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Combined sewer overflows and stormwater discharges represent an important source of

contamination to the environment. However, the harsh environment inside sewers and particular

hydraulic conditions during rain events reduce the reliability of traditional flow measurement

probes. In the following, we present and evaluate an in situ system for the monitoring of water

flow in sewers based on video images. This paper focuses on the measurement of the water level

based on image-processing techniques. The developed image-based water level algorithms

identify the wall/water interface from sewer images and measure its position with respect to real

world coordinates. A web-based user interface and a 3-tier system architecture enable the

remote configuration of the cameras and the image-processing algorithms. Images acquired and

processed by our system were found to reliably measure water levels and thereby to provide

crucial information leading to better understand particular hydraulic behaviors. In terms of

robustness and accuracy, the water level algorithm provided equal or better results compared

to traditional water level probes in three different in situ configurations.

Key words | combined sewer overflow, flow measurement, homography, image processing,

video monitoring, water level measurement

INTRODUCTION

The total pollutant mass carried by sewer systems is an

important factor affecting the quality of receiving waters

(Burton & Pitt 2002). This is especially the case during large

rainfall events where the total amount of wastewater/

stormwater exceed the capacity of wastewater treatment

plants, in which case combined sewer overflows (CSOs)

discharge the excess directly into the natural environment.

This untreated water is recognized as an important source

of pollution (e.g., Burton & Pitt 2002; Even et al. 2006;

Burkhardt et al. 2007; Chèvre et al. 2007; Rossi et al.

in press). There is little knowledge about the quantity of

these discharges although such information would be

beneficial, e.g. for environmental assessments. The environ-

mental impact of CSOs depends on the total pollutant mass

carried in them, which is estimated from the product of total

volumetric flow rate and pollutant concentration. While

measurements of the latter are available via sampling and

analysis, precise and reliable volumetric flow rate esti-

mations are difficult to obtain, particularly during rain

events. Accurate monitoring of the volumetric water flow is

thus of crucial environmental importance. In the following,

we present and evaluate an in situ system for monitoring

water flow in sewers.

Determination of the volumetric water discharge Q

requires knowledge of water velocity at each point in a

given cross-section:

Q ¼
ðð

S
vNð �SÞd �S ¼ SVm½m

3=s�: ð1Þ

where vN is the normal velocity and S is the cross-sectional

area. In Equation (1) it has been assumed that the integrals
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can be approximated by the product of S and the mean

normal velocity Vm. Next, Vm is further assumed to equal

the surface water velocity VS factored by m, a scalar

that depends on the nature of the channel (material,

shape, etc.), the water level and the measurement position

(Larrarte 2006):

Vm ¼ mVS½m=s�: ð2Þ

The section S is defined as S ¼ P(h) [m 2] where P is the

function describing the water channel geometric profile and

h [m ] is the water level. In practice, the channel profile P is

known from engineering drawings or in situ measurements.

The combination of Equation (1) and Equation (2) give the

channel flux as:

Q ¼ mPðhÞVS ð3Þ

The knowledge of the water level h is required to

measure Q. Various devices are available for measuring

water level in sewers. Pressure transducers are widely used

and are placed on the base of the sewer channel. The water

level is inferred from pressure measurements (Jensen 2004).

While their application in clean water has been demon-

strated, their use in sewers is still problematic as they

become quickly clogged by the solid material contained in

the flow and thereby require frequent maintenance. During

significant flows, such probes can be torn away. Ultrasonic

probes, placed outside of the flow, are another way to

measure the water level. They are unaffected by clogging

and their robust design makes them well-suited for harsh

environments. However, pressure transducers and ultra-

sonic probes both provide localized measurements which

are not able to characterize effects such as hydraulic jumps.

Moreover, these devices do not give any indication of

reliability of the measurements.

Video cameras enable robust monitoring of wastewater

flow discharge. As they are placed above the water, clogging

and instrument loss are avoided. They allow measurements

of a relatively large surface and maintenance needs are low.

Finally, they open the possibility for identification and

measurement of particular hydraulic behaviors by means of

image visualization, thus providing a better understanding

of the hydraulics of sewer systems and CSOs in particular.

Different approaches to image-based water level

measurement have been proposed. Takagi et al. (1998)

proposed a method for detecting water level using the

reflection or diffraction of a metal ruler in the water.

Iwahashi & Udomsiri (2007) proposed a system for water

level measurement in rivers based on the assumption that

the land region is significantly more structured than the

water region. This is not the case in sewer systems,

especially during rain events where the flow is very

energetic. Konaré et al. (2003) presented an image-proces-

sing algorithm based on edge detection; however, it has not

been tested in real conditions. In these papers, the

correction of distortion due to the perspective was not

taken into account; the camera must then be placed

orthogonally to the filmed scene. Due to the limited space

inside sewer structures, it is not possible to meet these

requirements in general.

We present here a new system for online monitoring

of sewers based on image processing techniques, and

show its application to measure water height in sewers.

This vision-based tool opens new horizons for the robust

real-time assessment of diverse hydraulic structures. In this

paper, we focus on the system architecture and the water

level measurement algorithm; the surface water velocity

algorithm will be presented in an upcoming article.

METHODOLOGY

System requirements

The requirements for a robust vision-based system for

monitoring sewers were defined as follows: visual analysis

of hydraulic behavior, on-line water level and water velocity

measurements, automatic alarm system for particular events

(overflows, flood risks, etc.), database for data management

(images, events, measurements, etc.), remote configuration

and efficient data visualization. Combined with the acces-

sibility issues and the difficult conditions within sewer

systems, these requirements formed the design specification

for the hardware and software selection of the vision-based

system. The monitoring system must also be able to take

measurements autonomously for long periods of time with

minimum maintenance.
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System architecture

The software architecture is a multi-tier configuration

where every monitoring site (called hereafter a monitor) is

accessed through a server (Figure 1). A web-based user

interface enables configuration of the cameras and the

parameters of the image-processing algorithms. Images and

videos acquired by the cameras are stored within the local

database (DB). A service implementing the algorithms

described below using National Instrument LabVIEW

periodically monitors the local database and processes the

newly captured data (images). This architecture offers the

possibility of deploying various online image processing

algorithms in parallel, each of them getting their configur-

ation data from the local database and feeding their

results into it.

The architecture was designed to cover two possible

communication scenarios. If reliable network connectivity

(wired or wireless) is available on the monitored site, the

monitoring computer is placed in a dry remote location.

When no internet connection is available, the computer is

contained inside a waterproof box inside the CSO; the

communication is assured by a UMTS modem. Since

communications between the monitor and the server may

be unreliable, all acquired media and computation results

are stored locally on the monitors. An asynchronous service

running on the server is responsible for sending configur-

ation information and retrieving results.

A web-based user interface is used to display the

computation results. Images and videos are retrieved from

the monitor on demand, in which case a copy is stored on

the central server for future analysis. The measurement data

are processed on the server in order to generate alarms

when meaningful events occur. The system accepts other

input like measurement devices such as ultrasonic probes,

temperature sensors or rain measurement devices. The

infrastructure is supported by the Apache web server with

PHP modules and a PostgreSQL database. The server-

monitor synchronization and image acquisition is per-

formed by custom Java software.

Camera cases are 100% waterproof and corrosion

resistant, and long life, low-power and water-resistant

infra-red LED illumination devices are used. In contrast

to visible light, infrared has the benefit of not attracting

insects. We use PoE (Power over Ethernet) IP cameras,

which enables both power and data to go through the same

Ethernet cable and have standard connectors. This latter

consideration makes the system independent of a specific

camera manufacturer.

The total cost of the prototype including software

licenses and hardware equipment is approximately

US$11K which is moderate in comparison to other flow

monitoring systems, making future industrial deployment of

the system realistic.

Water level measurement

As described in the introduction, the water level h is

necessary for the determination of the volumetric flow rate

Q. The image-based water level algorithm identifies the

wall/water interface from sewer images and measures its

position with respect to real world coordinates. The image

analysis consists in three steps: pre-processing, calibration

and line detection.

Step 1: pre-processing

The acquired images have a low Contrast-to-Noise Ratio

(CNR), typically around 3:

CNR ¼ jmwall 2mwaterj=sN : ð4Þ

where mwall and mwater are respectively the mean pixel

intensities of the wall and the water; sN is the standard

deviation of the noise. The reasons of this low quality are

(i) noise due to the low illumination, (ii) high rate of

video compression and (iii) the presence of tiny water

particles in the air.

Figure 1 | View of the system components. Lines represent the flow of information

from the monitor to the user’s web browser. Dashes represent

configuration of the system parameters, from the user to the video

acquisition service and algorithms.
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The goal of the pre-processing step is to enhance the

pertinent features of the image, the edges between the

water and the wall. The following steps were implemented

to perform this: the original image are first denoised using

a Gaussian filter, then a Sobel gradient transformation is

applied given a gradient vector {G(u,v), u(u,v)} at every

coordinates (u,v). A procedure gives favor to the vertical

gradient directions ur. It uses a tuning parameter g

(typically for our level of noise and our resolution, we

set g to 5):

Genhancedðu; vÞ ¼ j cos ðuðu; vÞ2 urÞj
gGðu; vÞ

with u ðu; vÞ ¼ tan 21 Gyðu; vÞ

Gxðu; vÞ

� � ð5Þ

Finally, the last step of the pre-processing stage uses a

thresholding operation to convert the enhanced directional

gradient image to a binary image (the threshold is usually

set to 10% of the maximum value).

Step 2: calibration

Calibration is necessary to make accurate image-based

measurements. The goal of this step is to transfer points

from the image coordinate system (u,v) in pixels [px] to a

world coordinate system (XW, YW, ZW) in meters [m].

Calibration can be separated into two parts. First, intrinsic

calibration deals with the internal parameters of the

camera. The camera model used for intrinsic calibration

here is the central projection model, also known as the

pinhole camera model (e.g., Tsai 1987; Heikkila & Silven

1997). Intrinsic parameters relate the 3D camera coordinate

system (XC, YC, ZC) [m] to the pixel image coordinate

system (u,v) [px]:

s

u

v

1

2
6664

3
7775¼

au asau u0 0

0 av v0 0

0 0 1 0

2
6664

3
7775

XC

YC

ZC

1

2
66666664

3
77777775
¼ IC 01£3

h i
XC

YC

ZC

1

2
66666664

3
77777775

withau ¼2kuf andav ¼kvf:

ð6Þ

The intrinsic matrix IC contains all the intrinsic

parameters: ku and kv are scaling factors in the horizontal

and vertical directions respectively [px/m]; as is the skew

coefficient, defining the angle between the horizontal and

vertical axes of a pixel in the camera’s CCD sensor; u0 and

v0 are the image coordinates [px] of the optical center

projection and f is the focal length [m]. Intrinsic

parameters are estimated using the Matlab camera cali-

bration toolbox (Bouguet 2008). In our tests, using in the

order of 20 input images led to calibration error of less

than one pixel.

Once the intrinsic parameters are identified, we must

perform the extrinsic calibration to relate the camera

position with respect to the filmed scene. The tri-dimen-

sional transformation between the camera coordinate

system (XC, YC, ZC) and the world coordinate system

(XW, YW, ZW) is achieved through a rotation R and a

translation T. The combination of R and T forms the

extrinsic matrix A:

XC

YC

ZC

1

2
6666664

3
7777775

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

2
6666664

3
7777775

XW

YW

ZW

1

2
6666664

3
7777775

¼
R3£3 T1£3

03£1 11£1

2
4

3
5

XW

YW

ZW

1

2
6666664

3
7777775
¼ A4£4

XW

YW

ZW

1

2
6666664

3
7777775
: ð7Þ

The relation between the image coordinates and the

world coordinates can be obtained combining Equation (6)

and Equation (7):

s

u

v

1

2
664

3
775 ¼ IC;3£3 01£3

h i
A4£4

XW

YW

ZW

1

2
6666664

3
7777775
: ð8Þ

Assuming that the filmed scene is a planar surface,

Equation (8) can be simplified. Indeed, the plane can be

parameterized as ZW ¼ 0; thus every point located on

this planar surface have the form (XW, YW, 0). The

resulting transformation is known as a homography

(Estrada et al. 2004):
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s

u

v

1

2
664

3
775¼ IC;3£3 01£3

h i
A4£4

XW

YW

0

1

2
6666664

3
7777775

¼

au asau u0

0 av v0

0 0 1

2
664

3
775

r11 r12 tx

r21 r22 ty

r31 r32 tz

2
6664

3
7775

XW

YW

1

2
664

3
775¼H

XW

YW

1

2
664

3
775;

ifZW ¼0:

ð9Þ

The H matrix describes the linear transformation

relating two projective planes, in our case the camera

plane and the filmed planar surface. The homography maps

any point of the sewer wall from image coordinates (u,v)

[px] to world coordinate (XW, YW) [m] and vice versa,

thereby allowing metric measurements on images.

Since we do not know R and T, we estimate the

homography matrix H by the optimization algorithm

described in (Soatto et al. 2005). The user needs to manually

specify the (XW, YW) coordinates of multiple pixels of the

original image. The algorithm needs a minimum of 4 such

correspondence points to estimate H. Since both the

selection of a pixel and the attribution of a (XW, YW)

coordinate are subject to small errors, increasing the

number of points yields more accurate results. In our test

images, choosing 20 correspondence points reduced the

error such that the u coordinates of the vertical edges of

each rulers differed by less than one pixel on average. An

example of the application of the homography matrix to an

image is displayed in Figure 2.

Note that the identification of the intrinsic and extrinsic

calibration parameters only needs to be performed once

when a camera is installed at a new site.

Step 3: line detection

The goal of the line detection algorithm is to extract the

wall/water interface from sewer images. Assuming the

sewer wall and the water to be planar surfaces, the interface

is a straight line. We use the Hough transform (Duda &

Hart 1972) to detect the wall/water interface. The method

involves transforming each pixel point of the image (u,v) to

a vector of parameters (l1, … , ln), known as the Hough

space. The Hough space is defined by the parameterization

defining the geometric pattern. Each pixel in the image adds

its contribution to the n-dimensional accumulator array.

The location of a peak value in the accumulator array

gives values of the parameters (l1, … , ln), enabling the

unequivocal representation of the geometric pattern.

Since in our case the feature to be extracted is a straight

line, two parameters (the slope and the intercept) are

necessary to represent it mathematically. We therefore use

the parametric representation (l1 ¼ a, l2 ¼ h) in the world

coordinate system (XW, YW).

The implementation of the complete water level

algorithm is illustrated below (Figure 3).

Figure 2 | Rectification of the perspective distortion using the homography transformation: (a) original image; (b) rectified image; the homography matrix was computed with values

from the rulers; lens distortion correction was applied.
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Figure 4 (continued ) Figure 4 (continued )

Figure 3 | Flowchart of the complete water level algorithm.
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In practice, the assumption of the wall/water interface

being a straight line is in many cases unverified due to the

hydraulic turbulences present in the sewer systems. The

algorithm described in this section is however robust

enough to withstand waves in the water channel. The

computation time for the whole water level algorithm is

approximately of 400 ms on an Intel Core 2 Duo at

2.13 GHz for original images of size 640 £ 480 and

Hough space of size 50 £ 50.

RESULTS AND DISCUSSION

We have conducted long-term conclusive in situ tests of the

vision-based system in various sewer configurations (CSOs,

stormwater sewerage and wastewater treatment plants).

In order to validate the image-based system, we have put

classical sensors (ultrasonic or pressure probes) into the

CSO and we have manually recorded the water level

visible on the wall-mounted rulers. This last measurement

serves as ground-truth reference. Offline water level

processing was conducted on images collected during rain

events in various sewer structures to validate our approach.

The first system was installed inside CSO in Lausanne,

Switzerland (Figure 4.1c). The operators had little under-

standing of its hydraulic behavior; in particular, they could

not determine if an overflow would occur during a rain

event. Sewer images provided information on the duration

and intensity of the overflows; the system therefore

contributed to better understand the behavior of this

structure. An ultrasonic probe (Teledyne ISCO 4210) was

also installed in the CSO to monitor the water level. The

classical water level probes tend to reproduce the same

behavior; however in several cases they provide singular

results. In Figure 4.1a, the ISCO probe outputs false

Figure 4 | Water level algorithm results during rain events in various sewer

configurations: (1) and (2) are two CSOs in the city of Lausanne,

Switzerland; (3) is stormwater sewerage near Zürich, Switzerland.

Comparison of the water level algorithm with: one ultrasonic probe in (1);

two ultrasonic probes placed at an approximate separation distance of

1.5 m in (2); one pressure probe in (3). (a) displays the water level

reference and measurements (image-based algorithm and ultrasonic or

pressure) with time. (b) plots the measured water levels with respect to

the water level reference. (c) shows one image used for the detection of

the water line in the CSO.
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measurements for high water levels at 15:00, 18:00 and

22:00. The reason is that the relatively small size of the CSO

requires the probe to be placed too close to the water; for

high water levels, it leaves its working range. We should

note that the probe was installed by the engineers of

Lausanne’s sewer department following their regular pro-

cedures, and taking in account the physical constraints of

the CSO. In contrast, the measurements provided by the

image-based water level algorithm proved to be very close

to the reference values. The root mean square error (RMSE)

between the ground-truth and the vision-based system is

2.96 cm.

The second system was also installed in a CSO in

Lausanne, Switzerland (Figure 4.2c) with two ultrasonic

probes (Teledyne ISCO 4210) set up at a distance of 1.5 m.

It was observed that the two probes provided different

results during rain events. In this experiment, the RMSE is

1.33 cm between the ground-truth and the vision-based

system. After carefully visual analysis of the images, the

cause of the discrepancies between the measurements was

identified as a hydraulic jump. In Figure 4.2a, ultrasonic

probe 1 gives a difference of 60 cm; however, the cause of

this discrepancy is unexplained, as far we know.

A third test took place in a stormwater sewer near

Zürich, Switzerland (Figure 4.3c). During rain events, flow

estimations based on water level measurements from an

ultrasonic probe provided results that were much greater

than what had been expected based on computer simu-

lations. The acquired images revealed that water flow

traveled upstream. Further investigation revealed that the

water level in the sewer increased because of back flow of

the receiving water (a small river) into the sewage system.

This phenomenon was discovered thanks to the recorded

images. The RMSE of the image-based system compare to

the reference is 4.61 cm.

In the last two cases, the images greatly improved the

understanding of particular hydraulic behaviors like

hydraulic jumps or upstream flow. The image-based system

provides an online accurate measurement device without

any contact and gives access to off-line investigations on the

behavior of the water flow.

The described system provides a good estimation of the

water level and more video showing the relevant events

(discharge). The videos provide information about both the

duration and the extent of water discharges. Coupling such

information with the rain level greatly helps to understand

the behavior of a given CSO.

CONCLUSIONS

We showed that video images provide valuable infor-

mation for monitoring harsh environments such as sewer

systems. Three-months in situ tests demonstrated the

robustness of the vision-based system. Images acquired

and processed by our system were found to reliably

measure water levels and thereby to provide crucial

information leading to a better understanding of particular

hydraulic behavior. In terms of robustness and accuracy,

the water level estimation provided equal or better results

compared to traditional water level probes in three

different in situ configurations. Moreover, in contrast to

ordinary probes, images enable human beings to verify the

outputs of the algorithms; this was proved to be very useful

in the case of erratic data.

The robust design of the hardware equipment success-

fully withstood the harsh environment within sewer

structures for long periods. The system architecture allows

a flexible and modular implementation for various com-

munication scenarios. The software structure was designed

in such a way that an arbitrary number of traditional probes

and diverse image-based algorithms can be plugged to the

system easily, making the system a complete on-line

monitoring tool for hydraulic structures.

Finally, we remark that, in terms of decision making,

images are very helpful in describing the issues concerning

stormwater management to non-specialists.
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