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Abstract. Developments in the real time control hardware on TCV paired with the flexibility 

of plasma shaping and electron cyclotron heating and current drive actuators are opening many 

opportunities to perform real time experiments and develop algorithms and methods for fusion 

applications. The ability to control MHD instabilities is particularly important for achieving 

high performance fusion plasmas and EC is envisaged as a key actuator in maintaining high 

performance. We have successfully demonstrated control of the sawtooth instability using the 

EC launcher injection angle to modify the current profile around the q=1 surface. This paper 

presents an overview of recent real time control experiments on TCV, developments in the 

hardware and algorithms together with plans for the future. 

1. Introduction  

Tokamaks require real time controllers in order to function successfully and at high performance. The 

plasma shape, current, density and vertical position needs to be maintained and evolved as necessary. 

In the future this is likely to be extended to the control of MHD instabilities, in particular using 

actuators such as the electron cyclotron (EC) systems. TCV has recently installed and begun 

operations with a new generation of hardware in order to develop and test advanced techniques to 

optimise plasma control. Together with the multi launcher EC system [1], TCV now has a powerful 

array of tools to develop real time controllers for plasma parameters such as position, shape and 

instabilities. In previous experiments, we demonstrated control of the plasma current and elongation 

using the EC power or the launcher injection angle as the actuator [2]. These techniques have been 

extended to the sawtooth instability – an important demonstration for instability control in future 

devices such as ITER. This paper is a review of the latest developments in the real time hardware, 

experiments and algorithms on TCV. The first section of this paper will discuss the hardware 

developments including the controllers and real time EC systems. The coil current controller, sawtooth 

and profile control experiments will be discussed in section 3 as well as applications of real time event 

detection for triggering of diagnostic systems. 

2. Developments in real time control hardware on TCV 

The original TCV control system consists of matrix multiplication of signals and a PID (proportional, 

integral and differential) controller [3,4]. Observables such as plasma current, vertical position etc are 

generated from linear combinations of input signals and subtracted from reference signals. The 
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resulting error signals are passed to PID controllers to provide actuator signals. This provides only 

linear feedback control of the coil currents, plasma current and density. To provide digital, procedural, 

non-linear control and to increase the number of control channels available, a multi-DSP VME based 

system [5,6] has been developed in collaboration with Association Euratom/IST to replace the 

analogue PID controller. A second system has also been developed which provides the ability to 

process a large number of signals (~100) using D-tAcq
1
 acquisition modules and PC CPUs.  Both 

systems are described in the subsequent sections. 

2.1. DSP-based controller 

Due to the wide variety of plasma shapes that can be obtained in TCV (eg elongations of up to 2.8), 

unique constraints are placed on the vertical instability controller, which operates on coils inside the 

vessel: it must be able to run with clock rates (ADC acquisition to DAC update) ~100kHz. Control of 

the external coils (for shape and position) requires a clock rate of 9-12kHz. To meet these 

specifications, a multi-DSP VME based system was developed. This system consists of several VME 

cards, each with four Texas Instruments TMS320C44 60MHz digital signal processors (DSP). Each 

DSP has one ADC and DAC and therefore there are four analogue inputs and outputs per module. The 

cards can be combined through a private communication bus to share data at a rate of up to 50 kHz in 

order to control the shaping coil currents. On each clock the data from every ADC is available to each 

DSP. The result of algorithms on one DSP can be passed to another on the next clock. Also, each 

VME card may operate as a separate, independent system with 4 shared inputs and 4 outputs at up to 

~200 kHz, one of which is used to drive the fast internal vertical field coils. A set of software tools are 

provided for the development of algorithms and to control the DSPs in the TCV shot cycle [7]. The 

system has been used in initial tests to control TCV plasma discharges, using algorithms which simply 

replicate the analogue PID controller as described in Section 3.1. More advanced algorithms are now 

being developed which include improving the performance of the vertical position control eg using 

non-linear algorithms [8]. 

2.2. PC-based, multi-channel controller 

The DSP-based system is limited to ~30 input and output channels, the majority of which are used to 

control the poloidal magnetic field coil currents. There are many tokamak diagnostics which generate 

a large array of analogue signals; for example the soft x-ray diagnostics on TCV provide over 200 

signals to cover the soft x-ray emission from the whole vacuum vessel. To run, for example, 

tomographic inversions of the soft x-ray data or real time equilibrium reconstructions, hundreds of 

analogue input channels are required. Many of these diagnostics at TCV use the D-tAcq 196 Compact-

PCI (C-PCI) acquisition modules to acquire up to 96 differential channels of 16bit data per card and 

store data for post-shot analysis. The cards can be combined in a C-PCI crate to provide acquisition of 

hundreds of channels and also have the capability to send acquired data to the memory of a host PC in 

real time (within a few microseconds of a request). The PC can either be embedded on a C-PCI board 

and slotted into the C-PCI crate master socket or an external desktop PC containing the latest CPUs 

and connected to the crate via a C-PCI bus extender module. The C-PCI PC modules tend to use 

laptop-class CPUs that have less computational power available for the real time calculation, but have 

the advantage of reduced latency times to obtain the acquired data in memory and therefore have the 

fastest potential clock rates. There are 16 16bit analogue outputs on a ‘rear transit module’ connected 

to each D-tAcq card. The fastest possible clock rate is 100kHz, using 96 ADC channels and 16 DAC 

channels. However, the time from ADC acquisition to DAC update is longer due to the latency 

required to transfer the data from PC memory to the DAC (a few µs). Of course faster clocking rates 

allow less computational time to run algorithms. Using multiple D-tAcq cards to increase the number 

of channels reduces the maximum possible clocking rate. 

 

Linux is used as the real time PC operating system. The provided D-tAcq drivers suspend all the 

interrupts to the CPU during the real time process, guaranteeing the CPU availability. Data samples 

are transferred to/from the DAC/ADC and the host PC memory using Direct Memory Access (DMA). 

                                                      
1
 D-tAcq Solutions Ltd. http://www.d-tacq.com/ 
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This dedicates the processor to the real time algorithm. We also use the Linux function mlockall() to 

prevent paging of the RT algorithm to the swap area. 

D-tAcq C-PCI 

ADC module
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CPU memory

C-PCI bus or C-PCI bus + bus extender
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Development
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disk
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Figure 1. Block diagram of the D-tAcq real time control system connected to the TCV EC system and 

DMPX soft x-ray diagnostic.   

Simulink® and the real time workshop for embedded targets have been integrated with the D-tAcq 

drivers to facilitate rapid development of algorithms that can be tested in Simulink against models of 

the plasma response on a development and analysis PC. The real time workshop generates C code 

from the Simulink block diagrams and compiles the code using an Intel compiler for optimum 

performance (optimised to the specific CPU running the real time PC). The executable is then sent to 

the real time PC over the network where it can be tested for timing constraints (to ensure the algorithm 

is completed within each clocking period) before a live test. Several software channels are provided 

which store data in PC memory and output to file after the real time loop has completed for post-shot 

debugging. Timing information such as the time required to complete the algorithm at each clock and 

the raw ADC data are also stored to allow execution of the Simulink model with the actual acquired 

data for detailed analysis of the controller algorithms. A block diagram of the system is shown in 

Figure 1. 

 

MHD instability control, profile control, real time equilibrium reconstruction, tomography and shape 

control are now all under development at TCV using this system.  

 

As well as the ability to handle many more input & output channels, a further advantage of the PC 

based system is the simple ability to upgrade to the latest (or add additional) CPUs as they become 

available, leading to an almost instant upgrade in the performance of the system. Development is also 

simplified with the PC based system as the real time code can also be tested on any (Linux) based PC. 

The DSP code must be executed on the actual real time system (or identical system) for testing.  

2.3. The TCV EC system 

TCV has an extensive EC heating and current drive system, providing up to 4.5MW of injected power. 

The second (X2) and third harmonic (X3) subsystems both allow real time control of the injection 

angles and powers. The X2 subsystem consists of 6 x 0.5 MW gyrotrons with independent waveguides 

and launcher assemblies, providing real time control of the 6 poloidal injection angles (ie to control 

the radial EC deposition location) as well as the injected EC power from each cluster of 3 gyrotrons 

(which have common power supplies) by controlling the gyrotron cathode voltage. The toroidal angle 

of each launcher may be adjusted pre-shot to control the heating/current drive balance.  
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2.4. Characterisation of the EC launchers 

In order to develop successful control algorithms, it is essential to understand the response of the 

actuators to control signals. This is typically performed using frequency response studies – observing 

the amplitude and phase response of the actuators. The X3 launcher was previously characterised [9] 

for use in algorithms to maximise the X3 absorption using feedback control. The X2 EC launchers 

were characterised using pseudo-binary random noise (PBRN) input signals, with the resulting 

continuous time transfer function (mapping the Laplace transforms (L) of the requested launcher 

angle to the obtained angle) and magnitude/phase response shown in Figure 2.  
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Figure 2. Estimated transfer function for the X2 EC launcher and its Bode diagram. The launcher is 

well described by a second order system with a cut-off at 10Hz. 

 

To prevent stress on the mechanical and electrical launcher systems, an obligatory digital 8Hz low 

pass filter is added to the launcher control signal, before output to the DAC. 

3.  Real time control applications and algorithms 

A summary of the first tests using the DSP system to control the coil currents is provided in this 

section, together with the experiments to control the plasma current and elongation using EC power 

and launcher actuators. A description of the experiments to control the sawtooth instability in real time 

using the EC launchers follows, together with the peak in profile control. 

3.1. Basic control of coil currents using digital PIDs 

The first application of the DSP based controller was to replicate the analogue PID system (which 

typically only incorporates P terms and 2 D terms). To initialise this project, the PID terms loaded into 

the analogue system were converted into transfer functions, incorporating all the measured zeros and 

poles of the analogue circuitry, transformed into discrete time and the resulting coefficients loaded 

into a digital IIR filter algorithm running in each DSP. The transfer functions for the analogue PID 

controller (given by HP, HI and HD for the proportional, integral and differential paths respectively) are 

shown below (with G gain, τ time constant): 
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Where GP = -10, τP = 68µs, τΙ = -2.7ms, τD = -16ms, τD1 = τD2 = 47µs. 

 

The continuous transfer functions above are converted to discrete digital IIR filter coefficients using 

the Tustin transform for sample times of 100µs (10µs for the differential term used in the vertical 

control). For optimum performance on the DSPs, the filter algorithms are implemented in assembler 

code. 

 

The system was able to replicate the analogue PID controller and successfully evolve the coil currents 

and plasma density though a plasma discharge. Efforts are now underway to optimise this system and 

develop advanced control algorithms. 
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3.2. Real time plasma current and elongation control using EC actuators 

Real time control of the plasma current using EC power was demonstrated in a fully non-inductive 

scenario, where the plasma current is driven entirely by ECCD [10,11]. The plasma current observer 

was used to generate a control signal for the gyrotron cathode voltage power supplies (instead of only 

the Ohmic coil), using the analogue PID controller (P and I terms only). The resulting controller 

successfully tracked step changes in the plasma current reference signals [2]. 

 

In a constant magnetic quadrupole shaping field, varying the plasma current profile leads to a change 

in the plasma elongation [12]. By heating off-axis with the ECRH system, the current profile is 

broadened (by decreasing the resistivity – ECCD has low efficiency off-axis) leading to an elongation 

of the plasma. The real time elongation observer was generated from a linear combination of the 

poloidal flux on a fixed, pre-determined boundary at the nominal plasma edge [13], subtracted from a 

reference to generate an elongation error signal and using the analogue PI controller, actuate the 

ECRH power to control the elongation.  

 

Where the ECRH beam is deposited above (or below) the plasma midplane and as the plasma 

elongates, the ECRH deposition becomes more centralised. To maintain the deposition at constant ρ, 

the ECRH mirror launcher angles were controlled in real time. The required mirror angle to maintain 

the deposition at constant ρ was assumed to be linearly related to the plasma elongation (where the 

linear relation was deduced from previous plasma discharges by calculating the deposition rho using 

ray tracing codes) and programmed using only the P term of the controller. This was a successful 

demonstration of launcher tracking techniques which will be required for future MHD instability 

control. 

3.3. Real time feedback control of the sawtooth instability  

One application of the D-tAcq real time system is to control the sawtooth instability using EC 

actuators [14]. The sawtooth instability occurs in the plasma core when the plasma current is large 

enough for a q=1 surface to exist within the plasma. It is a periodic relaxation of the core plasma 

pressure which in traces of core soft x-ray emission is seen as a slow increase in radiative emission 

followed by a rapid crash. For large sawteeth, i.e. when the period is very long, the instability may 

induce a secondary instability, known as a neoclassical tearing modes (NTM) which degrade the 

plasma confinement and may also cause a disruption – a rapid termination of the plasma discharge 

[15,16]. Sawteeth are also known to remove impurities from the plasma core, which is important for 

burning plasmas as a build-up of the helium ash may occur in the core, reducing the core reaction rate. 

For these reasons, it may be necessary to have some control over the sawtooth instability. 

 

By driving current in the region of the q=1 surface, sawteeth may be destabilised/stabilised as 

necessary [17]. ECRH is a highly localised heating system that can modify the local resistivity and 

thus the local current profile. ECCD can also be used to directly inject local current. We therefore 

have available an actuator to modify the sawtooth period [18]. To calculate the sawtooth period, a 

sawtooth crash detection algorithm was developed using signals from a multi-chord soft x-ray 

diagnostic (DMPX). The extracted sawtooth period is subtracted from a target period reference signal 

to provide a controller error signal.  

 

The plasma response to the launcher angle is non-linear. In a small angular range, the sawtooth 

response varies rapidly in response to small mirror movements whereas outside this region, there is 

practically no response [19]. This means the effective controller gain should be large when outside 

this region and small within. In order to build such controller, it is necessary to have a model of the 

plasma response on which to develop and test the control algorithm. A model of the sawtooth period 

response was developed using launcher feedforward sweeps across the q=1 surface to measure the 

sawtooth period as a function of the launcher mirror angle - see Figure 2. The period response also 

depends upon the direction of the launcher sweep, as the location of the EC deposition affects the 

global current profile of the plasma, leading to movement of the q=1 surface [20]. For example, 

sustained EC deposition, off axis and outside the q=1 surface, broadens the temperature profile and 
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subsequently the current profile leading to shrinking of the q=1 surface (within a global current 

redistribution time). This information was used to build a Simulink simulation of the controller, using 

a simple sawtooth generation algorithm to simulate the soft x-ray diagnostic signals. The sawtooth 

period versus mirror angle model was included as a 2D lookup table, with a second variable, the 

running mean of the launcher angle, used to shift the peak in the sawtooth period vs mirror angle by up 

to 5 degrees. 
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Figure 3. Sawtooth period response to feedforward launcher mirror sweeps in the vicinity of the q = 1 

surface for pulse 35807. The launcher is swept in both directions. The first sweep starts with EC 

deposition inside the q=1 surface, in the plasma core and the launcher angle is reduced until the 

deposition is outside this surface (the solid blue curve). The 2
nd

 sweep returns the deposition towards 

the plasma core (dash-dot red curve). The shift in the peak of the sawtooth period demonstrates 

hysteresis in the sweep due to a redistribution of plasma current and the associated shift of the q = 1 

surface. Note the q=1 surface is in general inside the peak in the sawtooth period (at larger angle) for 

each sweep [18]. 

 

Figure 3 shows a demonstration of the sawtooth control. An initial target sawtooth period reference of 

3ms is set and is followed by a step increase to 8.5ms. At the start of the controlled phase, there is an 

initial launcher motion to smaller angle as the sawtooth period is >3ms. At the step, the controller 

rapidly moves the launcher towards the q=1 surface, but there is little response until the launcher angle 

is ~20deg, as expected from Figure 2. As the observed sawtooth period starts to increase, the controller 

gain is reduced and the mirror moves more slowly as it tracks the 8.5ms reference successfully.  
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Figure 4. Real time, closed loop control of the sawtooth period for shot 35833. The target sawtooth 

period reference signal was initially 3ms, with a step to 8.5ms at 0.75s.  The controller moves the 

launcher to successfully obtain and track the target.  Also shown is the post shot calculation of the 

deposition in rho of the EC beam. 

 

Work is now underway to develop more advanced control algorithms which may use multiple 

diagnostics to provide, for example, a priori knowledge on the location of the q=1 surface. A method 

of maximising the sawtooth period will also be investigated. 

3.4. Real time profile control 

As a first step towards multi-actuator profile control, a controller was designed and tested to control 

the maxima in the plasma soft x-ray profile – the peak-in-profile. This used the 64 soft x-ray channels 

from the DMPX diagnostic and the D-tAcq real time system to track the X-ray emission profile peak. 

The signals are calibrated and fitted with a cubic spline, which amounts to a single matrix 

multiplication as the grid is predefined. From the spline fitted data, several parameters of the profile 

may be extracted, such as the maximum, width, gradients etc. In principle any of these parameters may 

be used as a variable for real time control. In these experiments, the maximum in the profile was 

compared to a pre-set target reference value with the resulting error fed to a PI controller and the 

output to the EC launcher. If the peak value is too high, the controller moves the launcher for more 

off-axis deposition, while if the peak value is too low, the launcher is oriented to heat more centrally. 

A preliminary version of the algorithm was successful at tracking a step reference with only small 

steady-state error (Figure 4). In a separate experiment, a disturbance was artificially introduced by 

reducing the gyrotron power. The controller successfully compensated for the decrease in X-ray 

profile peak by moving the launcher towards the centre. Future experiments will demonstrate control 

of both the profile peak and shape, using not only the ECRH launcher angles but also the ECRH 

power. 
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Figure 5. Real time peak-in-profile control for pulse 35857. The soft x-ray profile is fit with a spline in 

real time and the peak is compared to the target. At the step increase, the controller requested a 

smaller angle such that the ECRH deposition becomes more centralised and the soft x-ray emission 

increases. 

3.5. Diagnostic Triggering 

As well as control applications, there are also interesting diagnostics applications for the real time 

hardware. For example, we have used the D-tAcq real time system to detect the sawtooth crash and 

generate a trigger signal for a charge exchange recombination spectrometer on TCV. The crash is 

detected using simple threshold detection algorithm and a sequence of trigger pulses is generated for 

the diagnostic. In this way we were able to resolve the evolution of the toroidal plasma rotation during 

the sawtooth ramp [21], starting immediately after the sawtooth crash, the results of which will be 

reported upon shortly. Clearly, this is the first of many other diagnostic synchronisation possibilities. 

4. Summary 

EC is a powerful tool for real time control of instabilities. Recent experiments on TCV have provided 

several demonstrations of real time control using the EC power and launchers.  

 

Coupled with the new control developments on TCV, there are numerous possibilities to test advanced 

philosophies and algorithms in preparation for ITER and beyond. It is envisaged that EC will be used 

to control instabilities such as NTMs and sawteeth, by adjusting the launcher mirror angle and EC 

power. We have used the EC launchers in real time control loops for elongation control and 

successfully demonstrated control of the sawtooth instability. 

 

Further algorithms and applications being developed include NTM, shape, ITB, disruption and 

temperature control. It is planned to fully integrate the TCV EC system into the central control scheme 

to allow simultaneous control of both shape and internal plasma properties during a TCV discharge. 
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