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ABSTRACT

Magnetic resonance imaging (MRI) probes signals through
Fourier measurements. Accelerating the acquisition process
is of major interest for various MRI applications. The re-
cent theory of compressed sensing shows that sparse or com-
pressible signals may be reconstructed from a small number
of random measurements in a sensing basis incoherent with
the sparsity basis. In this context, we advocate the use of a
chirp modulation of MRI signals prior to probing an incom-
plete Fourier coverage, in the perspective of acceleratingthe
acquisition process relative to a standard setting with com-
plete coverage. We analyze the spread spectrum phenomenon
related to the modulation and we prove its effectiveness in en-
hancing the overall quality of image reconstruction. We also
study its impact at each scale of decomposition in a wavelet
sparsity basis. Our preliminary results rely both on theoret-
ical considerations related to the mutual coherence between
the sparsity and sensing bases, as well as on numerical simu-
lations from synthetic signals.

Index Terms— magnetic resonance imaging, compressed
sensing, spread spectrum

1. COMPRESSED SENSING

It is well-known that a large variety of natural signals are
sparse or compressible in multi-scale decompositions, such as
wavelet bases. A band-limited signal may be expressed as the
N -dimensional vector of its values sampled at the Nyquist-
Shannon rate. By definition, a signal is sparse or compressible
in some basis if its expansion contains only a small number
K ≪ N of non-zero or significant components, respectively.
The theory of compressed sensing demonstrates that a small
numberM ≪ N of random measurements, in a sensing basis
incoherent with the sparsity basis, will suffice for an accurate
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and stable reconstruction of such signals [1]. The basic frame-
work proposes to solve the Basis Pursuit (BP) minimization
problem for the signal recovery. This problem regularizes
the originally ill-posed inverse problem by an explicit spar-
sity prior. In the presence of noise, the so-called Basis Pursuit
denoise (BPǫ) problem is the minimization of theℓ1 norm of
the components of the signal in the sparsity basisΨ under a
constraint on theℓ2 norm of the residual noise.

In particular, random Fourier measurements of a signal
sparse in image space represent a good sensing procedure.
The mutual coherenceµ(F, Ψ) between the Fourier basisF
and the sparsity basisΨ may be defined as the maximum
complex modulus of the scalar product between vectors of
the two bases. In other words, this mutual coherence identi-
fies with the maximum complex modulus of the Fourier co-
efficient values of the sparsity basis vectors. It plays an es-
sential role in the signal reconstruction quality as, according
to the theory, for fixedM , the sparsity recovered increases
with the mutual incoherence, i.e. the inverse of the coher-
ence, asK ∝ µ−2(F, Ψ). The incoherence is maximum
between the Fourier basis and the image space basis identi-
fied by a sparsity matrixΨ ≡ ∆ made up of unit spikes:
µ(F, ∆) = N−1/2.

2. MAGNETIC RESONANCE IMAGING

In the standard setting, considering two-dimensional imag-
ing, MRI data provide a noisy and complete coverage of the
Fourier plane, commonly namedk-space, of the original im-
ageρ of interest. In ideal conditions, this signal is a real and
positive scalar functionρ(l) of the positionl ∈ R2, with com-
ponents(l, m), representing the intensity of the magnetization
induced by resonance in the tissues to be imaged.

In the present work, we consider the important issue of ac-
celerating the MRI acquisition process, by reducing the num-
ber of k-space measurements, hence identifying an incom-
plete Fourier coverage, while maintaining the required recon-
struction quality. This problem is equivalent to the question
of enhancing the image reconstruction quality achievable at



a fixed numberM ≪ N of measurements. The issue of
reconstructing the originalN -dimensional vector identifying
the image from these data is an ill-posed inverse problem.

We address the problem in a compressed sensing perspec-
tive. The signal exhibits some sparsityK ≪ N in a chosen
sparsity basisΨ, and the sensing basis is identified by the
Fourier basisF. In this context, the larger the typical size, in
image space, of the waveforms constituting the sparsity ba-
sis, the smaller their extension ink-space. As a consequence,
the incoherence between the sparsity and sensing bases is de-
creased, which leads to a degradation of the reconstruction
quality for givenK andM .

The great flexibility in MRI scanners to tune magnetic
field gradients and tailor radio frequency (RF) pulses might
actually provide a response to this issue. Specifically, the
use of quadratic phase profiles was advocated for various pur-
poses, such as reduction of aliasing artifacts [2, 3] or improve-
ment of dynamic range [4, 5]. This technique is known as
phase scrambling and consists in altering the original image
by a modulation such as a linear chirpC(w)(|l|) = eiπw|l|2,
where the norm|l| corresponds to the distance to the center
of the field-of-view, with the chirp ratew controlled by the
intensity of the quadratic profile. This type of modulation can
be obtained by using dedicated coils or by changing the RF
pulse.

From the mathematical point of view, each corresponding
measurement at spatial frequencyk identifies with the Fourier

transform of the modulated planar signal:ν (k) = Ĉ(w)ρ(k).
In k-space, the modulation amounts to the convolution of the
Fourier transform of the modulation with that of the signal:

Ĉ(w)ρ = Ĉ(w) ⋆ ρ̂. This convolution inevitably spreads the
two-dimensional sample power spectrum of the signal, i.e. the
square modulus of its Fourier transform, while preserving its
overall norm. This spread spectrum phenomenon increases
the incoherence between the sparsity and sensing bases.

A linear chirpC(w)(|l|) with chirp ratew is characterized
by an instantaneous frequencywl at positionl. On a finite
field-of-view it is approximately a band-limited function.In
each basis direction, the band limit of the signal after con-
volutionB(C(w)ρ) is the sum of the individual band limits of
the original signalB(ρ) and of the chirp modulationB(C(w)).
This simple consideration quantifies the spread spectrum phe-
nomenon associated with the chirp modulation. A large vari-
ety of modulations would be suitable for this purpose, pro-
vided that they have a large enough band limit ink-space, so
that the spread spectrum phenomenon is significant.

Let us acknowledge the fact that the interest of com-
pressed sensing for MRI was already proven [6]. The in-
troduction of a signal modulation was recently proposed
and tested on real data [7], but no theoretical underpinning
neither guarantees relative to the reconstruction qualitywas
proposed. Very recently, the spread spectrum technique pro-
posed here was extensively studied by three of the authors in

the context of radio interferometry [8, 9].

3. DICTIONARIES AND INVERSE PROBLEM

The band-limited functions considered are completely identi-
fied by their Nyquist-Shannon sampling on a discrete uniform
grid ofN = N1/2×N1/2 pointsli ∈ R2 in image space, with
1 ≤ i ≤ N . The sampled signal is denoted by a vectorρ ∈
RN ≡ {ρi ≡ ρ(li)}1≤i≤N . The chirp is complex and reads

as the vectorC(w) ∈ CN ≡ {C
(w)
i ≡ C(w)(|li|)}1≤i≤N .

Because of the finite field-of-view, the functions may equiva-
lently be described byk-space components on a discrete uni-
form grid of N = N1/2 × N1/2 spatial frequencieski, with
1 ≤ i ≤ N . This grid is limited at some maximum frequency
defining the band limit.

We assume that the spatial frequenciesk probed during
acquisition belong to the discrete grid of pointski. The
k-space coverage provided by theM/2 spatial frequencies
probedkb, with 1 ≤ b ≤ M/2, can simply be identified
by a binary mask ink-space equal to1 for each spatial
frequency probed and0 otherwise. The components mea-
sured may be denoted by a vector ofM/2 complexk-space
componentsν ∈ CM/2 ≡ {νb ≡ ν(kb)}1≤b≤M/2, cor-
responding toM real measures, and inevitably affected by
complex noise of instrumental origin, identified by the vector
n ∈ CM/2 ≡ {nb ≡ n(kb)}1≤b≤M/2. Relying on the flexi-
bility of realistic measurement distributions, we also assume
that the spatial frequencieskb probed arise from a uniform
random selection ofk-space frequencies. This allows us
to discard considerations related to specific acquisition se-
quences. It also allows us to place our discussion in a setting
which complies directly with the requirement of the theory of
compressed sensing for random measurements.

In this discrete setting, the assumedk-space coverage is
incomplete with a number of real constraintsM smaller than
the number of unknownsN : M ≪ N . An ill-posed inverse
problem is thus defined for the reconstruction of the signalρ

from the measurementsν:

ν ≡ Φ
(w)ρ + n with Φ

(w) ≡ MFC
(w), (1)

where the matrixΦ(w) ∈ C(M/2)×N identifies the complete
linear relation between the signal and the measurements. The
matrix C(w) ∈ CN×N ≡ {C

(w)
ij ≡ C

(w)
i δij}1≤i,j≤N is the

diagonal matrix implementing the chirp modulation. The uni-
tary matrixF ∈ CN×N ≡ {Fij ≡ e−2iπki·lj /N1/2}1≤i,j≤N

implements the discrete Fourier transform. The matrixM ∈
R(M/2)×N ≡ {Mbj}1≤b≤M/2;1≤j≤N is the rectangular bi-
nary matrix implementing the mask characterizing the incom-
plete Fourier coverage. It contains only one non-zero valueon
each line, at the index of thek-space coefficient correspond-
ing to each of the spatial frequencies probedkb.

Without loss of generality, we simply consider the sparsity
of the signals under scrutiny in a Haar wavelet basisΨ on



the grids used. The sparsity basis is identified by the Haar
wavelets at four scales indexed by integer valuess with s = 1
to s = 4, completed by the corresponding lowpass scaling
function, identified bys = 5. The larger the value of the
wavelet scales with 1 ≤ s ≤ 5, the larger the extent of the
waveform in image space.

4. EXPERIMENTAL SET UP

The synthetic signalρ that we consider is the well-known
Shepp-Logan phantom in some arbitrary intensity units, sam-
pled on a grid ofN = 256 × 256 = 65536 pixels on some
field-of-view L = L1/2 × L1/2. The signal is illustrated in
Fig. 1. Notice that is exhibits by definition exactly sparse
magnitude of the gradient. The image could therefore nat-
urally be reconstructed by solving the well-known analysis-
based Total Variation (TVǫ) problem, which consists in the
minimization of theℓ1 norm of the magnitude of the gradient
of the signal under a constraint on theℓ2 norm of the residual
noise. This perspective was actually concisely consideredas
an illustration in [9]. The choice of a generic wavelet basisis
certainly suboptimal as the signal is not exactly sparse in such
a basis. But it is still compressible, given the strong localiza-
tion of the signal variations in image space. This choice will
allow us to analyze the quality of theBPǫ reconstruction in
each wavelet band separately. Moreover it is more realisticas
often, either true signals are not exactly sparse in any basis,
or the sparsity basis is not known exactly.

Observations are considered for various numbersM/2
of complex measurements corresponding to coverages of4,
6, 8, 10, 15, 20, and40 per cent of thek-space. A small
amount of instrumental noise is also added as independent
identically distributed Gaussian noise. The componentw may
also be written in terms of a discrete componentwd asw =
wdN

1/2/L. We consider the valueswd = 0 andwd = 1.
The casewd = 0 identifies the absence of modulation. The
casewd = 1 corresponds to a linear chirp modulation with a
maximum instantaneous frequency, i.e. an approximate band
limit, equal to the band limit accessible on the grids consid-
ered. The chirp is illustrated in Fig. 1.

A number of30 simulations are generated for each value
of wd andM considered, with independent noise and mask
realizations. The measurements are simulated and the signals
are reconstructed through theBPǫ problem, solved by con-
vex optimization. The quality of reconstruction is analyzed in
terms of the corresponding signal-to-noise ratio (SNR).

5. SPREAD SPECTRUM AND COHERENCES

The sensing basis as seen from the sparsity basis itself reads
as Θ

(w) ≡ Φ
(w)

Ψ ≡ MFC
(w)

Ψ. One can formally re-
organise this decomposition into modified sensing and spar-
sity bases, respectivelỹΦ ≡ MF and Ψ̃(w) ≡ C(w)Ψ. In
this perspective, the mutual coherenceµ(FC

(w), Ψ) identifies

s = 5 s = 3 s = 1
wd = 0 6.250 · 10

−2 2.272 · 10−2 6.014 · 10−3

wd = 1 5.912 · 10
−2 2.265 · 10−2 6.014 · 10−3

Table 1. Values with four significant figures of the mutual
coherencesµ(FC

(w), Ψ(s)) between the sparsity and sensing
bases, for the wavelet scaless = 5, s = 3, ands = 1, both
in the absence of chirp modulation (wd = 0) and for a chirp
modulation withwd = 1. Notice that these values have to be
compared with the lower boundµ(F, ∆) = 3.906 × 10−3.

with the maximum complex modulus of thek-space coef-
ficient values of the modified sparsity basis vectors, which
depend on the chirp modulation.

After normalization of the vectors of the sparsity and sens-
ing bases inℓ2 norm, a simple numerical computation gives
the mutual coherence between the sensing and sparsity bases
for each desired value of the chirp ratew. Analyzing the im-
pact of the chirp on the coherence between the sensing basis
and the sparsity basisΨ(s) identifying each wavelet scale with
1 ≤ s ≤ 5 is very enlightening. The values of these coher-
encesµ(FC

(w), Ψ(s)) are reported in Table 1. By definition,
the overall coherenceµ(FC

(w), Ψ) is the maximum over the
values obtained at each wavelet scale. This maximum is natu-
rally obtained for the lowpass filter (s = 5), which is charac-
terized by a smaller support ink-space relative to the wavelets
at scaless = 1 to s = 4. Corresponding values for the overall
coherence are reported in bold in Table 1.

Firstly, the overall coherence is smaller forwd = 1 than
for wd = 0, due to the spread spectrum phenomenon. In
the context of compressed sensing, this result suggests that
the quality of theBPǫ reconstruction will be enhanced by the
chirp modulation. Secondly, in the absence of chirp (wd = 0),
the mutual coherence decreases toward its lower bound asso-
ciated with the Dirac sparsity basis when the scale indexs
decreases. This natural behaviour simply illustrates the fact
that waveforms with a smaller extent in image space are more
spread ink-space. This result suggests that, in the absence of
chirp, the part of a signal associated with large wavelet scales
will have a poor quality of theBPǫ reconstruction relative
to those associated with small wavelet scales. Thirdly, the
coherence is affected very differently at each wavelet scale.
For the smallest scales, the waveforms are already initially
widely spread ink-space so that the effect of the chirp is
small, and actually null at four significant figures ats = 1.
On the contrary, the effect gets more important when one
considers larger wavelet scaless, indicating the effectiveness
of the chirp in spreading the spectrum of the corresponding
wavelets. This result suggests that the expected overall in-
crease in the quality of theBPǫ reconstruction should essen-
tially be related to a better reconstruction of the part of the
signal associated with large waveforms.
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Fig. 1. First panel from the left: Shepp-Logan phantom on a grid ofN pixels. Second panel from the left: real part of the chirp
modulation withwd = 1. The chirp is sampled on a grid of4N pixels in order to avoid any aliasing artifact. In both panels dark
and light regions respectively correspond to positive and negative values. Other panels:SNR of reconstructions as a function
of the coverage ink-space. The third, fourth and fifth panels from the left represent theSNR at the wavelet scaless = 5, s = 3,
ands = 1 respectively, and the sixth panel from the left represents theSNR of the overall reconstruction. AllSNR curves
represent the meanSNR over30 simulations, and the vertical lines identify the error at1 standard deviation.

6. RESULTS

The results of the analysis are reported in Fig. 1. The re-
constructions in the absence (wd = 0) and in the presence
(wd = 1) of the chirp modulation are respectively denoted by
BPǫ0 andBPǫ1.

Firstly, as expected, for each coverage considered, the
SNR for the overall reconstruction is significantly larger
for BPǫ1 than forBPǫ0. This is the spread spectrum phe-
nomenon related to the reduction of the mutual coherence
between the sensing basis and the sparsity basis in the pres-
ence of the chirp modulation. Secondly, for each coverage
considered, the increase in theSNR of reconstruction is
more important at large wavelet scaless, in complete agree-
ment with our previous discussion. No significant increase
is observed ats = 1, but well at larger scales. Finally, the
enhancement can equivalently be cast in terms of a significant
acceleration of the acquisition process for fixed reconstruc-
tion quality. Under the conditions of our simulations, a factor
4 or 5 can be inferred from the graph of the overall recon-
structionSNR in Fig. 1.

7. CONCLUSION

We have considered probing MRI signals through an incom-
plete Fourier coverage, in the perspective of acceleratingthe
acquisition process relative to a standard setting providing a
complete coverage. In the context of compressed sensing, we
have shown that pre-modulating signals by quadratic phase
profiles would induce a spread spectrum phenomenon that
could drastically enhance the quality of image reconstruction
for sparse or compressible signals. Before stronger conclu-
sions can be drawn, this approach should be extensively tested
through real acquisitions, i.e. under real noise and coverage
conditions ink-space.
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