
Bottleneck Discovery and Overlay Management
in Network Coded Peer-to-Peer Systems
M. Jafarisiavoshani, C. Fragouli, S. Diggavi, C. Gkantsidis

EPFL EPFL EPFL Microsoft Labs

Abstract
The performance of peer-to-peer (P2P) networks depends
critically on the good connectivity of the overlay topology.
In this paper we study P2P networks for content distribu-
tion (such as Avalanche) that use randomized network cod-
ing techniques. The basic idea of such systems is that peers
randomly combine and exchange linear combinations of the
source packets. A header appended to each packet specifies
the linear combination that the packet carries. In this pa-
per we show that the linear combinations a node receives
from its neighbors reveal structural information about the
network. We propose algorithms to utilize this observation
for topology management to avoid bottlenecks and cluster-
ing in network-coded P2P systems. Our approach is decen-
tralized, inherently adapts to the network topology, and re-
duces substantially the number of topology rewirings that are
necessary to maintain a well connected overlay. Moreover,
this is done passively during the normal content distribution.
This work demonstrates another value of using network cod-
ing and complements previous work that showed network
coding achieves high utilization of the network resources.

1 Introduction
Peer-to-peer (P2P) networks have proved a very successful
distributed architecture for content distribution. The design
philosophy of such systems is to delegate the distribution
task to the participants nodes (peers) themselves, rather than
concentrating it to a low number of servers with limited re-
sources. Therefore, such a P2P non-hierarchical approach
is inherently scalable, since it exploits the computing power
and bandwidth of all the participants.
Having addressed the problem of ensuring sufficient net-
work resources, P2P systems still face the challenge of how
to efficiently utilize these resources while maintaining a de-
centralized operation. Central to this is the challenging prob-
lem of management of the overlay network connecting the
peers which ensures the fastest possible information dissem-
ination. The goal is to create a network topology that ef-
ficiently uses the available bandwidth with minimal or no
centralized coordination, and is scalable in the network size.
The main P2P network solutions (e.g., Gnutella, Freenet,
Napster, BitTorrent) effectively build complex topologies,

such as rings, or meshes of multicast trees, and route infor-
mation on them. Such approaches have the disadvantages
of imposing topological constraints on the bandwidth usage,
e.g., embedding trees in the existing network structure. Such
a problem is hard to optimally solve even with perfect cen-
tralized control.
An alternate design philosophy is embodied in network
coded P2P systems such as Avalanche [2,3]. Avalanche em-
ploys randomized network coding, where peers randomly
combine their received packets and propagate such linear
combinations to their neighbors. A peer receiving a suffi-
cient number of linear combinations solves a system of lin-
ear equations and retrieves the source packets. Thus peers
no longer collect packets routed through pre-specified paths
from the source, but instead attempt to collect and propagate
“degrees of freedom” (linear combinations). This approach
dispenses with the need of creating and preserving specific
routing structures. In fact it can be shown that the opti-
mal routing problem becomes polynomial-time. Moreover,
there is potential for significant gains in network throughput
making network coding a very promising paradigm for P2P
systems as has been demonstrated in the Avalanche system.
However, to optimize the use of these resources, we still need
to build a network topology that allows the fastest possible
dissemination of information in a scalable manner.
In both systems, the task of topology management is hin-
dered by the fact that, the peers need to form overlay network
connections using underlying physical links whose available
bandwidth are hard to estimate. In this paper we will ar-
gue that for P2P networks employing randomized network
coding, such as Avalanche, we can use the structure of the
exchanged packets to passively infer physical link bottle-
necks. In particular, the coded packets a node observes from
its neighbors implicitly contain information about the under-
lying physical link bandwidths. The specific application of
this observation is to use such information to break clusters,
using the minimum number of topology rewirings. To this
end, we propose algorithms that (i) identify and re-connect
only nodes whose re-wiring leads to breaking of clusters, (ii)
use a variable number of reconnections, adapting (without
centralized knowledge) to the requirements of the network
topology, and (iii) are peer-initiated and scalable.
In Section 2 we briefly describe Avalanche, illustrate our
proposed approach through a simple example, and position

1

our work in the framework of the literature. We then pursue
our idea by developing a theoretical framework and algo-
rithms in Section 3 and by performing simulation results in
Section 4. Section 5 concludes the paper.

2 Description and Motivation
We start by first briefly reviewing randomized network cod-
ing, and describing how Avalanche builds the overlay topol-
ogy employed for content distribution. We then motivate our
work through an example, and discuss related work.

2.1 Randomized Network Coding
Consider a source with n packets to be distributed to a set
of nodes. In randomized network coding [4], each packet is
assumed to consist of L symbols over a finite field Fq. This
simply means that, for q = 2m, a packet of lengthmL bits is
considered to contain L symbols over F2m , where sets of of
m bits are treated as one symbol over F2m . Nodes in the net-
work perform operations over Fq . The source sends “coded
packets”, each packet consisting of a uniform at random cho-
sen linear combination of the n packets overFq . Each packet
has an appended coding vector of size n symbols over Fq,
that specifies which linear combination each coded packet
carries. Note that for large L (mL bit packets), the overhead
of n symbols (nm bits) can be made very small. Interme-
diate nodes in the network recursively and uniformly at ran-
dom combine their collected packets and create new coded
packets that they propagate through the network. Note that
the coding vectors a node can create have to belong in the
span1 of the coding vectors it has already collected. Once
a node has collected a set of coding vectors that spans the
n-dimensional space, it has enough information to solve a
system of linear equations and retrieve the source packets.

2.2 Avalanche Topology Management
In a nutshell, Avalanche relies on periodically renewed ran-
dom selections for the peer neighbors to rewire the employed
overlay network [2, 3]. In more detail, the source forms the
first node of the overlay network that will be used for the
file distribution. All nodes in this network are connected to
a small number of neighbors (four to eight). Neighbors for
each arriving node are chosen uniformly at random among
already participating nodes, which accept the solicited con-
nection unless they have already reached their maximum
number of neighbors. Each node keeps local topological in-
formation, namely, the identity of the neighbors it is directly
connected to. A special node called registrat keeps track of
the list of active peers. Nodes periodically drop one neighbor
1The vectors v1, . . . , vn span an n-dimensional space if they form a

basis of this space. Their span, is the set of vectors that are all linear com-
binations of them.

(a)
S

A

B

C

D

(b)

S

A

B

C

D

Figure 1: The source S distributes packets to the peersA, B,
C andD over the overlay network (a), that uses the underly-
ing physical network (b).

and reconnect to a new one, asking the registrat to randomly
select the new neighbor from the active peers list.
The randomized rewiring Avalanche employs results in a
fixed average number of reconnections per node indepen-
dently of how good or bad is the formed network topol-
ogy. Thus to achieve a good, on the average, performance
in terms of breaking clusters, it entails a much larger number
of rewiring and requests to the registrat than required, and
unnecessary topology changes.
Clearly the registrat, since it allocates to each peer its
neighbors, could keep some structural information, i.e., keep
track of the current network topology, and use it to make
more educated choices of neighbor allocations. However, the
information the registrat can collect only reflects the overlay
network topology, and is oblivious to bandwidth constraints
from the underlying physical links. Acquiring bandwidth in-
formation for the underlying physical links at the registrat
requires costly estimation techniques over large and hetero-
geneous networks, and steers towards a centralized network
operation. We argue that such bottlenecks can be inferred
passively, thus avoiding these drawbacks.

2.3 Our Approach
Our work starts from the observation that the coding vec-
tors the peers receive from their neighbors can be used to
passively infer bottleneck information. This allows individ-
ual nodes to initiate topology changes to correct problem-
atic connections. In particular, peers by keeping track of the
coding vectors they receive can detect problems in both the
overlay topology and the underlying physical links. The fol-
lowing example illustrates these points.
Consider the toy network depicted in Fig. 1(a) where the
edges correspond to logical (overlay network) links. The
source S has n packets to distribute to four peers. Nodes
A, B and C are directly connected to the source S, and also
among themselves with logical links, while node D is con-
nected to nodes A, B and C. In this overlay network, each
node has constant degree three (three neighbors), and there
exist three edge-disjoint paths between any pair of nodes (in
particular, between the source and any other node).

2

Assume now (as shown in Fig. 1(b)) that the logical links
SA, SB, SC share the bandwidth of the same underlying
physical link, which forms a bottleneck between the source
and the remaining nodes of the network. As a result, as-
sume the bandwidth on each of these links is only 1/3 of
the bandwidth of the remaining links. The registrat, even if
it keeps track of the complete logical network structure, is
oblivious to the existence of the bottleneck and the asymme-
try between the link bandwidths.
NodeD however, can infer this information by observing
the coding vectors it receives from its neighbors A, B and
C. Indeed, when node A receives a coded packet from the
source, it will forward a linear combination of the packets it
has already collected to nodes B and C and D. Now each
of the nodes B and C, once they receive the packet from
node A, they also attempt to send a coded packet to nodeD.
But these packets will not bring new information to nodeD,
because they will belong in the linear span of coding vectors
that node D has already received. Similarly, when nodes B
and C receive a new packet from the source, node D will
end up being offered three coded packets, one from each of
its neighbors, and only one of the three will bring to nodeD
new information.
More formally, the coding vectors nodes A, B and C
will collect will effectively span the same subspace; thus the
coded packets they will offer to node D to download will
belong in significantly overlapping subspaces and will thus
be redundant (we formalize these intuitive arguments in Sec-
tion 3). Node D can infer from this passively collected in-
formation that there is a bottleneck between nodes A, B, C
and the source, and can thus initiate a connection change.

2.4 Related Work
Overlay topology monitoring and management that do not
employ network coding has been an intensively studied re-
search topic, see for example [5]. Our proposed approach
applies specifically to systems employing network coding.
We have initiated work on taking advantage of the network
coding capabilities for active network monitoring in [6, 7]
where the focus was on link loss rate inference. Passive in-
ference of link loss rates has also been proposed in [8]. How-
ever, the idea of passive inference of topological properties
is a novel contribution of this paper.

3 Theoretical Framework
We start by formally introducing some notation. We as-
sume that the source has n packets, each with independent
information, to distribute to a set of nodes. We can think
of each packet as corresponding to one dimension of an n-
dimensional space, over a finite field Fq. We thus asso-
ciate with each packet one of the orthonormal basis vectors
{e1, . . . , en}, where ei is the n-dimensional vector with one

at position i and zero elsewhere. Each packet has an associ-
ated n-dimensional coding vector attached to it.
We say that node j at time t observes a subspace Πj ,
where Πj is the vector space spanned by the coding vectors
node j has received up to time t. Initially at time t = 0, Πj

is empty. If node j receives k linearly independent coding
vectors, then

dim(Πj) = k.

A coded packet brings innovative information if the associ-
ated coding vector does not belong in Πj (it increases the
dim(Πj) by one). When dim(Πj) = n, node j has collected
a basis of the n-dimensional space and can decode the source
information. To compare subspaces, we will denote
1. the dimension of each subspace as

di = dim(Πi), ∀i,

2. the dimension of the intersection of two subspaces as

dij = dim(Πi ∩ Πj), ∀i, j,

3. the distance between two subspaces as

Dij = dim(Πi ∪ Πj) − dim(Πi ∩ Πj), ∀i, j.

As also observed in [9], the distance Dij defines a metric
space and can be used to compare how “different” the sub-
spaces are. In some occasions we will also need a measure
that compares how the subspaces of one cluster of nodes A
differ from the subspaces of another cluster of nodes B. For
this we will use the average pair-wise distance

DAB =
1

|A||B|

∑

i∈A,j∈B

Dij . (1)

For simplicity we will assume that the network is syn-
chronous. By this we mean that a global clock ticks. Nodes
are allowed to transmit linear combinations of their received
packets only at clock ticks, at a rate equal to the adjacent link
bandwidth. We normalize the transmitted rates so that the
maximum rate a node can transmit is 1 packet per timeslot in
each of its outgoing edges. A node transmitting information
at a rate 1

k
on an outgoing link, sends one coded packet every

k clock ticks.
We will explore in this paper the topological information
revealed by the coding vectors at each node. We distinguish
two cases, depending on what information we are allowed to
use.
• Local Information: at a given time t, each node j knows
its own subspace, and the subspaces it has received from its
parent nodes. This is the case we will examine in this paper.
• Global Information: at a given time t, we know the sub-
spaces that all nodes in the network have observed. This is
the maximum information we can hope to get from the cod-
ing vectors propagated through the network, and is studied
in a companion paper [10]. Here we would like to briefly
mention that, for a directed network where information only

3

flows from parent to child nodes, and under some mild con-
ditions, knowledge of the subspaces of all nodes in the net-
work, allows to uniquely determine how the network nodes
are connected. This is a surprising result, indicating that the
topological information carried from the subspaces is in fact
quite significant.
In the following, we will also use the notion of min-cut
values. Let A and B denote two disjoint sets of vertices of
the graph. A cut value is defined as the sum of the capacities
of a set of edges we need to remove to disconnect setsA and
B. The min-cut is the minimum cut value. The celebrated
min-cut max-flow theorem states that if the min-cut value
between two nodes equals c, then the maximum information
rate we can convey from one to another also equals c.

3.1 Local Information
Let Πi = Π̂1 ∪ . . . ∪ Π̂c denote the subspace spanned by
the coding vectors a node i has collected at a fixed time in-
stance, where Π̂1, . . . , Π̂c denote the subspaces that it has
received from its c neighbors u1, . . . , uc. We are interested
in understanding what information we can infer from these
received subspaces Π̂1, . . . , Π̂c. For example, the overlap
of subspaces from the neighbors reveals something about a
bottleneck. Therefore, we need to show that such overlaps
occur due to topological properties and not due to particu-
lar random linear combinations chosen by the network code.
The following lemmas present some properties that the sub-
spaces observed by the network nodes and the rates at which
their size increases, need obey.

Lemma 1 LetΠk be a k-dimensional subspace of the vector
space Fn

q , i.e., dk = k. Construct the subspace Πm by se-
lecting m ≤ n vectors {w1, . . . , wm} uniformly at random
from Fn

q . Under the assumption that q >> 1 it holds2 that

Pr[dm = m] ≈ 1, and

Pr[dkm = d] ≈

{
1 if d = (m − (n − k))+,
0 otherwise.

Proof. LetΠ⊥
k be the subspace with the propertyΠk∪Π⊥

k =
Fn

q , and U = {u1, . . . , uk} and V = {v1, . . . , vn−k} be sets
of basis vectors for Πk and Π⊥

k respectively. We can then
expand the vectors {w1, . . . , wm} as

wi =
k∑

j=1

α(i)
j uj +

n∑

j=k+1

α(i)
j vj−k, i = 1, . . . , m.

LetA be the n×mmatrix with columns the vectorsα(j), and
denote by Ũk×m, Ṽ(n−k)×m the submatrices of A collecting

2The≈ notation means that this is true with probability 1 as q → ∞.

the coefficients with the respect to U and V :

A =




| |
α(1) · · · α(m)

| |



 =





Ũk×m

Ṽ(n−k)×m




.

For q >> 1, the matrix A is full rank with probability ap-
proaching one, and thus Pr[dm = m] ≈ 1 (see also [4]). To
calculate dkm = dim(Πk ∩Πm), note that the vectors a that
belong in Πk ∩ Πm satisfy the equation





Ũk×m

Ṽ(n−k)×m




·





a1
...

am



 =





b1
...

bk

0(n−k)×1




,

and thus belong in the kernel (null space) of the matrix
Ṽ(n−k)×m. For q >> 1 this matrix is full rank with high
probability. As a result,

dim(Kernel(Ṽ(n−k)×m)) = m − Rank(Ṽ(n−k)×m)

≈ m − min(m, n − k)

= (m − (n − k))+ . !

Lemma 2 Let Πi and Πj be two subspaces of Fn
q with di-

mension di and dj respectively, and intersection Πij =

Πi ∩ Πj of size dij . Construct Π̂i and Π̂j by choosing
mi ≤ di and mj ≤ dj vectors uniformly at random from
Πi and Πj respectively. Then the size of their intersection
d̂ij = dim(Π̂i ∩ Π̂j) satisfies

Pr[d̂ij = d] ≈

{
1 d = (mi + mj − (di + dj − dij))+,
0 otherwise,

Proof. The proof follows by applying the previous lemma
twice, once on Π̂i and once on Π̂j . We denoteΠ = Π̂i∩Πij .
1. From Lemma 1, Π̂i has dimension mi w.h.p., and its in-
tersection with Πij has dimension d = (mi − (di − dij))+.
2. From Lemma 1, Π̂j has dimensionmj w.h.p., and its in-
tersection with the subspace Π has dimension

d̂ij = (mj − (dj −d))+ = (mi +mj − (di +dj −dij))
+. !

Lemma 3 can be proved following a very similar approach
to the main theorem in network coding [1].

Lemma 3 In a synchronous network where the min-cut to
a node i is c, after a transition phase of the network, node i
receives c innovative packets per time slot from its neighbors.
Assume for example that the subspaces a node i receives
from its set of neighbors {ui} have an intersection of dimen-
sion d. This implies that, (i) from Lemma 3, the min-cut be-
tween the nodes {ui} and the source is smaller than the min-
cut between the node i and {ui}, and (ii), from Lemma 2, the

4

subspaces Π1, . . . , Πc of the neighbors have an intersection
of size at least d. Next we will discuss algorithms that use
such observations for decentralized topology management.

Algorithms
Our peer-initiated algorithms for topologymanagement con-
sist of three tasks:
1. Each peer decides whether it is satisfied with its connec-
tion or not, using a decision criterion.
2. A not-satisfied peer sends a rewiring request, that can con-
tain different levels of information, either directly to the reg-
istrat, or to its neighbors (these are the only nodes the peer
can communicate with).
3. Finally, the registrat, having received rewiring requests,
allocates neighbors to nodes to be reconnected.
The decision criterion can capitalize on the fact that over-
lapping received subspaces indicate an opportunity for im-
provement. For example, a node can decide it is not satis-
fied with a particular neighbor, if it receives k > 0, non-
innovative coding vectors from it, where k is a parameter to
be decided. The first algorithm we propose (Algorithm 1)
uses this decision criterion; it then has each not-satisfied
node directly contact the registrat and specify the neighbor it
would like to change. The registrat randomly selects a new
neighbor. This algorithm, as we demonstrate through sim-
ulation results, may lead to more rewirings than necessary:
indeed, all nodes inside a cluster may attempt to change their
neighbors, while it would have been sufficient for a fraction
of them to do so.
Our second algorithm (Algorithm 2) uses a different de-
cision criterion: for every two neighbors i and j, each peer
computes the rate at which the received joint space Πi ∪ Πj

and intersection spaceΠi∩Πj increases. If the ratio between
these two rates becomes greater than a threshold T , the node
decides it would like to change one of the two neighbors.
However, instead of directly contacting the registrat, it uses
a decentralized voting method that attempts to further reduce
the number of re-connections. A node not-satisfied with a
particular neighbor sends a request to this neighbor indicat-
ing so. Every node collects all such requests it receives, and
only after it collects a certain number∆ of them, it sends a
request to the registrat requesting to be rewired. The registrat
then randomly selects and allocates one new neighbor.
Our last proposed algorithm (Algorithm 3), while still
peer-initiated and decentralized, relies more than the two
previous ones in the computational capabilities of the regis-
trat, and is specifically targeted to breaking topological clus-
ters. The basic observation is that, nodes in the same clus-
ter will not only receive overlapping subspaces from their
parents, but moreover, they will end up collecting subspaces
with very small distance (this follows from Lemmas 1-3 and
is also illustrated through simulation results in Section 4).
Each not-satisfied peer i sends a rewiring request to the reg-
istrat, indicating to the registrat the subspace Πi it has col-

lected. Note that for an n-dimensional space overF2m , spec-
ifying the exact subspace only requires to send nm bits.
The registrat waits for a short time period, to collect re-
quests from a number of dissatisfied nodes. These are the
nodes of the network that have detected they are inside clus-
ters. It then calculates the distance between the identified
subspaces to decide which peers belong in the same clus-
ter. While exact such calculations can be computationally
demanding, in practice, the registrat can use one of the many
hashing algorithms to efficiently do so. Finally the registrat
breaks the clusters by rewiring a small number of nodes in
each cluster. The allocated new neighbors are either nodes
that belong in different clusters, or, nodes that have not send
a rewiring request at all.

4 Simulation Results
For our simulation results we will start from the topology il-
lustrated in Fig. 2, that consists of 30 nodes connected into
three distinct clusters. The source is node 1, and belongs
in the first cluster. The bottleneck links are indicated with
arrows (and thus indicate the underlying physical link struc-
ture). Our first set of simulation results depicted in Fig. 3
and 4 show that the subspaces within each cluster are very
similar, while the subspaces across clusters are significantly
different, where we use the distance measure in (1). Note
that, the smaller the bottleneck, the larger the “similarity” of
subspaces within the same cluster, and also, the larger the
difference across clusters. These results indicate that knowl-
edge of these subspaces will allow the registrat to accurately
detect and break clusters (Algorithm 3).
Our second set of simulation results, summarized in Ta-
ble 1, compare the three proposed algorithms. We again
simulate a network with three clusters, each cluster hav-
ing 10 nodes, where all edges correspond to unit capacity
links. During the simulation we assume that the registrat
keep the nodes’ degree between 2 and 6, with average degree
of 4.6. The values presented are averaged over 10 experi-
ments, where in each experiment the source sends 50 packets
to the peers. An experiment terminates once all peers have
collected all packets. As performance metrics, we use the
total number of rewirings required (second column), and the
average collection time (third column), defined as the differ-
ence between the time a peer receives the first packet and
the time it can decode all packets, averaged over all peers.
From the simulations we see that algorithm 2 outperforms
algorithm 1, while algorithm 3 results in the least number of
reconnections.
Note that the random rewiring, currently employed by
Avalanche, incurs a constant number of rewirings indepen-
dently from the underlying network topology, and does not
adapt to the existence of clusters as our proposed algorithms
do. For example, if each node changes neighbors with prob-
ability 0.1 after the reception of each packet, it would incur
on the average around 150 rewiring for our network.

5

1

23
4

5

6

7
8

9
10

11
12

13

14

15

16

17

18 19

20

2122

23 24

25

26
27

28

29

30

Topolog of a network with 3 clusters.

Figure 2: Topology with three clusters: cluster 1 contains
nodes 1-10, cluster 2 nodes 11-20 and cluster 3 nodes 21-30.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Time (Round)

Av
er

ag
e

Di
st

an
ce

Average distance between clusters, links that connect clusters have capacity 0.1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(1,2)

(1,3)

(1,1)
(2,3)

(2,2) (3,3)

Figure 3: Simulation results for the topology in Fig. 2, with
bottleneck link capacity values equal to 0.1.

0 5 10 15 20 25 30 35 40
0

5

10

15

Time (Round)

Av
er

ag
e

Di
st

an
ce

Average distance between clusters, links that connect clusters have capacity 05

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(2,3)

(2,2)

(1,3)

(1,2)

(1,1)

(3,3)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Time (Round)

Av
er

ag
e

Di
st

an
ce

Average distance between clusters, links that connect clusters have capacity 1

Dst(1,1)
Dst(1,2)
Dst(1,3)
Dst(2,2)
Dst(2,3)
Dst(3,3)

(2,3)

(2,2)

(1,2)

(3,3)

(1,1)

(1,3)

Figure 4: Additional results for the topology in Fig. 2, with bottleneck link capacity values equal to 0.5 (left) and 1 (right).

Table 1: Performance Comparison

Algorithm rewirings avg time
1 (k = 1) 60.7 15.91
1 (k = 20) 30.1 21.72

2 (T = 1,∆ = 2) 18.5 15.18
3 4.5 15.96

5 Conclusions
In this paper we observed that, in a P2P network utilizing
network coding the linear combinations a peer receives
from its neighbors unravel structural information about the
network topology. We propose methods to capitalize on this
fact for passive inference of network characteristics, and
peer-initiated overlay topology management. This is a first
paper introducing these ideas, and there are a number of
associated questions and research directions that still need
to be explored such as, combining with proposed techniques
for distributed management of systems that do not employ
network coding, and security concerns.

Acknowledgments: We thank A. Markopoulou, S. Mohajer
and P. Rodriguez for many useful discussions.

References
[1] R. Ahlswede, N. Cai, S-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow”, IEEE Trans. Inform. Theory, vol. 46, 2000.

[2] C. Gkantsidis and P. Rodriguez, “Network coding for large scale con-
tent distribution”, Infocom, March 2005.

[3] C. Gkantsidis, J. Miller, P. Rodriguez, “Comprehensive view of a live
network coding P2P system”, ACM SIGCOMM/USENIX IMC, 2006.

[4] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “A ran-
dom linear network coding approach to multicast”, IEEE Transactions
on Information Theory, pp. 4413-4430, Oct. 2006.

[5] “RON: Resilient Overlay Networks” http://nms.csail.mit.edu/ron
[6] C. Fragouli and A. Markopoulou, “A network coding approach to over-
lay network monitoring”, Allerton, Oct. 2005.

[7] C. Fragouli, A. Markopoulou, and S. Diggavi, “Active topology infer-
ence using network coding”, Allerton, Oct. 2006.

[8] T. Ho, B. Leong, Y. Chang, Y. Wen and R. Koetter, “Network mon-
itoring in multicast networks using network coding”, in International
Symposium on Information Theory (ISIT), June 2005.

[9] R. Koetter and F. Kschischang, “Coding for errors and erasures in ran-
dom network coding”, in International Symposium on Information The-
ory (ISIT), June 2007.

[10] M. Jafarisiavoshani, C. Fragouli and S. Diggavi, “Topology discovery
for network coded systems”, Information Theory Workshop, July 2007.

6

