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SUMMARY

In non-iterative data-driven controller tuning, a set of measured input/output data of the plant is
used directly to identify the optimal controller that minimizes some control criterion. This approach
allows the design of fixed-order controllers, but leads to an identification problem where the input is
affected by noise, and not the output as in standard identification problems. Several solutions that
deal with the effect of measurement noise in this specific identification problem have been proposed
in literature. The consistency and statistical efficiency of these methods are discussed in this paper
and the performance of the different methods is compared. The conclusions offer a guideline on how
to solve efficiently the data-driven controller tuning problem . Copyright c© 200 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The concept of virtual reference controller design was first introduced in [1]. The method
allows the design of fixed-order controllers using a single set of measured input/output data.
The control objective is formulated as a reference model. Instead of the identification of a
plant model, which is then used for controller design, the data is used directly to identify
the optimal controller. An advantage is that the order of the controller does not depend on
the order of the plant model, i.e. it can be fixed beforehand. However, the approach leads
to a non-standard identification problem, where the input is affected by noise in contrast to
standard identification problems, where only the output is affected by noise.

Several papers have treated this approach, e.g. [2, 3, 4]. An extension to the original method
with an appropriate weighting for fixed-order controllers is presented in [2]. The method
is developed for noise-free measurements. For noisy measurements the use of instrumental
variables is proposed. In [3] several remarks and extensions to [2] are proposed. The use of a
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prediction error method (PEM) for the identification of the inverse controller is suggested to
deal with measurement noise. In [4] a straightforward tuning scheme is proposed that allows
identification of the controller without the need for a virtual reference. A specific choice of
extended instrumental variables is proposed that leads to an appropriate frequency weighting
and deals with the measurement noise at the same time.

This paper discusses the identification problem encountered in direct data-driven controller
tuning in detail. One of the main features of the approach is the possibility to fix the order
of the controller and to minimize the 2-norm of an approximate model reference criterion
for this class of controllers. In common terms of system identification, this situation leads to
undermodeling of the controller. In the case of undermodeling, bias shaping is essential for
the achieved control performance [5]. The way the noise enters the controller identification
problem complicates this bias shaping, and standard results for prediction error methods are
not valid, as shown in Section 3.

The identification methods for the direct controller tuning problem proposed in [2, 3] and
[4] are discussed in Sections 4-6. Variance expressions for the different approaches are given
if no undermodeling is present and convergence to the optimal solution is analyzed in case of
undermodeling. In addition to these three methods, application of the method presented in
[6] to the controller tuning problem is presented in Section 7. This method is developed for
errors-in-variables problems and uses periodicity of the data. It is shown that this method can
also be used in the case of undermodeling. The results are illustrated by a simulation example.
The performance of the different approaches is compared for the cases with undermodeling
and without undermodeling. The conclusions offer a guideline for the choice of identification
method.

2. DIRECT DATA-DRIVEN CONTROLLER TUNING

Direct data-driven controller tuning was initially developed for stable SISO systems [1]. Both
stable and unstable SISO systems are considered in [4]. For unstable systems the experiment
needs to be performed in closed-loop, for stable systems both open-loop and closed-loop data
can be used. This paper considers only stable systems and open-loop experiments.

2.1. Approximate model-reference problem

Consider the stable linear SISO plant G(q−1), where q−1 denotes the backward shift operator.
Specifications for the controlled plant are given as a reference model M(q−1). In the following,
it is assumed that M 6= 1. The control objective is to design the controller K(ρ) such that the

closed-loop K(ρ)G
1+K(ρ)G resembles the reference modelM , where ρ ∈ R

nρ×1 is a vector of controller

parameters. This can be achieved by minimizing the two-norm of the difference between the
reference model and the achieved closed-loop system:

Jmr(ρ) =

∥

∥

∥

∥

M − K(ρ)G

1 +K(ρ)G

∥

∥

∥

∥

2

2

(1)

A discussion on the choice of M can be found in [7]. In the following, M and the structure of
K(ρ) are assumed to be appropriate for the system at hand. The model reference criterion (1)
is non-convex with respect to ρ. An approximation that is convex for linearly parameterized
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controllers can be defined using the reference model M , as illustrated next. M can be
represented as:

M =
K∗G

1 +K∗G
. (2)

The backward shift operator is omitted here for convenience and will be omitted in the sequel.
K∗ is the ideal controller, which is defined indirectly by G and M :

K∗ =
M

G(1 −M)
. (3)

This controller K∗ exists since M 6= 1. It might be of very high order since it depends on
the unknown and possibly high-order plant G. Furthermore, it might not stabilize the plant
internally and it might be non-causal.

The ideal sensitivity function is then given by 1
1+K∗G = 1−M . Using (2), the model reference

criterion (1) can be expressed as:

Jmr(ρ) =

∥

∥

∥

∥

K∗G−K(ρ)G

(1 +K∗G)(1 +K(ρ)G)

∥

∥

∥

∥

2

2

(4)

Approximation of 1
1+K(ρ)G by 1 − M , the ideal sensitivity function, leads to the following

approximation of the model reference criterion:

J(ρ) =

∥

∥

∥

∥

K∗G−K(ρ)G

(1 +K∗G)2

∥

∥

∥

∥

2

2

=
∥

∥

∥(1 −M)[M −K(ρ)(1 −M)G]
∥

∥

∥

2

2
. (5)

The quality of this approximation of Jmr(ρ) is discussed in [2]. The controller structure is
chosen linear in the parameters ρ,

K(ρ) = βT (q−1)ρ (6)

where
β(q−1) = [β1(q

−1), · · · , βnρ
(q−1)]T (7)

is a vector of size nρ of stable linear discrete-time transfer operators (in general an orthogonal
basis). Then J(ρ) is a quadratic function of ρ and its global optimizer can be found analytically.

This approximate model-reference criterion in combination with a linearly parameterized
controller forms the basis of both the virtual reference feedback tuning (VRFT) [2] and the
correlation-based tuning (CbT) approach of [4].

The optimal controller is defined as K(ρ0) with

ρ0 = argmin
ρ
J(ρ) (8)

Two cases are considered in this paper.

C1 The objective can be achieved, i.e. K∗ ∈ {K(ρ)}. Therefore K(ρ0) = K∗ and J(ρ0) = 0

C2 The objective cannot be achieved, i.e. K∗ /∈ {K(ρ)}, K(ρ0) 6= K∗ and J(ρ0) > 0.

C1 is often assumed in system identification. However, since one of the main advantages of
data-driven controller design is that the order of the controller can be fixed, this assumption
does not necessarily hold and C2, the case of undermodeling of the controller, needs to be
considered.
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2.2. Data-driven approaches

In data-driven controller tuning approaches, a set of measured data from the plant is used
directly to minimize a time-domain criterion that approximates (5).

This paper considers only stable systems and open-loop measurement data. Consider a set of
input, r(t), and output data, y(t), with data length N from an open-loop experiment. Suppose
that the output is generated as:

y(t) = G(q−1)r(t) + v(t)

where v(t) is the measurement noise. To proceed, the following assumptions are considered:

A1 The measurement noise v(t) is uncorrelated with r(t).

A2 The measurement noise can be represented as v(t) = Hve(t), where e(t) is a zero-mean
white noise signal with variance σ2 and Hv is a stable filter.

A3 The input r(t) = 0, ∀t 6 0. r(t) is persistently exciting of order nρ and (1−M)2G has no
zero on the imaginary axis.

Assumption A3 is used for the case C1. In case C2, the control objective is formulated as
minimization of J(ρ), the 2-norm of an error function. Because the 2-norm is considered, i.e.
the integral of the error function over all frequencies, and J(ρ) 6= 0, ∀ρ, the system must be
excited at all frequencies. The assumption that the spectrum of r(t), Φr(ω) > 0, ∀ω is sufficient
for the analysis of convergence of the estimate in case C2. However, for the ease of notation,
the following stronger assumption will be used.

A4 The input r(t) is a zero-mean white noise with unit variance and (1 −M)2G has no zero
on the imaginary axis.

If r(t) is not white, but Φr(ω) > 0, ∀ω, an additional filter needs to be introduced, which
complicates the notation and expressions.

The data-driven controller tuning approaches all use a specific filtering of the signals r(t) and
y(t) to define an error signal that is used to minimize (5). The virtual reference feedback tuning
approach [2] uses a filter that depends on the inverse of the reference model M . Consequently,
M−1 needs to be stable in this approach. The extensions proposed in [3] use this same filtering
scheme. The scheme proposed in [4] is a straightforward implementation of the approximate
model reference criterion, that does not require a virtual reference nor a filter that depends
on M−1.

In the following, a generalization of the scheme of [4] is used. The only difference between
this generalized scheme and the approach of [4] is that the error is filtered also by the additional
filter that was used to construct the instrumental variables of the correlation approach, thereby
eliminating all ‘hidden’ filters. Using this generalized scheme, the same signals can be used in
the different identification solutions and a comparison of the different methods can be carried
out.

The generalized data-driven controller tuning scheme is shown in Figure 1. The transfer
function between r(t) and εk(t, ρ) corresponds to the transfer function in the criterion in (5).
The scheme of Figure 1 can be reformulated as shown in Figure 2. This figure clearly shows
the nature of the identification problem. The input yk(t) of the controller to be identified K(ρ)
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Figure 1. Generalized tuning scheme for model-reference problem using only one experiment
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Figure 2. Alternative representation of data-driven controller tuning schemes

is affected by noise ỹk(t). The output of the ‘true’ controller K∗ is not affected by noise. Its
input, yk∗(t), is also noise-free. The unknown signals in this scheme are v(t), yk∗(t) and the
noise signal ỹk(t) given by:

ỹk(t) = (1 −M)2v(t) = Hỹe(t). (9)

The known signals are: r(t), yk(t) = (1 −M)2y(t) and s(t) given by:

s(t) = (1 −M)2GK∗r(t) = (1 −M)Mr(t).

In contrast to errors-in-variables problems, there is no fundamental identifiability problem
since the output s(t) is not affected by noise and the reference signal r(t) is available. However,
standard results for PEM approaches are not valid for this specific problem. Furthermore,
since one of the main advantages of data-driven controller design is that the order of the
controller can be fixed, the case of undermodeling of the controller needs to be considered.
The implications of this for the identification problem are illustrated next through application
of the PEM approach.

3. IDENTIFICATION OF THE CONTROLLER

Consider the scheme of Figure 2. Using (6), the error can be calculated as

εk(t, ρ) = s(t) − ŝ(t) = s(t) −K(ρ)yk(t) = s(t) − φT (t)ρ, (10)

where the regression vector φ(t) is given by:

φ(t) = β(q−1)yk(t) = β(q−1)yk∗(t) + β(q−1)ỹk(t) , φ0(t) + φ̃(t). (11)
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with β(q−1) defined in (7). In the prediction error framework, the corresponding prediction
error is then given by:

εp(t, ρ, θ) = H−1(θ, ρ)εk(t)

= H−1(θ, ρ)
(

K∗yk∗(t) −K(ρ)yk∗(t) −K(ρ)ỹk(t)
)

= H−1(θ, ρ)
(

[K∗ −K(ρ)]yk∗(t) + [H(θ, ρ) −K(ρ)Hỹ]e(t)
)

− e(t), (12)

where H(θ, ρ) is the noise model. Note that the noise filter is given by K(ρ)Hỹ, which
corresponds to the parameterization of the noise model H(θ, ρ), i.e. the noise model depends
on the controller parameters ρ as well as on the parameters θ.

Direct data-driven controller tuning thus corresponds to an identification problem with a
specific parameterization of the noise model, given by H(θ, ρ) = K(ρ)H(θ). In the following,
the PEM estimate will be analyzed, firstly for case C1, where no undermodeling is present.
Secondly, the case of fixed-order controllers is treated, where C1 does not necessarily hold and
case C2 needs to be considered.

3.1. Case C1, K∗ ∈ {K(ρ)}
In the standard identification framework, the system to be identified is usually assumed to be
contained in the model set, i.e. no undermodeling is present. A well-known result in this case
is that, if the noise model and the plant model are independently parameterized, an error in
the noise model does not affect consistency of the estimate of the plant model [8]. However,
the controller identification considered in this paper leads to a model structure where the
controller parameters appear in the noise model. Consequently, the estimate of the controller
is consistent only if the noise model is identified correctly.

The PEM estimate with a fixed noise model, i.e. the output error structure where H(θ, ρ) =
1, is now used to illustrate the differences with a standard identification problem. If H(θ, ρ) = 1

and the controller is parameterized as in (6), the PEM criterion 1
N

∑N
t=1 ε

2
p(t, ρ) is a quadratic

function of ρ. The optimizer is given by the least-squares solution:

ρ̂ =

[

1

N

N
∑

t=1

φ(t)φ(t)T

]−1

1

N

N
∑

t=1

φ(t)s(t) (13)

Under assumption C1, it follows from (11) that s(t) = φT
0 (t)ρ0 = φT (t)ρ0 −K(ρ0)ỹk(t). The

estimation error is then given by

ρ̂− ρ0 =

[

1

N

N
∑

t=1

φ(t)φ(t)T

]−1

1

N

N
∑

t=1

φ(t)K(ρ0)ỹk(t) (14)

The regressor φ(t) is correlated with the noise ỹk(t), and therefore the estimate is not
consistent.

In contrast to the standard identification problem, the PEM estimate is not consistent here
unless the noise model is identified correctly. Similar to the case of closed-loop identification
[9], a tailor-made parameterization can be used to find a consistent estimate. If a tailor-made
parametrization is used, where H(θ, ρ) = K(ρ)H(θ), the estimation error is asymptotically

Gaussian distributed [8], i.e.
√
N(ρ̂− ρ0)

dist→ N (0, Pp). The variance of the parameters, which
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is equal to the Cramér-Rao bound, is given by:

Pp = σ2C−1
1 (15)

where

C1 = lim
N→∞

1

N

N
∑

t=1

[
1

H∗
φ0(t)][

1

H∗
φ0(t)]

T (16)

and

H∗ = K∗Hỹ. (17)

We summarize our findings so far:

• The controller tuning problem requires a tailor-made parametrization.
• (H(θ)K(ρ))−1 needs to be stable.
• The identification problem becomes a non-convex optimization problem, also for the

linearly parameterized controllers (6).
• If the noise model is not correct, the estimate is not consistent, contrary to the standard

Box-Jenkins identification problem.

3.2. Case C2, K∗ /∈ {K(ρ)}
In this case, the criterion J(ρ) 6= 0 and the frequency weighting of the error becomes critical
for the quality of the controller. This bias shaping is well known in the context of iterative
identification and control [5].

Asymptotic convergence of the estimate is analyzed next under assumption A4. The control
objective is defined in (5) and the optimal controller is given by K(ρ0), with ρ0 given by (8).
The estimate converges asymptotically if

lim
N→∞

ρ̂ = ρ0 = argmin
ρ
J(ρ).

The prediction error estimate is given by :

ρ̂ = argmin
ρ

1

N

N
∑

t=1

ε2p(t, ρ, θ) = arg min
ρ
Jp(ρ) (18)

then

ρ̂ = arg min
ρ

1

N

N
∑

t=1

[

H−1(θ, ρ)
(

[K∗ −K(ρ)]yk∗(t) + [H(θ, ρ) −K(ρ)Hỹ]e(t)
)]2

(19)

If no measurement noise is present, the estimate is given by

ρ̂ = arg min
ρ

1

N

N
∑

t=1

[

H−1(θ, ρ)(1 −M)
(

M −K(ρ)(1 −M)G
)

r(t)
]2

(20)

The estimate converges asymptotically to the optimal one, only if the noise model is chosen
as H(θ, ρ) = 1 (output error structure). In this case, limN→∞ Jp(ρ) = J(ρ) and consequently
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limN→∞ ρ̂ = ρ0. However, if the measurements are affected by noise, the controller parameters
appear in the noise term:

ρ̂ = argmin
ρ

1

N

N
∑

t=1

[

H−1(θ, ρ)
(

(1−M)
(

M −K(ρ)(1−M)G
)

r(t)+
(

H(θ, ρ)−K(ρ)Hỹ

)

e(t)
)

]2

(21)
Therefore, H(θ, ρ) should be equal to K(ρ)Hỹ to eliminate the effect of noise and equal to 1 in
order to have the appropriate bias shaping. Since these two objectives are in general conflicting
limN→∞ ρ̂ 6= ρ0.

To summarize: In case C1, the PEM gives a consistent estimate, when a tailor-made
parametrization is used. This estimate is statistically efficient. However, the PEM cannot
be used for bias shaping in case C2. Since the possibility to design a low-order controller is
one of the main advantages of data-driven controller tuning approaches, case C2 needs to
be considered in practice. A PEM is therefore not an adequate identification method for this
specific problem.

4. INSTRUMENTAL VARIABLES

In [2], the use of instrumental variables (IV) is proposed to deal with the measurement noise.
The IV solution is given by:

ρ̂ =

[

1

N

N
∑

t=1

ζ(t)φ(t)T

]−1

1

N

N
∑

t=1

ζ(t)s(t) (22)

where ζ(t) is a vector of length nρ that is not correlated with ỹk(t).

4.1. Case C1, K∗ ∈ {K(ρ)}
Two different choices for the instruments ζ(t) are discussed in [2] .

Repeated experiment : Perform a second experiment with the same input r(t). The
instrumental variable vector is then defined as:

ζ(t) = β(q−1)y2(t) = φ2(t) , φ0(t) + φ̃2(t).

where β(q−1) is defined in (7). The noise in the second experiment is not correlated to the
noise in the first experiment, therefore

lim
N→∞

(ρ̂− ρ0) = lim
N→∞

[

1

N

N
∑

t=1

φ2(t)φ(t)T

]−1

lim
N→∞

1

N

N
∑

t=1

φ̃2(t)K(ρ0)ỹk(t) = 0 (23)

This estimate is thus consistent.
Identification of the plant : Identify a model of the plant Ĝ and generate the simulated

output ŷ(t) = Ĝr(t) and define the instruments as ζ(t) = βŷ(t). The estimate is consistent,
but the variance depends on the quality of the model [10].

The instruments generated by a second experiment are analyzed in [6]. The estimation error√
N(ρ̂ − ρ0) is asymptotically Gaussian distributed and the asymptotic covariance matrix is

given by:
PIV = σ2R−1

0 (C2 + C3)R
−1
0 , (24)
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where

R0 = lim
N→∞

1

N

N
∑

t=1

φ0(t)φ
T
0 (t)

C2 = lim
N→∞

1

N

N
∑

t=1

[H∗φ0(t)][H
∗φ0(t)]

T

C3 = E[H∗φ̃2(t)][H
∗φ̃2(t)]

T

(25)

and H∗ is defined in (17).
Using a second experiment, 2N data points are needed for an estimate with a covariance

matrix of ∼ 1
N PIV . Theoretically optimal variance can be achieved by using an optimal

instrumental variable [10]. Such optimal instruments depend on the unknown controller
parameters. An iterative algorithm can be used to improve the accuracy: in the first iteration
a controller is identified with a non-optimal IV, then, in the second iteration, a better IV is
constructed based on the controller from the first iteration. This procedure can be continued
to improve the accuracy of the estimates. However, the convergence of the iterative algorithm
cannot be proven.

4.2. Case C2, K∗ /∈ {K(ρ)}
In contrast to prediction error methods, no identification criterion is minimized in an
instrumental variable approach. The instrumental variable estimate is defined directly as (22).
However, for the specific choice of IV suggested in [2], where the instrumental variables are
generated by a second experiment, an asymptotically corresponding quadratic identification
criterion exists. This specific choice of instrumental variables can therefore be used for bias
shaping and 2-norm minimization as shown next. Assume that the instruments are generated
using a second experiment. The IV solution is then given by:

ρ̂ =

[

1

N

N
∑

t=1

φ2(t)φ(t)T

]−1

1

N

N
∑

t=1

φ2(t)s(t) (26)

Since the noise in the second experiment is not correlated with the noise in the first experiment,
the estimate converges to

lim
N→∞

ρ̂ = lim
N→∞

[

1

N

N
∑

t=1

φ0(t)φ0(t)
T

]−1

lim
N→∞

1

N

N
∑

t=1

φ0(t)s(t)

This is the least squares minimum of:

JIV (ρ) = lim
N→∞

1

N

N
∑

t=1

[s(t) − φ0(t)ρ]
2 = lim

N→∞

1

N

N
∑

t=1

[(

(1 −M)M − (1 −M)2GK(ρ)
)

r(t)
]2

(27)
Since r(t) is white, the frequency domain equivalent by Parseval’s theorem is given by:

JIV (ρ) =
1

2π

∫ π

−π

∣

∣

∣(1 −M)M − (1 −M)2GK(ρ)
∣

∣

∣

2

dω. (28)
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where, for the ease of notation, e−jω has been omitted from the arguments of M , G and K(ρ).
It is clear that JIV (ρ) is equivalent to J(ρ) as defined in (5).

If the instruments are generated using a second experiment, the estimate is consistent.
However, the variance of this estimate is relatively large. In order to reduce the variance it is
suggested in [2] to generate the instruments by simulating an identified model. In case C1,
this did not affect the consistency. In case C2 it does affect convergence. The IV solution in
(26) is the minimizer of JIV (ρ) only if the model is identified correctly, i.e. Ĝ = G. If this is
not the case, the resulting estimate does not converge to ρ0.

5. IDENTIFYING THE INVERSE OF THE CONTROLLER

Since the output s(t) is not affected by noise, identification of the inverse of the controller,
K−1(ρ), is a standard identification problem. In [3], the use of PEM methods to identify
K−1(ρ) is proposed. In [3], the error is constructed using the VRFT scheme and given by:

εi(t, ρ) =
L

M(1 −M)

(

K−1(ρ)s(t) − yk(t)
)

= L
(

K−1(ρ) − (K∗)−1
)

r(t) − L

M(1 −M)
ỹk(t) (29)

where L is an appropriate filter. The noise filter is thus given by

H∗

i =
L

M(1 −M)
Hỹ (30)

5.1. Case C1, K∗ ∈ {K(ρ)}
The gradient of εi(t, ρ) is given by:

ψ(t) =
dεi(t, ρ)

dρ
== −Lβ(q−1)

K(ρ)2
r(t) (31)

where β(q−1) is defined in (7). If a model structure is used that identifies a noise model H(θ)
such that H∗

i ∈ {H(θ)}, the covariance matrix is given by [8]:

Pi = σ2

[

lim
N→∞

1

N

N
∑

t=1

[
1

H∗

i

ψ(t)][
1

H∗

i

ψ(t)]T

]−1

(32)

Replacing H∗

i and ψ(t) by the expressions of (30) and (31) gives:

Pi = σ2C−1
1 = Pp, (33)

where Pp, defined in (15), corresponds to the Cramér-Rao bound.
Remarks:

• The linear controller structure as defined in (6) now leads to a non-convex optimization
problem.

• The inverse of the controller K−1(ρ) needs to be stable.
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5.2. Case C2, K∗ /∈ {K(ρ)}
In this case, bias shaping is again essential for the quality of the controller. The following
analysis follows the analysis of Section 3. Let the identification criterion for estimation of the
inverse of the controller be defined as

Ji(ρ) =
1

N

N
∑

t=1

[H−1(θ, ρ)εi(t, ρ)]
2 (34)

where εi(t, ρ) is defined as (29) and H(θ, ρ) is the noise model. If no measurement noise is
present, the identification criterion is given by:

Ji(ρ) =
1

N

N
∑

t=1

[

H−1(θ, ρ)L

(

1

K(ρ)
− 1

K∗

)

r(t)

]2

(35)

This corresponds to the transfer function in J(ρ) of (5) if H(θ, ρ)−1L = K(ρ)M(1 − M).
However, if the measurements were affected by noise, the criterion becomes

Ji(ρ) =
1

N

N
∑

t=1

[

K(ρ)M(1 −M)

(

1

K(ρ)
− 1

K∗

)

r(t) −K(ρ)(1 −M)2v(t)

]2

(36)

In this case the controller parameters appear in the noise term, as was the case for the PEM
in section 3 and limN→∞ ρ̂ 6= ρ0.

In [3], the use of a different filter L = M2/G that depends on the unknown plant G is
proposed. Clearly L is unknown and only an estimation can be used. The resulting criterion,
if G was available, would be

Ji(ρ) =

∥

∥

∥

∥

(1 −M)M

[

K∗

K(ρ)
− 1

]∥

∥

∥

∥

2

2

.

This criterion does not correspond to J(ρ). In [2] the quality of the approximation J(ρ) is
established, the quality of Ji(ρ) remains an open question.

6. CORRELATION APPROACH

The use of a specific choice of extended instrumental variables is proposed in [4]. The method
is developed for both periodic and non-periodic data. In the following only the case of non-
periodic data is considered. The vector of instrumental variables ζ(t), correlated with r(t) and
uncorrelated with v(t), is defined as:

ζ(t) = [r(t + l1), . . . r(t), r(t − 1), . . . , r(t− l1)]
T (37)

where l1 is a sufficiently large integer. The choice of l1 is commented on at the end of this
section. The correlation criterion JN,l1(ρ) is defined as

JN,l1(ρ) =

[

1

N

N
∑

t=1

ζ(t)εk(t, ρ)

]T [

1

N

N
∑

t=1

ζ(t)εk(t, ρ)

]

=

τ=l1
∑

τ=−l1

R2
εr(τ, ρ) (38)
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where Rεr(τ, ρ) is an estimate of the cross-correlation function between the error signal εk(t, ρ)
and r(t), defined by:

Rεr(τ, ρ) =
1

N

N
∑

t=1

εk(t, ρ)r(t − τ) (39)

It can be shown that, under Assumptions A1 and A4 and using Parseval’s theorem [4]:

lim
N,l1→∞,l1/N→0

JN,l1(ρ) =
1

2π

∫ π

−π

∣

∣

∣(1 −M)M − (1 −M)2GK(ρ)
∣

∣

∣

2

dω. (40)

The correlation criterion thus converges asymptotically to J(ρ) of (5). The estimate is therefore
consistent in case C1 and converges asymptotically to ρ0 in case C2.

The covariance matrix for the correlation approach is given by [10]:

Pc = σ2(QTQ)−1QTSQ(QTQ)−1 (41)

where

Q = lim
N→∞

1

N

N
∑

t=1

E{ζ(t)φT (t)} = lim
N→∞

1

N

N
∑

t=1

ζ(t)φT
0 (t)

S = lim
N→∞

1

N

N
∑

t=1

[H∗ζ(t)][H∗ζ(t)]T

It should be noted that the use of an estimate of the noise filter H∗ for constructing the
instruments may improve the variance of the parameter estimates for case C1. However, it
changes the bias distribution of the correlation criterion in (40) for case C2 and it does not
converge to J(ρ) anymore.

The estimate is consistent, but a bias exists when a finite number of data is used for the
estimate [4]. The expected value of the criterion is given by:

E {JN,l1(ρ)} ≈ J̃N,l1(ρ) +
σ2(2l1 + 1)

2πN

∫ π

−π

|K(ρ)|2|Hỹ|2dω, (42)

where J̃N,l1(ρ) is the noise-free criterion based on a finite number of data. The design variable
l1 thus leads to a trade-off between the bias due to noise for a finite number of data and the
difference J̃N,l1(ρ)−J(ρ). l1 should be chosen sufficiently large for the difference J̃N,l1(ρ)−J(ρ)
to be small, and sufficiently small to limit the bias (42).

7. PERIODIC ERRORS-IN-VARIABLE APPROACH

The identification problem as shown in Figure 2 can be seen as a specific case of an errors-in-
variables problem. Since the output s(t) is noise-free and the reference r(t) is known, there is no
fundamental identifiability problem and the identification is a lot simpler than the standard
errors-in-variables (EIV) problem. However, techniques developed for EIV problems can be
applied to deal with the measurement noise. In particular, the method proposed in [6] is
considered, which takes advantage of the periodicity of the reference signal. The method uses
an extended IV method.
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12 K. VAN HEUSDEN, A. KARIMI, T. SÖDERSTRÖM.

Assume that the input signal r(t) is periodic with period Np and contains p periods, i.e.
the data length N is equal to pNp. The deterministic part of y(t) is also periodic (a possible
transient in y(t) can be neglected if the number of periods (or data) is large enough). The
regression vector φj(t) in period j is defined as :

φj(t) = φ0(t) + φ̃j(t), t = 1, . . . , Np, (43)

where 1 6 j 6 p and φ̃j(t) is the noise contribution to the regression vector in period j. ζj(t)
denotes the instrumental vector for period j, defined as:

ζ1(t) = [φT
2 (t) . . . φT

p (t)]T

ζ2(t) = [φT
3 (t) . . . φT

p (t)φT
1 (t)]T

...

ζj(t) = [φT
j+1(t) . . . φ

T
p (t)φT

1 (t) . . . φT
j−1(t)]

T

(44)

Define the matrices:

ζ̄(t) = [ζ1(t) . . . ζp(t)]

φ̄(t) = [φ1(t) . . . φp(t)]
(45)

and the vector
s̄(t) = [s1(t) . . . sp(t)]

T (46)

where sj(t) is the output of K∗ at time t within period j: sj(t) = s(t+(j−1)Np). The solution
of the extended IV method proposed in [6] is then given by:

ρ̂ = (R̂T R̂)−1R̂T r̂ (47)

where

R̂ =
1

N

Np
∑

t=1

ζ̄(t)φ̄T (t) =
1

N

p
∑

j=1

Np
∑

t=1

ζj(t)φ
T
j (t)

r̂ =
1

N

Np
∑

t=1

ζ̄(t)s̄T (t) =
1

N

p
∑

j=1

Np
∑

t=1

ζj(t)sj(t)

(48)

7.1. Case C1, K∗ ∈ {K(ρ)}
In [6], it is assumed that the measurement noise within different periods is uncorrelated. If
the scheme of Figure 2 is used to generate s(t) and φ(t), the input is periodic and A1-A2 are
valid, then this is not the case. Even if the measurement noise v(t) is white, i.e. Hv = 1, ỹk(t)
is not white since Hỹ = (1 −M)2Hv. Consequently, the measurement noise within different
periods is correlated. The results of [6] can be extended as follows.

Corollary 1. Assume that r(t) is periodic and persistently exciting of order nρ, that (1−M)2G
has no zero on the imaginary axis and that A1-A2 are met. Then, the estimate (47) is
consistent and the asymptotic covariance matrix of the estimation error

√
N(ρ̂− ρ0) for (47)

is given by:

PEIV = σ2R−1
0

(

C2 +
C3

p− 1

)

R−1
0 , (49)
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where C2 is defined as in (25) and

C3 = E
{

[H∗φ̃j(t)][H
∗φ̃j(t)]

T
}

(50)

Proof 1. The main idea of the proof is that, as Np → ∞, the noise within different periods
is uncorrelated. The full proof is given in the Appendix.

Note that the definition of C3 corresponds to the definition in (25), with φ̃2 replaced by φ̃j and,
if the characteristics of the noise are the same, these matrices are equivalent. It is shown in [6]
that the achieved variance PEIV is optimal in the class of all possible extended IV methods. As
the number of periods p → ∞, PEIV → σ2R−1

0 C2R
−1
0 , which is equal to the variance for the

output error structure in a standard identification problem, where the output is affected with
noise [8]. This variance is the optimal variance that can be achieved when no noise model is
identified, Popt = σ2R−1

0 C2R
−1
0 . As the number of periods p→ ∞, the variance thus converges

to this optimal variance, PEIV → Popt.

7.2. Case C2, K∗ /∈ {K(ρ)}
The estimate in (47) is the optimum of

JEIV (ρ) = ‖r̂ − R̂ρ‖2
2 (51)

Define

r0 =
1

Np

Np
∑

t=1

φ0(t)s(t) (52)

and note that, for periodic data, R0 is equivalent to

R0 =
1

Np

Np
∑

t=1

φ0(t)φ
T
0 (t) (53)

The matrix R̂ converges to
lim

N→∞

R̂ = [R0 . . . R0]
T (54)

Equivalently
lim

N→∞

r̂ = [r0 . . . r0]
T

(55)

and

lim
N→∞

JEIV (ρ) =

∥

∥

∥

∥

∥

∥

∥







r0
...
r0






−







R0

...
R0






ρ

∥

∥

∥

∥

∥

∥

∥

2

2

= (p− 1) ‖r0 −R0ρ‖2
2 (56)

Since R0 is square and has full rank, the optimum of this criterion is given by

lim
N→∞

ρ̂ = R−1
0 r0 (57)

This is the solution of the following least-squares criterion

R−1
0 r0 = argmin

ρ

1

Np

Np
∑

t=1

(s(t) − φ0(t)ρ)
2.
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14 K. VAN HEUSDEN, A. KARIMI, T. SÖDERSTRÖM.

If the periodic excitation r(t) is chosen such that Φr(ωk) = 1 for ωk = 2πk/Np and
k = 0, . . . , Np − 1, it follows from (27) and (28), that, as Np → ∞, the minimizer of JEIV (ρ)
converges to ρ0 in case C2. Note that such a signal can be generated as a multi-sine, or as a
PRBS signal with an offset.

8. COMPARISON

8.1. Case C1, K∗ ∈ {K(ρ)}
Under assumption C1, the following can be concluded:

• The Cramér-Rao bound can be achieved when a PEM with a tailor-made
parameterization is used. The noise-model needs to be identified correctly for consistency,
in contrast to the standard identification problem.

• The Cramér-Rao bound can also be achieved when identifying the inverse of the
controller. In this case the noise-model does not affect consistency.

• The Cramér-Rao bound can also be achieved by using optimal instrumental variables.

These methods lead to a non-convex optimization problem (also for a linearly parameterized
controller). Convergence to the global optimum cannot in general be guaranteed. Furthermore,
the inverse of the controller needs to be stable.

The correlation approach and the errors-in-variables approach lead to a convex optimization
when the controller is parameterized as in (6). No noise model is identified.

• The errors-in-variables approach is optimal, as the number of periods p → ∞, i.e.
PEIV → Popt.

• The variance expression for the correlation method is difficult to analyze. Under some
specific hypotheses it can be shown that the variance of an extended IV tends to the
optimal variance [10], but for the general identification problem this is not the case. The
design parameter l1 affects the bias with respect to noise for a finite number of data.

To conclude, under assumption C1, the Cramér-Rao bound can be achieved. Since the noise
model does not affect consistency when the inverse of the controller is identified, identifying
the inverse of the controller should be prefered over the use of a PEM approach. If the inverse
of the controller is unstable, the best variance achievable, Popt, is achieved using the errors-in-
variables approach, when p→ ∞.

8.2. Case C2, K∗ /∈ {K(ρ)}
Assumption C1 is not compatible with one of the main motivations for direct controller tuning:
tuning of controllers of limited order. If the order of the controller is fixed beforehand, and
the controller minimizing a 2-norm is sought, C1 is per definition violated and case C2 needs
to be considered. It is shown in Section 3 that in this case, the estimate by PEM does not
converge asymptotically to ρ0 . In Section 5 it is shown that identification of the inverse of the
controller also does not converge to the optimal solution. It is thus necessary to resort to the
statistically less efficient methods using (extended) instrumental variables.
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Clearly,

PIV = σ2R−1
0 (C2 + C3)R

−1
0 > σ2R−1

0

(

C2 +
C3

p− 1

)

R−1
0 = PEIV . (58)

The instrumental variable approach as proposed by [2] will therefore not be considered in the
following, neither in the simulation example.

In case C2, the frequency weighting is essential. Since the identification of a noise model
affects the frequency weighting, no noise model can be used when bias shaping is required.
The optimal variance that can be achieved in this case is given by Popt, see Section 7.1. The
errors-in-variables method leads to this optimal variance Popt, as p→ ∞. If the reference signal
r(t) can be chosen, it is therefore advisable to use a periodic signal with many periods and use
the EIV method. If the reference signal cannot be chosen arbitrarily and only few periods or
no periodic data is available, the correlation approach should be used.

To conclude, in case C2, the price to pay for convergence is a loss in statistical efficiency,
since no noise model can be used to improve the estimate. The achieved control objective J(ρ̂)
depends on both the variance and the bias error and this mean-square-error of the criterion
depends strongly on the nature of the problem, i.e. the reference signal r(t), the noise spectrum
and the distance between K∗ and K(ρ).

9. SIMULATION EXAMPLE

The different methods discussed are tested in simulation on the flexible transmission system
proposed as benchmark in [11]. This example was used in [2, 3] and [4] to illustrate the direct
data-driven controller tuning approach.

The plant is given by the discrete-time model G(q−1)

G(q−1) =
0.283q−3 + 0.507q−4

A(q−1)

with
A(q−1) = 1 − 1.418q−1 + 1.589q−2 − 1.316q−3 + 0.886q−4

The controller structure is given as

K(ρ) =
ρ1 + ρ2q

−1 + ρ3q
−2 + ρ4q

−3 + ρ5q
−4 + ρ6q

−5

1 − q−1

PRBS signals with unity amplitude are used as input, r(t), to the system. The output of
the plant is disturbed by zero-mean white noise, such that the signal-to-noise ratio of the
open-loop experiment is about 10 in terms of variance. The first periods, i.e. from zero initial
state, are used in the PEM method and when identifying the inverse of the controller. For
the correlation approach and the errors-in-variables method, a periodic signal of the same
length is used. Since r(t) is a PRBS signal, the extended instruments of (37) can be taken as,
ζ(t) = [r(t), r(t − 1), . . . , r(t − l1)]

T . In the following, l1 = 25, for which J̃N,l1(ρ) is a good
approximation of J(ρ).

Results are given for different period lengths Np and an increasing number of periods p. A
Monte-Carlo simulation with 100 experiments is performed for each input signal r(t), using
a different noise realization for each experiment. The noise realizations are the same for all
methods.
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16 K. VAN HEUSDEN, A. KARIMI, T. SÖDERSTRÖM.

9.1. Case C1, K∗ ∈ {K(ρ)}
The reference model is defined as

M1(q
−1) =

K(ρ0)G

1 +K(ρ0)G
(59)

with
ρ0 = [0.2045 − 0.2715 0.2931 − 0.2396 0.1643 0.0084]T (60)

The optimal controllerK(ρ0) ∈ {K(ρ)} and the objective can be achieved. The PEM approach
with a tailor-made parameterization has not been implemented. Instead, the Box-Jenkins
structure is used, which should theoretically be consistent if the order of the noise model is
large. The inverse of the controller is identified using the Box-Jenkins structure (Inv).

The results are given in Table I. As expected, estimation of the inverse is efficient. The

Table I. Mean values for the achieved performance J(ρ), for M1 and different period lengths Np.

Np = 63 Np = 127 Np = 127
p = 16 p = 8 p = 12

PEM 0.01240 0.00730 0.00729
Inv 0.00466 0.00324 0.00227
CbT 0.00784 0.00643 0.00545
EIV 0.00676 0.00558 0.00472

error for the correlation approach (CbT) and the periodic errors-in-variables approach (EIV)
is about 2 times bigger than that of the identification of the inverse of the controller. However,
the PEM does not perform as expected. The estimate of the noise model is not exact, therefore
the estimate of the controller is biased. Although this method is consistent, for a finite number
of data it is not efficient. A tailor-made parameterization would probably perform better. The
EIV approach is more efficient than the correlation approach.

A closer look at the CbT and the EIV solutions shows that the main difference between
the two estimates is the bias (42), see Table II. The standard deviation of the EIV estimate is
slightly bigger than that for CbT, however, the mean error is larger for CbT due to the bias.

Table II. Estimated parameters, the error is given by mean(ρ̂ − ρ0) for CbT and EIV approaches

CbT approach EIV approach
mean error std mean error std

ρ1 −0.00223 0.00366 −0.00065 0.00443
ρ2 0.00640 0.00842 0.00204 0.01105
ρ3 −0.00909 0.01103 −0.00290 0.01490
ρ4 0.00901 0.01129 0.00285 0.01496
ρ5 −0.00638 0.00902 −0.00200 0.01115
ρ6 0.00234 0.00406 0.00080 0.00458
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9.2. Case C2, K∗ /∈ {K(ρ)}
The control objective is defined by the closed-loop reference model

M2(q
−1) =

q−3(1 − α)2

(1 − αq−1)2

with α = 0.606. In this case K∗ /∈ {K(ρ)} and the objective cannot be achieved. However, this
problem can be considered well-defined. Even though the optimal controller cannot be found,
the error M −K(ρ)G(1−M) can be made small and the optimal fixed-order controller K(ρ0)
achieves good closed-loop performance. The results are given in Table III.

The results for the estimation of the inverse are not acceptable. These results show that the
bias shaping is essential in case C2, even if the distance between K(ρ) and K∗ is relatively
small. The PEM does not converge either, and the performance of the converging estimates
CbT and EIV is better. CbT and EIV give again similar performance. As in case C1, the error
for CbT is mainly due to the bias, whereas the error for EIV is mainly due to variance.

Table III. Mean values for the achieved performance J(ρ), for M2.

Np = 63 Np = 127 Np = 127
p = 16 p = 8 p = 12

PEM 0.1587 0.0791 0.0791
Inv 30.9602 32.9735 33.0103
CbT 0.0754 0.0744 0.0743
EIV 0.0748 0.0743 0.0742

10. CONCLUSION

This paper compares different identification methods that have been proposed for non-iterative
data-driven controller tuning. Two distinctive cases are considered. In the first case it is
assumed that the objective can be achieved, i.e. there is no undermodeling of the controller.
In this case, the Cramér-Rao bound can be attained when the inverse of the controller is
identified. However, non-convexity of the optimization might lead to numerical problems and
the inverse of the controller is required to be stable. The correlation approach (CbT) and
periodic errors-in-variables method (EIV) are convex for a linearly parameterized controller.
However, these methods are statistically less efficient since no noise model is estimated.

In practice, the control objective cannot be achieved when a fixed-order controller is designed
and undermodeling of the controller needs to be taken into account. In this case, bias shaping
is essential. One has to resort to instrumental variable approaches to guarantee convergence
of the estimate. It is shown that the performance achieved by CbT and EIV is better than the
performance of the other solutions treated in this paper. The choice of the optimal method
depends on the nature of the available data, i.e. periodicity of the signals and the number of
periods available.
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APPENDIX

I. PROOF OF COROLLARY 1

The estimate of equation (47) is consistent if limNp→∞ ρ̂ = ρ0, where K(ρ0) = K∗. Using (10)
and (11), s(t) can be written as

s(t) = φT (t)ρ0 −K(ρ0)ỹk(t),

where ỹk(t) is defined in (9). Define

q̂ = − 1

Npp

p
∑

j=1

Np
∑

t=1

ζj(t)K(ρ0)ỹkj
(t),

where ζj(t) is defined in (44). The error ρ̂− ρ0 is then given by:

ρ̂− ρ0 = (R̂T R̂)−1R̂T q̂

Consistency is guaranteed if limNp→∞ q̂ = 0 and limNp→∞ R̂ = ep−1 ⊗ R0, where ep−1 =
(1 . . . 1)T has dimension (p − 1) × 1 and ⊗ denotes Kronecker product [6]. Convergence of
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limNp→∞ q̂ is shown next. Substituting ζj(t) by (44) gives:

lim
Np→∞

q̂ = lim
Np→∞



− 1

Npp

p
∑

j=1

Np
∑

t=1

[φT
j+1(t) . . . φ

T
p (t)φT

1 (t) . . . φT
j−1(t)]

TK(ρ0)ỹkj
(t)





= lim
Np→∞



− 1

Npp

p
∑

j=1

Np
∑

t=1

[φ̃T
j+1(t) . . . φ̃

T
p (t) φ̃T

1 (t) . . . φ̃T
j−1(t)]

TK(ρ0)ỹkj
(t)





= lim
Np→∞

(

− 1

Npp

p
∑

j=1

Np
∑

t=1

[(βỹk(j+1)(t))
T . . . (βỹkp(t))

T (βỹ1(t))
T . . . (βỹk(j−1)(t))

T ]TK(ρ0)ỹkj
(t)

)

.

(61)

According to (61), q̂ consists of cross-correlations between βỹk(t)K(ρ0)ỹk(t − τ), with τ =
Np(j − n), n = [1 . . . j − 1, j + 1 . . . p]. Note that, if j = 1, n = [j + 1 . . . p] = [2 . . . p] and if
j = p, n = [1 . . . p − 1]. The minimal value for τ that appears in q̂ is thus τ = Np. Under
assumption A1-A2,

lim
Np→∞

1

Np

Np
∑

t=1

β(q−1)ỹk(t)K(q−1, ρ0)ỹk(t− τ) = β(q−1)Hỹ(q−1)K(q, ρ0)Hỹ(q)Xe(τ), (62)

where

Xe(τ) = lim
Np→∞

1

Np

Np
∑

t=1

e(t)e(t− τ) = E{e(t)e(t− τ)},

the autocorrelation of e(t). Note that, throughout the paper, the backward shift operator
q−1 is used and omitted for convenience. In (62), the shift operator is mentioned explicitly,
because both q−1 and q appear. Under assumption A2, Xe(τ) = σ2, for τ = 0 and
Xe(τ) = 0, for τ 6= 0. By definition, K(q−1, ρ0) and K(q, ρ0) are stable. Hỹ(q), Hỹ(q−1)
and β(q−1) are also stable, therefore

lim
Np→∞

1

Np

Np
∑

t=1

βỹk(t)K(ρ0)ỹ
T
k (t− τ) → 0, |τ | → ∞.

Consequently, limNp→∞ q̂ → 0. Convergence of limNp→∞ R̂ can be shown using similar
reasoning and is omitted here. Validity of (49) follows from applying the proof above to the
results of [6], i.e. asymptotically the results of [6] hold.
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