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Abstract

In the recent researches some methods have been proposed for interpolating
the diffusive field values along space, but they either do not use point-wise
sampling or deploy large number of sensors in space to keep themselves near
Niquist’s sampling rate. In this research we propose some algorithms in which
we benefit from temporal-spatial correlation of field values and try to reduce
the number of sensors deployed along space. First we will consider the extreme
case with only one sensor in space and use the whole time line to estimate the
signals and second the discrete time for which we use M sensors in space and
K time samples to reconstruct the field. Finally the stability of the proposed
methods will be explored and the best will be chosen in the sense of being the
most stable.



Chapter 1

Introduction

Sensor networks are typically used to monitor a physical quantity over space
and time. A particular challenge of the sampling problem in sensor networks
arises from the fact that the considered signals are usually neither bandlimited
in space nor in time [1]. Examples are found in diffusion processes, where the
initially localized release of a point source is spread (filtered) over space in
a Gaussian manner. Practical situations include heat diffusion, gas diffusion,
pollutants diffusion in water, etc.

Sampling theory treats a very fundamental problem, with so many practical
repercussions, that it lies at the core of signal processing and communications.
Sampling is all about representing a continuous-time signal f(x) by a discrete
set of values f [n], n ∈ Z. Often, in practice, instead of sampling the waveform
itself, one has access only to its filtered version. If f(x) is the original waveform,
its filtered version is given by g(x) = f(x) ∗ h̃(x), where h̃(x) = h(−x) is the
convolution kernel. Then, uniform sampling with a sampling interval Xs yields
samples g(nXs), which can be expressed as

g(nXs) = 〈f(x), h(x − nXs)〉 =
∫

f(x)h(x − nXs)dx

Now the key question that arises is the following. Under what conditions is
the original signal f(x) uniquely defined by its samples g(nXs)? The crucial
result was stated by Shannon in 1949, in the form of the following sampling
theorem [2]:

Theorem. [Shannon’s Sampling Theorem] If f(x) is bandlimited to ωm,
that is, F (ω) = 0, |ω| > ωm, then f(x) is uniquely determined by its samples
taken at twice ωm or f(nπ/ωm). The reconstruction formula that complements
the sampling theorem is given by

f(x) =
∑
n∈Z

g(nXs)sinc(
x

Xs
− n)

where the uniform samples of g(nXs) can be interpreted as coefficients of ba-
sis functions obtained by appropriate shifting and scaling of the sinc function
sinc(x) = sin(πx)/(πx). But a large class of signals exist which are not band-
limited and need very large number of samples to reconstruct, and they have a
certain formulation with which it seems to make us able to use fewer number of
samples.
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1.1 Related works

In a recent work by Vetterli, Marziliano and Blu [3], it was shown that it is
possible to develop exact sampling schemes for some classes of signals that are
neither bandlimited nor live on shift-invariant spaces, namely, certain signals
with finite rate of innovation. Examples include streams of Diracs, non-uniform
splines and piecewise polynomials. A common feature of such signals is that they
have a parametric representation with a finite number of degrees of freedom per
unit of time, or finite rate of innovation ρ, and can be perfectly reconstructed
from a set of samples taken at a rate R ≥ ρ , after appropriate smoothing.
The key in all constructions is to identify the innovative part of a signal, such
as time instants of Diracs, using an annihilating or locator filter, a well-known
tool from spectral analysis or error correction coding. This allows for standard
computational procedures for solving the sampling problem for a wide class of
non-bandlimited signals and leads to some interesting results.

In another work done by Jovanovic, Sbaiz and Vetterli [1], reconstructing a
2-D diffusive field induced by sources localized in space and time is cinsidered
and the goal is to compute the positions of the sources, the origin of time and
the total amount released. They use a set of 3-D weighted Diracs to model the
field and come up with the following formula for the field:

g(x, y, t) =
K−1∑
k=0

ck

4πD(t − tk)
e
− (x−xk)2+(y−yk)2

4D(t−tk ) (1.1)

So the job is to estimate parameters {ck, xk, yk, tk}. In first step they first
assume that the time origins are equal to zero and use tomographic approaches
to estimate the parameters {ck, xk, yk} and in the second step put the time
origins equal but not zero and use effective rank [4] to make a matrix deficient
rank and find the the best estimate of tk.

In a work by Nordio, Chiasserini and Viterbo, [5] they consider a bandlimited
real valued signal p(t) written as:

p(t) =
M ′∑

k=−M ′
ake2πikt

and estimate

p̂(t) =
M∑

k=M

âke2πikt

They suppose to have r randomly deployed sensors in (0, 1) and translate the
problem to the form of Twâ = b. They define δ to be the maximum distance
between two consecutive sensors and show that if δ < 1/2M then show that the
following bound is valid for condition number of matrix Tw:

κ(Tw) ≤ (
1 + 2δM

1 − 2δM
)2

In this research we try to benefit from the time-space correlation of signals
to lower the number of sensors used in space. In this work, for simplicity we con-
sider sources that reside in a 1-D diffusive environment, which mainly have an

2



initial function along space having exponentially decreasing sine Fourier trans-
form coefficients. After the activation of a source, the induced field, although
non-bandlimited, is completely determined by a set of parameters. Intuitively,
only a finite number of samples is required for perfect reconstruction. But the
question is how many sensors is needed in space and how many time samples
will be enough to guarantee a good reconstruction of signals, in the sense of
well-stabilized solution and in the presence of noise. In the sequence we will
first introduce some algorithms and then consider different sampling schemes
along space and investigate the numerical stability of our algorithm with these
schemes.
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Chapter 2

Temporal Model, Diffusive
Field

As we have seen before, considering the sensor values taken during the time
independently to reconstruct the field leads to using of many sensors in space
and may in some situations cause bad conditioning, so we propose to use the
temporal and spatial correlation of the signals. So we need to introduce a
temporal model, and as a temporal model we consider the diffusive field model
which is widely used in different areas. As applications of this model we can
name; model of temperature along space; flow of pollutants and other chemicals;
it is connected with Brownian Motions of particles and it is considered as the
price of stock in financial mathematics.

2.1 Problem Statement

in the sequence the following 1-D diffusion model has been considered as the
source model along space and during time.⎧⎪⎨⎪⎩

Ut = Uxx

U(0, t) = U(π, t) = 0
U(x, 0) = f(x)

(2.1)

We consider homogenous Dirichlet boundary condition which makes the signal
value equal to zero in 0 and π, and the initial function at t = 0 is called as f(x).
The solution for such a PDE is as follows:

U(x, t) =
∞∑

k=1

ak sin(kx)e−k2t (2.2)

Where U(x, 0) = f(x) =
∑∞

k−1 ak sin kx, so ak’s are the sine Fourier coefficients
of initial function f(x).
From this solution it is obvious that finding coefficients ak is equivalent to finding
the whole field along space and time.
If we find the coefficients appropriately, we may find the initial function in each
time instance and in this way we can go through time and track continuous
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Figure 2.1 – Sampling in space using only one sensor at x0, we suppose
to have the whole time line.

sources along time. So the main job will be a good approximation of the initial
function and since finding f(x) and aks are equivalent we will focus on estimating
aks.

2.2 Solution using one sensor in space, Orthog-
onal Projection

Suppose we are measuring the field values only in one location using one sensor
at x0. This can be shown in Figure 2.1.
For fixed x0, we can introduced bk’s to be bk = ak sin (kx0), and consequently,

we will have:

U(x0, t) =
∞∑

k=1

bke−k2t (2.3)

In this section we benefit from properties of orthogonal projection properties to
find the solution for both continuous and discrete cases of time.

2.2.1 Continuous case

Let’s first introduce some prerequisites.

Lemma 1. The set S = {e−k2t : k ∈ N} is a linearly independent set.

Proof. To show this set is linearly independent, we must show each finite subset
of it is independent. Consider the finite subset {e−k2t : k ∈ I}, We have:∑

k∈I

cke−k2t = 0
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So we can rewrite the equation as:

cme−m2t =
∑
k∈I
k �=m

cke−k2t

cm =
∑
k∈I
k �=m

cke−(k2−m2)t

Where m is the smallest element of I. Now, taking limit of both sides when
t → ∞, we get:

cm = lim
t→∞

∑
k∈I
k �=m

cke−(k2−m2)t =
∑
k∈I
k �=m

ck lim
t→∞ e−(k2−m2)t = 0

Consequently using the same procedure for other elements, we will get

ck = 0, ∀k ∈ I

So each finite subset of S is linearly independent and consequently, it is also an
independent set.

Lemma 2. If initial function f(x), corresponding to equation (2.3), is finite, we
can approximate

∑∞
k=1 bke−k2t by

∑L
k=1 bke−k2t and make the error arbitrarily

small by choosing appropriate L.

Proof.

U(x0, 0) =
∞∑

k=1

bk = f(x0) < ∞

⇒ lim
k→∞

bk = 0

U(x0, t) =
L∑

k=1

bke−k2t +
∞∑

k=L+1

bke−k2t

But

|
∞∑

k=L+1

bke−k2t| ≤
∞∑

k=L+1

|bk| ≤ ε

Now we have the tools to find bk’s from the given field values. Since the set
{e−k2t : k = 1...L} is a linearly independent set, we know e−m2t /∈ span{e−k2t :
k �= m}. So we find its projection on this span and call it Pe−m2t. To do so we
put

Pe−m2t =
L∑

k=1
k �=m

cke−k2t

We know that the error of projection is orthogonal to all the vectors of the
target subspace:

〈e−m2t −Pe−m2t, e−i2t〉 = 0, ∀i �= m
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Where
〈f(t), g(t)〉 =

∫ ∞

0

f(t)g(t)∗dt

So

〈e−m2t −
L∑

k=1
k �=m

cke−k2t, e−i2t〉 = 0, ∀i �= m

⇒ 〈e−m2t, e−i2t〉 =
L∑

k=1
k �=m

ck〈e−k2t, e−i2t〉, ∀i �= m

and since
〈e−m2t, e−i2t〉 =

∫ ∞

0

e−m2te−i2tdt =
1

m2 + i2

We will have
1

m2 + i2
=

L∑
k=1
k �=m

ck

k2 + i2
, ∀i �= m

So we come up with the following matrix form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1+m2

1
22+m2

.

.

.
1

m2+m2

.

.

.
1

L2+m2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1+1

1
1+22 . . . 1

1+m2 . . . 1
1+L2

1
22+1

1
22+22 . . . 1

22+m2 . . . 1
22+L2

. .

. .

. .
1

m2+1
1

m2+22 . . . 1
m2+m2 . . . 1

m2+L2

. .

. .

. .
1

L2+1
1

L2+22 . . . 1
L2+m2 . . . 1

L2+L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

.

.

.
cm

.

.

.
cL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C

M = TC

C = T−1M
(2.4)

Where underlined terms must be omitted from the matrices. Thus up to now
we have the projection of e−m2t onto span{e−k2t, k �= m}. Now consider the
following inner product:

〈U(x0, t), e−m2t −Pe−m2t〉 = 〈
L∑

k=1

bke−k2t, e−m2t −Pe−m2t〉 (2.5)

Since
(e−m2t −Pe−m2t)⊥e−k2t, ∀k �= m
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We will have

〈U(x0, t), e−m2t −Pe−m2t〉 = 〈
L∑

k=1

bke−k2t, e−m2t −Pe−m2t〉

= 〈bme−m2t, e−m2t −Pe−m2t〉

= bm

(〈e−m2t, e−m2t〉 − 〈e−m2t,Pe−m2t〉)
= bm(

1
2m2

− 〈e−m2t,Pe−m2t〉)

(2.6)

And finally we will have

bm =
〈U(x0, t), e−m2t − Pe−m2t〉

1
2m2 − 〈e−m2t,Pe−m2t〉

=
〈U(x0, t), e−m2t −∑L

k=1
k �=m

cke−k2t〉
1

2m2 − 〈e−m2t,
∑L

k=1
k �=m

cke−k2t〉

=
〈U(x0, t),

∑L
k=1 cke−k2t〉∑L

k=1
ck

k2+m2

(2.7)

Where ck’s for k �= m can be found from equation (2.4) and cm = −1.

2.2.2 Discrete case

Now we just sample everything every T seconds, so the problem is changed as
following:
Given U(x0, nT ), find bm’s, knowing that e−m2nT /∈ span{e−k2nT : k �= m, k =
1...L} So we find its projection onto this span, Pe−m2nT . To do so we put

Pe−m2nT =
L∑

k=1
k �=m

cke−k2nT

and also
〈e−m2nT −Pe−m2nT , e−i2nT 〉 = 0, ∀i �= m

Where

〈fn, gn〉 =
∞∑

n=0

f(nT )g(nT )∗

So

〈e−m2nT −
L∑

k=1
k �=m

cke−k2nT , e−i2nT 〉 = 0, ∀i �= m
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〈e−m2nT , e−i2nT 〉 =
L∑

k=1
k �=m

ck〈e−k2nT , e−i2nT 〉, ∀i �= m

1
1 − e−(m2+i2)T

=
L∑

k=1
k �=m

ck

1 − e−(k2+i2)T
, ∀i �= m

Now defining f(i, j) = 1

1−e−(i2+j2)T we come up with the following matrix
form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(m, 1)
f(m, 2)

.

.

.
f(m, m)

.

.

.
f(m, L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(1, 1) f(1, 2) . . . f(1, m) . . . f(1, L)
f(2, 1) f(2, 2) . . . f(2, m) . . . f(2, L)

. .

. .

. .
f(m, 1) f(m, 2) . . . f(m, m) . . . f(m, L)

. .

. .

. .
f(L, 1) f(L, 2) . . . f(L, m) . . . f(L, L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

.

.

.
cm

.

.

.
cL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

C

M = TC

C = T−1M
(2.8)

Where underlined terms must be omitted from the matrices. Thus up to now
we have the projection of e−m2nT onto span{e−k2nT , k �= m}. Now consider the
following inner product:

〈U(x0, nT ), e−m2nT −Pe−m2nT 〉 = 〈
L∑

k=1

bke−k2nT , e−m2nT −Pe−m2nT 〉
(2.9)

and since
(e−m2nT −Pe−m2nT )⊥e−k2nT , ∀k �= m

We will have

〈U(x0, nT ), e−m2nT −Pe−m2nT 〉 = 〈
L∑

k=1

bke−k2nT , e−m2nT −Pe−m2nT 〉

= 〈bme−m2nT , e−m2nT −Pe−m2nT 〉

= bm

(〈e−m2nT , e−m2nT 〉 − 〈e−m2nT ,Pe−m2nT 〉)
= bm(f(m, m) − 〈e−m2nT ,Pe−m2nT 〉)

(2.10)
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And finally we will have

bm =
〈U(x0, nT ), e−m2nT −Pe−m2nT 〉
f(m, m) − 〈e−m2nT ,Pe−m2nT 〉

=
〈U(x0, nT ), e−m2nT −∑L

k=1
k �=m

cke−k2nT 〉
f(m, m) − 〈e−m2nT ,

∑L
k=1
k �=m

cke−k2nT 〉

=
〈U(x0, nT ),

∑L
k=1 cke−k2nT 〉∑L

k=1
ck

1−e−(m2+k2)T

(2.11)

Where ck’s for k �= m can be found from equation (2.8) and cm = −1.

Now let’s extend the result for when we have only finite number of samples
in time, namely K + 1 samples, then we have:

〈e−i2nT , e−j2nT 〉 =
K∑

n=0

e−i2nT e−j2nT =
1 − e−(i2+j2)T (K+1)

1 − e−(i2+j2)T

Again defining f(i, j) = 1−e−(i2+j2)T (K+1)

1−e−(i2+j2)T , We come up with the following solu-
tion:

bm =
〈U(x0, nT ),

∑L
k=1 cke−k2nT 〉∑L

k=1 ck
1−e−(m2+k2)T (K+1)

1−e−(m2+k2)T

(2.12)

Where ck’s for k �= m come from equation (2.8) but with new values for f(i, j)
and cm = −1 and

〈f, g〉 =
K∑

n=0

f(nT )g(nT )∗

2.2.3 Experimental Results

In our experiment we suppose the initial condition function is a smooth enough
so the coefficients satisfy ak < c e−a k. We also define a quantity SNR to
measure the precision of algorithm in estimating the initial condition:

SNR = −10 log10

energy of error
energy of original signal

= −10 log10

∑L+1
k=1 (f(k) − f̂(k))2∑L+1

k=1 f(k)2

We put L = 9, T = 0.01 time unit and ak < 20e−0.6k. The average SNR
in 100 experiments with random ak’s for estimating the initial function using
9 coefficients was 75.3677 dB. Figure 2.2 shows the estimation of initial con-
dition function with different number of coefficients. The original number of
coefficients is 9.
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Figure 2.2 – Experimental result for estimating initial function using
orthogonal projection.

2.3 Solution using several sensors in space, ma-

trix inversion

Now how can we improve the previously introduced algorithm, namely benefit-
ting from temporal-spatial correlation of signal. Suppose we are approximating
the source with finite number of coefficients (N), and consider the case that we
are using exactly N sensors in space and we just use only one sample in time
(at t = T ). Then we will have the following matrix format for the problem⎡⎢⎢⎢⎢⎢⎢⎣

y1

y2

.

.

.
yN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

e−T sin x1 e−22T sin 2x1 . . . e−N2T sin Nx1

e−T sin x2 e−22T sin 2x2 . . . e−N2T sin Nx2

. .

. .

. .

e−T sin xN e−22T sin 2xN . . . e−N2T sin NxN

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎣
a1

a2

.

.

.
aN

⎤⎥⎥⎥⎥⎥⎥⎦
(2.13)

For finding the coefficients we need to compute the inverse matrix A−1. But we
have:

A =

⎡⎢⎢⎢⎣
sin x1 sin 2x1 · · · sin Nx1

sin x2 sin 2x2 · · · sin Nx2

...
...

...
sin xN sin 2xN · · · sinNxN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
e−T

e−22T

. . .
e−N2T

⎤⎥⎥⎥⎦
So

A−1 =

⎡⎢⎢⎢⎣
eT

e22T

. . .
eN2T

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

sinx1 sin 2x1 · · · sin Nx1

sinx2 sin 2x2 · · · sin Nx2

...
...

...
sin xN sin 2xN · · · sinNxN

⎤⎥⎥⎥⎦
−1

11



Now the question is whether the second matrix is invertible for several x ∈ (0, π)
or not.

Lemma 3. The matrix AN , as defined below for different xi ∈ (0, π), is not
singular.

AN =

⎡⎢⎢⎢⎣
sin x1 sin 2x1 · · · sin Nx1

sin x2 sin 2x2 · · · sin Nx2

...
...

...
sin xN sin 2xN · · · sin NxN

⎤⎥⎥⎥⎦ (2.14)

Proof. We are considering the case where xi �= xj . For this matrix to be singular
we need its columns to be linearly dependant. We can interpret this as follows:
We know the set of functions {sinkx}k=1···N are linearly independent in interval
(0, π). But here for this matrix to be singular we need these functions to be
linearly dependant in only N points in (0, π). In other words the function

f(x) =
N∑

k=1

ck sin kx

must have at least N zeros in (0, π) for ck �= 0. But we have:

h(x) =
N∑

k=1

ck sin kx

=
N∑

k=1

ck(
ejkx − e−jkx

2j
)

⇒ g(x) = 2jejNxh(x) =
N∑

k=1

ck(ej(k+N)x − e−j(k−N)x)

=
2N∑
k=0

c′kejkx

=
2N∑
k=0

c′kzk
∣∣∣
z=ejkx,x∈(0,π)

This is a polynomial of degree 2N , so has at most 2N zeros in [0, π]. We already
know that g(0) = g(π) = 0, So we have found two roots of g(x) and of course
these are of no any interest for us from beginning. So there is only 2N −2 roots
left. But also by looking into the definition of f(x) and consequently g(x), it is
obvious that if f(x0) = g(x0) = 0, then f(−x0) = g(−x0) = 0, and since we are
looking for roots in (0, π), there will remain only N − 1 roots and we are done.
This means there are not different points in (0, π) for which the above matrix
is singular.

Thus this is an acceptable job to use several sensors along space and use
matrix inversion to get the appropriate result. But this way has a drawback
and it is that we need number of sensors to be at least equal to number of
coefficients we are estimating.
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So if we use M sensors in space and get K time samples in time we will have
the following matrix format for the problem⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1,1

y1,2

...
y1,K

.

.

.
yM,1

yM,2

...
yM,K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−T sin x1 e−22T sin 2x1 · · · e−N2T sin Nx1

e−2T sin x1 e−2×22T sin 2x1 · · · e−2×N2T sin Nx1

...
...

...
e−KT sin x1 e−K×22T sin 2x1 · · · e−K×N2T sin Nx1

. .

. .

. .

e−T sin xM e−22T sin 2xM · · · e−N2T sin NxM

e−2T sinxM e−2×22T sin 2xM · · · e−2×N2T sin NxM

...
...

...
e−KT sin xM e−K×22T sin 2xM · · · e−K×N2T sinNxM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎣
a1

a2

.

.

.
aN

⎤⎥⎥⎥⎥⎥⎥⎦

(2.15)
Now the question comes to mind if this matrix is again non-singular for different
values of xi ∈ (0, π) or not.

Lemma 4. In the matrix A defined as in (2.15), if M = N , the matrix A is
non-singular.

Proof. rewrite the matrix as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−T sin x1 e−22T sin 2x1 · · · e−N2T sin Nx1

e−T sin x2 e−22T sin 2x2 · · · e−N2T sin Nx2

...
...

...
e−T sin xN e−22T sin 2xN · · · e−N2T sinNxN

e−2T sinx1 e−2×22T sin 2x1 · · · e−2×N2T sin Nx1

e−2T sinx2 e−2×22T sin 2x2 · · · e−2×N2T sin Nx2

...
...

...
e−2T sin xN e−2×22T sin 2xN · · · e−2×N2T sin NxN

. .

. .

. .

e−KT sin x1 e−K×22T sin 2x1 · · · e−K×N2T sin Nx1

e−KT sin x2 e−K×22T sin 2x2 · · · e−K×N2T sin Nx2

...
...

...
e−KT sin xN e−K×22T sin 2xN · · · e−K×N2T sin NxN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.16)

A =
[

BN×N

CN(K−1)×N

]
From Lemma 3 we know that B is non-singular, so A is also non-singular and
we are done.

Now let’s consider the situation where M �= N :

13



Proof For M �= N , First Approach

Let’s review some prerequisites.

Implicit Function Theorem: Let f : Rn+m → Rm be a continu-
ously differentiable function and let Rn+m have coordinates (x,y). Fix a point
(a1, . . . , an, b1, . . . , bm) = (a, b) with f(a, b) = c, where c ∈ Rm. If the ma-
trix [(∂fi/∂yj)(a, b)] is invertible, then there exists an open set U containing a,
an open set V containing b, and a unique continuously differentiable function
g : U → V such that

{(x, g(x))} = {(x,y)|f(x,y) = c} ∩ (U × V ).

Preposition 1. Consider the polynomial function f(x, y, z) : R3 → R. The set
of its roots has measure zero in R3

Proof. For the proof, we use induction on degree of z. Call degree of z equal to
N . For N = 0, there is nothing to prove. Suppose we know the set of results
for deg(z) = N is of measure zero. At stage N + 1, If we have ∂f/∂z �= 0, we
use the implicit function theorem, for m = 1, n = 2 and f(x, y︸︷︷︸

x

, z︸︷︷︸
y

) : R3 → R.

For any fixed (x0, y0, z0) where f(x0, y0, z0) = 0, there exists V containing
(x0, y0) and U containing z0 and a unique function g(x0, y0) : V → U for which
f
(
x, y, g(x, y)

)
= 0, ∀x, y ∈ V .

Since g(x, y) is a 2-dimensional surface defined on an open set V it has measure
zero in R3 (look at Figure 2.3). Let’s define

Ax,y = {(x, y, g(x, y)
)|f(x, y, g(x, y)

)
= 0}

as the set of answers for point(x, y) ∈ R2. So all along R3 we have

A =
⋃

x,y∈R2

Ax,y.

We know that
λ(
⋃
i∈N

Ai) ≤
⋃
i∈N

λ(Ai)

where λ is the usual Lebesgue measure.
So if we show that A =

⋃
x,y∈R2 Ax,y =

⋃
i,j∈N

Axi,yj , we are done, because then

λ3(A) ≤
⋃

i,j∈N

λ3(Axi,yj) = 0

Where λ3 is 3-dimensional Lebesgue measure.
To show this it is enough to show that R2 can be covered by a countable number
of open sets. Consider the following partitioning of R2. We have:

R2 =
⋃

x,y∈R

Ox,y

14
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Figure 2.3 – x,y and g(x, y) for different z0s

� x

�

y

Si,j

where Ox,y is an open interval around (x, y). We also know that

Si,j ⊂
⋃

x,y∈R

Ox,y

is compact, so it can be covered by a countable (finite) number of open sets.

Si,j ⊂
Nij⋃

i,j∈N

Oxi,yj

and at end:
R2 =

⋃
i,j∈N

Si,j =
⋃

i,j∈N

Oxi,yj
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Now suppose the case at stage N + 1 where we have ∂f/∂z = 0 for roots, but
∂f/∂z is a polynomial of degree N and according to induction has set of roots
of measure zero.

Lemma 5. The matrix A defined in (2.15), with K × M = N , is non-singular
almost everywhere. In other words the set of values for xn and T for A to be
singular is of measure zero.

Proof. Again for the proof we use induction. As the base of induction suppose
2 × 2 matrix [

e−KT sin xM−1 e−K22T sin 2xM−1

e−KT sinxM e−K22T sin 2xM

]
We already have shown this is non-singular. Now suppose we are at stage N
and put u = e−T and v = ejx. We have the following matrix format:

A =

[
u(v − 1

v ) u4(v2 − 1
v2 ) · · · uN2

(vN − 1
vN )

B
...

]
(2.17)

And from previous stage, we know that matrix B is non-singular almost every-
where. Writing the determinant with respect to the first line, gives us:

detA = 0

⇒
N∑

k=1

ckuk2
(vk − 1

vk
) = 0

Where u ∈ [0, 1] and v ∈ C. So

f(v, u) =
N∑

k=1

ckuk2
(vN+k − vN−k)

If we put v = α + jβ we will have:

f(v, u) = f1(α, β, u) + jf2(α, β, u) = 0

Where f1, f2 : R3 → R are polynomials. And we have shown that roots of
polynomials f : R3 → R have measure zero in R3.
Now the only work to do is to show that actually the set of roots has measure
zero on S1× [0, 1], where S1 is unit circuit. So we have to intersect these curves
with the cylinder of diameter 2 between 0 and 1. But this can be shown easily
that the intersections are finite number of lines and in that case we are done.

Proof For M �= N , Second Approach

Here I propose another approach for the proof of Lemma 5.
First recall Tonelli’s Theorem.

Tonelli’s Theorem: Suppose (X,M, μ) and (Y,N , ν) are σ-finite measure
spaces. If g ∈ L+(X × Y ), then the functions x �→ ∫Y g(x, y)dν(y) and y �→∫

X
g(x, y)dμ(x) are in L+(X) and L+(Y ) respectively, and furthermore if we

denote by μ × ν the product measure, then∫
X×Y

g d(μ × ν) =
∫

X

[∫
Y

g(x, y)dν(y)
]

dμ(x) =
∫

Y

[∫
X

g(x, y) dμ(x)
]

dν(y).
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Now what we have is a function f(v, u) : S1 × [0, 1] → C,where S1 is the unit
circle. Let’s define

S = {(v, u) ∈ S1 × [0, 1]|f(v, u) = 0}

and put g := 1(S), so we satisfy Tonelli’s theorem conditions.
Then we will have:

m(S) =
∫

S1×[0,1]

1(S) =
∫

S1
dv

∫
[0,1]

1(S)du

But for a fixed v0 the number of zeros of function f(v0, u) is finite, so we have∫
[0,1] 1(S)du = 0 and consequently

m(S) = 0

Now we can extend our proof for the most general case:

Lemma 6. The matrix A defined in (2.21), with K × M ≥ N is non-singular
almost every xi ∈ (0, π) and every T ∈ R+.

Proof. To prove this we just pick first N rows of A and apply Lemma 5, and we
are done.

So as can be seen from above discussions, we are allowed to use the matrix
format and use oversampling in time and instead reduce the number of sensors
in space.

2.3.1 Uniform sampling along space

As we saw in the previous section we can associate almost any sensor locations
between 0 and π, and still have a non-singular matrix for A. But actually non-
singularity is not enough, we also need numerical stability of our solution. To
investigate this we define the condition number of our matrix to be :

κA = ‖A−1‖ · ‖A‖ =
σmax

σmin
(2.18)

Where σmax and σmin are maximum and minimum singular values of matrix A.
We believe that different spatial allocation of sensors will cause different condi-
tion numbers. So let’s try uniform allocation of sensors in space. Suppose the
sensors are deployed in space as follows

�
x

� � � � �

0 π
2M

3π
2M π...

Let’s investigate the properties of the matrix A, introduced in (2.15).
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Fix Condition Number for M > N

Let’s first consider the simple matrix for K = 1 and T = 0. So the matrix
format will be :

A =

⎡⎢⎢⎢⎣
sin x1 sin 2x1 · · · sin Nx1

sin x2 sin 2x2 · · · sin Nx2

...
...

...
sin xM sin 2xM · · · sin NxM

⎤⎥⎥⎥⎦ (2.19)

Since we have κ(A) = √
κ(A∗A), where A∗ is the conjugate transpose of A, we

can investigate the condition number of A∗A.

A∗A =

⎡⎢⎢⎢⎣
∑M

i=1(sin xi)2
∑M

i=1 sin xi sin 2xi · · · ∑N
i=1 sin xi sinNxi∑M

i=1 sin 2xi sin xi

∑M
i=1(sin 2xi)2 · · · ∑M

i=1 sin 2xi sin Nxi

...
...

...∑M
i=1 sin Nxi sin xi

∑M
i=1 sin Nxi sin 2xi · · · ∑M

i=1(sin Nxi)2

⎤⎥⎥⎥⎦
Let’s first investigate the diagonal elements.

Lemma 7. In uniform spatial sampling with the sensor arrangement xi = π
2M +

π
M (i − 1), we have:

M∑
i=1

(sin kxi)2 =

⎧⎪⎨⎪⎩
M
2 M � k

M k = (2l + 1)M
0 k = 2lM

(2.20)

Where we mean by M � k that M does not divide k.

Proof.

M∑
i=1

(sin kxi)2

=
−1
4

M∑
i=1

[ejk( π
2M + π

M (i−1)) − e−jk( π
2M + π

M (i−1))]2

=
−1
4

[−2M +
M∑
i=1

ejk( π
M + 2π

M (i−1))

︸ ︷︷ ︸
I1

+
M∑
i=1

e−jk( π
M + 2π

M (i−1))

︸ ︷︷ ︸
I2

]

It can easily be shown that:

I1 =

{
M(−1)

k
M M |k

0 Otherwise

And also

I2 =

{
M(−1)

k
M M |k

0 Otherwise

So finally considering the above facts we will have the claim.
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Now let’s consider the non-diagonal elements:

M∑
i=1

sin (kxi) sin (lxi)

=
−1
4

[
M∑
i=1

ej(k+l)xi

︸ ︷︷ ︸
I1

+
M∑
i=1

e−j(k+l)xi

︸ ︷︷ ︸
I2

−
M∑
i=1

ej(k−l)xi

︸ ︷︷ ︸
I3

−
M∑
i=1

e−j(k−l)xi

︸ ︷︷ ︸
I4

]

If M � (k + l) we have:

I1 =
M∑
i=1

ej(k+l)[ π
2M + π

M (i−1)]

=
1 − (−1)(k+l)

e−j(k+l) π
2M − ej(k+l) π

2M

and also

I2 =
−(1 − (−1)(k+l))

e−j(k+l) π
2M − ej(k+l) π

2M

Which means I1 + I2 = 0.
Similarly, if M � (k − l), then I3 + I4 = 0

It can also be shown that if k + l = uM , then

I1 + I2 =

⎧⎪⎨⎪⎩
2M 4|u
−2M 2|u, 4 � u

0 Otherwise

And similarly if k − l = sM , then

I3 + I4 =

⎧⎪⎨⎪⎩
2M 4|s
−2M 2|s, 4 � s

0 Otherwise

So in general, the result of
∑M

i=1 sin(kxi) sin(lxi) will be

The Result of
∑M

i=1 sin(kxi) sin(lxi)
M � k + l 4|u 2|u, 4 � u u:odd

M � k − l 0 −M
2

−M
2 0

4|s M
2 0 M M

2

2|s, 4 � s −M
2 −M 0 −M

2

s:odd 0 −M
2

M
2 0

Lemma 8. For A defined as in (2.19), if M > N , the matrix A∗A will be
diagonal with diagonal elements equal to M/2.

Proof. for the diagonal elements, we have
∑M

i=1(sin kxi)2, where k < M , so it
will be always equal to M/2(first case in Lemma 7).
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For non-diagonal elements, k + l < 2M , so we are either in the case where
M � (k + l) or in the case where u : odd. and k − l < M , so we are in the case
where M � (k − l) or k − l = 0. Summing up gives us that the non-diagonal
elements are zero for M > N .

Lemma 8 shows that when K = 1 and T = 0, the condition number will not
change for M > N .
For general case when K > 1 and t �= 0, we have:

A =

⎡⎢⎢⎢⎣
BΛ
BΛ2

...
BΛK

⎤⎥⎥⎥⎦
Where

B =

⎡⎢⎢⎢⎣
sin x1 sin 2x1 · · · sinNx1

sin x2 sin 2x2 · · · sinNx2

...
...

...
sin xM sin 2xM · · · sin NxM

⎤⎥⎥⎥⎦
and

Λ =

⎡⎢⎢⎢⎣
e−T

e−22T

. . .
e−N2T

⎤⎥⎥⎥⎦
It is obvious that Λ is independent of M . So we will have:

A∗A =
K∑

i=1

ΛiB∗BΛi

But we have seen that B∗B is diagonal and we will have

A∗A = (B∗B)
K∑

i=1

Λ2i =
M

2
I

K∑
i=1

Λ2i

and finally

κ(A) = √
κ(A∗A) =

√√√√ M
2

∑K
i=1 e−2iT

M
2

∑K
i=1 e−2iN2T

=

√√√√ ∑K
i=1 e−2iT∑K

i=1 e−2iN2T

Which is independent of M and is an increasing function of K which can be
seen in Figure 2.4. This also verifies the results we get in our simulations and
the 3-D plot provided (see Figure 2.5).

But when M ≤ N , the summation effects computed above show up in the
matrix A∗A and the condition number is not constant anymore.
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Figure 2.4 – Theoretical value of condition number for different K’s
for M > N

Sudden Jump in N
2

In the experiments we saw that with uniform sensor locations, in the plot of
condition number with respect to number of sensors, when M > N

2 , there is a
sudden jump from very large values (1e20)to reasonable values such as 10 ∼ 100.
Here we investigate the reason.

Considering again the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−T sin x1 e−22T sin 2x1 · · · e−N2T sin Nx1

e−2T sin x1 e−2×22T sin 2x1 · · · e−2×N2T sinNx1

...
...

...
e−KT sin x1 e−K×22T sin 2x1 · · · e−K×N2T sin Nx1

. .

. .

. .

e−T sin xM e−22T sin 2xM · · · e−N2T sin NxM

e−2T sin xM e−2×22T sin 2xM · · · e−2×N2T sin NxM

...
...

...
e−KT sin xM e−K×22T sin 2xM · · · e−K×N2T sin NxM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

We have the sensor locations as:

X =
[

π
2M

3π
2M · · · π(2M−1)

2M

]
When we have M ≤ N/2, this simply means N ≥ 2M , so one column of
the matrix A, will be all zero, resulting in infinite condition number. The
large values for κ in the simulations were just the computation errors done by
MATLAB in computing the locations and their sinusoids. So for M ≤ N/2, we
have κ(A) = ∞, but when M > N/2, the all zero column disappears from A,
and this is why we have less condition numbers. The sudden jump and also the
fixed condition number can be seen in Figure 2.5.

21



0 10 20 30 40 50 60 70 80 0

50

100

10
0

10
5

10
10

10
15

10
20

K

M

C
on

di
tio

n 
N

um
be

r

Figure 2.5 – Practical values of condition number for different K’s and
different M ’s

2.3.2 Uniform, Shifted Uniform and Periodic Non-Uniform
sampling in space

As we saw in the previous section, in spite of good reasons for using uniform
sampling, such as easy analysis, easy deployment and lower condition number in
large values of M , it has serious drawbacks which makes it almost unusable for
small values of M , namely it has infinite condition number for M ≤ N

2 . So we
are about to find some other means of sampling. Here we investigate between
three different schemes, uniform sampling

�
x

� � � � �

0 π
2M

3π
2M π...

shifted uniform sampling

�
x

� � � � �

0

τ + π
2M

τ + 3π
2M

π...

and periodic non-uniform sampling

�
x

� �� � ��

0
��
δ

��
2π
M

π...

In our experiments, we fix value of N = 20, and K = 4. We find the
condition number of matrix A for different values of M , T , δ and τ compute the
minimum values of condition number and find the corresponding τ , T and δ for
each M . You can see the result in Figure 2.6. As it can be seen for M < N best
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Figure 2.6 – Best condition number for three different schemes, Uni-
form sampling, Shifted uniform sampling and Periodic
non-uniform sampling. As it can be seen for M < N best
scheme between these three is shifted uniform sampling
and for M ≥ N we are better to use Uniform sampling in
space.

scheme between these three is shifted uniform sampling and for M ≥ N we are
better to use Uniform sampling in space and minimum value of κ is achieved by
taking τ equal to zero and δ equal to π/2M , so that we get uniform sampling
for M ≥ N .

2.4 Reconstruction

In this regard we did some experiments to see the effect of using more time
samples in contrast to more spatial samples. In the Figure 2.7 you can see the
results of a simulation for M = 6, N = 20, K = 4 and T = 3.7e − 4 time units.
Figure 2.7(b) suggests that the condition number of our matrix A is very good,
because in the case of aliasing due to large number of coefficients we still get
good results in the order of 30 dB.
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Figure 2.7 – In (a) you can see the original signal and in (b) the error
of estimation is shown for different number of coefficients
used to estimate signal
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