant

eddies that will then dissipate in the upper/lower isothermal regions. In Fig.3.16 the

profiles obtained for the two different Rayleigh numbers are plotted as function of l (the

semi-perimeter starting from the bottom-left corner to the upper-right corner in clockwise

direction). It is important to note that, unlike the steady-laminar solutions, the maximum

value of τw shifts downstream from the hot wall for higher RaH and an almost constant

shear stress region takes place at 0.8 ≤ s ≤ 0.9 where the flow is fully turbulent, whereas

for RaH = 109 the constant shear-stress region is rather narrowed, indicating that the flow

is only weakly turbulent, or in the transition regime. As second instance, at the top hori-

zontal wall it is possible to observe that the mean flow does not present the characteristic

separation zone for RaH = 1010, which is identified by zero shear stress for both detach-

ment and reattachment (see Fig.3.16). Finally, the reader should note the small values in

the shear stress along the horizontal wall, where the thermal boundary layer does not exist

and the velocity BL is rather weak.
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Concerning the heat transfer at the active wall, the time averaged local Nusselt number

〈Nuh〉 is presented in Fig.3.17. The heat flux is again maximum at the very beginning of

the boundary layer but for the highest Rayleigh number a local maximum is depicted at

x2 ≈ 0.2 due to transition to turbulence which breaks the exponential decay. Furthermore,

the last downstream part of the vertical wall is more efficient regarding the heat transfer

at high Rayleigh, probably because the corner pocket has shifted upstream.

Reynolds stresses and turbulent heat flux

The three independent components of the Reynolds stress tensor together with the two

components of the turbulent heat flux are presented in Fig.3.18-3.19 . It is immediately

clear that for RaH = 109 the intensity of the fluctuations is very high in the corner regions

interested by the recirculating pockets and extends towards the opposite vertical wall due to

the fact that the turning and the diffusion of the impinging jets is fully chaotic. Moreover,

for the case RaH = 1010 the maxima are located upstream where the BL becomes unstable,

besides that the pattern of the fluctuation intensities and cross-terms, like 〈u′iu′j〉 and 〈Θ′u′i〉
develops more along the vertical direction than before. It is interesting also to note that the

cross-terms 〈u′1u′2〉 and 〈Θ′u′1〉 present positive values very close to the vertical boundaries

for both Rayleigh numbers, whereas 〈Θ′u′2〉 changes of sign, meaning that the turbulent

mixing reduces the total mean flux in the vertical direction. It also appears (Fig.3.18(c) and

Fig3.18(f)) that even if the BLs are laminar for at least two-thirds of the cavity height,

the counter-flows in the outer part of the ascending/descending jets are more unstable

producing a more chaotic environment just outside the thermal plumes.
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(a) Temperature 〈Θ〉, RaH = 109 (b) Stream-function 〈Ψ〉, RaH = 109

(c) Temperature 〈Θ〉, RaH = 1010 (d) Stream-function 〈Ψ〉, RaH = 1010

Fig. 3.12: Time-averaged temperature and stream-function contour plots at RaH =

109, 1010.
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Fig. 3.13: Time-averaged vertical component velocity profiles at different heights

x2 = −0.3, 0.0,+0.3 with respect to x−.
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Fig. 3.14: Time-averaged temperature profiles at different heigths x2 = −0.3, 0.0,+0.3 with

respect to x−.
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Fig. 3.15: Time-averaged temperature profile along the vertical center-line.
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Fig. 3.16: Time-averaged shear stress 〈τw〉 along the half cavity perimeter l.
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||Res(〈u1〉)||∞ ||Res(〈u1〉)||1 ||Res(〈u2〉)||∞ ||Res(〈u2〉)||1 ||Res(〈Θ〉)||∞ ||Res(〈Θ〉)||1

RaH = 109 8.3× 10−5 1.2× 10−6 8.9× 10−5 1.2× 10−6 1.1× 10−4 1.5× 10−6

RaH = 1010 5.3× 10−4 2.8× 10−5 3.5× 10−4 1.9× 10−5 4.1× 10−3 1.2× 10−5

Tab. 3.4: Max-norm and 1-norm of the residuals R of the time-averaged momentum and

energy conservation laws.

3.2.1 Time-averaged momentum and energy budgets

The dimensionless governing equations of the mean quantities written with the Einstein

convection read (see also [MY07])

∂〈ui〉
∂xi

= 0 (3.21)

∂〈ui〉
∂τ

+ 〈uj〉
∂〈ui〉
∂xj︸ ︷︷ ︸

CTM

= − ∂〈p〉
∂xi︸︷︷︸
PG

+
Pr√
RaH

∂2〈ui〉
∂u2

j︸ ︷︷ ︸
V D

−
∂〈u′iu′j〉
∂xj︸ ︷︷ ︸
RS

+Pr〈Θ〉δi2︸ ︷︷ ︸
BT

(3.22)

∂〈Θ〉
∂τ

+ 〈ui〉
∂〈Θ〉
∂xi︸ ︷︷ ︸

CTT

=
1√
RaH

∂2〈Θ〉
∂x2

i︸ ︷︷ ︸
TD

− ∂〈u
′
iΘ
′〉

∂xi︸ ︷︷ ︸
THF

. (3.23)

where 〈u′iu′j〉 and 〈Θ′u′i〉 are the Reynolds stress tensor and the turbulent heat flux re-

spectively. For a statistically steady flow the accumulation terms, identified by the time-

derivatives, are zero. Thus, the balances defined as the residual Res of the mean Boussinesq

equations at every collocation point,

Res(〈ui〉) =

∣∣∣∣〈uj〉∂〈ui〉∂xj
+
∂〈u′iu′j〉
∂xk

+
∂〈p〉
∂xi
− Pr√

RaH

∂2〈ui〉
∂x2

j

− Pr〈Θ〉δi2
∣∣∣∣ (3.24)

Res(〈Θ〉) =

∣∣∣∣〈uj〉∂〈Θ〉∂xj
+
∂〈Θ′u′j〉
∂xk

− 1√
RaH

∂2〈Θ〉
∂x2

j

∣∣∣∣ (3.25)

give a measure of the variation in time of the mean velocity and temperature fields which

ideally should be zero. For the present calculations, in both cases the 1-norm of the

residuals are of the order O(10−4) or less, as shown in Tab.3.4. The low residuals in the

averaged fields are a proof of the correctness of the sampling frequency and the length

of the averaging time of the databases. In Fig.3.20 are shown some terms appearing in

the vertical component of the averaged momentum equation (in particular the convective,

pressure gradient and Reynolds stress terms). Focusing the attention on the hot wall

(x1 = −0.5), it is possible to see that above a certain height (x2 ≈ 0.25) apart from

the laminar sublayer where the viscous effects are important, two terms contributes for the

convective term, the pressure gradient and the Reynolds stresses. In particular the pressure
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(a) 〈Θ′u′1〉, RaH = 109 (b) 〈Θ′u′2〉, RaH = 109

(c) 〈Θ′u′1〉, RaH = 1010 (d) 〈Θ′u′2〉, RaH = 1010

Fig. 3.19: Time-averaged temperature and stream-function contour plots at RaH =

109, 1010.
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gradient is the most important one when the fluid is obliged to turn at the cavity corner.

Moreover, the maximum of the pressure gradient is not located at the wall as it would

be expected for an impinging jet (with the manifestation of maximum pressure values due

to the dynamic pressure) but it takes place slightly upstream. All the terms appearing in

Eq.(3.22) for the vertical component of velocity are plotted along the horizontal and vertical

centerlines in Fig.3.21-3.22 (the horizontal component is not shown because of relatively

less importance), as well as the budgets of the energy equations in Fig.3.23-3.24. It is

important to stress that close to the wall the Buoyancy Term (BT) is perfectly balanced

by the Viscous Diffusion (VD) for both Rayleigh numbers, even if a small contribution is

given by the convective terms around x− ≈ 1. In the vertical centerline the striking result

is that the BT is balanced perfectly by only the Pressure Gradient (PG).

It is common idea that in natural convection the pressure field is not as important as in

forced convection but it is actually strongly related to the vertical temperature field. This

result can be explained by taking the divergence of Eq.(3.22), a Poisson operator for the

time-averaged pressure is obtained:

∂2〈p〉
∂x2

i

= Pr
∂〈Θ〉
∂x2

−
∂2〈u′iu′j〉
∂xi∂xj

− ∂2(〈ui〉〈uj〉)
∂xi∂xj

. (3.26)

Since far from the active walls it is reasonable to assume ∂ · /∂x1 ≈ 0 (in particular from

the continuity equation Eq.(3.21) it comes ∂〈u2〉/∂x2 ≈ 0), and also 〈u′2u′2〉 ≈ 0, Eq.(3.26)

simplifies in
∂2〈p〉
∂x2

2

≈ Pr
∂〈Θ〉
∂x2

(3.27)

which integrated yields ∂〈p〉/∂x2 = Pr〈Θ〉 + C where C is a constant to be determined.

The boundary condition to apply can be found by simplifying with the same approach as

before the second component of the mean momentum (Eq.3.22). This leads to impose the

following boundary conditions at the horizontal adiabatic walls

∂〈p〉
∂x2

(x1, x2 ± 0.5) = Pr〈Θ〉(x1, x2 = ±0.5) (3.28)

which leads to C = 0.

Concerning the energy budgets it is straightforward to see in Fig.3.23 that along the hor-

izontal centerline the Convective Term (CTT) must be balanced only by the Thermal

Diffusion (TD) because the flow is laminar, but in the vertical direction the influence of

the turbulent fluxes is relatively sensible and gets the same order of magnitude as the other

terms for very high Rayleigh numbers as shown in Fig.3.24.
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RaH 〈e〉Ra1/4
H 〈K〉Ra1/4

H (%) kRa
1/4
H (%)

109 7.43× 10−2 6.63× 10−2(89) 8.01× 10−3(11)

1010 9.64× 10−2 6.01× 10−2(62) 3.63× 10−2(38)

Tab. 3.5: Total averaged kinetic energy scaled by Ra
1/4
H and its repartition between mean

flow 〈K〉 and fluctuating part k with percentage.

3.2.2 Turbulent kinetic energy and temperature variance bud-

gets

In Tab.3.5 the averaged total kinetic energy 〈e〉, defined as

〈e〉 = 〈K〉+ k =

∫
Ω

1

2
〈ui〉2︸ ︷︷ ︸
〈K〉

dΩ +

∫
Ω

1

2
〈u′iu′i〉︸ ︷︷ ︸
k

dΩ (3.29)

is reported together with its two components 〈K〉 and k. It is important to emphasize

that the percentage of mean total specific kinetic energy contained in the fluctuating field

k increases sensibly from 11% at RaH = 109 up to 38% at RaH = 1010. The used scaling

is justified by the fact that for a wide range of Rayleigh numbers the total kinetic energy

scaled by Ra
1/4
H is approximatively constant as depicted in Fig.3.25. This can be explained

considering that the mass of fluid which contains the major amount of kinetic energy (i.e.

in motion) scales as δth. ∝ Ra−1/4 in comparison with the total mass of fluid contained in

the cavity (see also [TSOPS07]). This holds for well established convective laminar and

weakly turbulent flows, whereas it does not hold in the conductive regime RaH < 104 and

probably for very high Rayleigh numbers. Iso-contours of the turbulent kinetic energy

distribution k are shown in Fig.3.26(a)-3.26(c). As already mentioned, the regions of high

fluctuating intensity are located at the corner. Furthermore, the k field gets wider and

developed upstream the boundary layer for RaH = 1010 confirming the earlier transition

with respect to the lower Rayleigh number. According to the transport equation of the

mean turbulent kinetic energy and temperature variance 〈Θ′Θ′〉

∂k

∂t
+ 〈uj〉

∂k

∂xj
=

∂

∂xj

(
Pr√
RaH

∂k

∂xj
− 〈u′jk′〉 − 〈u′jp′〉

)
−〈u′iu′j〉

∂〈ui〉
∂xj︸ ︷︷ ︸

P

− Pr√
RaH

〈
∂u′i
∂xj

∂u′i
∂xj

〉
︸ ︷︷ ︸

D

+Pr〈uiΘ′〉δi,2︸ ︷︷ ︸
G

(3.30)
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Fig. 3.21: Time-averaged Navier-Stokes budgets along the horizontal centerline (x2 = 0) for

RaH = 109, 1010 with respect to x−: Convective Term (CTM), Pressure Gra-

dient (PG), Viscous Diffusion (VD), Reynolds Stresses (RS), Buoyancy Term

(BT) and Residual (R).
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Fig. 3.22: Time-averaged Navier-Stokes budgets along the vertical centerline (x1 = 0) for

RaH = 109, 1010: Convective Term (CTM), Pressure Gradient (PG), Viscous

Diffusion (VD), Reynolds Stresses (RS), Buoyancy Term (BT) and Residual

(R).
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Fig. 3.23: Time-averaged energy budgets along the horizontal centerline (x2 = 0) for RaH =

109, 1010 with respect to x−: Convective Term (CTT), Thermal Diffusion (TD),

Turbulent Heat Flux (THF) and Residual (R).
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Fig. 3.24: Time-averaged energy budgets along the vertical centerline (x1 = 0) for RaH =

109, 1010: Convective Term (CTT), Thermal Diffusion (TD), Turbulent Heat

Flux (THF) and Residual (R).
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Fig. 3.25: Total kinetic energy scaled by Ra
1/4
H as a function of Rayleigh number RaH .

max |P | max |G| max |D| max |PΘ| max |DΘ|
(x1, x2) (x1, x2) (x1, x2) (x1, x2) (x1, x2)

RaH = 109 2.3× 10−3 8.6× 10−4 3.5× 10−3 2.9× 10−3 2.4× 10−3

(0.4819,−0.3403) (0.4937,−0.3621) (0.5000,−0.3536) (0.4904,−0.3492) (0.4991,−0.3826)

RaH = 1010 9.3× 10−3 1.7× 10−3 1.3× 10−2 2.0× 10−2 2.0× 10−2

(−0.4903, 0.1592) (−0.4959, 0.1684) (−0.5000, 0.1731) (−0.4946, 0.1684) (0.4999,−0.1959)

Tab. 3.6: Maximum values and position of turbulent kinetic energy and temperature vari-

ance production and dissipation.

∂〈Θ′Θ′〉
∂t

+ 〈uj〉
∂〈Θ′Θ′〉
∂xj

=

(
1√
RaH

∂〈Θ′Θ′〉
∂xj

− 〈u′jΘ′Θ′〉
)

−2〈Θ′u′j〉
∂〈Θ〉
∂xj︸ ︷︷ ︸

PΘ

− 2√
RaH

〈
∂Θ′

∂xj

∂Θ′

∂xj

〉
︸ ︷︷ ︸

DΘ

(3.31)

the terms that determine the production P, G, PΘ and dissipation D, DΘ, are shown in

Fig.3.27 as function of x− for x2 = 0.3 and their maximum values in the entire domain

are given in Tab.3.6. The maximum of k along the line is located between 10 ≤ x− ≤ 25,

moreover it is interesting to mention that for RaH = 1010 the profile is monotone up to the

peak while for RaH = 109 presents several local maxima and minima. This is due to the

fact that, in the latter case, the profile is measured where the vertical boundary layer gets

unstable and ejects eddies, whereas outside the unstable boundary layer the fluctuations
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(a) Turbulent kinetic energy k, RaH = 109 (b) Temperature variance 〈Θ′Θ′〉, RaH = 109

(c) Turbulent kinetic energy k, RaH = 1010 (d) Temperature variance 〈Θ′Θ′〉, RaH = 1010

Fig. 3.26: Turbulent kinetic energy and temperature variance contour plots at RaH =

109, 1010.
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coming from the large corner recirculating pocket are more intense. On the other hand for

RaH = 1010 both the ejection of eddies and the recirculating pocket are located upstream

the measuring line. Comparing the terms of production P in Fig.3.27(a) the reader should

note that at x− ≈ 0.75 the production term P10 < 0 whereas P9 > 0 leading to a completely

different mechanism of sustainment of the mean turbulent kinetic energy, furthermore for

10 ≤ x− ≤ 25, P10 is significantly larger than P9.

Concerning the production due to buoyancy G, it appears that for high Rayleigh number

this term dissipates the mean turbulent kinetic energy suggesting that 〈u′2Θ′〉 < 0. In

fact, in a thermally stably stratified medium a vertical displacement of a fluid particle

results in a local negative fluctuation of temperature and vice versa for a negative vertical

displacement. This explanation, however does not apply for RaH = 109 where G9 is sightly

positive. The reason can found on the local temperature profile which shows neutral or

even unstable stratification in the neighborhood. About the viscous dissipation terms D,

they are maximum at the wall and fast decrease before x− = 1 even if D10 remains larger

than D9 and comparable with G10 further deep in the core of the cavity. The temperature

variance 〈Θ′Θ′〉 iso-contours are shown in Fig.3.26(b)-3.26(d). The regions interested by

high temperature variance activity are also those where the terms of 〈Θ′Θ′〉 are plotted

in Fig.3.27(b). Unlike the production term in the mean turbulent kinetic energy, PΘ is

positive for both cases even if it approaches zero for x− ≈ 7.5 at RaH = 109 because of the

almost neutral stratification as said before. On the other hand the dissipation DΘ becomes

really important at RaH = 1010 and close to the wall.

3.3 Particle deposition

The mechanisms of particle sedimentation in closed geometries with turbulent natural con-

vective currents represent an important issue for example in nuclear engineering: during

a severe nuclear accident in a Pressurized Water Reactor (PWR) which involves the rup-

ture of at least one pipe of the steam generator bundle of the primary side for instance

[CHGR+03]. The water coolant, which is in direct contact with the radioactive fuel rods, is

sprayed through the rupture in the steam generator vessel and in the most dangerous case

further aerosol leakage can contaminate the containment environment. The recirculating

currents are caused by the temperature difference between hot walls and other surfaces

due to the melting of the core and the cold walls affected by steam condensation. From

an engineering point of view the most important parameter for the design of the different

containment ambients is the deposition velocity Cd which relates the instantaneous density

flux of aerosol jp through the particle concentration Cp [Ree83]. The relation reads simply

jp = CdCp. (3.32)
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Fig. 3.27: Budget profiles of the turbulent kinetic energy transport equations and temper-

ature variance transport equation for RaH = 109, 1010 along the horizontal line

x2 = +0.3.
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It has been proved from experiments and computations that in forced bounded flows the

deposition velocity is function of the particle Stokes number [LA74, RS76, Ree83]. It is

also known that after a certain amount of time, particles of a given diameter accumulate

in the the laminar sub-layer in regions delimited by instantaneous regions of low speed

(the so called low speed streaks). Moreover the turbulent instantaneous realization of the

Reynolds stresses generates sweep and ejection events that mix the particles to fill always

the same amount of volume, leading to a constant averaged deposition velocity in time (i.e.

the concentration of the dispersed phase is expressed by an exponential decay law). As it

will be shown later, in the present case, the mechanism of sweeps and ejections does not

hold at the horizontal walls, because of the lack of strong and turbulent boundary layer,

and only partially at the active vertical walls, the deposition velocity exhibits a strong

dependency in time during the first few seconds after particle release (this is mainly due

to the choice made for estimating the particle concentration).

The computational parameters for the particle simulations are summarized in Tab.3.7.

When the flow is well established, one hundred thousand particles are injected at the same

time inside the domain at random positions, each particle having a velocity equal to the

fluid velocity. The particle tracking is carried on together with the fluid in the way that

particle positions and velocities are immediately updated after the calculation of a new fluid

field solution remaining anyway in the one-way coupling framework. When dealing with

multiphase flows the integration time-step has to be set in order to capture the dynamics

of the two phases. In dilute systems, usually the play is between the CFL condition of the

fluid and the relaxation time of the tracked particles: generally, in the case of channel flows

the leading parameter is the CFL number. On the contrary, it appears that DHC flow are

characterized by low velocities so that the CFL limit results in a much larger time-step

than the relaxation time suitable for the smallest particles here investigated (at least an

order of magnitude). The latter quantity then imposes a much stronger limitation in the

integration time-step also on the fluid phase. In view of that, three sets of particles at

RaH = 109 have been tracked separately, meaning that the three sets are advanced in time

with different time-steps. The time step must be at least less than one half of each single

Stokes number in order to be consistent with the Nyquist sampling theorem, and resolve

adequately the particle motion. For the case RaH = 1010 the tracking has been performed

using only the time-step proportional to almost one tenth of the smallest Stokes number

because of the enhanced turbulence and also because the size of the time-step can lead to

different evolutions of instantaneous flows in chaotic or turbulent regime, as depicted in

[Ler99]. It has been found anyway that there are no appreciable differences in the particle

statistics between the two methodologies and in the most expensive 3D calculations the

first approach will be employed. Finally, the walls are considered perfectly absorbing,

meaning that when a particle hits any boundary surface it sticks to it and is immediately
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RaH Np dp[µm] ρp[kg m−3] St ∆τ τf

109 1× 105 15 1000 1.26× 10−3 5.00× 10−4 134
˝ ˝ 25 ˝ 3.50× 10−3 5.00× 10−4 160
˝ ˝ 35 ˝ 6.86× 10−3 1.00× 10−3 ˝

1010 1× 105 15 1000 8.59× 10−4 1.00× 10−4 160
˝ ˝ 25 ˝ 2.39× 10−3 ˝ ˝
˝ ˝ 35 ˝ 4.68× 10−3 ˝ ˝

Tab. 3.7: Particle tracking computational parameters: Rayleigh number RaH , total number

of particles injected Np, particle aerodinamic diameter dp, particle density ρp,

Stokes number St, integration time step ∆tau, final time τf .

removed.

3.3.1 Deposition velocity

In Fig.3.28-3.30, instantaneous particle distributions at three different instants (namely

τ = 5, 25, 125) are shown in the case of RaH = 109, 1010 for the three particle diameters

(dp = 15, 25, 35 [µm]). It is possible already to see that small particles do not deposit as

quickly as the larger ones since they closely follow the flow likewise tracers. This tendency

is enhanced if the Rayleigh number increases also due to the particular dimensional scales

used in the present work that leads to decrease the Stokes number when increasing the

Rayleigh number (the opposite occurs in channel flows for instance [SM09]), hence the

particles will be more affected by the drag force. An interesting feature of this flow is

that the local concentration at the bottom wall remains the same until the core region

gets particle-free and almost no clustering (i.e. particle accumulation) is observed from a

qualitative point of view. Moreover the unsteadiness of the hook-like structure at the top

left affects the pattern of the particles giving a wavelike motion to the particle in the upper

part of the cavity and afterwards periodic structures are also visible along the vertical hot

wall produced by strong ejections of the hook-like structure. Further on, it is also possible

to observe that the cold jet gets rapidly free of particles, meaning that the joint action of

drag and gravity together with the fact that the cold boundary layer remains laminar for a

long distance are an efficient mechanism of enhancing deposition. The influence of lift and

thermophoretic forces will be addressed later but it can be stated that their influence is not

of major importance. Finally a zone where particles are suspended is depicted clearly at

the hot wall where the drag force remains sufficiently strong and in the opposite direction of

the gravity term. This latter result was experimentally found in [YKHK96]. The extension

of this region depends both on the particle size and the Rayleigh number: the theoretical
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model proposed in the following will be able to address this issue. The time evolution of

the suspended particle fraction Na/Np (Na is the actual number of airborne particles) is

shown in Fig.3.31 for two Rayleigh numbers and three diameters. Two different behaviors

can be depicted from the profiles:

• Most of the particles deposit during the first phase for dp = 25, 35 [µm] while the

mass flux, defined as the time derivative of the suspended particles is approximately

constant. This observation does not hold for small particles.

• During the second part the mass flux decreases abruptly and the profiles are charac-

terized by periodic deposition events caused by the presence of the unsteady ejections

that occur downstream the hot wall.

From a quantitative point of view the l.h.s. of Eq.(3.32) can be described as the opposite

of the rate of change of the total airborne particle mass per surface unit, i.e.

jp = −mp

S

dNa

dt
(3.33)

where mp is the mass of a single particle of a given diameter dp, S is the surface interested

by the deposition, and Na is the number of particle suspended in the domain at time t. All

the airborne particles Na are assumed perfectly mixed in the domain. Hence the actual

concentration can be written as

Cp =
mpNa

V
. (3.34)

Finally, it is possible to write Eq.(3.32) in differential form as

− 1

S

dNa

dt
= Cd

Na

V
(3.35)

and the instantaneous deposition velocity coefficient results

Cd = − V

NaS

dNa

dt
(3.36)

Integration of Eq.(3.36) from time t to (t + ∆t) yields to the final equation of a mean

deposition velocity coefficient at time t which depends also on the time-step used by the

integration.
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The resulting dimensionless deposition velocity coefficient Cd reads

Cd =
C0

∆τ
ln

(
Na(τ)

Na(τ + ∆τ)

)
(3.37)

where C0 is a constant which depends on the ratio of the dimensionless volume and the

dimensionless surface taken into consideration. In the present case C0 = 1. The correspon-

dent values of the deposition velocity coefficient are presented in Fig.3.32.

Influence of lift and thermophoretic forces

Particles deposit basically at the bottom wall as depicted in Fig.3.33-3.34 which show

the probability density function to find particles at the bottom walls defined as P =

∆nd/(∆SNp) (such that it is equal to one only when the deposition is completed) for three

different instants (∆nd is the number of deposited particles contained in a element surface

∆S of the wall). The lack of particles in the vicinity of the cold wall is due to the fact that

those particles that come from the cold jet are injected by the eddy towards the mid line

instead of impinging directly on the bottom left corner. On the other hand, the maximum

that occurs in vicinity of the hot wall is justified by the fact that there is a mean horizontal

recirculating flow that blows all the core particles, located in the lower half cavity, towards

the hot wall, and at later times, because also those which are suspended in the hot plume

tend to deposit slowly in the same region. Besides the depletion of particles at the bottom

wall it has been found that few particles actually deposit also at the cold vertical wall, the

particular shape of the mean vertical velocity boundary layers (Fig.3.11(b)-3.11(e)) and the

presence of the gravitational field lead to a characteristic mechanism of deposition due to

the lift at the cold wall. As depicted in the schema of Fig.3.36 on the cold wall there exists a

component of the lift force that drives the particles directly towards the wall. Starting from

the velocity maximum the lift force changes its direction and helps the particles to move

away from the boundary layer region going towards the inner core. Since the introduction

of the thermophoretic term, a drift in the opposite direction of the temperature gradient

is experienced by all aerosol particles. Concerning the hot wall the behavior is inverse.

In other words the lift and the thermophoretic force drive particles away from the wall if

the particles are between the wall and the mean vertical velocity maximum, whereas the

fluid exerts a force directed towards the velocity maximum if the particles are suspended

in the vicinity of the outer part of the velocity boundary layer. The time evolution of

particle deposition at the cold wall is shown in Fig.3.35 where nt refers to the number

of particles stuck at the cold wall. The reader should note that larger deposition occurs

for big particles because the magnitude of the lift force is proportional to the norm of

the relative velocity which increases for big particles. Hence, it is possible to say that

the influence of the thermophoretic force is negligible in comparison with the lift. In fact
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Fig. 3.31: Time evolution of the suspended particle number fraction for three sets of particles

at RaH = 109, 1010.
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Fig. 3.32: Time evolution of the deposition velocity coefficient for three sets of particles at

RaH = 109, 1010.
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Fig. 3.33: Particle probability density function at the bottom wall for the three sets of

particles at three different times for RaH = 109.
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Fig. 3.34: Particle probability density function at the bottom wall for the three sets of

particles at three different times for RaH = 1010.
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thermophoresis gets important for smaller particles (i.e. for higher Knudsen numbers) as

expressed in Eq.(1.51) but this trend is not remarked in the measurements. Finally, since

the deposition at the cold wall takes place at the very first instants for a small amount of

particles (less than 0.2%) the phenomenon has to be related to the random distribution

of the particles at the injection time. Those that are injected sufficiently close to the cold

wall will deposit quickly under the effect of the lift force.

3.3.2 Segregation parameter: correlation dimension

In aerosol engineering it is also important to know if particles accumulate or segregate in

particular regions of the flow field in order to understand if particle clusters can influence

momentum or thermal characteristics of the carrier fluid, or in reacting flows to see if

certain reaction can be enhanced or not in certain locations of the domain. The correla-

tion dimension (also referred as fractal dimension) measures the degree of organization of

the particle patterns [GP83]. The methodology to measure the correlation dimension as

described in [FKE94] consists first in choosing a base particle and counting the number

of particles N (r) within a certain distance r of the base particle. This procedure has to

be performed for a large number of base particles. The resulting ensemble averaged value

over all the chosen base particles gives the correlation number characteristic of the swarm

of suspended particles. If N scales with r0 then particles tend to be clustered in point wise

structures; if N scales with r1 it means that particles structures are filament wise, and so

on for surfaces and volumes. Furthermore, it is important to say that in the case of in-

compressible flow the upper bound for the correlation dimension is equal to the dimension

of the domain d. In the present case particles will be perfectly uniformly distributed if N
scales with r2. In Fig.3.37 the correlation dimension defined as

D :=
d ln(N (r))

d ln(r)
(3.38)

measured at τ = 125 is plotted against the particle size. The small and medium size

particles are characterized by a uniform distribution even under the action of the flow field

and do not show particular tendency to cluster. The effect of the Rayleigh number is again

negligible for very small particles whilst for medium and big particles it plays a fundamental

role. In fact, it appears that turbulent motions and the corner eddy at the hot wall influence

strongly the structures/patterns of big size particles. The reason is found in the fact that

the ejection events are more frequent and intense at high Rayleigh number so that they

affect big particles, resulting in a correlation dimension of approximatively 1.4 because

of the formation of elongated horizontal structures as depicted in (Fig.3.30(c)-3.30(f)).

For Rayleigh RaH = 109 the ejections are very weak and large particles are less affected.

Furthermore, at a given Rayleigh number the trend of the correlation dimension shows
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Fig. 3.35: Time evolution of the cumulative fraction of particle deposited at the cold wall

for three sets of particles at RaH = 109, 1010. 97
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Fig. 3.36: Schematic representation of the deposition mechanism due to lift. Fl lift force,

ΘH hot wall, ΘC cold wall, u−vp particle relative velocity, ω = ω3 fluid vorticity.

that increasing in the particle diameter yields to departure from the uniform distribution

as expected from the theory, and the cluster along the hot boundary layer develops mainly

along one dimension (i.e. x2), so to reach the theoretical limit D → 1.
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Fig. 3.37: Correlation dimension for three sets of particles at time τ = 125 for RaH =

109, 1010.

98



Chapter 4

Differentially heated cavity: Three

dimensional investigations

In the following paragraphs three laminar benchmark cases at different Rayleigh numbers

(RaH = 104, 105, 106) are compared with the results provided in the literature and a de-

tailed discussion about the more significant features of the three dimensional differentially

heated cavity is provided.

The second part of the chapter is devoted to the study of the turbulent flow at (RaH =

109, 5 × 109). Following the same structure proposed in the previous chapter, first and

second order statistics are discussed as well as the time averaged Navier-Stokes equations,

and the most important terms appearing in the turbulent kinetic energy and tempera-

ture variance equations. Anisotropy maps and time-signal analysis (probability density

functions, autocorrelation function and power spectral densities) are used to characterize

the turbulence inside the cavity. Finally the description of the mechanism that produces

turbulent kinetic energy is explained.

The third and last part treats the problem of deposition of three sets of particles of aero-

dynamic diameter dp = 15, 25, 35 [µm] at RaH = 109 and a simple theoretical deposition

model is proposed to interpret the numerical results obtained.

4.1 Steady laminar flows

A cubical enclosure is filled with air (Pr = 0.71) at the reference temperature of TR =

293.15[K]. Two opposite vertical walls are kept at uniform temperature with an imposed

temperature difference between them of 42.97[K], the other four walls are adiabatic. The

schema of the cavity and the boundary conditions are shown in Fig.4.1. The fluid mo-

tion is described by the Boussinesq equations Eq.(1.14)-(1.16), recalled here, in vector
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dimensionless form (the symbol “ˆ” has been dropped for the sake of simplicity)

∇ · u = 0 (4.1)

∂u

∂τ
+ u ·∇u = −∇p+

Pr√
Ra

∆u− PrΘ g

|g|
(4.2)

∂Θ

∂τ
+ u ·∇Θ =

1√
Ra

∆Θ (4.3)

with the following boundary conditions for velocity and temperature

u = 0 in ∂Ω (4.4)

Θ(x1 = ±0.5, x2, x3, τ) = ∓0.5 ∀(x2, x3) ∈ [−0.5,+0.5]2, (4.5)

∂Θ

∂x2

(x1, x2 = ±0.5, x3, τ) = 0 ∀(x1, x3) ∈ [−0.5,+0.5]2, (4.6)

∂Θ

∂x3

(x1, x2, x3 = ±0.5, τ) = 0 ∀(x1, x2) ∈ [−0.5,+0.5]2. (4.7)

The initial conditions imposed for the laminar steady-state are

u0 = u(x1, x2, x3, τ = 0) = 0 in Ω, (4.8)

Θ0 = Θ(x1, x2, x3, τ = 0) = −x1 in Ω. (4.9)

It is well known that steady solutions of the OB equations in symmetric geometries present

the so called centro-symmetry properties (see also [CGS02, dXD03]) expressed by

(ui, p,Θ)(x1, x2, x3) = −(ui,−p,Θ)(+0.5− x1,+0.5− x2, x3), (4.10)

and in addition a planar symmetry with respect to x3 = 0,

(u1, u2, u3, p,Θ)(x1, x2, x3) = (u1, u2,−u3, p,Θ)(x1,+x2, x3 − 0.5). (4.11)

The previous two relations have been used in order to assert the convergence of the sim-

ulation together with the ratio of the smallest and largest spectral coefficients. Tab.4.1

shows the max-norm (|| ||∞) and 1-norm (|| ||1) of the error in the symmetry properties at

the different Rayleigh numbers for different meshes. The comparison of several quantities

obtained in the present work with those provided in [TLB00, WS04] is performed spanning

three orders of magnitude of Rayleigh numbers (RaH = 104, 105, 106), and the results are

reported in Tab.4.2-4.3. The quantities under investigation are:

• The maximum of the absolute value of velocity components |u1|Max, |u2|Max, |u3|Max in
the whole domain and their location (x1, x2, x3)Max;

100



4.1. STEADY LAMINAR FLOWS

Fig. 4.1: Schematic representation of the cubical DHC with boundary conditions.

• The maximum of the absolute value of the horizontal velocity component in the vertical
streamwise mid-plane (x3 = 0) |u1|p,Max and its location (x1, x2)p,Max;

• The maximum of the absolute value of the vertical velocity component along the vertical
streamwise mid-plane |u2|p,Max and its location (x1, x2)p,Max;

• The maximum of the absolute value of the horizontal velocity component along the vertical
centerline |u1|l,Max and its location x2,Max;

• The maximum of the absolute value of the vertical velocity component along the horizontal
centerline |u2|l,Max and its location x1,Max;

• The spanwise component of the vorticity vector measured at the cavity center |ω3|c =∣∣∣∂u2
∂x1
− ∂u1

∂x2

∣∣∣
x=0

;

• The stratification coefficient at the cavity center |ς|c =
∣∣∣ ∂Θ
∂x2

∣∣∣
x=0

;

• The mean Nusselt number at the hot wall NuH ;

• The mean Nusselt number at the vertical spanwise mid-plane NuM ;

The Nusselt numbers at the wall or at the mid-plane is a straightforward extension of the

two dimensional Eq.(3.13)

NuS =
1

S

∫
S

NuS · n ds (4.12)
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Regarding the techniques employed in the present work and in [TLB00] for the identification

of the maxima and their positions we refer to the previous chapter. Note that in [WS04], the

solutions are obtained by a fourth-order central difference scheme (the governing equations

are written in vorticity-vector potential form), and Richardson extrapolation together with

least square method are used to find the maxima and their positions. The maximum values

and their positions reported in Tab.4.2-4.3 are in good agreement with those published in

[TLB00]. Some discrepancies are detected between the present results and [WS04] probably

because their simulations did not fully converge (as the difference in the Nusselt numbers

at the hot and mid planes suggests) and also because of the spatial discretization method

employed on rather coarse grids.

||Ecs||∞ ||Ecs||1 ||Epl||∞ ||Epl||1 S

R
a

H
=

1
0

4

N
i

=
6
5

u1 2.4× 10−11 9.6× 10−12 2.6× 10−11 2.3× 10−16 1.3× 10−7

u2 1.6× 10−11 8.0× 10−12 1.4× 10−11 5.5× 10−16 1.9× 10−7

u3 6.4× 10−11 8.0× 10−12 3.7× 10−10 6.4× 10−15 2.0× 10−6

p 3.7× 10−11 1.5× 10−11 1.2× 10−10 1.6× 10−15 1.1× 10−5

Θ 3.4× 10−11 3.6× 10−11 9.8× 10−12 2.9× 10−17 1.9× 10−8

R
a

H
=

1
0

5

N
i

=
1
2
9

u 3.9× 10−10 9.5× 10−11 3.6× 10−10 1.4× 10−15 2.8× 10−8

u2 3.1× 10−10 4.2× 10−11 1.5× 10−10 3.4× 10−16 1.7× 10−8

u3 2.4× 10−10 2.4× 10−10 4.9× 10−10 1.6× 10−14 1.9× 10−7

p 7.1× 10−10 3.5× 10−10 2.9× 10−9 1.4× 10−16 4.1× 10−6

Θ 3.6× 10−10 2.4× 10−10 6.7× 10−11 7.5× 10−18 3.5× 10−9

R
a

H
=

1
0

6

N
i

=
1
2
9

u 1.4× 10−8 2.2× 10−9 1.2× 10−8 6.7× 10−14 1.5× 10−7

u2 9.2× 10−9 1.2× 10−9 3.8× 10−9 2.0× 10−14 7.5× 10−8

u3 1.2× 10−8 1.2× 10−9 2.3× 10−8 9.6× 10−13 1.0× 10−6

p 2.1× 10−8 1.1× 10−8 1.0× 10−7 1.8× 10−15 5.3× 10−6

Θ 1.0× 10−8 6.8× 10−9 4.0× 10−9 2.8× 10−16 1.4× 10−8

Tab. 4.1: Max-norm, 1-norm of the error in the planar and centro-symmetry properties

and spectral coefficient ratio S for each field at RaH = 104, 105, 106.
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Present [TLB00] [WS04]

R
a

H
=

1
0

4

Grid 653 813 Extrapolated

|u1|Max 0.1672 0.d1672 –

(x1, x2, x3) (0.0197, 0.3249, 0) (0.0196, 0.3250, 0) –

|u2|Max 0.1898 0.1898 –

(x1, x2, x3) (0.3834, 0.0269,−0.2309) (−−, 0.0206, 0.2308) –

|u3|Max 0.0216 0.0216 –

(x1, x2, x3) (0.3823, 0.3448,−0.2826) (0.3823, 0.3447, 0.2826) –

|u1|p,Max 0.1672 0.1672 –

(x1, x2) (0.0197, 0.3249) (0.0196, 0.3250) –

|u2|p,Max 0.1868 0.1868 –

(x1, x2) (0.3870, 0.0219) (0.3870, 0.0219) –

|u1|l,Max 0.1670 0.1672 0.1672

(x2) (0.3262) (0.3244) (0.3250)

|u2|l,Max 0.1863 0.1862 0.1867

(x1) (0.3841) (0.3802) (−0.3823)

|ω3|c 0.9284 – 0.9284

|ς|c 0.8622 – 0.8634

NuH 2.0551 2.0542 2.0624

NuM 2.0551 – 2.0636

R
a

H
=

1
0

5

Grid 1293 813 Extrapolated

|u1|Max 0.1389 0.1388 –

(x1, x2, x3) (0.1840,−0.3873,−0.2203) (−0.1841, 0.3873, 0.2203) –

|u2|Max 0.2247 0.2247 –

(x1, x2, x3) (0.4304, 0.603× 10−2,−0.3736) (0.4304, 0.604× 10−2, 0.3736) –

|u3|Max 0.0301 0.0307 –

(x1, x2, x3) (−0.4175,−0.3800,−0.3390) (0.4175, 0.3801, 0.3390) –

|u1|p,Max 0.1362 0.1362 –

(x1, x2) (0.1864,−0.3848) (−0.1865, 0.3848) –

|u2|p,Max 0.2070 0.2069 –

(x1, x2) (0.4368, 0.1005) (0.4368, 0.1000) –

|u1|l,Max 0.1191 0.1188 0.1193

(x2) (−0.3536) (0.3535) (0.3500)

|u2|l,Max 0.2069 0.2062 0.2076

(x1) (0.4361) (0.4330) (−0.4323)

|ω3|c 0.2153 – 0.2168

|ς|c 1.0824 – 1.0867

NuH 4.3370 4.3370 4.3665

NuM 4.3370 – 4.3648

Tab. 4.2: Comparison of 3D DHC flow results with the benchmark data of [TLB00, WS04]

for RaH = 104, 105.
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Present [TLB00] [WS04]

R
a

H
=

1
0

6

Grid 1293 813 Extrapolated

|u1|Max 0.1270 0.1270 –

(x1, x2, x3) (0.3056,−0.4365,−0.2997) (−0.3057, 0.4365, 0.2997) –

|u2|Max 0.2367 0.2367 –

(x1, x2, x3) (0.4604, 0.0265, 0.2498) (0.4604, 0.0265, 0.2499) –

|u3|Max 0.0256 0.0256 –

(x1, x2, x3) (−0.4512,−0.4168,−0.3983) (0.4518, 0.4148, 0.3983) –

|u1|p,Max 0.1235 0.1235 –

(x1, x2) (0.3133,−0.4366) (−0.3133, 0.4366) –

|u2|p,Max 0.2183 0.2183 –

(x1, x2) (0.4638, 0.0353) (0.4638, 0.0353) –

|u1|l,Max 0.0683 0.0682 0.0683

(x2) −0.3556() (0.3536) (0.3603)

|u2|l,Max 0.2175 0.2176 0.2177

(x1) (0.4626) (−0.4669) (−0.4677)

|ω3|c 0.1144 – 0.1151

|ς|c 0.9086 – 0.9175

NuH 8.6402 8.6407 8.6973

NuM 8.6402 – 8.7097

Tab. 4.3: Comparison of 3D DHC flow results with the benchmark data of [TLB00, WS04]

for RaH = 106.
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Results and discussion

Velocity, temperature and pressure iso-surfaces for x3 ≤ 0 (half domain) are shown in

Fig.4.2-4.4. First of all the reader should note that the presence of the lateral walls induces

a multilayer onion-like structures for all the velocity fields. At RaH = 104 the horizontal

velocity component shows two interacting Boundary Layers (BLs) with maximum and

minimum located at x1 ≈ 0 and x3 ≈ 0. As seen for the two-dimensional calculations,

with increasing the Rayleigh number the horizontal velocity maximum and minimum shift

towards the corners where the flow turns from the vertical to the horizontal direction while

the BLs separate. Furthermore it is possible to observe the diffusion of the momentum

right after the turning in Fig.4.3(c) (green iso-surfaces). In Fig.4.3(d)-4.3(f) are shown the

iso-surfaces of the vertical velocity component that clearly depicts the decrease in size of the

vertical BL thickness with the increase of the Rayleigh numbers. Hence, it appears that for

increasing Rayleigh number the laminar flow structures tend to be less and less influenced

by the two side walls leading to a quasi two-dimensional flow away from the lateral adiabatic

walls. Anyway the variation of the third component of velocity at the corners introduces

one term in the continuity equation leading to a peculiar shape at the sides of the horizontal

velocity component iso-surfaces with high velocity values that extend towards the opposite

active wall (this result is also reflected in the local Nusselt number distribution on the

mid-plane in [BH06]). It is clear from the spanwise component of velocity (Fig.4.3) that

at low Rayleigh number there exists mass flux that drives fluid particles from the lateral

walls towards the center of the cavity and back to the top and bottom walls. For higher

Rayleigh numbers the transport of fluid particles takes place near the corner regions. A

negative spanwise velocity characterizes the flow close to the edges where suction events

take place due to the formation of the vertical natural convective boundary layers. The

temperature iso-surfaces underline the increase of the vertical stratification as the Rayleigh

number increases. In fact, it is possible to say that for RaH = 104 the transfer of energy is

mixed between conduction and convection whereas at RaH = 106 the conductive transport

becomes negligible in comparison with the convective one. The reader should also notice

that at high Rayleigh numbers the top and bottom regions are characterized by a weak

temperature gradient in the vertical direction thanks to the adiabatic horizontal walls.

Finally the pressure fields (Fig.4.4) confirm the finding that the pressure behaves in the

same way as the temperature (i.e. it stratifies) because it balances the buoyancy force in

the vertical direction appearing in the momentum equation. Departures from this behavior

are localized at the suction edges and where the vertical jets impinge the horizontal walls.

More in detail, Fig.4.5 shows the vertical velocity profiles against the scaled distance from

the vertical hot wall x− (Eq.(3.16)) at three different heights (namely x2 = −0.3, 0.0, 0.3)

on the streamwise mid-plane (x3 = 0). In the present cases the scaling of the momentum

BL well describes the thickening of the vertical velocity profile at the mid-height, whereas
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that observation does not hold at top and bottom of the cavity. Because in the lowest

Rayleigh number case the conduction is not negligible in comparison with the convection.

Furthermore, it is interesting to note the presence of counter flows in the outer part of

the vertical BLs. The velocity profiles obtained experimentally in [KJ83, MJHL08] do

not match those of the present simulations basically because of the fact that in both

experiments the four lateral walls are not perfectly adiabatic. On the other hand the

thermal BLs (see Fig.4.6) match very well for the two largest Rayleigh values at the bottom

and mid-height, whereas due to impingement and the influence of conduction the scaling

does not apply at the top of the hot wall. The vertical temperature profiles at the center-

line (Fig.4.7) clearly enlighten an almost linear stratification of flow and the tendency to

increase the zones of approximate constant temperature at the top and the bottom walls

induced by the thermal insulation. Moreover, the local temperature stratification plotted

in Fig.4.8 against the vertical direction is compatible with those presented in the two

dimensional case (see Fig.3.8). The largest components of the momentum flux at the hot

and top walls are shown in Fig.4.9, where

τw,x2 = τ12 =
Pr√
RaH

(
∂u1

∂x2

+
∂u2

∂x1

)
x1=−0.5

, (4.13)

and

τw,x1 = τ21 =
Pr√
RaH

(
∂u2

∂x1

+
∂u1

∂x2

)
x2=+0.5

. (4.14)

The maximum of the wall shear stresses occurs at the hot wall before mid-height. As

previously observed in the 2D cases, on the top wall with increasing the Rayleigh number

the streamwise component of the shear stress becomes smaller indicating the fact that

the formation of a boundary layer is contrasted by the almost isothermal fluid in the

neighbors. Moreover, the lateral walls do not affect in a sensible way the momentum

transfer as the Rayleigh number increases. This statement will be also confirmed in the

following section. And finally the reader should note the absence of detachment on the

top wall because of the relatively low Rayleigh numbers (indeed in the two-dimensional

calculations detachment and reattachment regions occur only for RaH > 107). Concluding

this section, it is important to stress how the adiabatic walls affect the Nusselt number

distribution also on the active walls (see Fig.4.10). In fact, it is possible to see that close

to the lateral walls (x3 = ±0.5) there is a defect in the heat transfer due to local decrease

of the temperature gradient normal to the active wall induced by a weaker convective

boundary layer. As already stressed, the effect becomes less and less important as the

Rayleigh number increases.
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Fig. 4.5: Vertical velocity component profiles at the mid-plane (x3 = 0) for different heights

x2 = −0.3, 0.0, +0.3 with respect to the distance from the hot wall x−.
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Fig. 4.6: Temperature profiles at the mid-plane (x3 = 0) for different heights x2 =

−0.3, 0.0, +0.3 with respect to the distance from the hot wall x−.
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Fig. 4.7: Temperature profiles along the vertical center-line.
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Fig. 4.8: Temperature stratification coefficient ς along the vertical center-line.
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(a) RaH = 104 (b) RaH = 105

(c) RaH = 106

Fig. 4.9: Iso-contours of the shear stress components along x1 and x2, on the top and hot

walls respectively, for RaH = 104, 105, 106.
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4.2 Turbulent flow

Above the critical Rayleigh number which has been found to beRa3D
c ≈ 3.3×107 (see [JH96,

TLB00]) the flow becomes periodic and at RaH = 109 is expected to be turbulent ([Fus94]).

To the author’s knowledge only [JH96, TLB00, ?, dXD03] reported accurate results of

direct numerical simulations in a fully enclosed cubical domain at slightly sub-critical and

critical Rayleigh numbers (Rac ≈ 3.3 × 107), in order to address the identification of

the mechanism which yields the first transition to unsteadiness (due to Kelvin-Helmholtz

instability of the turning and detaching impinging jets at the horizontal walls away from

the lateral walls), and supercritical Rayleigh number for characterizing the time averaged

flows and turbulence intensity (Ra = 1.5 × 109). In [dXD03] the authors put in evidence

that at the first bifurcation for Rac = 3.2× 107 there is formation of vortex structures at

the end of the vertical active walls near the median plane. Moreover a further increment

of the Rayleigh number up to RaH = 108 shows a return to steady state solution of the

flow, whereas for RaH ≥ 3 × 108 the flow becomes newly unsteady (due to the vertical

boundary layer instability). In the present work not such a behaviour (i.e. the return to

steadiness) has been remarked when looking at the solutions spanning from RaH = 3.3×107

to RaH = 108, this is probably also due to the the short total integration time used in

the present research that aimed to reach higher Rayleigh numbers. Some snapshots of the

instantaneous temperature iso-contours at the streamwise vertical midplane are shown in

Fig.4.11-4.12 for RaH = 109. It is important to notice that the instantaneous flow has lost

the symmetry properties (even if the centro- and plane-symmetry still hold for the mean

fields). Furthermore, the time evolution shows the unsteadiness of the flow in the turning

corner regions. In fact the hook-like structures (created by the diffusion of the turning

jets) change of curvature resulting in a wide open hook or in more close hook structure.

This behavior is almost periodic in time and it is the origin of the gravity waves that take

place in the stratified core region and will be related later on to the mechanism of enhanced

production of turbulent kinetic energy. In order to study the statistical properties of these

chaotic systems, a large database has been created using as initial conditions interpolated

fields, solutions at lower Rayleigh number. The possible influence in the statistics of the

change of the initial boundary conditions at the initial stage of the computations has

been avoided letting this numerical perturbation fading away before starting the sampling

of the database. The dimensionless time needed to dissipate the effect of the sudden

change in the boundary conditions depends on the difference between the Rayleigh numbers

employed and on the grid, but in general it is of the order O(
√

∆RaH) ([PI80, LQB98]).

The averaging time is taken sufficiently large to ensure low residuals in the time-averaged

momentum and energy equations as it will be discussed later on in the text. A summary

of the computational parameters is provided in Tab.4.5.
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||Ecs||∞ ||Ecs||1 ||Eps||∞ ||Eps||1 S

〈u1〉 4.268× 10−2 2.581× 10−3 1.324× 10−2 2.814× 10−6 7.319× 10−6

〈u2〉 3.226× 10−2 6.017× 10−4 3.588× 10−3 6.293× 10−7 3.203× 10−6

〈u3〉 1.545× 10−1 4.609× 10−3 1.047× 10−1 3.233× 10−5 3.000× 10−5

〈p〉 2.464× 10−3 1.822× 10−4 2.355× 10−3 9.568× 10−8 3.103× 10−6

〈Θ〉 1.229× 10−2 3.877× 10−4 7.922× 10−4 1.041× 10−7 4.597× 10−7

Tab. 4.4: Max- and one- norms of errors committed in the centro- and planar- symmetries

and ratio of the smallest to the largest spectral coefficients.

4.2.1 Mean fields

As stated in the previous section the mean fields preserve the centro- and plane- symmetries

and table Tab.4.4 reports the max- and one- norms.
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(a) RaH = 104 (b) RaH = 105

(c) RaH = 106

Fig. 4.10: Local Nusselt number contours at the hot wall for RaH = 104, 105, 106.
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RaH N1 = N2 = N3 min(∆xi) max(∆xi) ∆τ Sampl. freq. Ave. time

109 169 8.742× 10−5 9.394× 10−3 5× 10−3 10 470.0

Tab. 4.5: Computational parameters: polynomial degrees N1, N2, N3, minimum and maximum
grid size ∆xi, integration time-step ∆τ , number of frames per unit of time and aver-
aging time.

It appears that the three-dimensional mean flow is subject to a degradation of the

centro-symmetry property and this is actually the result of modes that lead to transition

to unsteadiness that are no longer centro-symmetric and because of the finite size of the

database, on the other hand the plane symmetry is orders of magnitude less than the centro-

symmetry indicating that the spanwise instability modes are less crucial. Following the

analysis performed in the two-dimensional case, the mean profiles of the vertical velocity

component and the temperature measured at the mid-plane (x3 = 0) at three different

heights are reported in Fig.4.13-4.14 for RaH = 109. The profiles resemble closely those

obtained in the two dimensional calculations shown in Fig.3.13-3.14 for the same Rayleigh

number (as comparison are reported also the 2D velocity and temperature profiles at

x2 = +0.3). Hence, there is confirmation of the fact that as the Rayleigh number increases

the three-dimensionality of the mean flow is negligible at the active walls. The profiles of

the mean temperature field along the vertical centerline and the stratification coefficient

(Fig.4.15-4.16) show, again, a clear stratified core region (ς ≈ 1) and the top/hot and

bottom/cold zones where the vertical spatial temperature changes are small. In fact due

to the adiabatic horizontal walls and the heat flow transported mainly by convection, the

local neighborhood close to the top and bottom wall present almost uniform temperature

spatial distribution. The Nusselt number distribution at the hot wall (Fig.4.17) shows a

very high peak at the bottom. In fact it appears that this configuration of cavity does not

take too much advantage from the turbulent flow at moderately high Rayleigh numbers

because of the vertical stratification that inhibits the heat transfer downstream at the

active walls. In the same way the shear stress at the hot and top walls (Fig.4.19) follows

the behavior already described in Chap.3.2 showing detachment and reattachment zones at

the top wall close to the edge where the jet turns. The three-dimensional distributions of

the time-averaged velocity components, temperature and pressure are provided in Fig.4.20.

All the characteristics described in the two-dimensional flow at RaH = 109 can be extended

to the present case in the whole domain but very close to the adiabatic side walls. Besides

that three-dimensional effects become more important for the horizontal and spanwise

component of velocity. In fact, the occurrence of a modulated wavy-like pattern is clearly

visible in the spanwise direction of the streamwise velocity component right after the wall

jets have negotiated the corners. This behavior is a direct consequence of the instability
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Fig. 4.13: Time-averaged vertical component velocity profiles at different heights x2 = −0.3,

0.0, +0.3 on the mid-plane x3 = 0 with respect to x−.

-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8

〈Θ
〉

x−

x2 = −0.3

x2 = 0.0

x2 = +0.3

x2D
2 = +0.3

Fig. 4.14: Time-averaged temperature profiles at different heights x2 = −0.3, 0.0, +0.3 on

the mid-plane x3 = 0 with respect to x−.
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Fig. 4.15: Time-averaged temperature profile along the vertical center-line.
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Fig. 4.16: Time-averaged temperature stratification coefficient along the vertical center-line.
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Fig. 4.17: Time-averaged Nusselt number distribution at the hot wall (x1 = −0.5) for

RaH = 109.
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Fig. 4.18: Comparison of time-averaged Nusselt profile along the hot wall centerline 〈Nu〉,
the 3D spanwise mean 〈Nu〉 and the two dimensional distribution 〈Nu〉2D at

RaH = 109.
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Fig. 4.19: Time-averaged shear stress vertical and horizontal components (τ12 and τ21) at

the hot and top wall respectively at RaH = 109.

mechanism and the Reynolds stresses will present the same characteristics.
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4.2. TURBULENT FLOW

Reynolds stresses and turbulent heat flux

The spatial distribution of the components 〈u′iu′j〉 of the Reynolds stress tensor is reported

in Fig.4.21 in the region x3 < 0. It is worth to remark that the quantities under in-

vestigation show three-dimensional structures with a wavy character along the spanwise

direction. This is due to the mechanism that drives the flow to unsteadiness as stated

in [JH96, HL96]. Indeed, Janssen et al. [HL96] have found that the Kelvin-Helmholtz

type instability related to the separation of the flow from the horizontal adiabatic walls

is modulated along the spanwise direction with a characteristic wave-length resulting in

a three-dimensional wavy patterns1 that persists also at Rayleigh numbers two orders of

magnitude larger then the critical Rayleigh number (Ra3D
c ≈ 3.3 × 107). Hence, even if

the mean flow shows basically two dimensional features in the boundary layers (i.e. no

wave motion is encountered) and the instability mechanism is the same as for the square

cavity, the latter has an intrinsic three-dimensional nature that manifests downstream the

separation at the horizontal walls.

It should be noted that the maxima of the velocity covariances are located in different

regions depending on the velocity component considered. The covariance of the fluctua-

tions of the horizontal velocity component shows high intensity along the active walls in

the outer part of the time-averaged boundary layer. On the other hand the variance of the

vertical velocity fluctuations 〈u′2u′2〉 (Fig.4.21) reaches its maxima in the region interested

by the unsteady hook-like structures. Moreover, the latter term provides the main contri-

bution to the turbulent kinetic energy k, since the spanwise fluctuation covariance 〈u′3u′3〉
is characterized by low intensity with respect to the others (at least one order of magni-

tude less). Moreover, as already depicted in the two-dimensional simulations presented in

the previous chapter, there exists some turbulent activity in the outer part of the laminar

boundary layer where vertical counter flow occurs.

Concerning the off diagonal terms 〈u′iu′j〉, i 6= j of the symmetric Reynolds stress tensor,

it is noteworthy to say that even in the fully three-dimensional case the term 〈u′1u′2〉 shows

high positive values in the region where the boundary layer undergoes oscillations gen-

erating Tollmien-Schlichting waves. Furthermore it is located in the thin region between

the mean velocity maximum and the outer counterflow. This peculiarity of the Reynolds

stresses has been found also in [TSOPS07] for a cavity with an aspect ratio (height/length)

of four. Finally it is also noteworthy to say that modest turbulent activity is always present

in the region affected by the unsteady hook-like structure.

1This behavior can be enhanced or reduced depending on the Prandtl number and cavity spanwise
aspect ratio.
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(a) 〈Θu′1〉 (b) 〈Θ′u′2〉

(c) 〈Θ′u′3〉

Fig. 4.22: Turbulent heat flux in the half domain x3 < 0. Levels for 〈Θ′u3〉 = ±2× 10−5

Continuing the analysis of the turbulent quantities it is important to describe the behavior

of the turbulent heat flux 〈Θ′u′i〉 (Fig.4.22). One interesting and unexpected property of

the turbulent heat flux is that its vertical component, i.e. 〈Θ′u′2〉, shows negative values

along the turbulent vertical boundary layers working against the mean convective heat

flux 〈Θu2〉 that is positive and streamwise directed. As seen before for the Reynolds stress
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||Res(〈u1〉)||1 ||Res(〈u2〉)||1 ||Res(〈u3〉)||1 ||Res(〈Θ〉)||1
RaH = 109 3.054× 10−5 8.924× 10−5 1.299× 10−5 6.010× 10−5

Tab. 4.6: One-norm of the residuals of the time-averaged momentum and energy transport

equations.

terms 〈u′iu′3〉, all the quantities related to the spanwise fluctuations are very weak and

located close to the adiabatic side walls.

4.2.2 Time-averaged momentum and energy budgets

The dimensionless governing equations of the mean quantities written in index notation

read ([MY07])

∂〈ui〉
∂xi

= 0 (4.15)

∂〈ui〉
∂τ

+ 〈uj〉
∂〈ui〉
∂xj︸ ︷︷ ︸

CTM

= − ∂〈p〉
∂xi︸︷︷︸
PG

+
Pr√
RaH

∂2〈ui〉
∂u2

j︸ ︷︷ ︸
V D

−
∂〈u′iu′j〉
∂xj︸ ︷︷ ︸
RS

+Pr〈Θ〉δi2︸ ︷︷ ︸
BT

(4.16)

∂〈Θ〉
∂τ

+ 〈ui〉
∂〈Θ〉
∂xi︸ ︷︷ ︸

CTT

=
1√
RaH

∂2〈Θ〉
∂x2

i︸ ︷︷ ︸
TD

− ∂〈u
′
iΘ
′〉

∂xi︸ ︷︷ ︸
THF

. (4.17)

where 〈u′iu′j〉 and 〈Θ′u′i〉 are the Reynolds stress tensor and the turbulent heat flux respec-

tively. Theoretically, for a statistically steady flow the accumulation terms, identified by

the time-derivatives, are zero. In practice, the balances defined as the residual Res of the

mean Boussinesq equations at every collocation point,

Res(〈ui〉) =

∣∣∣∣〈uj〉∂〈ui〉∂xj
+
∂〈u′iu′j〉
∂xk

+
∂〈p〉
∂xi
− Pr√

RaH

∂2〈ui〉
∂x2

j

− Pr〈Θ〉δi2
∣∣∣∣ (4.18)

Res(〈Θ〉) =

∣∣∣∣〈uj〉∂〈Θ〉∂xj
+
∂〈Θ′u′j〉
∂xk

− 1√
RaH

∂2〈Θ〉
∂x2

j

∣∣∣∣ (4.19)

give a measure of the error introduced by selecting a finite number of samples in a finite

time interval. For the present calculations, in both cases the 1-norm of the residuals are of

the order O(10−4) or less, as shown in Tab.4.6. The low residuals in the averaged fields are

a proof of the correctness of the sampling frequency and the length of the averaging time of

the databases. It is worth to note that the iso-surfaces of 〈u′1u′2〉 show a sort of wavy shape

along the spanwise direction that can be related to the spanwise disturbances that lead to

unsteadiness as pinpointed in [HL96]. The terms appearing in the second component of
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the mean momentum conservation law evaluated at the horizontal and vertical center-lines

are shown in Fig.4.23. Close to the active walls (0 ≤ x− ≤ 2) the dominant terms are

the buoyancy force and the viscous one and they interest almost all the boundary layer

thickness. Not completely negligible is the contribution of the convective part that becomes

comparable to the BT and VD for x− > 1. On the other hand the budgets along the vertical

centerline show again a play between two dominant effects: again the buoyancy force but

this time the pressure gradient. The main reason is due to the occurrence of thermal

stratification away from the active vertical walls and downstream the expansion after the

plumes have negotiated the corner regions as explained in Sec.3.2.1. Furthermore it is

also important to note that the budgets of the horizontal and spanwise components of the

mean Navier-Stokes equations are several orders of magnitude less than those appearing

in the second component, stressing that the energy and momentum coupling through the

buoyancy term causes strong effects along the vertical direction (either in the boundary

layers either in the core region) that are balanced by the mean fields rather than the

turbulent ones. In fact Fig.4.24 depicts the mean momentum budgets of the first component

of the velocity along the vertical direction, for which the buoyancy does not play any direct

role, that convective term (CTM), pressure gradient (PG), viscous dissipation (VD) and

Reynolds stresses (RS) are comparable between 0.2 < x2 < 0.4 (−0.4 < x2 < −0.2 for

symmetry). It is worth to notice that pressure and viscous effects are both positive (around

x2 ≈ 0.35) in order to balance the Reynolds stresses and the convective term which becomes

important. It is possible to see that the horizontal motion is decelerated by diffusion and

by an adverse pressure gradient. Moreover, very close to the adiabatic walls the largest

forces are those coming from the viscous dissipation and the pressure gradient.

Referring to Fig.4.25, the time-averaged energy budgets along the horizontal centerline

show again a similar behavior to the two dimensional square cavity (Fig.3.23).

4.2.3 Turbulence characterization

Natural convective turbulence is quantified by the turbulent kinetic energy k = 〈u′iu′i〉/2
and temperature variance 〈Θ′Θ′〉 (Fig. 4.26(a)).The maximum of the turbulent kinetic en-

ergy is located in the center of the hook-like structure (pkmax = (−0.3469, 0.3601,−0.1113))

as for 〈u′2u′2〉. The wavy modulation in the spanwise direction is still recognizable. The

total mean kinetic energy 〈e〉 and its decomposition in the kinetic energy contained in the

mean flow 〈K〉 = 1/2(〈ui)〉2 and in the turbulent flow k = 1/2u′iu
′
i is shown in Tab.4.7. It

can be seen how the turbulent kinetic energy represents only the five percent of the total

averaged kinetic energy of the flow. In comparison with the values reported in Tab.3.5,

the three dimensional turbulence appears to be less strong than in the two dimensional

case because of the spanwise modulation of the regions interested by a relatively high fluc-
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Fig. 4.23: Budget profiles of the second component of the time-averaged Navier-Stokes

equations along the horizontal (top) and vertical centerline (bottom): Convec-

tive Term (CTM), Pressure Gradient (PG), Viscous Diffusion (VD), Reynolds

Stresses (RS), Buoyancy Term (BT) and Residual (R).
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Fig. 4.24: Budget profiles of the first component of the time-averaged Navier-Stokes equa-

tions along the vertical centerline: Convective Term (CTM), Pressure Gradient

(PG), Viscous Diffusion (VD), Reynolds Stresses (RS) and Residual (R).

〈e〉Ra1/4
H 〈K〉Ra1/4

H (%) kRa
1/4
H (%)

6.99× 10−2 6.63× 10−2(95.0) 3.60× 10−3(5.0)

0.5〈u′1u′1〉Ra1/4(%) 0.5〈u′2u′2〉Ra1/4(%) 0.5〈u′3u′3〉Ra1/4(%)

1.07× 10−3(1.5) 1.77× 10−3(2.5) 7.60× 10−4(1.0)

Tab. 4.7: Total averaged kinetic energy scaled by Ra
1/4
H and its repartition between mean

flow 〈K〉 and turbulent part k in each single component 0.5〈u′iu′i〉 for RaH = 109.

tuation intensity. Furthermore, it is also interesting to show that the largest contribution

to the term k comes from 〈u′2u′2〉, even if there is not a predominant term between the

fluctuation components since they represent each one just few percents of 〈e〉. Concerning

the temperature variance, the maximum is located close to the active walls downstream

the vertical laminar boundary layers. Both distribution are in agreement on the symmetric

plane x3 = 0 with the two dimensional results. The one-dimensional profiles of the tur-

bulent kinetic energy and the temperature variance computed along the midplane x3 = 0

at x2 = 0.3 are presented in Fig.4.27. It is possible to note that the peak of k is around

x− ≈ 30 outside the boundary layer but in the corner eddy. The presence of the latter

structure causes also the local maxima closer to the wall. Alike the turbulent kinetic energy

the temperature variance 〈Θ′Θ′〉 shows a peak at x− ≈ 30. Moreover it presents less local
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Fig. 4.25: Budget profiles of the time-averaged energy equation along the horizontal and ver-

tical centerline: Convective Term (CTT), Thermal Diffusion (TD), Turbulent

Heat Flux (THF) and Residual (R).
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(a) k (b) 〈Θ′Θ′〉

Fig. 4.26: Iso-surfaces of turbulent kinetic energy and temperature variance for x3 < 0.0

with respect to x−.

extrema. Furthermore the transport equations written in index notation of such quantities

read

∂k

∂τ
+ 〈uj〉

∂k

∂xj
=

∂

∂xj

(
Pr√
RaH

∂k

∂xj
− 〈u′jk′〉 − 〈u′jp′〉

)
−〈u′iu′j〉

∂〈ui〉
∂xj︸ ︷︷ ︸

P

− Pr√
RaH

〈
∂u′i
∂xj

∂u′i
∂xj

〉
︸ ︷︷ ︸

D

+Pr〈uiΘ′〉δi,2︸ ︷︷ ︸
G

(4.20)

∂〈Θ′Θ′〉
∂τ

+ 〈uj〉
∂〈Θ′Θ′〉
∂xj

=

(
1√
RaH

∂〈Θ′Θ′〉
∂xj

− 〈u′jΘ′Θ′〉
)

−2〈Θ′u′j〉
∂〈Θ〉
∂xj︸ ︷︷ ︸

PΘ

− 2√
RaH

〈
∂Θ′

∂xj

∂Θ′

∂xj

〉
︸ ︷︷ ︸

DΘ

(4.21)

In Fig.4.28 the maximum of the production P appears around x− = 3 and for G it is worth

to note that it is always negative but mainly acting as a source term for 2.5 ≤ x− ≤ 7.5.

Finally the dissipation D has strong influence for x− ≤ 1. Unlike the production term P ,

PΘ is always positive and with the first maximum peak around x− ≈ 2. Finally the level

of temperature variance dissipation rate is rather low in comparison with D. In order to

characterize the turbulence of the present flow configuration it is necessary to sample time-

series of velocity and temperature fluctuations in the cavity. The choice of the sampling

points is rather difficult since the turbulence does not present any homogeneous direction

and the statistics shows a rather high degree of anisotropy.
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Fig. 4.27: Turbulent kinetic energy k and temperature variance 〈Θ′Θ′〉 profiles in the mid-

plane at x2 = +0.3.
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Fig. 4.28: Budget profiles of the turbulent kinetic energy and temperature variance produc-

tion and dissipation terms for RaH = 109 along the horizontal line x2 = +0.3

in the midplane x3 = 0: P turbulent kinetic energy production due to mean

shear stress, G production due to buoyancy effect, D turbulent kinetic energy

dissipation rate; PΘ temperature variance production due to mean temperature

gradient, DΘ temperature variance dissipation rate.
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Anisotropy map

In order to quantify the degree of turbulence anisotropy author have used the anisotropy

map [CL01, Pei99] that maps the second and third invariants2 (II and III respectively) of

the anisotropy tensor B = bij = 〈u′iu′j〉/(2k)− 1/3δij defined as function of the eigenvalues

ei of B in the following way

II =
1

2
[(tr(B))2 − tr(B2)] = e1e2 + e2e3 + e1e3 (4.22)

III = det(B) =
3∏
i=1

ei. (4.23)

The results presented in Fig.4.30 show the probability density function (PDF) of the second

and third invariants of the anisotropy tensor in regions of the domain characterized by three

levels of turbulent kinetic energy (i.e. k/kmax = 0.4 ÷ 0.6, k/kmax = 0.6 ÷ 0.8, k/kmax =

0.8 ÷ 1 respectively). It is important to notice that for a moderate level of turbulence

intensity (0.4 < k/kmax < 0.6) the turbulence itself can be homogeneous (point (0, 0)

in the plane of the second and third invariants), axisymmetric, or even one dimensional

(i.e. the shape of the turbulent structures presents one dominant preferential direction

and the structures can be imagined as filaments). On the other hand, the high values of

the PDF along the right branch of the map indicates that it is mostly probable that the

turbulent structures resemble cigar-like shape. Increasing the level of relative turbulent

kinetic energy leads to a reduced differentiation of the turbulent structures with a shift of

the PDF towards the one dimensional state. For very high level of k (Fig.4.30(c)) the PDF

is even more narrowed meaning that the most of the turbulent structures that contains

the higher amount of energy are axial-symmetric with an elongated axis. Indeed it can be

shown (Fig.4.26) that the region characterized by high turbulence intensity are distributed

along the axis formed by the three-dimensional hook-like structure. From this analysis, two-

dimensional disk-like structures are not present at all for a moderate level of turbulence

(i.e. k/kmax > 0.6). The instantaneous coherent structures (i.e. turbulent eddies) are

shown in Fig.4.29 at three different times, together with the instantaneous contour of the

local Nusselt number and the wall shear-stress at the hot vertical active surface. The

reader should note that a system of coupled spanwise elongated vortices grow at a certain

height of the cavity and it is then advected along the hot wall until it breaks in smaller

structures after the turning point (the same mechanism repeats symmetrically at the cold

wall). Furthermore, it appears that because of the lateral walls the vortices during their

development tend to bend at both extremities. It has also to be said, anyway, that this kind

of structures are typical of transition regions and do not belong to fully developed turbulent

2The first invariant I = tr(B) = 0.
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boundary layers flows for which the orientation of the coherent structures result aligned

to the stream-wise direction (i.e. the so-called horseshoe/hairpin vortices). Moreover,

the presence of vortices close to the active hot surface leads to local high velocity and

temperature gradients hence inducing instantaneous local maxima of heat transfer and

shear stresses at the vertical walls.

Auto-Correlation Function and Power Spectral Density

In order to characterize the turbulence in the cavity, the point of maximum turbulent

kinetic energy has been chosen. In fact, as we have seen from the anisotropy maps in

Fig.4.30 for values of turbulent kinetic energy larger than 0.6kmax, a large amount of

events show the same type of structures (elongated and axisymmetric). This means that on

average the time-signal produces similar auto- and cross-correlations in a large region where

intense turbulent activity takes place. Hence, the information obtained from the analysis of

time history of the selected point at the location of maximum k would be “representative”

of a rather large ensemble of turbulent events located at the turbulent corner regions. The

time series of velocity components, temperature fluctuations are shown in Fig.4.31-4.32.

It immediately appears that the introduction of energy in the signal is drastically reduced

in comparison with the time evolution of the fluctuating flow quantities at the point of

maximum turbulent kinetic energy production. The correspondent discrete Probability

Density Functions (PDF) of the first four signals is provided in Fig.4.33. Let us notice

that the PDFs of u′1 and u′3 show a Gaussian behavior (with a large variance in the case

of u′1), meaning that the time realizations tend to cluster around the expected value (i.e.

the mean value), whereas the PDF of the fluctuations of the second component of velocity

present two regions where the data cluster at the extrema indicating a global bimodal

distribution. The PDF of the temperature fluctuations is the only one presenting a long

tail on the right side corresponding to a positive skewness of the distribution. Moreover, as

already been stated, due to the weakness of the turbulent flow and the influence of periodic

events (i.e. the periodic motion of the hook-like structure and the wave-like instability of

the vertical boundary layers) the fluctuating quantities still show high correlation (around

0.1) in their time signals as depicted in Fig.4.35-4.36 by the Auto-Correlation Function

(ACF) in time Rφφ(∆τ), given for a general statistically steady quantity φ(τ) = 〈φ〉+ φ′

as

Rφφ(∆τ) = 〈[φ(τ)− 〈φ〉][φ(τ + ∆τ)− 〈φ〉]〉. (4.24)

It appears that each signal is correlated with itself (with a correlation coefficient around 0.1)

even for very large time distances ∆τ for all the signals. This means that periodic patterns

are hidden in the fluctuating time signal. Let us emphasize that, apart from Ru3u3 which

presents very frequent peaks (this is due to the particular position of the sampling point
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(a) τ = 5

(b) τ = 25

(c) τ = 125

Fig. 4.29: On the left: iso-contours of the instantaneous vertical component of the shear

stress at the wall (−0.5 ≤ x3 ≤ 0) and instantaneous local Nusselt number

iso-contours (0 ≤ x2 ≤ 0.5). On the right: instantaneous coherent structures

identified by λ2 = −0.5.
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(a) 0.4 < k/kmax ≤ 0.6 (b) 0.6 < k/kmax ≤ 0.8

(c) 0.8 < k/kmax ≤ 1

Fig. 4.30: Probability density function of the second and third invariants of the anisotropy

tensor B in regions characterized by three different levels of turbulent kinetic

energy k.
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Fig. 4.31: Time-history of the fluctuating part of the three velocity components

sampled at the point of maximum turbulent kinetic energy pkmax ==

(−0.3469, 0.3601,−0.1113) .
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Fig. 4.32: Time-history of the temperature fluctuations sampled at the point of maximum

turbulent kinetic energy pkmax == (−0.3469, 0.3601,−0.1113).

that lays on symmetry mid-plane x3 = 0), the other autocorrelation coefficients manifest

high peaks that repeat at distance of about 10 ÷ 20 time distance. The auto-correlation

function is useful to estimate the integral time-scale T of the time signal. This quantity

provides information on the longest time where the signal is correlated with itself. From a

theoretical viewpoint the integral time scale is measured as

T =

∞∫
0

Rφφ(∆τ)d(∆τ). (4.25)

In practice, since the auto-correlation function is measured over a finite time distance (∆τ)

and because the signal presents non negligible correlation and negative loops also for large

values of the time distances, the numerical integration of Eq.(4.25) is not trivial and can

lead to wrong estimations due to the poor convergence in the tails of the ACF. Thus, two

alternative methods proposed in the literature are used in order to estimate T :

1. Integration up to the first root (zero-crossing) T0 [KP95];

2. Integration up to the first minimum Tmin [Tri88].

The corresponding values are reported in Tab.4.8. It appears that the maximum time for

which the signal is strongly correlated with itself, i.e. the life time of the largest turbulent

vortex, is around two units of dimensionless time. This means that the largest turbulent

structure is rather persistent in time. This is a confirmation of the fact that the regime

is only weakly turbulent even if the Rayleigh number is almost two orders of magnitude

greater than the critical Rayleigh number (that marks the first transition to periodicity).
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Fig. 4.33: Probability Density Functions ( PDF) of velocity component fluctuation time-

histories.
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Fig. 4.34: Probability Density Functions ( PDF) of temperature fluctuation time-histories.

T0 Tmin
u′1 1.96 1.75

u′2 2.63 2.40

u′3 1.52 1.23

Θ′ 1.84 1.70

Tab. 4.8: Integral time scales evaluated with three different criteria: integration up to the

first ACF root (T0) and integration up the first ACF minimum (Tmin).
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Fig. 4.35: Auto-correlation functions of the fluctuations of the three components of velocity

at pkmax == (−0.3469, 0.3601,−0.1113).
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Fig. 4.36: Auto-correlation function of temperature fluctuations at pkmax ==

(−0.3469, 0.3601,−0.1113).

Finally, in natural convection at relatively low Reynolds number the energy cascade that

describes the transfer of energy in the inertial subrange, i.e. the transfer of turbulent

kinetic energy among the scales from the large energetic turbulent eddies, for which the

viscous effects are negligible, up to the Kolmogorov microscales that are then dissipated by

the molecular diffusion and their energy is converted into heat, is described by Bolgiano’s

theory [Bol62]. The theory states that the asymptotic form of the velocity Power Spectral

Density in the inertial range is proportional to K−11/5 (where K is the wave number that

can be defined using Taylor’s frozen field hypothesis K = 2πf/|u| with f the frequency of

the time signal) whereas the Power Spectral Density of the temperature depends on K−7/5.

In the present case the normalized PSD of the velocity components and the temperature

fluctuations are provided in Fig.4.37-4.38. The normalization is made in the way that

∞∫
0

Sφ(f)df = 1. (4.26)

We note that the velocity PSDs are in general agreement with Bolgiano’s theory, whereas

the temperature PSD shows the same scaling as the velocity instead of the theoretical

result of −7/5 law. Two possible explanations of this discrepancy are:

1. The mean temperature profile is not completely stably stratified in the location of

the sampling point (as required by Bolgiano’s theory);

2. The strong anisotropy of the present flow.
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Fig. 4.37: Normalized Power Spectral Densities of the three components of velocity.
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Fig. 4.38: Normalized Power Spectral Densities of the temperature.

Turbulent kinetic energy production

From a physical viewpoint it is interesting to understand the mechanisms of production

of the turbulent kinetic energy and the associated flow structures. It has been shown for

example that in a Lid Driven Cavity (LDC) flow at Re = 12000 (see [LG00]) the flow

structure associated with the maximum of turbulent kinetic energy production is caused

by the instantaneous formation of a vortex pair, located at the bottom of the cavity and

characterized by a relevant up-flow velocity, that deflects and distorts the strong downward

wall jet.

In the natural convective flow two terms play a role in the production of k, namely Pk =

(P11+P22+P33)/2 and Gk = (G11+G22+G33)/2 but the first one is usually more important

due to the high shear of the mean flow at the active walls, and as expected the grid point

is located at pmaxPk
≡ pmaxk = (0.483,−0.373, 0.019). Moreover, it appears that the term

P22 = −〈u′2u′i〉
∂〈u2〉
∂xi

(4.27)

provides the largest contribution to maxPk thanks to the high values of the gradient of

the mean vertical velocity component across the boundary layer. Moreover, the largest

contribution in P22 is given by −〈u′2u′1〉∂〈u2〉/∂x1 and at pmaxk the term ∂〈u2〉/∂x1 < 0

meaning that in order to have positive production the Reynolds stress component 〈u′2u′1〉 >
0 (see Fig.4.21(b)). The time-series of Π22 is shown in Fig.4.39 together with its time-

average P22 and the threshold value Π̂ used to distinguish intense production events from

weak events in order to select similar occurrences and perform a conditional sampling

on the entire database. It is important to notice since now that the time signal shows

peaks characterized by very high frequency superposed to low frequency signal. The low
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frequency signal modulates the intensity of the peaks and the time extension of successive

high intensity production events. Due to this dual nature of the production events the

choice of the threshold Π̂ becomes important and not trivial. Usually, the choice of the

threshold is rather arbitrary and depending on that, it might lead to sensible different

results. In order to avoid this problem, the author has computed a characteristic threshold

of the time-signal itself by means of the Probability Density Function of the signal (PDF)

and its Cumulative Distribution function (CDF) (Fig.4.40) imposing that the conditional

mean over the χ fraction of the total instantaneous realizations, such that Π22 > Π̂, is

equal to (1− χ)P22. In other words the threshold Π̂ is obtained by finding a fraction χ of

events Π22 for which Π22 > P̂ i, such that (1− χ) is the relative contribution to the mean

value P22 of the total number of realizations. The system of integral equations to solve in

the two unknowns (χ, Π̂) is here provided{∫ Πmax
22

Π̂
PDF(ρ)dρ = χ∫ Πmax

22

Π̂
PDF(ρ)ρdρ = (1− χ)P22.

(4.28)

The first equation gives the probability/frequency with which event P22 > Π̂ occurs (PDF

is null for values Π22 < Πmin
22 and Π22 > Πmax

22 ). The second equation can be obtained by

the definition of expected value (i.e. mean value) of the given PDF. The reader should

note that the proposed self-consistent technique allows to identify the fraction 0 < χ ≤ 0.5

of events that amounts for 0.5 ≤ (1−χ) < 1 of the mean value depending on specific PDF.

It identifies a small fraction of intense events that account for a large part of the mean

value. In the present case (χ, Π̂) = (0.290, 4.64× 10−3).

Performing the conditional averaging on the selected fields allows to identify the mecha-

nisms and the structures involved in the production of the turbulent kinetic energy. In

Fig.4.41 iso-surfaces of the distribution of P22 at the hot wall are presented together with

the contour plots over the crossing horizontal plane which contains the point of maximum

production Pk and the mean coherent structure identified using λ2 method [JH95]. We

note that the locations of high turbulent kinetic energy production take place close to the

active walls (as expected since the high velocity gradients) downstream the detachment of

buoyant fluid from the vertical boundary layers. Furthermore, the mean coherent structure

identified from the conditional sampling is located exactly in the neighboring of the pro-

duction maximum. The extension of the coherent structure is compatible with the region

of high production Pk.

The mean coherent structure now identified is presumably responsible of the high frequency

component in the time sequence of Fig.4.39 as shown in the plot of the time history of

the horizontal and vertical velocity component fluctuations (see Fig.4.42). The second

phenomena at lower frequency that interacts with the high frequency quasi-period signal

(physically recognized as traveling waves of turbulent coherent structures ejected from the
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Fig. 4.39: Time-series of the instantaneous production of turbulent kinetic energy Π22 and

mean P22 and threshold values Π̂ measured at the maximum of the turbulent

kinetic hnergy production.

unstable boundary layer) and produces the higher peaks of the Π22 cannot be identified

so easily from the conditional averaged field. A closest inspection of the time-series Π22

shows two very high peaks for 0 ≤ τ ≤ 50 located approximately at τ ≈ 10 and τ ≈ 32

(see Fig.4.39). It should be noted that these events can be associated with the slow quasi-

periodic motion of the unsteady hook-like structure reported in Fig.4.11-4.12. In fact,

when peaks of production occurs the hook-like structure rolls up with its extremity in the

vicinity of the vertical unsteady boundary layer shifting the position of the commencement

of wavy motion. In other words the unsteady behavior of the hook-like structures besides

the fact that it induces internal gravity waves that propagates in the core region (see []), it

also introduces disturbances that affect the wave nature of the BL. This complicated and

reciprocal interaction of the two structures might also lead to sporadic re-laminarization

events.

4.3 Particle deposition

The study of particle depletion inside a three-dimensional turbulent DHC flow is performed

in order to clarify the main deposition mechanisms and the degree of importance of different

effects like turbophoresis, thermophoresis and 3D effects (i.e. corner spiral motions) for

instance.

The numerical experimental setup is realized with the injection of three swarms of inertial

particle with size dp = 15, 25, 35 [µm] each one containing one million point-wise particles.
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Fig. 4.40: Probability Density Function (PDF) and Cumulative Distribution Function

(CDF) of the time signal Π22. Vertical lines refer to the mean value P22 and

the threshold Π̂.
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Fig. 4.41: Top-left corner: Iso-surfaces of P22. Bottom: Iso-contour map of P22 on the

cross-plane containing Pmax
K . In light-red two coherent structures identified by

imposing λ2 = −0.5.
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Fig. 4.42: Time-history of horizontal and vertical velocity fluctuations measured at the

maximum of the turbulent kinetic energy production.
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RaH Np dp[µm] ρp[kg m−3] St ∆τ T ime

109 1× 106 15 1000 1.26× 10−3 5.00× 10−4 200
˝ ˝ 25 ˝ 3.50× 10−3 1.00× 10−3 ˝
˝ ˝ 35 ˝ 6.86× 10−3 1.00× 10−3 ˝

Tab. 4.9: Particle tracking computational parameters.

At the injection time, the flow has already reached statistically steady-state mean values.

Furthermore, the particles are uniformly distributed inside the domain and their velocity

at the injection time is imposed equal to the velocity of the fluid at the injection position

of the particles. This technique is used in order to minimize the delay inertial particles

would experience in adapting their velocity to the one of the carrier phase if injected with

zero velocity (see [Elg94]). The details of the simulation are reported in Tab.4.9. The

time integration of the Eulerian momentum and energy equations of the fluid and the

Lagrangian particle equations of motion is performed sequentially because the alternative

of tracking the particles on the whole database in a post-processing stage would require a

huge storage facility for the instantaneous flow data. The three swarms of particles injected

at the same time are then make evolving with different time steps in order to speed up

the computation of the larger particles that allow larger time steps, hence less iterations

are required to let a large number of particle deposit. Based on the two-dimensional

calculations at RaH = 109 the integration time-step ∆τ 3 has been adapted in such a way it

fulfills the Nyquist sampling theorem for each Stokes number St. The walls are considered

as perfectly absorbing, i.e. when a particle hits any boundary surface it sticks to it and

is immediately removed. Finally, in the particle equation of motion (Eq.(1.51)) the term

dealing with the lift is dropped since its contribution to the deposition is negligible as

shown by the two-dimensional calculations. On the other hand, the thermophoretic force

is still retained to understand how the presence of a temperature gradient influences the

deposition at the vertical walls depending on the particle diameter even if it is clear that

its contribution to the depletion will be irrelevant for the present configuration.

4.3.1 Deposition velocity

The side view of the instantaneous particle positions of each set of particles is shown in

Fig.4.43-4.44 at τ = 5, 25, 125. As previously noted in the two dimensional results,

the cavity is characterized essentially by two distinct regions: the core region from where

particles basically settle by gravitational deposition; the hot wall where particles are lifted

3 In the present configuration, due to this limitation the time-step used for advancing the particles is
in general smaller than the one based on the CFL condition for the carrier fluid (see Tab.4.5).
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up and mixed by the hot jet and the unsteady hook-like structure. In the latter case, there

are strong periodic ejections of particles away from the hot wall caused by the hook-like

structure that give a wavy vertical profile at the particle swarm that remains suspended

at the hot wall. As expected, small size particles settle very slowly under gravity and a

large amount of them is entrained in the recirculation at the hot wall. They also shows the

presence of the counterflow at the cold side. Large size particles, due to their significant

inertia, deposit very quickly and are less affected by the turbulence. The time history

of the airborne particles inside the cavity is depicted in Fig.4.45 for the three different

particle sizes together with the corresponding profiles obtained from the two dimensional

simulations at the same Rayleigh number. For all the particle diameters considered here,

good agreement between the two- and three-dimensional calculations is found and can be

explained by the fact that the third component of the fluid velocity has a negligible effect

on the deposition process, but a slightly larger deposition rate is found at long times since

the horizontal velocity component at the top (and the bottom) is not modulated in the

spanwise direction as in the 3D cavity, hence leading to stronger ejections of particles from

the hot wall towards the core of the cavity. Moreover, the statistics in the square cavity

can be affected by the small number of particles that are recirculating for long time. The

probability density function P over the bottom wall is defined as

P =
1

Np

∆nd
∆x1∆x3

(4.29)

(its integral gives 1 only when the deposition is completed) is shown in Fig.4.46-4.47. It

is possible to see that for small size diameter, the initial deposition distribution is almost

uniform, whereas for large times shows a constant high value for x1 < 0, while close to

the cold wall (x1 = 0.5) particle distribution is very low and slightly affected by the fluid

spanwise velocity component of the hook-like structure that tends to drive particles from

the lateral walls towards the midplane (x3 = 0). Increasing in the diameter size leads to

suppress the spanwise velocity influence, so that the distribution appears basically mono

dimensional along x1, but very narrowed peaks of particle concentration appear at the

corners at x1 = −0.5. The latter phenomena is explained first by the fact that particles

injected in the vertical edges do fall down by gravity only (fluid velocities are very low)

and also by the formation of the vertical hot boundary layer which creates a suction effect

that accelerates particles coming from the core and eventually, being unable to turn up,

undergo settling. The presence of peaks around the midplane is explained by the work done

by hook-like structure at the top of the cavity and its spanwise component of velocity.
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Fig. 4.45: Comparison of two and three dimensional time histories of the airborne fraction

of particles in the enclosure for dp = 15, 25, 35 [µm] at RaH = 109.
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Fig. 4.48: Time evolution of deposited particles at the cold wall for the three different

particle sizes.

Influence of thermophoretic force

Unlike the two-dimensional simulations, for the 3D case the lift force has been discarded

from the Particle Equation of Motion (PEM) and only drag, gravity and thermophoretic

forcing terms have been kept. This change affects the depletion of particles at the cold

wall and how this effect scales with the size of the particles. In fact, as already found

in the two dimensional cavity, the dilute phase deplete only at the bottom and at the

active cold wall. It is worth to say that after all in the present setup this force is totally

negligible for understanding the global behavior of the aerosol particles. More in details,

the deposition caused by the temperature gradient takes place in the very early stages of

the process (Fig.4.48) and so it is directly linked to the initial position at the injection

time: particle injected inside the cold laminar boundary layer will have high probability to

deposit by thermophoresis. On the other hand, due to the fluid vertical stratification and

the turbulent mixing downstream the cold wall, the particles injected inside the turbulent

cold boundary layer will experience a weaker temperature gradient, so the thermal drift

will also decrease. Nevertheless, the importance of the thermophoretic effect increases for

decreasing size particles. On the other hand, it is important to recall the fact that the lift

force works better for large particles. Thus, even if in the present case the depletion due

to lift is some orders of magnitude larger than the one caused by thermophoresis (as seen

in the two dimensional case), for smaller particles an opposite behavior could be observed.
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4.3.2 Particle residence time

The residence time of a substance is defined as the average time the substance spends

inside a chosen control volume. If there is no contaminant generation, or influx in the

control volume, given the time evolution of the substance concentration G(τ), then it is

easy to show that the mean residence time can be computed as

Rt =
1

G(0)

∞∫
0

G(τ)dτ (4.30)

For the discrete case here considered, Eq.(4.30) is written

Rt =
1

nv(0)

n∑
i=0

nv(τi)∆τ (4.31)

where nv(τi) is the number of particles in the control volume at the instant τi and τn is the

last computed time (if at this time the deposition is not completed the estimation might

be affected by truncation error). Another way is to fit the discrete deposition curve and

successively to apply Eq.(4.30). The latter technique has been implemented in MATLAB®

using a non-linear least squares fitting of the deposition curves that describe the time

evolution of the particle number fraction that occupies a given volume. The identification

of the volume is based on the center of mass of the swarm of particles still suspended at

the last time step of the simulation. Each volume extends from the hot wall up to the

double of the distance of the center of mass from the active hot wall. In this way it is

possible to select a large number of particles that undergo large recirculation loops and do

not deposit simply by gravity. The choice of shape function (or model function) is critical.

For the present analysis an exponential model function of the form

m(τ) = a exp
(
−τ
b

)
(4.32)

where a and b are the unknown parameters corresponding to the initial number of particles

and a time constant. It can be easily seen that the latter quantity correspond to the

mean residence time itself by using the definition of mean residence time of Eq.(4.30) and

substituting G(τ) with m(τ). The exponential shape function is preferred to the others

because it implies that the particles that remain in suspension are well mixed (thanks to

the action of the hook-like structure) and that the outgoing mass flux is proportional to

the actual concentration (uniform in the volume) through a constant. It should be noted

that the first part of all the curves (Fig.4.49) is rather affected by the initial conditions

(meaning that some particles deposit by gravity in the first instants) and by the fact that

particles in the upper part are ejected outside the control volume and then some of them
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Fig. 4.49: Time evolution of the recirculating particle fraction inside the control volume

and correspondent fitting curves.

re-enter later inducing the local minima and maxima or plateau zones. In order to exclude

from the fitting those particles that initially belong to the control volume but sediment

because of gravity, the time range valid for the fitting has been defined from the theoretical

settling time to the end of the simulation, i.e. τs ≤ τ ≤ 200 where τs is the settling time

that reads in dimensionless form

τs =
1

vt
=
β ∆T

Pr St
. (4.33)

The parameters obtained applying the model to the numerical results are reported in

Tab.4.10 together with the estimator of the quality of the fitting R2 (coefficient of deter-

mination) that for a general quantity φi = φ(xi) with n entries and the modeled function

values φiM = φM(xi)

R2 = 1−

n∑
i=1

(φi − φiM)2

n∑
i=1

(φi − 〈φM〉)2

. (4.34)

The latter quantity simply compares the sum squared of the errors to the variance of the

original data with respect to the mean value given by the model multiplied by the number

of entries n.
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dp[µm] a b = Rt R2

15 0.7696 636.9 0.994

25 0.7566 440.0 0.996

35 0.8067 221.2 0.997

Tab. 4.10: Model function parameters a and b (Eq.4.32) for recirculating particle concen-

tration number and coefficient of determination R2.

4.3.3 Segregation parameter: correlation dimension

The mathematical definition of correlation dimension (also known as fractal dimension) is

here recalled

D :=
d ln(N (r))

d ln(r)
, (4.35)

which expresses the dimensionality of the space occupied by the swarms of particles.

As discussed in Sec.3.3.2 heavy inertial particles driven by an unsteady turbulent flow

might select zones of the fluid where the instantaneous fluid motion presents determined

characteristics as for example low vorticity. This behavior can be seen as a compressibility

property of the dispersed phase. On the other hand for a fluid particle of an incompressible

flow the fractal dimension remains constant and equal to the spatial dimension of the

computation. In general this parameter is both used to recognize if the particles do cluster

and consequently the dimensionality of the space occupied by the clusters: for particles

well mixed and well distributed inside a volume D → 3, for particles that segregate from

zones characterized by large eddies and concentrate over complicated surfaces D → 2, and

finally if particles tends to form filaments (as in the case where particles are lighter then

the fluid, bubbles for instance) D → 1. In Fig.4.50 the fractal dimension of the swarm of

particles that are still airborne at τ = 200 is plotted versus the diameter size. It should be

noticed that for dp = 15 and 25[µm] the correlation dimension is about D ≈ 2.8. This value

is very close to the theoretical limit of 3 for incompressible fluid, meaning that the particles

remain rather well distributed since the injection time. On the contrary, the largest set of

particles with dp = 35 [µm] show a fractal dimension of 2.5. This departure is explained

by the fact that ejection events caused by the motion of the hook-like structure do not

affect significantly large particles coming from the hot plume. Therefore, large particles

do not diffuse from the hot boundary layer to the core but they realize a very narrowed

loop close to the wall. Eventually, these recirculating particles occupy a region of fluid

which extend mainly in the two directions parallel to the hot wall (i.e. x2 and x3) with

a very small thickness along x1, so that D → 2. This behavior should not be confused

with a tendency of the particles to cluster in this layer since it has been already shown in
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Fig. 4.50: Correlation dimension of particle swarm as function of particle diameter at time

τ = 200 for RaH = 109.

the previous section that the number of particles contained in the control volume decrease

with time.

4.3.4 Theoretical simplified deposition model

The theoretical model is based on few important observations here synthetized:

1. Time evolution of the deposited particles at the wall shows clearly at least two regions.

The time τ ′ at which the change of trend occurs is strongly related to the theoretical

value of the settling time τs given by gravitational settling;

2. Local changes in particle concentration in the core region induced by the fluid motion

are negligible;

3. Particles that remain suspended in the fluid due to the vertical hot jet are well mixed

and deposit with a constant velocity;

4. Deposition at the cold wall caused by initial conditions and second order phenomena

(i.e. lift and/or thermophoresis) is irrelevant for the particle sizes considered in the

present work;

5. The domain can be schematically partitioned mainly in three regions as depicted in

Fig.4.51.
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Fig. 4.51: Schematic representation of the cavity partitions.

The first two statements imply that a fraction of particles χG leaves the fluid in a time τ ′,

close to the settling time τs, with a law that reads

fG(τ) = χG

(
1− τ

τ ′

)
, for 0 ≤ τ ≤ τ ′. (4.36)

Another fraction of particles, χE, deposits with the typical exponential decay law as stated

by the third observation with a characteristic mean residence time Rt

fE(τ) = χE exp

(
− τ

Rt

)
, for τ ≥ 0. (4.37)

Finally, a fraction of particles χP settles because of gravity but does not follow the first law

since their distribution along the height of the cavity differs from the constant one implied

in Eq.(4.36) and occupies the triangular region shown in Fig.4.51. The deposition law for

this fraction of particles is simply described by the following equation

fP (τ) = χP

(
1− τ

τ ′′

)2

, for τ ≤ τ ′′, (4.38)

where τ ′′ ∝ hP/vs ≤ τ ′.

In conclusion the time evolution of the total fraction of particles inside the cavity is ex-

pressed by the six parameter model

Na

Np

=


χP

(
1− τ

τ ′′

)2
+ χG

(
1− τ

τ ′

)
+ χE exp

(
− τ
Rt

)
, for 0 ≤ τ < τ ′

χG
(
1− τ

τ ′

)
+ χE exp

(
− τ
Rt

)
, for τ ′ ≤ τ < τs

χE exp
(
− τ
Rt

)
, for τ ≥ τs

(4.39)

where the conservation of mass for the particle imposes the additional constrain χP +χG+

χE = 1. Applying the model to particles of dp = 25, 35 [µm] shows that the parabolic
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dp [µm] τs χP τ ′′ χG τ ′ Rt χE χP + χG + χE Errτ [%]

15 163.96 0.161 116.98 0.397 163.96 636.9 0.442 1.000 0.00

25 59.03 0 − 0.861 58.57 440.0 0.139 1.000 0.78

35 30.12 0 − 0.925 30.44 221.2 0.075 1.000 0.01

Tab. 4.11: Particle settling time, model parameters and Errτ for particle sizes dp =

15, 25, 35 [µm].

profile can be neglected in the initial times, committing an error in the settling time less

then 1% as shown in Tab.4.11. The comparison of the data and the fitting is shown in

Fig.4.52. Whereas for small size particles (dp = 15 [µm]) the parabolic term has to be taken

into account since more than 10% of the total particles are interested by such a process.

Finally, in Fig.4.53-4.54 is shown the comparison of the actual instantaneous particle mass

flow rate at the wall ṅ and the deposition velocity Cd which are given respectively by

ṅ = −dNa(τ)

Np dτ
, (4.40)

Cd =
1

∆τ
ln

(
Na(τ)

Na(τ + ∆τ)

)
(4.41)

It should be noticed that the deposition process presents constant mass flow rate for

large and medium size particles and then abruptly changes (at the time τ ′ ≈ τs) for an

exponential trend. This last part is also affected by isolated deposition events of particles

coming from the hot boundary layer that have been previously ejected by the action of

the hook- like structure in the upper part of the cavity and are not able to restart the

loop. The proposed model well captures all the main features of the process. For smaller

particles it appears that the initial stages of deposition are characterized by an almost

linear mass flow rate trend. It is still possible to identify a narrowed plateau region before

the abrupt change to the exponential decay trend. Also in this case the model performs

well. Concerning the deposition velocity Cd the simplified theoretical model is generally in

very good agreement with the numerical data. A slight discrepancy is visible for smallest

set at the beginning of the deposition process. This issue is explained by the fact that

there are only few points that describe the exponential tail yielding to a poor description

of the residence time that affects also the particle mass fraction repartition.

166



4.3. PARTICLE DEPOSITION

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

N
a
/N

p

τ

3D Data
Model

(a) dp = 15 µm

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

N
a
/N

p

τ

3D Data
Model

(b) dp = 25 µm

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

N
a
/N

p

τ

3D Data
Model

(c) dp = 35 µm

Fig. 4.52: Time evolution of particle airborne fraction inside the cavity for dp =

15, 25, 35 [µm]. Three-dimensional data and theoretical model.
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Fig. 4.53: Time evolution of mass flow rate ṅ for dp = 15, 25, 35 [µm]. Three-dimensional

data and theoretical model.
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Fig. 4.54: Time evolution of deposition velocity Cd for dp = 15, 25, 35 [µm]. Three-

dimensional data and theoretical model.
169



CHAPTER 4. DIFFERENTIALLY HEATED CAVITY: THREE DIMENSIONAL
INVESTIGATIONS

170



Conclusions and perspectives

Nowadays, the increased safety requirements of the new generation nuclear power plants

have led to investigate the mechanisms of deposition of radioactive aerosol inside closed

containment like the heat exchanger of the steam generator or inside large containment

buildings in order to be able to improve their design and to be able to control the phenom-

ena in an active way with ad-hoc solutions, when possible, or in a passive way planning

appropriate security procedures.

The present fundamental study aims at providing a first insight in natural convective

turbulence at high Rayleigh numbers in simple closed domains, i.e. square and cubical

Differentially Heated Cavities (DHC), as well as in the micro-size dispersed aerosol settling

process by using very accurate numerical techniques. A pseudo-spectral Chebyshev code

was coupled with a 6th-order Lagrangian particle tracking code and Direct Numerical Si-

mulations of an incompressible, homogeneous, Newtonian, Boussinesq fluid were performed

in two- and three-dimensional configurations and a parametric study was carried on for

three different aerosol particle diameter sizes. Due to the characteristic boundary layer

topology of the DHC flow along the active vertical walls, particular attention was taken in

considering second order forces acting on the particles, like lift and thermophoresis.

Two and three-dimensional laminar flows were used as bechmark to validate the pseudo-

spectral code providing new and more accurate values than those already published in the

literature.

First and second order statistics of turbulent flows at Rayleigh RaH = 109 (2D/3D) and

RaH = 1010 (only 2D) and mean momentum and energy budgets were analyzed in order

to understand the leading terms that govern the mean flows. Furthermore, informations

about turbulent kinetic energy and temperature variance transport equations are provided

for the first time in this configuration, focusing the attention on the production and dis-

sipation terms. In particular, for the 3D case the interaction of boundary layer waves

and the unsteady corner ”hook-like” structures was identified as the main mechanism that

produces turbulent kinetic energy.

Spectral analysis of the turbulent quantities in the three-dimensional case confirms Bol-

giano’s theory for what concerns the velocity time-signal, whereas a different scaling is
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found for the temperature signals. The last result is caused by the strong anisotropy of

the flow and by the local temperature distribution.

In this work the dependency of the flow structure on the cavity aspect ratios was not taken

into account. Indeed, in recent works attempts to perform simulations at high Rayleigh

numbers for cavities with aspect ratios four or eight were made. Secondly, an interesting

development would be to consider the influence of real (or linear) temperature profiles at

the top and bottom walls. A few published works have investigated such cases but only

at moderate Rayleigh numbers. Furthermore, in the present work all the fluid physical

properties are considered constant in the limit of the Boussinesq approximation but in

thermal convection this approximation might be not always fulfilled and the influence of

temperature dependent physical properties can strongly affect the turbulence.

The main results concerning particle sedimentation that confirm experimental and other

numerical results are:

1. Particles have the tendency to deposit only on the bottom horizontal surface;

2. The settling process is basically two dimensional;

3. Depending on the aerosol diameter size a rather important fraction of particles is

entrained in long time recirculation loops at the hot wall;

4. Turbophoresis does not significantly affect the deposition process in the present con-

figuration.

Second order effects, like lift and thermophoresis, appears to be negligible for the particle

sizes under investigation (dp = 15, 25, 35 [µm]). Moreover, there is clear evidence that

the settling velocity plays a very important role and so gravity. It is also important to

stress the fact that particles do not present the tendency to cluster: no preferential fluid

structures appear to be selected for accumulation.

A simplified theoretical model that describe the time evolution of aerosol total concentra-

tion has been proposed and discussed. The model contains macroscopic quantities that

characterize the gravitational settling and the settling of the particles involved in the recir-

culation at the hot wall. The latter has been modeled with an exponential decay law. The

model matches very well the numerical data and provides a tool to forecast and interpret

the numerical or experimental data.

In the present work only one-way coupling was considered between the two phases.

It might be interesting to study the effect of momentum and thermal coupling, even if,

it is the author’s opinion, this would globally decrease the thermal driving force of the

carrier phase leading to a configuration for the aerosol phase that resembles more to a
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deposition process in a quiescent environment. Finally, due to the lack of literature in this

field, Eulerian approach instead of Lagrangian one might give useful informations even

for smaller aerosol (dp = 1 ÷ 5 [µm]) and larger volume fractions including also diffusive

phenomena.
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[ABG95] M. Azäıez, C. Bernardi, and M. Grundmann. Spectral Method Applied to

Porous Media Equations. East-West J. Numer. Math., 2:91–105, 1995.

[ABH08] C. Allery, C. Beghein, and A. Hamdouni. On investigation of particle disper-

sion by a POD approach. Int. Appl. Mech., 44(1):110–119, 2008.

[Bat67] G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press,

Cambridge, 1967.

[BBAHZ08] M. N. Borjini, H. Ben Aissia, K. Halouani, and B. Zeghmati. Effect of radiative

heat transfer on the three-dimensional buoyancy flow in cubic enclosure heated

from the side. Int. J. Heat Fluid Flow, 29(1):107–118, 2008.

[Bej84] A. Bejan. Convection Heat Transfer. Wiley, N.Y., 1984.

[BH06] B. A. V. Bennett and J. Hsueh. Natural convection in a cubic cavity: Implicit

numerical solution of two benchmark problems. Numer. Heat Tr. A–Appl.,

50(2):99–123, 2006.

[BKL94] A. Batoul, H. Khallouf, and G. Labrosse. Une Méthode de Résolution Directe
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[XL06] S. Xin and P. Le Quéré. Natural-convection flows in air-filled, differentially

heated cavities with adiabatic horizontal walls. Numer. Heat Tr. A–Appl.,

50(5):437–466, 2006.
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