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Introduction

Edge localized modes (ELM), related to the high confinement regime (H-mode), lead to a

degradation of the plasma confinement and a release of energetic particles towards the ves-

sel walls. Scaling the current experimental data to ITER predicts that the power flux related

to ELMs will cause an intolerable erosion and heat load on the plasma facing components.

Experiments on DIII-D [1, 3] and JET [7] have demonstrated that the application of resonant

magnetic perturbation (RMP) is able to mitigate or suppress ELMs while keeping sufficient

confinement properties. The description of the mechanism responsible for this phenomenon is

still incomplete. The limits of the process, in terms of operation domain, are not yet accurately

known. Experiments in different Tokamaks reveal opposite results for similar conditions. With

that respect, TCV (Tokamak à Configuration Variable) unique plasma shaping and positioning

capability could extend the range of accessible magnetic perturbation modes for a given RMP

coil system geometry.

Figure 1: Proposed saddle coil system: 3 rows

of 8 internal coils (10 turns). Powered with 4 kAt

for RMP, 3.2 kAt for EFC and 5 kAt for VC.

A multi-purpose saddle coil system (SCS) is

therefore proposed as part of a future upgrade of

TCV. This system consists of 3 rows of 8 coils, each

coil having independent power supplies, and pro-

vides simultaneously error field correction (EFC)

[5], RMP [1] and fast vertical control (VC). Other

applications, like resistive wall mode control and

controlled plasma rotation, are also considered.

Feeding the coil system with independent power

supplies allows an optimisation of the coil cur-

rent distribution, both toroidally and poloidally.

A 3D multi-mode geometry-independent Lagrange

method has been developed and appears to be an

efficient way to minimize parasitic modes and cur-



rent requirements while imposing the amplitude and phase of a number of target modes. For

example, the relative amplitude of edge modes can be increased at the cost of lower absolute

amplitudes, demonstrating a degree of controllability on the localisation of the magnetic per-

turbation. In order to apply the Lagrange method, the characterization of the system in terms of

spectral degeneracy is crucial to determine the set of simultaneously achievable target modes.

Current distribution optimization method

The optimization method relies on the calculation of the spatial spectrum of b [2, 5, 6], the

locally normalized perpendicular magnetic perturbation due to the SCS, expressed in straight

field line coordinates.

b(ρ,θ ∗,φ) =
B⊥R | 5ρ |

B0,φ
b̃(ρ,m,n) =

1
(2π)2

∫∫ 2π

0
dφdθ

∗b(ρ,θ ∗,φ)ei(−mθ∗−nφ) (1)

The cost function f minimized by the Lagrange method is defined as a linear combination of

the norm of the coil current vector and the amplitude of a selection of modes:

f ({Ic}) = wcur ∑
c

I2
c +∑

k
wk ∑

p∈Sk

[(
∑
c

b̃cp,rIc

)2

+
(

∑
c

b̃cp,iIc

)2
]

(2)

with c the coil index, wk relative weights and normalization factors, p the index on triplets

(ρ,m,n), k the index of the set of optimized modes Sk, r and i indices standing for real and

imaginary parts of the modes. wk > 0 (resp. wk < 0) leads to a minimization (resp. maximiza-

tion) of the set of modes Sk. The Lagrange optimization is obtained by solving ∇{Ic},{λt}h = 0

with h defined by:

h({Ic},{λt}) = f ({Ic})+∑
t

[
λt,r

(
∑
c

b̃ct,rIc−ℜ(Ateiαt )
)

+λt,i

(
∑
c

b̃ct,iIc−ℑ(Ateiαt )
)]

(3)

with t the index on the target modes, At and αt their respective amplitude and phase, and λt

the Lagrange multipliers. ∇{Ic},{λt}h = 0 yields a full rank system of linear equations, inverted

with standard methods. If αt are free parameters, the phase combination leading to the lowest

cost is selected. The type of optimum returned by the method is checked by exploring the affine

sub-space of current vectors fulfilling the constraints around the optimum.

The linear method presented above minimizes ∑c(Ic)2, a simplified version of the non linear

real constraint maxc(|Ic|). A non linear algorithm has been created to minimize fnl , the non

linear cost given by using maxc(I2
c ) instead of ∑c(Ic)2 in f . It is based on the exploration of

the affine space of currents fulfilling the constraints, starting from the solution provided by the

linear approach. If the αt are free parameters, an effective approach consists in using the linear

solution for each phase combination, but using the non linear cost to select the optimal phase

combination. This method has been used to obtain the results displayed in figure 2.
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Figure 2: Optimal spectra given by the Lagrange method for different target values of n. Equilibrium used is

a standard H-mode plasma with magnetic axis located at Z = 0. The • locate the resonant flux surfaces while the

+ locate their symmetrical non resonant counterparts. Figure 2(d) shows the island width (green) and the ergodic

regions (red) as a function of the maximal current fed in the SCS.

Mode degeneracy

In the problem of spectrum optimization, the questions of the number of simultaneously con-

trollable modes, mode degeneracy and availability of optimization must be addressed. The most

general approach consists in grouping coils in sets s of equivalent coils (e.g. identical coils on

the same row, with arbitrary toroidal spacing) and using the first coil of the set to obtain the

spectrum for the whole set:

b̃(ρ,m,n) = ∑
s

∑
c

b̃s
c(ρ,m,n)Is

c = ∑
s

b̃s
0(ρ,m,n)∑

c
Is
ce−inφ s

c = ∑
s

b̃s
0(ρ,m,n)Îs(n) (4)

with φ s
c the toroidal shift between the coils of the set s and Îs the generalised Fourier transform

of Is
c in the current space (φ s

c does not necessarily describes a regular grid). From equation (4),



it follows that only 1 target mode can be given per set of equivalent coils per value of n. In

the case of evenly spaced coils, φ s
c = 2π

Ns
c, c ∈ {0,Ns−1} without necessarily being complete,

degeneracy of modes occur:

Îs(n+ pNs) = Îs(n) ∀p ∈ N and Îs(Ns−n) = Îs∗(n) (5)

which now limits the previous statement to non degenerated target modes only. In addition,

ℑ
(
Îs(n ∈ {Ns

2 ,Ns})
)

= 0, therefore limiting arbitrary phase setting of target modes in these

cases. Finally, in the case of complete evenly spaced coil sets, Îs is equal to the discrete Fourier

transform of Is
c , so that modes in different values of n can be orthogonally activated by using

Fourier modes for the currents in each coil row. The feature of orthogonal activation in even

geometries implies the necessity to use a cross-mode cost function in the implementation of

the Lagrange method, such as the cost based on the current amplitude. In addition, the norm

of the current vector being related to ∑s,n |Îs(n)|2, it is independant of the phase of the current

modes. By using the non linear cost, based on the maximum of the current, an optimisation of

this phase is achieved, generally leading to a localisation of the extrema of the current mode in

the middle of 2 consecutive coils. Such an optimisation can lead to an increase of 40% of the

mode amplitude for n = 2 in the TCV SCS case.

The considerations above allow a characterization of the features of the TCV upgrade SCS:

5 orthogonal classes of n (n ∈ {0,1,2,3,4}), with main degenerate pairs {0,8}, {1,7}, {2,6},

{3,5}. For classes 1, 2 and 3, the 3 coil rows allow a maximum of 3 simultaneous targets per

class (without simultaneous spectrum optimisation), while for classes 0 and 4, only 1 target per

class is allowed (with simultaneous spectrum optimisation).

The loss of 1 coil in an evenly spaced coil system is of interest in terms of impact on the

mode control. From the theory above, the main impact of such a loss is the lost of the orthogonal

activation of modes. In terms of control, this loss can be compensated by adding a cost function

on the side-bands that must be avoided. The latter cannot be avoided for the classes n = 0 and

n = Ns/2 however.

This work was supported in part by the Swiss National Science Foundation

References

[1] Burrell K.H., et al. Plasma Phys. Contr. Fusion,

47, 2005

[2] Cahyna P., et al. Nucl. Fusion, 49, 2009

[3] Evans T.E., et al. Nucl. Fusion, 45, 2005

[4] Fasoli A., et al. IAEA Conf. Geneva, OV/1-1, 2008

[5] Hanson J.D. Nucl. Fusion, 34, 1994

[6] Hanson J.D. Plas. Sc., IEEE Trans., 27, 1999

[7] Liang Y., et al. Phys. Rev. Lett., 98, 2007


