Assessing the saving potential of blind controller via multi-objective optimization

This paper presents the results of computational experiments where multi-objective algorithms were used to tune a controller for blind movements in a residential building and a room of the LESO (Solar Energy and Building Physics Laboratory) experimental building. The blind controller, which is based on fuzzy logic, was optimized not only in terms of energy consumption but also in terms of thermal comfort. The goal is to show saving potential for intelligent blind controller in a real world example rather than in tailored idealized test rooms. Therefore, a state of the art simulation program with a multi-objective evolutionary algorithm was combined. It was found that with elementary control systems, like schedules for the lighting in a building, almost 40% of the energy could be saved. With the help of more advanced controllers this can be further increased. Also discussed in this paper are the results and the feasibility of implementing such a controller.

Published in:
Building Simulation, 2, 3, 175-185

 Record created 2009-12-08, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)