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ABSTRACT and stable reconstruction of such signals [1]. The basidra

. . ) . work proposes to solve the Basis PurstiP) minimization
Magnetic resonance imaging (MRI) probes signals througl o iiem for the signal recovery. This problem regularizes

Fourier measurements. Acceleratlng the acquisition mcethe Originally ill-posed inverse problem by an eXpliCit spa

is of major interest for various _MRI applications. The re- sity prior. In the presence of noise, the so-called Basistrur
cent theory of compressed sensing shows that sparse or COHEnoiseBPe) problem is the minimization of thé norm of

pressible signals may be reconstructed from a small numbegt components of the signal in the sparsity basisnder a
of random measurements in a sensing basis incoherent Wianstrainton theé, norm of the residual noise

the sparsity basis. In this context, we advocate the use of a

chirp modglaﬂon of MRI_ signals prior tc_) probing an incom- sparse in image space represent a good sensing procedure.
plete Fourier coverage, in the perspective of acceleratiag The mutual coherence(F, V) between the Fourier basfs

acquisition process relative to a standard setting W'th'comand the sparsity basi¥ may be defined as the maximum

pl?tf (éotvetrhage. V(;/ela?alyze(;he spread.fpe;:ftrutr.n pheno_menc%}nplex modulus of the scalar product between vectors of
related to the modulation and We prove Its ENeCUVENESaN € v, o 44 pases. In other words, this mutual coherence identi-

ha”""?g t_he overall quality of image reconstrgctiqn. Weals files with the maximum complex modulus of the Fourier co-
StUdy.'tS mp_act at each_sc_ale of decomposition in a Wave'%fﬁcient values of the sparsity basis vectors. It plays an es
sparsity basis. Our preliminary results rely both on theore sential role in the signal reconstruction quality as, aday
ical considerations related to the mutual coherence betweqo the theory, for fixed\, the sparsity recovered ’increases
thF." sparsity and sensin_g bases, as well as on numerical SinWi’th the mut;JaI incoherénce, i.e. the inverse of the coher-
lations from synthetic signals. ence, asKk « p~%(F,¥). The incoherence is maximum
Index Terms— magnetic resonance imaging, compressedyetween the Fourier basis and the image space basis identi-
sensing, spread spectrum fied by a sparsity matrixy = A made up of unit spikes:
w(F,A) = N—1/2,

In particular, random Fourier measurements of a signal

1. COMPRESSED SENSING
2. MAGNETIC RESONANCE IMAGING

It is well-known that a large variety of natural signals are
sparse or compressible in multi-scale decomposition$,asic  In the standard setting, considering two-dimensional imag
wavelet bases. A band-limited signal may be expressed as tireg, MRI data provide a noisy and complete coverage of the
N-dimensional vector of its values sampled at the NyquistFourier plane, commonly namédspace, of the original im-
Shannonrate. By definition, a signal is sparse or compilessibagep of interest. In ideal conditions, this signal is a real and
in some basis if its expansion contains only a small numbepositive scalar functiop(l) of the positionl € R?, with com-
K < N of non-zero or significant components, respectivelyponentgl, m), representing the intensity of the magnetization
The theory of compressed sensing demonstrates that a smatuced by resonance in the tissues to be imaged.
numberM < N of random measurements, in a sensing basis  In the present work, we consider the important issue of ac-
incoherent with the sparsity basis, will suffice for an aeter celerating the MRI acquisition process, by reducing the num
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a fixed numberM < N of measurements. The issue of the context of radio interferometry [8, 9].
reconstructing the originaV-dimensional vector identifying
the image from these data is an ill-posed inverse problem.

We address the problem in a compressed sensing perspec-

tive. The signal exhibits some sparsity < IV in a chosen  The band-limited functions considered are completelytiden
sparsity basisl, and the sensing basis is identified by thefied by their Nyquist-Shannon sampling on a discrete uniform
Fourier basig. In this context, the larger the typical size, in grid of N = N/2x N'/2 pointsl; € R? inimage space, with
image space, of the waveforms constituting the sparsity ba- < ; < N. The sampled signal is denoted by a vegioe

sis, the smaller their extensionkaspace. As a consequence, RN = {y, = p(l;)}1<;<n. The chirp is complex and reads
the incoherence between the sparsity and sensing bases is d¢ he vectoc™) ¢ CN = {Ci(w) = ()

creased, which leads to a degradation of the reconstructiqgy .5 ,se of the finite field-of-view, the functions may equiva

quality for givenk” and M. lently be described bk-space components on a discrete uni-
The great flexibility in MRI scanners to tune magneticform grid of N = N1/2 x N1/2 spatial frequenciek;, with

field gradients and tailor radio frequency (RF) pulses might < ; < . This grid is limited at some maximum frequency
actually provide a response to this issue. Specifically, thgeﬁning the band limit.
use of quadratic phase profiles was advocated for various pur \\fe assume that the spatial frequendieprobed during
poses, such as reduction of aliasing artifacts [2, 3] or ovier acquisition belong to the discrete grid of poirts. The
ment of dynamic range [4, 5]. This technique is known as;_space coverage provided by thié/2 spatial frequencies
phase scrambling and consists in altering the originalfnagprobedkb' with 1 < b < M/2, can simply be identified
by a modulation such as a linear chitp®) (|I|) = ™", py a binary mask ink-space equal td for each spatial
where the nornjl| corresponds to the distance to the centefrequency probed and otherwise. The components mea-
of the field-of-view, with the chirp ratev controlled by the syred may be denoted by a vector/df/2 complexk-space
intensity of the quadratic profile. This type of modulati@mc componentsyr € CM/2 = {vs = v(ks)}1<p<nr/2, COI-
be obtained by using dedicated coils or by changing the RFesponding toM/ real measures, and inevitably affected by
pulse. complex noise of instrumental origin, identified by the wect
From the mathematical point of view, each correspondingy € CM/2 = {n, = n(ky) }1<p<nr/2- Relying on the flexi-
measurement at spatial frequerciglentifies with the Fourier  bility of realistic measurement distributions, we alsousse

—

transform of the modulated planar signalk) = C®) p(k). that the spatia! frequencids, probed arise from a uniform
In k-space, the modulation amounts to the convolution of thé@ndom selection ok-space frequencies. This allows us
Fourier transform of the modulation with that of the signal:t0 discard considerations related to specific acquisiten s
(/T(w\)p _ (7(;) « 5. This convolution inevitably spreads the quences. It a..|SO gllows us to place our discussion in a gettin
two-dimensional sample power spectrum of the signal fie. t which complies directly with the requirement of the theofy o

. : : . compressed sensing for random measurements.
square modulus of its Fourier transform, while preserviag i o . :
: : In this discrete setting, the assumieepace coverage is
overall norm. This spread spectrum phenomenon increases

the incoherence between the sparsity and sensing bases incomplete with a number of real constraidts smaller than
) _ _ i _ — the number of unknown®: M <« N. Anill-posed inverse
Alinear chirpC)(|1|) with chirp ratew is characterized

. ” o problem is thus defined for the reconstruction of the signal
by an instantaneous frequeneay at positionl. On a finite

X e ) o ) from the measurements

field-of-view it is approximately a band-limited functioin

each basis direction, the band limit of the signal after con- v = o™ p 4 nwith ) = MFC™), (1)
volution B(°"’#) is the sum of the individual band limits of

the original signalB(”) and of the chirp modulatioB(©™).  where the matrixp(®) € CM/2xN identifies the complete
This simple consideration quantifies the spread spectruem phlinear relation between the signal and the measuremenés. Th
nomenon associated with the chirp modulation. A large varimatrix C(w) ¢ CNxN = {Ci(;ﬂf) = C_(w)gi.j}lgi7j§N is the

3

ety of modulations would be suitable for this purpose, prodiagonal matrix implementing the chirp modulation. The-uni
vided that they have a large enough band limikispace, so  tary matrixF € CV*N = {(F; = o—2ink;-l; /N1/2}1§i.,j§N
that the spread spectrum phenomenoniis significant. implements the discrete Fourier transform. The malttixc

Let us acknowledge the fact that the interest of comRM/2XN = N} o< pr/0.1<j<n IS the rectangular bi-
pressed sensing for MRI was already proven [6]. The innary matrix implementing the mask characterizing the incom
troduction of a signal modulation was recently proposeglete Fourier coverage. It contains only one non-zero vaifue
and tested on real data [7], but no theoretical underpinningach line, at the index of thle-space coefficient correspond-
neither guarantees relative to the reconstruction qualiéy  ing to each of the spatial frequencies proligd
proposed. Very recently, the spread spectrum technique pro Without loss of generality, we simply consider the sparsity
posed here was extensively studied by three of the authors of the signals under scrutiny in a Haar wavelet basisn

3. DICTIONARIES AND INVERSE PROBLEM

H<i<n.



the grids used. The sparsity basis is identified by the Haar s=5 s=3 s=1

wavelets at four scales indexed by integer vakiegth s = 1 wg=0 6.250-10"2 2272-10~2 6.014-1073
to s = 4, completed by the corresponding lowpass scaling w; =1 5.912.102 2.265-102 6.014-103
function, identified bys = 5. The larger the value of the

wavelet scales with 1 < s < 5, the larger the extent of the ) o .
waveform in image space. Table 1. Values with four significant figures of the mutual

coherenceﬂ(FC(w), W () between the sparsity and sensing

bases, for the wavelet scales= 5, s = 3, ands = 1, both

in the absence of chirp modulatiom{ = 0) and for a chirp

modulation withw; = 1. Notice that these values have to be
compared with the lower boundF, A) = 3.906 x 1073,

4. EXPERIMENTAL SET UP

The synthetic signap that we consider is the well-known
Shepp-Logan phantom in some arbitrary intensity units-sa
pled on a grid ofN = 256 x 256 = 65536 pixels on some
field-of-view L = L'/2 x L'/2. The signal is illustrated in _
Fig. 1. Notice that is exhibits by definition exactly sparseWith the maximum complex modulus of thespace coef-
magnitude of the gradient. The image could therefore naficient values of t.he mod|f|eq sparsity basis vectors, which
urally be reconstructed by solving the well-known analysis 9&Pend on the chirp modulation.
based Total VariationI(V.) problem, which consists in the After normalization of the vectors of the sparsity and sens-
minimization of the/; norm of the magnitude of the gradient ing bases i’z norm, a simple numerical computation gives
of the signal under a constraint on thenorm of the residual the mutual coherence between the sensing and sparsity bases
noise. This perspective was actually concisely considased for each desired value of the chirp rate Analyzing the im-
an illustration in [9]. The choice of a generic wavelet basis pact of the chirp on the coherence between the sensing basis
certainly suboptimal as the signal is not exactly sparsaéhs and the sparsity basis(®) identifying each wavelet scale with
a basis. But it is still compressible, given the strong lazeal 1 < s < 5 is very enlightening. The values of these coher-
tion of the signal variations in image space. This choicé wil encesu(FC), w(*)) are reported in Table 1. By definition,
allow us to analyze the quality of tHg@P. reconstruction in the overall coherenCﬁ(FC(w), V) is the maximum over the
each wavelet band separately. Moreover it is more reafstic values obtained at each wavelet scale. This maximum is natu-
often, either true signals are not exactly sparse in anysbasirally obtained for the lowpass filtes (= 5), which is charac-
or the sparsity basis is not known exactly. terized by a smaller supportkrspace relative to the wavelets
Observations are considered for various numhei®  atscales = 1tos = 4. Corresponding values for the overall
of complex measurements corresponding to coveragds of coherence are reported in bold in Table 1.
6, 8, 10, 15, 20, and40 per cent of thek-space. A small Firstly, the overall coherence is smaller foy = 1 than
amount of instrumental noise is also added as independefyr ,, — 0, due to the spread spectrum phenomenon. In
identically distributed Gaussian noise. The compomemiay  the context of compressed sensing, this result suggesdts tha
also be written in terms of a discrete componeptasw = the quality of theBP, reconstruction will be enhanced by the
waN'/?/L. We consider the values, = 0 andwgs = 1. chirp modulation. Secondly, in the absence of chiep & 0),
The casewy = 0 identifies the absence of modulation. Thenhe mutual coherence decreases toward its lower bound asso-
casewg = 1 corresponds to a linear chirp modulation with acjated with the Dirac sparsity basis when the scale index
maximum instantaneous frequency, i.e. an approximate bantbcreases. This natural behaviour simply illustrates dloé f
limit, equal to the band limit accessible on the grids considthat waveforms with a smaller extent in image space are more
ered. The chirp is illustrated in Fig. 1. spread ink-space. This result suggests that, in the absence of
A number of30 simulations are generated for each valuechirp, the part of a signal associated with large waveldesca
of wg and M considered, with independent noise and maskyij| have a poor quality of thé3P. reconstruction relative
realizations. The measurements are simulated and thdsigngy those associated with small wavelet scales. Thirdly, the
are reconstructed through tfii>. problem, solved by con- coherence is affected very differently at each waveletescal
vex optimization. The quality of reconstructionis analyz®  For the smallest scales, the waveforms are already iitiall

terms of the corresponding signal-to-noise raitiR). widely spread ink-space so that the effect of the chirp is
small, and actually null at four significant figuressat= 1.
5. SPREAD SPECTRUM AND COHERENCES On the contrary, the effect gets more important when one

considers larger wavelet scalesndicating the effectiveness
The sensing basis as seen from the sparsity basis itself reanof the chirp in spreading the spectrum of the corresponding
as0@ = oWy = MFC™w. One can formally re- wavelets. This result suggests that the expected overall in
organise this decomposition into modified sensing and spacrease in the quality of thBP, reconstruction should essen-
sity bases, respectivelp = MF andV(») = C®)y. In tially be related to a better reconstruction of the part @ th
this perspective, the mutual coherem&(éc(w), V) identifies  signal associated with large waveforms.
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Fig. 1. First panel from the left: Shepp-Logan phantom on a grid/gfixels. Second panel from the left: real part of the chirp
modulation withwy = 1. The chirp is sampled on a grid &fV pixels in order to avoid any aliasing artifact. In both parark
and light regions respectively correspond to positive agghtive values. Other panelBNR of reconstructions as a function
of the coverage ik-space. The third, fourth and fifth panels from the left repre theSNR at the wavelet scales= 5, s = 3,
ands = 1 respectively, and the sixth panel from the left represdme$SNR of the overall reconstruction. ABNR curves
represent the me&NR over30 simulations, and the vertical lines identify the errott &tandard deviation.

6. RESULTS

The results of the analysis are reported in Fig. 1. The re
constructions in the absence{ = 0) and in the presence

(wgq = 1) of the chirp modulation are respectively denoted by
BP.0 andBP.1.

Firstly, as expected, for each coverage considered, the
SNR for the overall reconstruction is significantly larger
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