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Abstract. Tensegrity structures are cable-strut configurations that employ compressive struts to 
maintain topology of a surrounding tensile cable net. They are closely coupled structures that often 
display geometrically nonlinear behaviour. There is no generally agreed systematic method for 
configuration and sizing for a range of design situations. Several configurations have been 
proposed over the past fifty years; most are too flexible and difficult to erect. Once a configuration 
is selected, elements are usually sized using local search within the scope of a parametric analysis. 
Since this is equivalent to gradient search, such a procedure implicitly includes the assumption that 
there are no local minima in the objective function used for design. This paper compares the 
results of parametric design with design using stochastic search for a tensegrity-ring pedestrian 
bridge. Stochastic search revealed a design solution having a fabricated cost that is 26% less than 
the cost of the solution identified using traditional parametric design.  

1   Introduction 

Tensegrity structures are spatial structural systems composed of struts and cables with 
reticulated connections. Thus, they can be considered as a subclass of cable structures with 
the important property that tensile forces are not anchored. Their stability is based on a self-
equilibrated self-stress state. Due to the initial self-stress, their two sets of compressed and 
tensioned components combine to form a stable system. Tensegrity systems present many 
interesting structural properties. Due to their composition, they are relatively lightweight 
systems offering high resistance for a small amount of building material. Modules can be 
combined together to form larger systems. Therefore, tensegrity systems have potential to be 
good structural systems for bridges.  

Designing tensegrity structures is a challenge for engineers since no generally agreed 
guidelines exist. The topology of a tensegrity structure is affected by the initial self-stress 
state. Self-stress also increases load-bearing capacity. The initial equilibrium position can be 
found either by analytical or experimental methods. A review of form-finding methods can be 
found in Tibert and Pellegrino (2003). Tensegrity action involves large displacements and 
therefore analysis should include geometrical nonlinearity. Additionally, the behavior of the 
structure cannot be predicted from analyzing the behavior of individual components. Studies 
on simple tensegrity structures have revealed the importance of parameters such as the level 
of self-stress and the rigidity ratio between struts and cables (Kebiche et al. 1999). Due to 
these peculiarities, design of tensegrity structures can be a complex task (Quirant et al. 2003) . 

In practice, an iterative approach similar to a gradient-based search is employed for design. 
The idea is to start with a trial solution and then modify design parameters depending upon 
constraint violations to arrive at a feasible solution. For example, engineers designing 
tensegrity systems may gradually increment the areas of struts and cables to meet stability and 
serviceability requirements. The adjustments to design parameters are based upon engineering 
experience with respect to the influence of parameters on objectives and constraints. The 
assumption is that the search space has a single trough corresponding to the minimum cost 
solution and individually adjusting the design parameters would lead to this minimum. 

1 
 

mailto:landolf-giosef.rhode-barbarigos@epfl.ch


However, this assumption is seldom valid as design spaces have multiple local minima. 
Gradient-based search often results in solutions that are only locally optimal. Also, it is often 
of interest to generate a number of good designs. So that designers can select preferred 
solutions using design criteria that are not modelled explicitly in the objective function. 

Researchers have extensively studied the use of optimization methods (Arora et al. 1995) such 
as genetic algorithms and simulated annealing for structural design optimization (Camp and 
Bichon 2004; Degertekin et al. 2008; Griffiths and Miles 2003; Kicinger et al. 2005a; 
Kicinger et al. 2005b; Miles et al. 2001; Shea and Smith 2006; Svenerudh et al. 2002). 
Tensegrity structures involve a higher level of complexity compared to other structural 
systems due to their nonlinear behavior and can benefit from the use of stochastic 
optimization methods (Domer et al. 2003a). Search using stochastic sampling techniques 
explore the search space by generating and testing many solutions to find good ones (Domer 
et al. 2003b).  

In spite of extensive research on design optimization, general acceptance is slow. This paper 
aims to provide further evidence by providing a systematic comparison of two methods on the 
same design task of a tensegrity pedestrian bridge. The first method simulates traditional 
design through parametric analyses, while the second uses a direct stochastic search called 
PGSL (Probabilistic Global Search Lausanne). PGSL is a stochastic sampling method for 
global optimization that has been shown to give better performance than other optimization 
techniques such as genetic algorithms (Domer et al. 2003b; Raphael and Smith 2003). Results 
and performance of the two design strategies are compared and discussed. 

2   Design Specifications  
Tensegrity ring modules are elementary tensegrity systems that were first describe more than 
thirty years ago  (Pugh 1976). Their conception includes the idea of a circuit of compressed 
components which enhances bending stiffness (Tibert 2003). Motro et al (2006) showed that 
ring modules are easy to construct based on straight prisms with n-sided polygonal bases. 
Additionally, tensegrity ring modules are deployable and can be assembled together to form a 
hollow rope. In this study, a pentagonal hollow rope is used as a structural system for a 
pedestrian bridge. Four identical modules are connected base to base to span a 20 m 
pedestrian bridge (Figure 1). The bridge geometry is chosen such that it has the minimum 
internal space required for two pedestrians to walk side-by-side. This space can be 
represented by a rectangle with a height of 2.5 m and a width of 2 m. Symmetry about 
midspan is obtained by mirroring two modules. 

 

20 m

5.4 m

 
Figure 1: The tensegrity pedestrian bridge 

A pentagonal module contains 15 struts and 35 cables. Struts have a length of 678 cm. Cables 
can be separated in two classes based on their topology and length: layer cables and x-cables. 
Layer cables form a pentagon on each base of the module with a side length of 457 cm. On 
the other hand, x-cables form a web around the longitudinal axis of the module. X-cables 
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have a length of 347 cm. This geometry is found to satisfy internal space requirements. The 
above member dimensions are constant for the whole study. The cables and the struts of the 
bridge are also assumed to be made of steel. The nodes of the structure at both extremities are 
fixed in all three directions. 

This tensegrity bridge is designed to meet the norms for safety and serviceability specified by 
the Swiss codes SIA 260 and 263 (SIA 2003a; SIA 2003b). Safety criteria ensure that there is 
sufficient resistance to avoid failure and instabilities. Therefore, strut design is governed by 
buckling resistance and slenderness limits. Another constraint is the ratio between the 
diameter and thickness for tubular struts used for struts. Tension members are only governed 
by tensile strength. Vertical displacements at midspan are limited to span/700 by 
serviceability criteria. Two independent live load models are employed for a pedestrian 
bridge: one with a uniform load and another with a concentrated midspan load. Loads are 
applied on the walking plate, which transmits the loads to four base nodes of each module. 
The walking path is 2 m wide and 20 m long. Considering loads and partial factors the 
uniform load model presents the largest displacements at midspan and the largest forces in the 
members. Thus, it is taken to be the critical load model for the design of the structure.  

The structure is analyzed using dynamic relaxation with kinematic damping. It is an iterative 
method that traces the motion of the structure until it converges to an equilibrium state 
(Barnes 1999). Dynamic relaxation is an attractive analysis method for tensegrity structures 
since it includes geometrical nonlinearities efficiently and without matrix inversion. 

3   Cost Model 

In this study, a cost model is used that reflects the total cost C of fabricating the structure. 
This model includes two parts: the cost of elements cs and the cost of joints cj.  

 = ( , , , ) + s jC c d t l A c  (1)

The cost of element depends on the outer diameter d, the thickness t, the length l and the 
cross-section area A. The cost can be further separated into cost of struts (cs,s) and cost of 
cables (cs,c). Struts are made out of steel hollow tubes. Data obtained from local steel 
construction companies indicate that the price of hollow tubes varies according to cross-
section area. The cost of hollow tubes is calculated using Equation 2 obtained using linear 
regression on commercial data. In Equation 2, cs,c is the cost per unit length in CHF/m and As 
is the area in cm2. 

, 74.8s s sc A= ⋅  (2)

For cables, the cost varies with cross-section area and length. Equation 3 relating cost per unit 
length to the area has been obtained using linear regression. In this equation, cs,c is the cost in 
CHF/m and Ac is the area in cm2. 

0.72
, 66.3s c cc A= ⋅  (3)

The second component in Equation 1, and potentially the most important factor affecting the 
total cost of the structure, is the cost of fabricating the joints. In steel construction, joints are 
very expensive details that may determine other aspects of the design of a structure. In this 
study, only a single topology is analyzed. Therefore, the number of joints, and hence their 
cost, is assumed to remain constant for all design solutions.   
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4   Design Using Parametric Analysis and Traditional Design 

Engineers generally adopt an iterative approach similar to a gradient-based search to design 
structures. The initial design often violates design constraints. Depending upon the nature of 
constraint violations, larger member sizes are used and then verified for other criteria. This 
approach is simulated using parametric studies. Parametric studies are conducted to reveal the 
individual influence of each variable on the responses related to the design constraints. The 
goal is to identify the optimal direction, similar to the steepest slope in a gradient-based 
search. For this case, the effects of parameters on vertical displacements at midspan and the 
maximum compressive force are required. Vertical displacements at midspan reflect 
serviceability criteria, while the maximum compressive force is related to failure due to 
buckling.  

Deflection dependencies related to the following five parameters are examined: cross-section 
area of x-cables, layer cables, and struts as well as the rigidity ratio between struts and cables 
(varying the Young’s modulus of struts) and self-stress. For all parametric studies, a reference 
design configuration is assumed, including struts with a section of 5 cm2 and cables of 0.5 
cm2. The parameter of interest is alone varied, while the values for other parameters are left 
unchanged from the reference configuration.  

The parametric analysis reveals that the cross-sectional area of x-cables is the parameter with 
the most influence on the vertical displacement (Figure 2). Increasing the cross-section area of 
these cables significantly increases the total rigidity of the system, and thus decreases vertical 
displacements. However, when the areas of struts are increased displacements initially 
decrease and then gradually increase, contrary to engineering intuition. Figure 2 shows that 
areas of layer cables have negligible influence on vertical displacements.  

Average displacement [cm] 

0

2

4

6

0 2 4 6 8 10 12 14

Series1

0

1.5

3

4.5

6

0 1 2 3 4 5

Series1
Series2

 

Average displacement [cm]

uts er 
ables 

LayStr
X-c

Cross-sectional area [cm2] Cross-sectional area [cm2]

Figure 2: Influence of the cross-sectional area of struts, layer cables and x-cables on the 
average vertical displacement at midspan 

Figure 3 shows that increasing the rigidity ratio results in a decrease in the average vertical 
displacement at mid-span. The reduction in displacement becomes very small beyond a 
certain value for the rigidity ratio. Consequently, an optimal rigidity ratio between tensile and 
compressive elements can be identified for each configuration. This optimal value can be used 
to guide the design of the structure. The self-stress state is responsible for the stability and the 
high resistance of tensegrity structures. In this study, self-stress is specified in terms of cable 
elongation. Figure 3 shows also that increasing self-stress decreases vertical displacements 
contributing by the way to the overall rigidity of the structure. Figure 4 shows that increasing 
the cross-section area of x-cables or struts results in a decrease in the compressive force 
normalized to the buckling capacity. The reduction in the normalized compressive force 
becomes negligible beyond a certain value for the cross-section area. 
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Figure 3: Influence of the rigidity ratio between bars and cables and self-stress on the average 

vertical displacement at midspan 
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Figure 4: Influence of the cross-sectional area of x-cables and struts on the compressive force 
normalized to the buckling capacity 

A feasible configuration is found based on the trends from the parametric analyses. The first 
parameter that is modified is the area of the x-cables. A value is found for which both vertical 
displacements and tensile strength constraints are satisfied. The next variable considered is 
the area of the struts. A tube with sufficient cross-section area and moment of inertia is 
chosen for the struts such that it avoids the instability due to buckling. Finally, self-stress is 
introduced in order to increase the rigidity of the structure and avoid slack cables. At every 
step of the procedure, the dynamic relaxation method is used to analyze the bridge. The 
details of a feasible solution are given in Table 1. The dead load of the structure is 44.4 kN. 
Based on the cost model, the fabricated cost for this bridge configuration (joints not included) 
is estimated to be 54’900 CHF. 

Table 1:  Design found using parametric analyses 

Characteristic Struts Layer cables X cables 
L [cm] 677.8 457.5 346.8 
D [cm] 10.1 1.0 1.0 
A [cm2] 11.1 3.0 3.0 

4   Design through Stochastic Search 

Structural design is an abductive task for which engineers search for solutions, given required 
functionality and behavior. The design solution obtained through parametric studies satisfies 
all design constraints. However, this solution may simply be a local minimum in a very large 
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and complex solution space. Plots from parametric studies show the influence of a single 
parameter only. Implicitly, the assumption in parametric studies is that the general trends are 
valid, even when the initial design configuration is altered. This assumption is often false. 

Global optimization techniques, such as stochastic search, are powerful techniques for 
complex engineering tasks. They find solutions that have a greater chance of being the global 
minimum than solutions provided by parametric analysis. Design optimization of the 
tensegrity bridge was addressed using PGSL (Probabilistic Global Search Lausanne). The 
PGSL technique is based on the assumption that sets of near-optimal solutions are more likely 
to be found near sets of good solutions.  Search is driven by a probability density function that 
is iteratively modified so that more exhaustive searches are made in regions of good solutions 
(Raphael and Smith 2003).  

In this study, the element topology and the span of the bridge are assumed to be fixed. The 
optimization method modifies only design parameters related to member sizing. The 
following six parameters are considered as design variables: 

1.   Area of layer cables [0.05; 10 cm2] 
2. Area of x-cables [0.05; 10 cm2] 
3. Outer diameter of tubular struts [2; 15 cm] 
4. Diameter to thickness ratio of tubular struts [5; 50] 
5. Self-stress in layer cables [0; 1 cm] 
6. Self-stress in x-cables [0; 1 cm] 

The numbers within rectangular brackets beside each parameter indicate lower and upper 
bounds of possible values. For self-stress, the numbers in brackets correspond to elongations 
in the respective cables.  

The objective function consists of two components: the cost (C) of the structure including 
joints as given in Equation 4, and penalty costs (P) that account for each constraint violation. 
 

OF C P= +  (4)

There is often a tradeoff between the two components of the objective function. For example, 
decrease in the cost C may result in constraint violations and increase the value of the 
objective function through the penalty function P. The penalties for the violation of 
constraints are calculated as the additional costs that are likely to be incurred to force the 
solution to satisfy the constraints. 
  

d t c sP P P P P= + + +∑ c  (5)

There are four penalty components as described in Equation 5. The penalty cost Pd 
corresponds to the cost that is estimated to reduce displacements so that they satisfy 
displacement criteria. Pt and Pc correspond to the penalty costs that are estimated to make the 
design solution satisfy the tensile and compressive stress limits. An additional penalty Psc is 
considered in order to eliminate slack cables. Parametric studies have revealed that the x-
cables are the most important load bearing component in the structure. Thus, Pd is calculated 
as the cost corresponding to the additional x-cable area required to reduce vertical 
displacements to the allowable limit.  
 

1.235.16A δ −= ⋅  (6)
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For a given solution with vertical displacement δ, Pd is calculated according to Equation 7, 
where A0 is the estimated minimum cross-sectional area that is required to keep vertical 
displacements under the allowable limit δ0. A is the cross-section area corresponding to the 
evaluated vertical displacement δ as given in Table 1. A and A0 are calculated using Equation 
6. The penalty costs for excessive stress are also estimated. If tensile stresses exceed the 
tensile capacity of the cables, a penalty cost is estimated for the additional cable area required 
to take the calculated force. The additional area is calculated according to Figure 2. For the 
struts, if compressive stresses exceed their buckling strength, a penalty cost is estimated for 
the additional area necessary to prevent buckling.  

Table 2: Solution generated by PGSL 

Characteristic Struts Layer cables X cables 
L [cm] 677.8 457.3 346.5 

D [cm] 10.2 0.7 0.8 

A [cm2] 6.2 1.6 2.1 

PGSL provides consistently good results for a number of evaluations greater than 4000. The 
details of a solution obtained by the stochastic search algorithm are given in Table 2. The 
dead load of the structure is 25.7 kN. Although values for design parameters may vary 
between different PGSL runs, the cost of PGSL solutions remains consistently close to CHF 
40’170. This is 26% lower than a solution found by parametric analysis. PGSL can be used to 
generate a range of good solutions so that criteria that are hard to specify in an objective 
function, such as aesthetics and buildability, can be used to make the best design decision. 

5   Conclusions 

This paper focuses on the use of stochastic search for the design with minimum cost of a 
pedestrian bridge made of hollow-rope tensegrity ring modules. Two design methods aiming 
to find the minimal fabricated cost solution are compared. The first method attempts to 
simulate the practice in design offices using parametric analyses. The second method uses 
PGSL, a stochastic search algorithm. Results from parametric analyses show that certain 
cables (x-cables) are the fundamental load-bearing elements in these tensegrity bridges. Their 
stiffness has the largest effect on vertical displacements and a large impact on internal 
compressive forces. Both parametric analysis and stochastic search generate designs that 
satisfy safety and serviceability criteria. However, the best solution using stochastic search 
has a cost that is 26% lower than the cost of the solution identified using traditional 
parametric analysis. Parametric analyses are useful to obtain a broad understanding of the 
influence of each parameter and can also help in defining effective penalty costs for enforcing 
constraints during stochastic search. These results underline the complexity of tensegrity 
structure design and the efficiency of advanced computing methods. Work in progress 
includes studies of more elaborate cost models and a representation that models design 
parameters as discrete variables. Additionally, a prototype of the tensegrity bridge will be 
built and studied experimentally. 
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