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Abstract—End-to-end active network monitoring infers net-
work characteristics by sending and collecting probe packets
from the network edge, while probes traverse the network
through multicast trees or a mesh of unicast paths. Most
reported methods consider given source and receiver locations
and study the path selection and the associated estimation
algorithms. In this paper, we show that appropriately choosing
the number of sources and receivers, as well as their location,
may have a significant effect on the accuracy of the estimation;
we also give guidelines on how to choose the best “points
of view” of a network for link loss monitoring purposes.
Though this observation applies across all monitoring meth-
ods, we consider, in particular, networks where nodes are
equipped with network coding capabilities; our framework
includes as special cases the scenarios of pure multicast and
network coding. We show that, in network-coding enabled
networks, multiple source active monitoring can exploit these
capabilities to estimate link loss rates more efficiently than
purely tomographic methods. To address the complexity of
the estimation problem for large networks, we also propose
efficient algorithms, including the decomposition into smaller
multicast inference problems, belief-propagation, and a MINC-
like algorithm.

I. INTRODUCTION
Network monitoring is an important component of net-

work engineering. For small-scale networks, local monitor-
ing of link characteristics, such as loss rates, delay and
bandwidth, is feasible. However, for large-scale networks,
as well as for interconnections of diverse networks with
distributed control over them, local monitoring becomes
difficult. Therefore, it is desirable to be able to infer network
characteristics through end-to-end measurements. Over the
past decade, significant progress has been made in inferring
network characteristics using end-to-end measurements, also
known as tomographic techniques. Most of the tomography
work has focused on sending active probes from a single
source node through a multicast network and using the
probes observed at the receivers to estimate the metric of
interest [1]; this work has also been extended to unicast [2]
measurements and to multiple sources [3], [4].
In this paper, we are also interested in estimating link loss

rates using end-to-end measurements. One aspect we explore
is the effect of the placement of sources and receivers on the
link-loss estimation. The placement of sources and receivers
gives us different “views” of the network: we show that
the “points of view” matters in terms of estimation error.
This observation is of course applicable to the tomographic
methods as well. However, we explore this idea specifically

in the context of networks that already have network coding
functionalities deployed. We show that in such networks,
multiple source active monitoring can exploit the network
coding capabilities to better estimate the metric of interest,
which in our case is the link-loss rates.
Our interest in network-coding enabled networks is mo-

tivated by the fact that network coding seems likely to be
included in tomorrow’s networks. The pioneering work in
[5], [6] showed that for multicast networks, if intermediate
nodes can do simple local XOR-operations on incoming
packets, then one can achieve the min-cut throughput of the
network to each receiver. These linearly combined packets
can then be utilized at the end-receivers to recover the
original information symbols by solving a set of linear
equations over a finite field [7]. This breakthrough idea has
spawned a significant effort in applying network coding to
other network topologies, developing practical algorithms
that achieve this performance, as well as quantifying the
throughput benefits of network coding [8]. In terms of
applications, the network coding idea is well-matched to
content distribution over peer-to-peer networks as seen by
several ongoing projects for this application [9], [10]. It has
also been shown that network coding can bring benefits in
multihop wireless networks [11].
Motivated by the fact that, in the future, network coding

can be deployed in large scale networks, we explore how we
can utilize it for efficient network monitoring. For example,
this idea is suited for overlay networks [12] or for multihop
wireless networks [11] since (i) performance monitoring is
particular important for the control of such networks [13],
[14] and (ii) network coding could be deployed incremen-
tally on their nodes (unlike legacy routers). In general, our
approach is applicable to any network where network coding
is deployed.
This paper builds on our previous work [15], where we

first introduced the idea of exploiting network coding to
estimate link-loss rates, using a toy example topology. In this
paper, we further demonstrate the benefits of this approach:
when intermediate nodes linearly combine incoming probes
from multiple sources, we can have the benefits of using
multiple sources without increasing the load on the links.
In addition, we investigate the best point of view, i.e.,
the best choice of sources and receivers. Combining the
two, we show that we can obtain faster convergence rates
using multiple sources and appropriately chosen views of



the network than when using multicast probes.
Note that the loss rate can be different on the two

directions of the same link. We show that, both in the
cases of symmetric and asymmetric link-loss rates, we can
estimate the loss rates with much fewer “views” of the
network, by using multiple sources than having a single
source.
The main contributions of this paper are the following.

We observe that the placement of sources and receivers are
an important aspect of the design of a network monitoring
system. We explore this in the context of networks with
network coding functionalities and we develop properties
of estimators. We propose several computationally efficient
algorithms that are suitable for large networks. One method
is based on the belief propagation algorithm [16] which has
had a lot of success in error correcting codes on graphs. An
alternative method is based on decomposing the network
into sub-networks and solving multiple multicast inference
problems. Overall, we show that we can significantly im-
prove link-loss estimation over previous purely tomographic
methods by (i) using multiple sources (ii) appropriately
choosing their location and (iii) exploiting the network
coding capabilities of the underlying network.
The paper is organized as follows. In Section II we define

the problem. In Section III, we study a basic topology,
estimate the loss rate of a single link, and illustrate the
importance of multiple sources and the network view. In
Section IV, we extend these ideas to larger networks and to
estimating loss rates for all links; we also give guidelines
on how to place the sources and receivers. In Section V, we
develop efficient heuristics suitable for large networks and
evaluate their performance via simulation. Sections VI and
VII provide the discussion and conclusion respectively.

II. PROBLEM STATEMENT

A. Motivating Example
The following example illustrates the use of network

coding to infer the loss rate of a single link [15].
Consider the basic topology shown in Fig. 1. In particular

consider Case 1, where nodes A and B send probes and
nodes E and F receive them. Our goal is to measure the
loss rate of the link CD, using probes from A, B and
observations at E, F . Node A sends to node C a probe
packet with payload that contains the binary string x1 =
[1 0]. Similarly, the node B sends probe packet x2 = [0 1]
to node C. If node C receives only x1 or only x2 then it
just forwards the received packet to node D; if C receives
both packets x1 and x2, then it creates a new packet, with
payload their linear combination x3 = [1 1], and forwards
it to node D; more generally x3 = x1 ⊗x2, where ⊗ is bit-
wise XOR operation. Node D sends the incoming packet x3

to both outgoing links DE and DF . All above operations
happen in one “ time slot”, which is to be defined.
In every time slot, probes (x1, x2) are sent from A, B

and may reach E, F , depending on a random experiment:
on every link in {AC, BC, CD, DE, DF}, the transmitted
packet is lost with probability αlink . The possible outcomes
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Fig. 1. Basic 5-links topology. Four possible cases (choices of sources and
receivers) that allow to calculate the loss rate of link CD, when neither
C or D are edge nodes, by sending and receiving probe packets from the
edge nodes A, B, E and F .

observed at nodes E and F are summarized in the left two
columns of Table I. The five right columns at the same table
show the combination of loss and success events on the links
that lead to the observed outcome. For example, the outcome
(x1, x1) is due to the event (AC = 1, BC = 0, CD =
1, DE = 1, DF = 1) and happens with probability (1 −
αAC)(αBC)(1− αCD)(1− αDE)(1−αDF ). Similarly, we
can write the probability of each of the 10 observed events
as a function of the link loss probabilities. The problem
then becomes how to estimate αCD from the observations
at E, F .

Received at Is link ok?
E F AC BC CD DE DF
0 0 Multiple possible events
x1 – 1 0 1 1 0
x2 – 0 1 1 1 0
x3 – 1 1 1 1 0
– x1 1 0 1 0 1
x1 x1 1 0 1 1 1
– x2 0 1 1 0 1
x2 x2 0 1 1 1 1
– x3 1 1 1 0 1
x3 x3 1 1 1 1 1

TABLE I
POSSIBLE OBSERVED PROBES AT NODES E AND F , TOGETHER WITH
THE COMBINATION OF LOSS (0) AND SUCCESS (1) IN ALL FIVE LINKS

THAT LED TO THE OBSERVED OUTCOME.
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B. Estimation Problem for a General Tree
Consider a networkG = (V, E), with nodes V and logical

links E. Although we demonstrate our ideas using trees
for most of the paper, they are also applicable to general
graphs, as discussed in section VI.A. Let each link e ∈ E
have an associated loss rate αe, which we are interested in
estimating.
We assume that probes can be sent in either direction of a

link. Each direction is in general associated with a different
link loss rate. We will call a network “undirectional” if
the loss rate of a link is the same in both directions, and
“directional” if the link loss rates are different in opposite
directions. Undirectional networks may include for example
wireless networks, while directional networks can be duefor
example to non-overlapping overlay paths with different
congestion levels. For most of the paper, we focus on
undirectional networks, and address the case of directional
networks in Sec. IV-B.
We inject n probes from each source and make measure-

ments only at the network edge (e.g. at the leaf nodes of the
tree). We denote this set of potential sources or receivers
as L ⊂ V , the sources by S ⊂ L and the receivers by
R ⊂ L. Each set of probes injected, one from every source,
corresponds to one experiment, or one timeslot.
We assume that the internal nodes of the network which

are neither sources or receivers (V \(S ∪R)) are capable of
doing the simplest network coding operation: XOR incoming
probes before forwarding them to all outgoing links. If a
packet is lost, only those packets that arrive at the internal
node within a given time-window are linearly combined.
Nodes that perform such XOR operations are called coding
points. Note that the number of coding points might be quite
small. For example, in a tree topology with two sources,
there exists exactly one coding point, irrespective of the
number of intermediate nodes since the two probe packet
flows from the two sources can meet only once. Generally
in a tree with |S| sources we have at most |S| − 1 coding
points.
With network coding, unlike the multicast trees approach,

using multiple sources does not increase the required band-
width: even though |S| probes are injected into the network,
each link carries only the XOR of the probes it receives,
therefore at most one packet.
Given a certain topology, and choice of sources and

receivers, the goal is to infer the link-loss rates {αe}. The
sets S,R should be chosen to give the “view” of the network
which yields the best estimation of these parameters.
At the receiver set R, we observe the outcome of sending

the probe packets from the source set S. At timeslot (exper-
iment) i, each source sends one probe packet. Each receiver
r ∈ R observes X

(i)
r , which can either be ∅, i.e., it receives

nothing, or some linear combination of the source packets
that is determined by the topology and the loss pattern. Let
{X(i)

r } denote the set of outcomes at time i for all receivers
r ∈ R. If we assume that successive probes experience
independent losses after sending n probes we can write the
probability of observing a set of events as

p({X(1)
r }, . . . , {X(n)

r }; {αe}) =
n

∏

i=1

p({X(i)
r }; {αe}).

This probability can also be related to the counts of the
various linear combinations received. The maximum likeli-
hood estimate (MLE) of the link-loss probabilities after n
observations is

{α̂e} = argmax L({αe}) =

= arg max log p({X (1)
r }, . . . , {X(n)

r }; {αe}).
(1)

In later sections, we examine the performance of the MLE
as well as of some computationally efficient sub-optimal
estimators. For the rest of this paper we will assume that
losses occur independently across links. This assumption
allows to simplify the expression of our estimator in (1);
if it doesnt hold, the expressions become more complicated
but the principle approach remains the same.
The quality of the estimation for a single link e is captured

by the mean-squared error metric, i.e.,

MSE = E[|α̂e − αe|
2],

where α̂e is the estimator based on the observations on R
of sources S, and αe is the true value of the loss rate on e.
In order to get a measure of performance for the set of

estimators across all links e ∈ E, we need a metric that
summarizes all links. We use an entropy measure ENT that
captures the residual uncertainty. Since we expect the scaled
estimation errors to be asymptotically Gaussian (similar to
the case in [1]), we define the quality of the estimation across
all links as

ENT =
∑

e∈E

log
(

E[α̂e − αe]
2
)

, (2)

which is a shifted version of the entropy of independent
Gaussian random variables with the given variances [17]. If
the entire error covariance matrix R is available, then we can
compute the metric as ENT = log detR, which captures
also the correlations among the errors on different links. The
metric ENT as defined above captures only the diagonal
elements of R, i.e., the MSE for each link independently
of the others.
Under mild regularity conditions (see for example Chapter

7 in [18]), the scaled (by sample size n) asymptotic covari-
ance matrix of the optimal estimator is lower-bounded1 by
the Cramer-Rao bound I−1. The Fisher information matrix
I is a square matrix with element Ip,q defined as

Ip,q({αe}) =

E

[

∂

∂αp
log p({Xr}; {αe})

∂

∂αq
log p({Xr}; {αe})

]

,
(3)

where αp, αq the loss probabilities of two links. In particular,
under the regularity conditions, the MLE is asymptotically
efficient, i.e., it asymptotically (in sample size) achieves this
lower bound.2 Hence the asymptotic error covariance matrix
1For symmetric matrices A ≥ B means that A − B is positive semi-

defi nite.
2In [1], it has been shown that the asymptotic mean-squared error

converges to this Fisher information bound for the multicast case. We
believe that this should also be true for the multiple source case as well;
so far, we have only numerically verifi ed it so in our simulations.
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of the MLE is approximately 1
nI−1. Therefore, we study

the behavior of the Fisher information matrix for different
topologies and network views as a basis of comparison; we
can then lower bound the asymptotic mean-squared errors
by examining the Fisher information matrix.

III. OPTIMAL ESTIMATION OF A SINGLE LINK
In this section, we are interested in estimating the loss

rate on a single link, typically in the middle of the network,
by sending and observing probes from the edge. Let us
revisit Fig. 1 and estimate the loss rate on link CD. Apart
from illustrating our approach this basic 5-links topology is
important in two ways: (i) it is the basic structure required
for link CD to be identifiable as we discuss in the following
subsection and (ii) any arbitrary topology can be reduced to
this basic topology, if we view all links (except the link of
interest CD) as directed paths from/to edge nodes A, B, E
and F , with the same loss rates as their equivalent links.
For example, a path from A to C, denoted as (A, C), can
be reduced to link AC with loss rate αAC the overall path
loss rate.

A. Four Cases of Identifiability
A link e ∈ E is said to be identifiable if it is possible

to estimate the associated loss-rate αe by sending probing
packets from nodes in S to nodes in R.
Fig. 1 depicts the four cases, i.e. choices of sources and

receivers, that form the basic structures for the identifiability
of the loss rate of link CD, when neither C or D are edge
nodes. Notice that Cases 1 and 3 use network coding with
2 sources and 2 receivers, Case 2 uses a multicast tree with
source A, and Case 4 uses a reverse multicast tree with sink
F. The necessary and sufficient conditions for identifiability,
first observed in [15], are summarized in the following:
Theorem 1: Given G = (V, E) and sets S and R, a link

CD is identifiable if and only if both conditions (1) and (2)
hold:
Condition 1: At least one of the following holds:
(a) C ∈ S.
(b) There exist two edge disjoint paths (A, C) and (B, C)
that do not employ edge CD with A, B ∈ S.
(c) There exists two edge disjoint paths (A, C) and (C, B)
that do not employ CD with A ∈ S, B ∈ R.
Condition 2: At least one of the following holds:
(a) D ∈ R.
(b) There exist two edge disjoint paths (D, E) and (D, F )
that do not employ edge CD with E, F ∈ R.
(c) There exists two edge disjoint paths (E, D) and (D, F )
that do not employ CD with E ∈ S, F ∈ R.
Sketch of Proof. The proof of Theorem 1 is based on the

observation that C and D need to be branching points or
edge nodes, otherwise the link loss rate of edge CD will
be indistinguishable from the loss rate of an ascendent or a
descendant edge. !

In [15] we considered the case where nodes A, B, E
and F were constrained to belong in either S or in R,
and showed that use of network coding operations increases
the number of identifiable links. Here, we assume that

A, B, E and F are allowed to act as either sources or
receivers. Our observation is that our choice of sources and
receivers impacts the accuracy of our estimator; i.e., for a
fixed number of probes, each topology leads to a different
estimation accuracy. This implies that to achieve the same
MSE, we may need to use a different number of probes
for each topology.

B. Performance Comparison of the Four Cases
In Fig. 2 we assume that all 5 links have α = 0.3 and we

look at the convergence of the MLE vs. number of probes
for Case 1 (using network coding) and for Case 2 (multicast
probes with source A). Fig. 2(a) shows the estimated value
(for one loss realization). Both estimators converge to the
true value, with the network coding being only slightly faster
in this scenario.
In Fig.2(b) we plot the mean-squared error of the MLE for

Case 1 (using network coding) and for Case 2 (multicast)
across number of probes. For comparison, we have also plot-
ted the Cramer-Rao bound for link CD, which is consistent
with the simulation results. For this scenario, Case 1 does
slightly better than Case 2 but not by a significant amount.
This motivated us to exhaustively compare all four cases in
Fig. 1, for all combinations of loss rates on the 5 links.
Fig. 3 plots the Cramer-Rao bound for the four cases as a

function of the link-loss probability at the middle link. The
left plot assumes that α is the same for five links, while the
right plot looks at the case where the edge links have fixed
loss rate equal to 0.5. We observe that Case 1 shows to
achieve a lower MSE bound. Interestingly, the curves for
Case 2 (multicast) and Case 4 (reverse multicast) coincide.
The difference between the performance of different cases
is more evident in the right plot (Fig. 3(b)).
In Fig. 4, we systematically consider possible combi-

nations of loss rates on the 5 links and we show which
case estimates better the middle link. In the left figure,
we assume that all edge links have the same loss rate
and observe that for most combinations of (αmiddle, αedge),
Case 1 (shown in “+”) performs better. In the right plot,
we assume that the middle link is fixed at αCD = 0.8 and
that αAC = αBC = αs,αDE = αDF = αr. Considering all
combinations (αs,αr), each one of the four cases dominates
for some scenarios. An interesting observation is, again, the
symmetry between Case 2 (multicast) and Case 4 (reverse
multicast). We prove in the next section that this symmetry
holds over general trees.

IV. ESTIMATION OF ALL LINKS IN A TREE
So far we studied the basic 5-links topology and focused

on estimating a single link. In this section, we study larger
trees and the estimation of all links. We show that several
observations from the basic 5-links topology extend to
general trees.

A. Dual Configurations and Reversibility
Consider a tree with L leave nodes, where S leaves act

as sources and the remaining R = L\ S act as receivers of
probes, and a given compatible orientation of the links. We
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refer as “dual configuration” the configuration that results
from reversing the orientation of all links in the network,
and from having the S sources become receivers, while the
R receivers act as sources. We show that, for the purposes of
parameter estimation, the associated ML estimator function
for a network and its dual is the same.
For example, a multicast tree is the dual configuration

of an inverse multicast tree (Case 2 and 4 in Fig. 1). In
Section III , we saw in Fig. 3(a) and Fig. 4(b) that the dual
configurations resulted in the same mean square error bound.
In fact, we observed that their associated ML estimator
functions coincide. The following theorem generalizes this
notion to arbitrary tree-like networks.
Theorem 2: The ML estimator for a tree configuration

and its dual coincide.
Proof: Let G = (V, E) be the original tree, with

|E| = n, and Gd its dual. For every probe trial, there
exist 2n possible error events, depending on which links fail.
Observing the outcomes at the receiver nodes corresponds
to observing unions of such events, that occur with the
corresponding probability. For a given configuration, the
ML estimator depends on the observable outcomes at the
receiver nodes. Therefore, it is sufficient to show that a
network and its dual have effectively the same set of
observable outcomes. In particular, we will show that for
every observable outcome, that occurs with probability p in
G, there exists exactly one observable outcome that occurs
with the same probability in Gd and vice-versa, and thus
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establish a bijection.
With every edge e of G, we can associate a set of sources

S(e) ⊂ V that flow through this edge, and a set of receivers
R(e) ⊂ V that observe the flow through e. Our main
observation is that the pair {S(e), R(e)} uniquely identifies
e, i.e., no other edge has the same pair. In the dual network
Gd, edge e is uniquely identified by the pair {R(e), S(e)}.
If inG edge e fails while all other edges do not, the receivers
R(e) will not receive the contribution in the probe packets of
the sources S(e). If in Gd edge e fails while all other edges
do not, the receivers S(e) will not receive the contribution in
the probe packets of the sourcesR(e). Thus there is a one-to-
one mapping between these events. Using this equivalence,
an observable outcome consisting of a union of events can
be mapped to an observable outcome at the reverse tree.
Note that this theorem establishes reversibility only for

the maximum likelihood estimation. The performance of
suboptimal algorithms might differ when applied to a con-
figuration and its dual.

B. Measuring Directional Networks
We now examine the case where the loss rates are

different in the two directions of a link. Our basic obser-
vation is that it is sufficient to send probes over only two
configurations: the original and its dual.
Theorem 3: Consider a tree configuration with |L| leaves.

We are interested in measuring the loss rates in both direc-
tions for all links of the tree. Using network coding saves
a factor of |L| in bandwidth usage by probes, compared to
the multicast tree approach.

Proof: Consider a tree configuration with |L| leaves.
To measure the link loss rates in both directions for all edges
of the tree, using the multicast approach, we need to use L
multicast trees. Indeed, let e = AC be the link adjacent to
leaf A ∈ L, we can measure αAC only if A is the root
of the multicast tree. Using the network coding approach,
for any choice of sources and receivers, we only need to
perform two rounds of measurements: one on the network
G and one on its dual Gd.
The previous theorem can also be interpreted as a tradeoff

in directional measurement. We can either |L|-fold increase
the measurement bandwidth (using multicast probes), or
allow intermediate nodes to do linear combinations (network
coding). The former option keeps intermediate nodes simple
at the expense of using extra bandwidth. The latter option
sends exactly one probe per link for each measurement, but
requires some operations from intermediate nodes.
A consequence of the reversibility established in the

previous section is that, if we do not have a-priori knowledge
of the link loss rates, the optimal choice of sources and
receivers apply both to a configuration and its dual. That
is, reversing the configuration, from Theorem 2, does not
affect the estimation function, and thus will not lead to any
performance degradation.

C. Number and Position of Sources
In Section III we observed that the number of sources

and receivers affects the estimation accuracy for the basic

topology in Fig. 1. This idea extends to larger topologies.
In fact, not only the number of sources and receivers, but
also their relative position on the tree (the “viewing point”)
affect the estimation accuracy.

10R4

9R3

6 5

2 S2

4

8R2

3

1 S1

7 R1

α6

α5

α9

α8

α1 α7

α2

α3

α4

Fig. 5. A network topology with 9 links. The link orientations depicted
correspond to nodes 1 and 2 acting as sources of probes.

To illustrate these concepts we use the tree shown in
Fig. 5. We run simulations for three cases: (1) a multicast
tree with source at node 1 (2) a multicast tree with source at
node 2 (3) two sources at nodes 1 and 2 and a coding point
at 4.3 The same observations hold in this 9-link topology,
as for the basic topology of Fig. 1. Simulations results are
reported for this 9-link topology (and more extensive for a
larger 45-link topology) in section V.D. Here we just report
our observations and guidelines.
First, adding more than one source improves estimation;

intuitively, this is because coding points partition the tree
into smaller multicast components. Second, the number and
placement of sources matter. Third, between two multicast
trees with the same number of receivers, better performance
is achieved by the tree that is more “balanced” and has the
smallest height.
Elaborating on the first observation, note that in trees,

each intermediate node is a vertex cut set. For the example
of Fig. 5 node 4 decomposes the tree into three components.
If node 4 could collect and produce probes, our estimation
problem would be reduced in estimating the link-loss rates
in three smaller multicast trees: the first tree consisting of
source S1 and receivers R1 and node 4, the second tree with
source S2 and receiver nodes 4, R3 and R4 and the third
tree with source node 4 and receiver R2. Allowing node 4
to XOR incoming packets approximates this functionality:
observing whether R2 receives a packet that depends on x1

or x2, we can conclude on whether node 4 received a packet
from S1 or S2 respectively.
The optimal selection of the number of sources and of

the best points of view is quite involved. In general, it is
a function of the network topology, the values of link-loss
rates, and possibly the number of employed probes. From
our simulation experiments, we found that the following
guidelines apply to a tree with L leaf nodes.

3For the confi guration in Fig. 5, the probes could also get combined in
node 5. That is, although the choice of sources and receivers automatically
determines the orientation of their adjacent links, there may still exist a
choice of coding points and orientation for the intermediate links.
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1) Select a fraction of sources to receivers that allows to
partition the tree into roughly equal-size4 subcompo-
nents, where each subcomponent should have at least
2 − 3 receivers.

2) Distribute the sources in roughly equal distances along
the periphery of the network.

V. ALGORITHMS AND SIMULATION RESULTS

The general ML estimator is computationally challenging
for large tree topologies. In this section we propose three
low complexity, yet efficient heuristics and evaluate them
through simulation.

A. Subtree Estimation Algorithm

Based on the intuition discussed in Sec. IV, this algo-
rithm partitions the tree into multicast subtrees separated by
coding points. Each coding point virtually acts as a receiver
for incoming flows and as a source for outgoing flows. As
a result, each subtree will either have a coding point as its
source, or will have at least one coding point as a receiver.
In each subtree, we can then use the tomographic method
proposed in [1].
Note that we can only observe packets received at the

edge of the network but not at the coding points. However,
we can still infer that information from the observations
at the receivers downstream from the coding point. The
fact that we infer the coding-points’ observations from the
leaves’ observations is what makes this algorithm subopti-
mal.

Subtree Estimation Algorithm

− Consider a graph G. Given a choice of sources S and
receivers R, the coding points are determined and G is
partitioned into |T | ≤ 2S − 1 subtrees.
− Each source sends one probe packet.Each receiver re-
ceives at most one probe packet.
− For each of the |T | subtrees:
If the multicast tree is rooted at a coding point:

• if any of the descendant receivers receives a probe, use
this experiment as a measurement on the subtree,

• otherwise, w.p. p assume a measurement happened
where no node in R received a probe packet, and w.p.
1 − p ignore the experiment.

If the multicast tree is rooted at a source Si:
Sequentially consider the descendant coding points that act
as receiver. For coding point C:

• if no descendant receivers C(R) observed a probe,
assume, w.p. p, that C did receive a packet, and w.p.
1 − p, that C did not receive a packet.

• otherwise
– if at least one of C(R) observed a linear combi-
nation of xi, deduce that C received xi.

4When links have similar loss rates, then “size” refers the number of
nodes/links. In general “size” also should capture how lossy the links in
the subcomponent are.

The probability p attempts to account for the fact that, if
none of the receivers in C(R) receives a packet, this might
be attributed to two distinct events: either the coding point
C itself did not receive a packet, or C did receive a packet,
which then got subsequently lost in the descendent edges.
For example, in Fig. 5, consider the tree rooted at S1, if

R2 receives x1 or x1 + x2 we deduce that x1 was received
at node 4. If R2 received x2, we deduce that x1 was not
received at node 4. If R2 does not receive a probe packet,
then, with probability 1−p, we assume that 4 did not receive
a probe packet. In general, the parameter p depend on the
graph structure and possibly prior information we may have
about the link-loss rates.

B. MINC-like Heuristic Algorithm

For every multicast node, we can use the MINC algorithm
described in [1]. For every coding point, we can use reverse
MINC, exploiting the reversibility property that we estab-
lished in previous section. In order to infer which probes
have been received in interior nodes from observations at
the edge, we use the same procedures as in the subtree
estimation. This heuristic is optimal for multicast and reverse
multicast configurations, and for configurations that are
concatenations of the two, but suboptimal for any other
configuration.

C. Belief Propagation

(S1, R1) (S1, R2) (S2, R2) (S2, R3) (S2, R4)

x1 x2 x3 x4 x5 x6 x7 x8 x9

Fig. 6. Bipartite graph B corresponding to the 9-links tree in Fig. 5. B
indicates which edges belong to which observable paths.

In [16], it has been observed that linear complexity belief
propagation algorithms can naturally be used to estimate
the link-loss rates in an inverse multicast tree. Our obser-
vation here is that the exact same approach can also be
applied for tree configurations with multiple sources and
network coding operations. Moreover, it can also be applied
over arbitrary acyclic graph configurations, with appropriate
network coding operations at intermediate links. We refer
the reader to [16] for the message passing equations and
rigorous description, and we only outline the basic idea in
our context.
Consider a graph G = (V, E), an experiment where one

probe packet is sent from each source and let xe ∈ {0, 1}
denote whether edge e has failed or not. Construct a bipartite
graph B that has |E| variable nodes {xe}, one for each edge
of the graph, and |W | check nodes, where each check node
corresponds to a path w between a source and a receiver.
Each path is connected to the edges it uses. For example,
Fig. 6 shows the bipartite graph corresponding to the nine-
links configuration of Fig. 5. In the real network, path
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Fig. 7. Network confi guration with 45 links.

(S1, R1) contains edges 2 and 3; therefore, in the bipartite
graph B, node (S1, R1) is connected to nodes x2 and x3.
Using the observations at the receivers, we allocate 1 or 0

to each check node, depending on whether the corresponding
path operated or not. For example, in Fig. 5, if R2 received
the probe packet x1 +x2, we know that both paths (S1, R2)
and (S2, R2) operate. A path operates if none of its edges
fails, therefore the value for each check node equals the
logical AND of its adjacent edges. Running the belief prop-
agation algorithm on the bipartite graph B, we can calculate
with what probability each variable xe takes value 0 or 1 or
0. Repeating the same procedure n times, we collect a set
of n probability values for each edge e, which can be used
to estimate αe.

D. Simulation Results
In this section, we are interested (i) in evaluating the

heuristics themselves and (ii) in showing that two sources
(even with suboptimal estimation) outperform a single
source (even with ML estimation).
Consider the 45-links topology shown in Fig. 7, where

all links have the same loss rate α. We are interested in
estimating α for all 45 links, and in comparing different
methods in terms of their estimation variance.
First, we did simulations for α = 0.3, a large number of

probes, and repeated for many experiments. We then looked
at the mean square error (MSE) in the estimation of each
link. The results are shown in Fig. 8 for three algorithms:
1) a single multicast source S1 and maximum likelihood
estimation (top plot)

2) two sources S1, S2, network coding at the middle node
C, and the MINC-like heuristic (middle plot)

3) the same two sources and coding point, with the
subtree decomposition heuristic (bottom plot).

Notice that in the case of two sources, the 45-links topology
is partitioned into 3 subtrees: one rooted at A (where probe
x1 “flows”), another rooted at D (where probe x2 flows)
and a third one rooted at B (where probe x1 + x2 flows).
There are several observations one can make from this

graph. First, using two sources and network coding, even
with suboptimal estimators, performs better than using a
single multicast source and an ML estimator. Indeed the
residual entropy (which is the metric that summarizes the
MSE across all 45 links) is lower for two sources with
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0.1

M
SE

single source, maximum likelihood, ENT=−294.5

5 10 15 20 25 30 35 40 45
0
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0.1

M
SE

two sources, minc−link heuristic, ENT=−317.9

5 10 15 20 25 30 35 40 45
0

0.05

0.1

M
SE

link ID

two sources, subtree−decomposition, ENT=−314.9. (MSE(45)=0.2425)

Fig. 8. MSE for each link in the 45-links topology.

the MINC-like (ENT = −317.9) and for the subtree-
decomposition (ENT = −314.9) heuristics, than it is for
the single source MLE (ENT = −294.5). This illustrates
the benefit of using multiple sources. Second, notice that the
MSE for individual links is smaller in the lower two graphs
than in the top graph, for all links except for links 43, 44, 45,
for which it is significantly higher. This is no coincidence:
links 43, 44, 45 are the middle ones (CA, CB, CD in Fig. 7.
This is due to the fact that we cannot directly observe the
packets received at the coding point C and we have to infer
them from observations at the leaves of subtree rooted at B.
The performance of the heuristics could further improve by
using the following tweak: we could estimate what probes
are received at C, using observations from leaves not only
in the subtree rooted at B, but also from the subtrees rooted
of A and D.
The above simulations were for a single value of α = 0.3.

We then exhaustively considered several values of α (same
on all links) and n (the number of probes). The results are
shown in Fig. 9. We can see that, even with suboptimal
estimation, using two sources consistently outperforms a
single multicast source, even with MLE estimation. This
is apparent in Fig. 9 where the ENT metric for the single
source (drawn in bold lines) is consistently above the other
two algorithms.5
Finally, we present results for the belief propagation algo-

rithm. In Figure ??, we compare the MINC like heuristic and
the message passing algorithms, over the 45 link network,
with respect to the ENT measure. We set all links in this
network to α = 0.5 and varied the number of probes from
250 to 5000.
Both heuristics yield better performance (lower ENT

values) as the number of sources increases from 1 to 5.
However, the message passing heuristic is inferior to the
MINC like estimator for the multicast tree (for which this is
an ML estimator) as well as for the 2-source tree. However,

5Two notes about the ENT metric. First, the differences in the value
of ENT are signifi cant, although this is not visually obvious; recall that
ENT is defi ned by taking the sum of the log of the MSE’s. Second,
ENT can be < 0, it is the differential entropy that matters.
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Fig. 9. Comparison of one source (with MLE to two sources (with a
suboptimal estimation: MINC-like heuristic or subtree decomposition). The
comparison is in terms of metric ENT

it does a great deal better than the latter for the 3-source
case and even more so in the 5-source case. This trend can
be explained by looking at the number of cycles in the factor
graph. A cycle is created in the factor graph of a network
configuration when (1) two different paths have more than
one link in common and (2) a set of m paths, say Wm,
covers a set Em of m links, with each of the paths in Wm

containing at least two links in Em. As the factor graph
becomes more and more cyclic, the performance of the
sum-product algorithm degrades. Given a specific network
configuration, a raw estimate of the extent of cyclicity of the
factor graph can be made by looking at the ‘average number
of links contained per path’ and the ‘average number of
paths that a link is contained in’.
We applied the message passing algorithm to a 45 link-

and 200 link-network and show that it performs better on
those configurations that result in sparsely connected factor
graphs. The results obtained for an α-sweep for the 45 link
network with N = 250 is shown in Figure 10(a). The results
obtained for the 200 link network for N = 1000 is shown
in Figure 10(b).
We simulated for the average ENT:log2(

1
E

∑

e∈E [α̂e −
αe]2) of the 45 link- and 200-link multicast trees, obtained
from both the ML estimator and the message passing
algorithms. The results are plotted in Figure 11. ENTav

of the 45 link tree is better (lower) than that of the 200 link
tree for a given number of probes. Also, the message passing
heuristic performs relatively better in the 45 link case, since

ENT for N = 250 in the 45 link network

12 } MINC like 
heuristic

} Message 
passing

(a) 45 link network, N=250, α-sweep, 5
different coding schemes

ENT for N = 1000 in the 200 link network

}
}

MINC like 
heuristic

Message
passing

(b) 200 link network, N=1000, α-sweep, 4
different coding schemes

Fig. 10. α-sweep for 45 and 200 link networks

the tree is more sparse than in the 200 link case.
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Fig. 11. Average ENT: multicast estimator in 45 link, 200 link topologies.

VI. DISCUSSION

A. From Trees to General Topologies
Throughout the paper, we illustrated our ideas on trees.

However, they can naturally be extended to more general
topologies. The only difference is that intermediate nodes
may need to perform slightly more elaborate operations, for
example over finite fields.
As a concrete example, consider the configuration in Fig.

12, where two sources inject probes x1 and x2. Assume that
intermediate nodes can perform operations over the field F4.
Node A combines the probes to create packet x1+x2. Node
B creates and sends 2x1 + x2. Note that we can directly
apply the heuristic algorithms discussed in Sec. V. E.g., we
can decompose the network into parts through which the
same “type” of probe packets flows. Each such part is a tree,
and we can use a different estimator for each part, in the
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Fig. 12. A network confi guration that is not a tree.

exact same way as in Sec. V-A. Similarly, we can use belief-
propagation by decomposing the graph into observable paths
and creating a bipartite graph as in Sec. V-C.

B. Comparison to other Monitoring Techniques
Network-coding enhanced active monitoring offers sev-

eral advantages compared to previous techniques. Compared
to classic tomography, we are able to identify a larger
number of links and improve their estimation accuracy. The
reasons behind this improvement are: (i) combining probes
using network coding (e.g. x1 + x2 on link C − D) carries
more information than x1, x2 sent separately) and (ii) using
XOR to combine different probes results in exactly one
probe per link, thus allowing us to get all the benefits from
multiple sources without any increase in bandwidth. Com-
pared to per-link measurements, our approach allows to keep
internal nodes simple (assuming that they already implement
network coding/XOR) and delegate all complexity to special
nodes at the edge; furthermore, it can also be preferable
to per-link measurements in dynamic environments where
estimates need to be frequently reported, thus causing an ex-
tra overhead. Finally, appropriate choice of multiple sources
and receivers can evenly distribute probe traffic across the
network.

VII. CONCLUSION
In this paper, we studied link-loss monitoring using

multiple sources of probes from the edge and network
coding capabilities in the middle of the network. We showed
that is possible to significantly improve link-loss estimation
over previous purely tomographic techniques by combining
three elements (i) multiple sources and receivers (ii) careful
selection of the number and placement of sources at the edge
of the network (“network points of view”) and (iii) network-
coding functionality at intermediate nodes (which eliminates
the bandwidth overhead from multiple sources and also
enriches the information carried by each probe). Overall, in
networks where network coding is already deployed, these
ideas can potentially improve monitoring; this potential can
be fully exploited by using the right points of view and
efficient estimators.
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