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Abstract

The asynchronous capacity region of memoryless multiple-access channels is the
union of certain polytopes. It is well-known that vertices of such polytopes may be ap-
proached via a technique called successive decoding. It is also known that an extension
of successive decoding applies to the dominant face of such polytopes. The extension
consists of forming groups of users in such a way that users within a group are decoded
jointly whereas groups are decoded successively. This paper goes one step further. It
is shown that successive decoding extends to every face of the above mentioned poly-
topes. The group composition as well as the decoding order for all rates on a face of
interest are obtained from a label assigned to that face. From the label one can extract
a number of structural properties, such as the dimension of the corresponding face and
whether or not two faces intersect. Expressions for the the number of faces of any given
dimension are also derived from the labels.

Index Terms− Multiple-access channel, polytope, polymatroid, face, group succes-
sive decoding.

1 Introduction

The asynchronous capacity region of an M -user memoryless multiple-access channel (MAC)
is the union of certain M -dimensional polytopes. It is well known that if a desired rate tuple
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lies on the vertex of the so-called dominant face of such a polytope, one can decode one
user at a time successively, using the codewords of already decoded users as side information
[8, Section 14.3.2]. For example, for a 2-user code of blocklength n and rates R1 and R2,
respectively, decoding user 1 and 2 successively requires finding the first codeword within a
codebook of size 2nR1 and subsequently finding the second codeword in a codebook of size
2nR2 . A decoder that makes a joint search does so in the bigger space of 2nR12nR2 pairs of
alternatives. It should be said however that the probability of error is in general bigger for
the successive decoder.

In [16] it is shown that successive decoding for dominant-face vertices extends to group
successive decoding for rate tuples that are in the boundary of the dominant face. More
specifically, each point on the boundary of the dominant face belongs to a face of some
dimension k ∈ {0, 1, . . . ,M − 2}. For a rate tuple on such a face of dimension k, successive
decoding requires forming M − k groups. For instance, for a vertex (a face of dimension 0)
we need M groups, which means that each “group” contains a single user, implying, as it
should, single user decoding of vertices. Alternatively, if the rate of interest is on a face of
dimension 1, the number of groups is M − 1, i.e., all except two users can be decoded one at
a time successively, and the group of two is decoded jointly. In [16] it is also shown that if
the rate tuple of interest is on the dominant face but not on its boundary, then one can split
a user and a channel input and make sure that the new rate tuple, which has an additional
component, lies on the boundary of the dominant face of the newly created channel. By
iterating this procedure one obtains rate splitting multiple-access [9, 10].

In this paper we focus on some structural and operational properties of the M -dimensional
polytopes that form the capacity region. We extend the labeling technique of [12, 16] so as
to have a label for every face. The label is unique if the polytope is non-degenerated. A
degenerated polytope (to be properly defined later) is one for which certain faces collapse.
To avoid complications due to the collapsing of faces we consider only non-degenerated cases.
From the label, we can deduce structural properties such as which faces intersect and the
dimensionality of a face. The label also specifies how to do successive decoding of groups,
which is an operational property. In particular, we will see that group decoding applies to
every face (not only the faces of the dominant face).

The paper is organized as follows. In Section 2 we define the relevant polytopes and charac-
terize and label their faces. The main result of Section 2 is Proposition 5. It specifies which
faces intersect and which do not. In Section 3 we make the link between the label and group
successive decoding. In Section 4 we give expressions for the number of faces of any given
dimension. Section 5 concludes the paper.

2



2 Labeling faces

Recall that an M -user discrete memoryless multiple-access channel is defined in terms of M
discrete input-alphabets1 Xi, i ∈ {1, · · · ,M}, an output alphabet Y , and a stochastic matrix
W : X1 × X2 × · · · × XM → Y with entries WY |X1,X2,··· ,XM

(y|x1, x2, · · · , xM) describing the
probability that the channel output is y when the inputs are x1, x2, · · · , xM . For any input
distribution in product form2 PX1 , · · · , PXM

, define R to be

R = {R ∈ RM
+ : R(S) ≤ I(XS ;Y |XSc), ∀S ⊆ [M ]},

where R(S)
4
=
∑

i∈S Ri, XS
4
=(Xi)i∈S , Sc4=[M ] \ S, [M ] = {1, 2, . . . ,M}, and I(XS ;Y |XSc) is

the mutual information between XS and Y given XSc . R+ denotes the nonnegative reals.
The capacity region depends on whether or not there is synchronism. A discrete-time channel
is synchronous if the transmitters are able to index channel input sequences in such a way
that all inputs with time index n enter the channel at the same time. If this is not the case,
meaning that there is an unknown shift between time indices, then the channel is said to be
asynchronous.

The capacity region for either the synchronous or asynchronous channel may be described
in terms of the region

CDMC =
⋃

PX1
PX2
···PXM

R[W ;PX1
PX2
· · ·PXM

],

where the union is over all product input distributions. The capacity region of the asyn-
chronous multiple-access channel with arbitrarily large shifts between time indices is CDMC

[3, 4], whereas if shifts are bounded or the multiple-access channel is synchronous then its
capacity region is the convex hull of CDMC [5, 6, 7].

Definition 1 A region R is called non-degenerated if the following two conditions hold

(a) I(XS ;Y ) > 0 for all non-empty sets S ⊆ [M ],

(b) I(XS ;Y |XA) < I(XS ;Y |XB) for all ∅ ⊂ S ⊂ [M ], A ⊂ B ⊂ [M ], and S ∩ B = ∅.

The above definition is natural. Essentially it says that each input carries information and
all inputs interfere with one another. Notice that for a non-degenerated channel it is also
true that for all A ⊂ [M ], ∅ ⊂ S ⊂ T ⊆ [M ], and A ∩ T = ∅,

I(XS ;Y |XA) < I(XT ;Y |XA). (1)

1All results presented in this paper carry over to the Gaussian multiple-access channel.
2Random variables and their sample values will be represented by capital and lowercase letters, respec-

tively.
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To see this, we first observe that the independence of the input random variables implies that
I(XS ;Y |XA) ≥ I(XS ;Y ) whenever S and A do not intersect. Thus, condition (a) implies
I(XS ;Y |XA) > 0 for every non-empty subset S of [M ] and every subset A of [M ] that
does not intersect with S. Now we can use the chain rule of mutual information to obtain
I(XT ;Y |XA) = I(XS ;Y |XA)+I(XT \S ;Y |XA∪S) > I(XS ;Y |XA), where the inequality holds
since the second term on its left must be positive.

An example of a channel that does not fulfill condition (a) above is the two-user binary adder
channel when the sum is modulo 2 and the inputs are assigned uniform probability. In this
case condition (a) is violated since I(Xi;Y ) = 0 for i = 1, 2. Then R is a triangle as opposed
to a pentagon. An example for which condition (b) is not fulfilled is when we have two
parallel channels. In this case condition (b) is violated since I(X1;Y |X2) = I(X1;Y ) = 1.
The same is true if we swap X1 and X2. In this case R is a rectangle.

Fig. 1 shows an example of a non-degenerated R (first subfigure) for M = 2 and all possible
degenerated variations. Fig. 2 shows examples of degenerated cases for M = 3. All examples
of Fig. 2 are for binary input channels and modulo 2 sums (when applicable). The first row
depicts regions for the channel Y = X1 + X2 + X3. If we denote by pi the probability
that Xi = 1, i = 1, 2, 3, then the first region (non degenerated) is obtained with pi ∈
[0, 1] \ {0, 1/2, 1}, i = 1, 2, 3, the second region in the same row may be obtained with
p1 = 0.5, p2, p3 ∈ [0, 1] \ {0, 1/2, 1}, the third with p1 = p2 = 0.5, p3 ∈ [0, 1] \ {0, 1/2, 1}, and
the fourth with p1 = p2 = p3 = 0.5. The first three subfigures of the second row correspond
to the channel Y = (Y1, Y2) = (X1 + X2, X2 + X3). The first region may be obtained with
pi ∈ [0, 1] \ {0, 1/2, 1}, i = 1, 2, 3, the second with p1 = p2 = 0.5, p3 ∈ [0, 1] \ {0, 1/2, 1}, and
the third with p1 = p2 = p3 = 0.5. The last region in the second row may be obtained from
the MAC Y = (Y1, Y2, Y3) = (X1, X2, X3) with pi ∈ [0, 1] \ {0, 1/2, 1}, i = 1, 2, 3. The first
three subfigures in the third row correspond to the channel Y = (Y1, Y2) = (X1 + X2, X3),
with the input distributions of the first one being p1, p2 ∈ [0, 1]\{0, 1/2, 1}, p3 ∈ (0, 1), of the
second being p1 ∈ [0, 1]\{0, 1/2, 1}, p2 = 0.5, p3 ∈ (0, 1), and of the third being p1 = p2 = 0.5,
p3 ∈ (0, 1). The last figure in the third row may be obtained with p1 ∈ {0, 1} and pi ∈ (0, 1),
i = 2, 3.

An object of the form {R ∈ RM
+ : R(S) = c}, for some constant c, is an hyperplane of RM

+

of dimension M − 1. The set {R ∈ RM
+ : R(S) ≤ c} is one of the two half-spaces bounded

by such an hyperplane. R is a finite intersection of such half-spaces. A linear inequality
Ra ≤ a0, where R is a row vector, a a column vector and a0 is a scalar, is valid for R if it is
satisfied for all points R ∈ R. Following [11, Def. 2.1], a face of R is defined as any set of
the form

F = R∩ {R ∈ RM
+ : Ra = a0},

where Ra ≤ a0 is a valid inequality for R. The dimension of a face is the dimension of its
affine hull, namely dim(F) :=dim(aff(F)). In words, a face of R is the intersection of R with
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R1

R2

Figure 1: Shapes of R for a 2-user channel. The first sub-figure is that of a non-degenerated
case. In all pictures, the abscissa represents R1 and the ordinate R2.

R1

R3

R2

Figure 2: Some versions of R for a 3-user channel. The first sub-figure is that of a non-
degenerated case.
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an (M − 1) dimensional hyperplane that keeps R on one side. Since the inequality R0 ≤ 0
(0 being all zero vector) is valid for R, we observe that R itself is a face. The empty set
is also a face. These two faces are commonly referred to as improper. In this paper we are
not concerned with improper faces. Hence by face we implicitly mean a proper face. Note
also that the number of faces of any dimension is maximal in non-degenerated cases. We
consider only such cases.

Faces of dimension 0, 1, M − 2, and M − 1 are called vertices, edges, ridges, and facets,
respectively. In non-degenerated cases, for a single user channel R has two vertices and one
edge and for a 2-user channel it has five vertices and five edges. In Fig. 3 we see that there
are 16 vertices, 24 edges and 10 facets for a non-degenerated region R of a 3-user channel.

For every i ∈ [M ], there is a back facet of the form

Bi = R∩ {R ∈ RM
+ : Ri = 0},

and for every S ⊆ [M ], S 6= ∅, there is a front facet

FS = R∩ {R ∈ RM
+ : R(S) = I(XS ;Y |XSc)}.

There are M back facets and 2M − 1 front facets, one for each non-empty subset of [M ].

It is convenient to extend the notation Bi and FS as follows

BA =
⋂
i∈A

Bi, with B∅ = R by convention ,

FS1,S2,...,Sm =
m⋂
j=1

FSj
, with F∅ = R by convention ,

FS1,S2,...,Sm|A = FS1,S2,...,Sm ∩ BA.

Note that FS|∅ = FS , F∅|A = BA, and F∅|∅ = R. Fig. 3 shows a non-degenerated R for a
3-user channel and some of the labels.

Next we show that two front facets intersect if and only if the index set of one is a subset
of the index set of the other (Lemma 2) and that a front and a back facet intersect if and
only if the index of the back facet is not an element of the set that defines the front facet
(Lemma 4).

Lemma 2 FS1 ∩ FS2 is not empty iff S1 ⊆ S2 or S2 ⊆ S1.

Proof: The “if” direction is clearly true if S1 = S2. Assume without loss of generality that
S1 ⊂ S2. We want to show the existence of an R ∈ R such that

R(S1) = I(XS1 ;Y |XSc
1
), and

R(S2) = I(XS2 ;Y |XSc
2
).
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R3

R1

F{3}

F{1,2,3},{2,3},{3}

R2

F{1,2,3},{1,3}

F{1}|{2}

Dominant Facet
F{1,2,3}

F{1,2}

F{2}

F{2,3},{2}|{1}

F{2,3}

F{1,3}

F{1}

Figure 3: Region R with labels for a 3-user MAC.

Without loss of generality, we re-index users so that S1 = [k] and S2 = [`], where ` > k.
Consider R = (R1, . . . , RM) defined as follows

Ri =

{
I(Xi;Y |Xi+1, . . . , XM), i = 1, . . . ,M − 1,

I(XM ;Y ) i = M.

Observe that R is a vertex of the dominant face. Hence R ∈ R. Furthermore, from the
chain rule for mutual information

R([i]) =
i∑

j=1

Rj =
i∑

j=1

I(Xj;Y |Xj+1, . . . , XM) = I(X[i];Y |X[i]c).

Thus, for i = k we get R([k]) = I(XS1 ;Y |XSc
1
) and for i = `, R([`]) = I(XS2 ;Y |XSc

2
). Hence

R ∈ FS1 ∩ FS2 .
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To prove the “only if” direction, let R ∈ FS1 ∩ FS2 . Then

I(XS1∪S2 ;Y |X(S1∪S2)c)
(a)

≥ R(S1 ∪ S2) = R(S1) +R(S2)−R(S1 ∩ S2)

(b)
= I(XS1 ;Y |XSc

1
) + I(XS2 ;Y |XSc

2
)−R(S1 ∩ S2)

(c)

≥ I(XS1 ;Y |XSc
1
) + I(XS2 ;Y |XSc

2
)− I(XS1∩S2 ;Y |X(S1∩S2)c)

(d)
= I(XS1\S2 ;Y |XSc

1
) + I(XS2 ;Y |XSc

2
)

(e)

≥ I(XS1\S2 ;Y |X(S1∪S2)c) + I(XS2 ;Y |XSc
2
)

= I(XS1∪S2 ;Y |X(S1∪S2)c)

where (a) and (c) follow from the fact that R ∈ R, (b) from the definition of FSi
, i = 1, 2, (d)

from the chain rule for mutual information, and (e) holds since the inputs are independent
and conditioning on independent inputs can not decrease mutual information. By comparing
the first and the last term of the above chain, we see that (a), (c), and (e) must be equalities.
Equality in (e) means

I(XS1\S2 ;Y |XSc
1
) = I(XS1\S2 ;Y |X(S1∪S2)c).

Since R is non-degenerated (by assumption), the above equality implies that either S1 \S2 =
0, i.e., S1 ⊆ S2 or S1 = S1 ∪ S2, i.e., S2 ⊆ S1. This completes the proof.

2

The following Lemma is from [16].

Lemma 3 Assume R ∈ FS . Then for every L ⊆ S

I(XL;Y |XSc) ≤ R(L) ≤ I(XL;Y |XLc). (2)

Proof: The second inequality is true for every R ∈ R. To prove the first inequality observe
that

R(L) = R(S)−R(S \ L)
(a)
= I(XS ;Y |XSc)−R(S \ L)
(b)

≥ I(XS ;Y |XSc)− I(XS\L;Y |X(S\L)c)

(c)
= I(XL;Y |XSc), (3)

where (a) is true since R ∈ FS , (b) since R ∈ R and (c) follows from the chain rule for
mutual information.

2
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Lemma 4 FS ∩ BA 6= ∅ iff A ∩ S = ∅.

Proof: If A = ∅ then the Lemma is clearly true. Assume A 6= ∅. To prove one direction, let
and R ∈ FS ∩ BA. Then 0 = R(A) = R(S ∩ A) ≥ I(XS∩A;Y |XSc), where the inequality
follows from Lemma 3. This implies that I(XS∩A;Y |XSc) = 0. Since R is non-degenerated,
it follows that A ∩ S = ∅. To prove the other direction, assume A ∩ S = ∅ and pick a rate
R̃ such that R̃ ∈ FS . Let R be obtained from R̃ by setting to 0 all coordinates with index
in A. Clearly R ∈ BA but also R ∈ FS since R(S) = R̃(S).

2

Proposition 5 The intersection FS1,S2,...,Sm|A is not empty, if and only if the following two
conditions are satisfied

(i) The set sequence S1,S2, . . . ,Sm is telescopic, i.e., there is a permutation π on the index
set [m] such that Sπ(1) ⊃ Sπ(2) ⊃ . . . ⊃ Sπ(m), and

(ii) A ∩ Sπ(1) = ∅.

Proof: Assume that, after re-indexing if necessary, S1 ⊃ S2 ⊃ . . . ⊃ Sm and A ∩ S1 = ∅.
The construction in the “if” part of the proof of Lemma 2 leads to an R̃ in FS1,S2,...,Sm . Let
R be obtained from R̃ by setting to 0 all coordinates with index in A. This does not affect
coordinates with index in Si. Hence R ∈ FSi

, i = 1, . . . ,m and R ∈ BA.

To prove the converse, we observe that if Si is not contained in Sj or vice versa, then by
Lemma 2, FSi

∩FSj
= ∅. Similarly, if S1∩A 6= ∅, then according to Lemma 4, FS1 ∩BA = ∅.

This concludes the proof. 2

A fundamental result of polytopes asserts that any proper face is the intersection of those
facets that contain it (see e.g. [21, Theorem 3.7, p. 35].) Hence Proposition 5 uniquely labels
all proper faces of R. (For our purpose, it would have been more straightforward to define
a proper face as a nonempty intersection of facets. For obvious reasons we have decided to
use the established definition.)

There is one facet of R that stands out from the others. It is the dominant facet (commonly
called dominant face) F[M ]. It is special since points in the dominant facet have maximal
sum-rate. Observe that, from Lemma 4, the dominant facet is the only facet that does not
intersect with any back facet. The structure of the dominant facet was presented in [12]. In
the one-user case, the dominant facet is a vertex, in the two-user case it is an edge that has
two vertices, in the three-user case a hexagon (Fig. 3). In Fig. 2, we see that there are 24
vertices, 36 edges and 14 two-dimensional faces in the dominant facet of a 4-user channel.
The dominant facet is a geometrical object called permutahedron [11].

Notice that the notation for a vertex in Fig. 2, has been simplified. Instead of writing the
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1243 

1423

2143 

2413 
4213 4123 

2431 
4231 

2341 

3241 

3421 

4321 

3412 
3142 

1342 

1432 4132 

4312 

1234 

1324 

2134 

2314 

3214 3124 

R3

R2
R1

Figure 4: Dominant facet of a 4-user MAC. The 4th dimension, not shown here, has coor-
dinate R4 = I(X{1,2,3,4};Y ) − R1 − R2 − R3. Labels describe the decoding order used to
approach the corresponding vertex via successive decoding.

telescopic sequence F{1,2,3,4},{1,2,3},{1,3},{3}, we have written the sequence of “decrements,” i.e.,
4, 2, 1, 3 (commas are not shown in Fig. 2). Besides being more compact, the sequence of
decrements gives the order in which users are decoded. It is also a convenient notation to
count vertices. Since each permutation on the set [M ] is a vertex in the dominant facet, it
is clear that there are M ! such vertices.

The reader familiar with polymatroids will recognize that Lemma 2 is a consequence of the
fact that the function f : S → I(XS;Y |XSc) is submodular and nondecreasing, implying
that ([M ], f) is a polymatroid. In fact R and D are the associated independence and base
polyhedra, respectively (see e.g. [20]). The structural properties of the dominant face derived
in this section are implied by the fact that f is submodular and non-decreasing. In fact those
properties could have been inferred from Theorems 3.22, 3.30 and 3.34 of [20]. However, for
the structural properties of general faces we do need Lemma 3 in addition to the fact that f
is submodular and non-decreasing. Specifically, Lemma 3 implies that all rates are strictly
positive for all front faces. Without this Lemma some of the front faces could collapse into
some of the back faces.
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3 Structure, dimensionality, and group successive de-

coding

In this section we show that the faces of R consist of the Cartesian product of regions and of
dominant facets of channels that are obtained from the original channel W . To distinguish
those channels, we use subscripts that indicate the channel inputs and outputs. The original
channel W will be denoted by WY |X[M ]

. Recall that the region R is completely specified by
the channel WY |X[M ]

and by the input distribution PX[M ]
.

For any two sets U ,V ⊂ [M ] such that U ∩ V = ∅, there is a channel with inputs XU and
outputs (Y,XV). Specifically,

WY XV |XU (y, xV |xU) = PXV (xV)WY |XU ,XV (y|xU , xV))

= PXV (xV)
∑

x[M ]\U\V

WY X[M ]\U\V |XU ,XV (y, x[M ]\U\V |xU , xV)

= PXV (xV)
∑

x[M ]\U\V

PX[M ]\U\V (x[M ]\U\V)WY |X[M ]
(y|x[M ]),

where by convention PX∅(x∅) = 1.

A rate tuple for WY XV |XU is an expression of the form RU
4
=(Ri)i∈U . The corresponding region

RY XV |XU is defined by

RY XV |XU
∆
= R[WY XV |XU ;PXU ] = {R ∈ R|U|+ : R(L) ≤ I(XL;Y |XV∪(U\L)), ∀L ⊆ U}. (4)

The dimensionality of RY XV |XU is |U|. Its dominant facet is the (|U| − 1)-dimensional sub-
region obtained by adding the equality R(U) = I(XU ;Y |XV) i.e.,

DY XV |XU
∆
= D[WY XV |XU ;PXU ]

= {R ∈ R|U|+ : R(L) ≤ I(XL;Y |XV∪(U\L)),∀L ⊂ U , R(U) = I(XU ;Y |XV)}.

The following special cases will be used frequently

RY XSc |XS
∆
= R[WY XSc |XS ;PXS ] = {R ∈ R|S|+ : R(L) ≤ I(XL;Y |XLc), ∀L ⊆ S},

DY XSc |XS
∆
= D[WY XSc |XS ;PXS ]

= {R ∈ R|S|+ : R(L) ≤ I(XL;Y |XLc),∀L ⊂ S, R(S) = I(XS ;Y |XSc)},

RY |XS
∆
= R[WY |XS ;PXS ] = {R ∈ R|S|+ : R(L) ≤ I(XL;Y |XS\L), ∀L ⊆ S},

DY |XS
∆
= D[WY |XS ;PXS ]

= {R ∈ R|S|+ : R(L) ≤ I(XL;Y |XS\L),∀L ⊂ S, R(S) = I(XS ;Y )}.
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The next lemma says that FS is the Cartesian product of a region R and a dominant facet
D. One expects this to be the case by looking at the facets F{1}, F{2}, and F{3} of Fig. 3.
For instance F{1} is the Cartesian product of a singleton and a pentagon. The singleton,
the value of R1, is the dominant facet D of a single-user channel. The pentagon, the region
that contains R{2,3}, is the region R of a two-user multiple-access channel. A perhaps less
evident example is F{1,2}. This is the Cartesian product of the dominant facet D of a two
user multiple-access channel and the region R of a single user channel.

Lemma 6 R ∈ FS iff RSc ∈ RY |XSc and RS ∈ DY XSc |XS .

Proof : Let R ∈ FS . From the definition of FS , ∀L ⊂ S ⊆ [M ], R(L) ≤ I(XL;Y |XLc)
and R(S) = I(XS ;Y |XSc). Therefore RS ∈ DY XSc |XS . Moreover, ∀T ⊂ Sc we may write
[M ] = S ∪ T ∪ Q as the union of disjoint sets. Then

R(T ) +R(S) ≤ I(XT ∪S ;Y |XQ)

= I(XT ;Y |XQ) + I(XS ;Y |XQ∪T )

= I(XT ;Y |XQ) + I(XS ;Y |XSc)

= I(XT ;Y |XSc\T ) +R(S).

Hence R(T ) ≤ I(XT ;Y |XSc\T ) and from (4) it follows that RSc ∈ RY |XSc .

To prove the converse, let RS ∈ DY XSc |XS and RSc ∈ RY |XSc . We have to prove that
R(S) = I(XS ;Y |XSc) and that for all L ⊆ [M ], R(L) ≤ I(XL;Y |XLc). The former is
true since RS ∈ DY XSc |XS . To prove the latter, let T = L ∩ S and Q = L ∩ Sc. Since
RS ∈ DY XSc |XS , R(T ) ≤ I(XT ;Y |XSc∪(S\T )) = I(XT ;Y |XT c) for all T ⊆ S. Furthermore,
since RSc ∈ RY |XSc , R(Q) ≤ I(XQ;Y |XSc\Q) for all Q ⊆ Sc. Hence

R(L) = R(T ∪ Q) = R(T ) +R(Q)

≤ I(XT ;Y |XT c) + I(XQ;Y |XSc\Q)

≤ I(XT ;Y |XT c) + I(XQ;Y |X(Sc\Q)∪(S\T ))

= I(XT ∪Q;Y |X(T ∪Q)c)

= I(XL;Y |XLc)

for all L ⊆ [M ] and this completes the proof.

2

From Lemma 6 we obtain the dimension of FS

dim(FS) = dim(RY |XSc ) + dim(DY XSc |XS )

= |Sc|+ |S| − 1 = M − 1,

which is to be expected for a facet.
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Finally, Lemma 6 tells us that a rate point in FS may be approached via group successive
decoding where groups are decoded in the ord(Sc,S). (For a rigorous proof of this fact we
need to use codes that have independent and identically distributed components. This may
be done using random coding arguments as in [16].)

Then next result is a generalization of Lemma 6. It says that when FS1,S2,...,Sm is not empty
it is the Cartesian product of a region and m dominant facets.

Theorem 7 Let S1 ⊃ S2 . . . ⊃ Sm form a telescopic sequence. R ∈ FS1,S2,...,Sm iff RSc
1
∈

RY |XSc
1

and RSi\Si+1
∈ DY XSc

i
|XSi\Si+1

for i = 1, . . . ,m, where by way of convention we have

defined Sm+1 = ∅.

Proof : Let R ∈ FS1,...,Sm and recall that FS1,S2,...,Sm =
⋂m
i=1FSi

. From Lemma 6 we have

RSi
∈ DY XSc

i
|XSi

and RSc
i
∈ RY |XSc

i
, i = 1, . . . ,m. (5)

This proves RSc
1
∈ RY |XSc

1
. To complete the proof of the direct part it is sufficient to show

that (5) implies

RSi\Si+1
∈ DY XSc

i
|XSi\Si+1

, ∀i = 1, . . . ,m− 1.

This is the case if R(K) ≤ I(XK;Y |XSc
i ∪(Si\Si+1\K)) = I(XK;Y |X(Si+1∪K)c) holds for all

K ⊆ Si \ Si+1, i = 1, . . . ,m, with equality if K = Si \ Si+1. From (5), for any K ⊆ Si,
R(K) ≤ I(XK;Y |XKc) with equality if K = Si and for any L ⊆ Si+1, R(L) ≤ I(XL;Y |XLc)
with equality if L = Si+1. Then for K ⊆ Si \ Si+1 we have

R(K) = R(Si)−R(Si+1)−R(Si \ Si+1 \ K)

= I(XSi
;Y |XSc

i
)− I(XSi+1

;Y |XSc
i+1

)−R(Si \ Si+1 \ K)

(a)

≤ I(XSi
;Y |XSc

i
)− I(XSi+1

;Y |XSc
i+1

)− I(XSi\Si+1\K;Y |XSc
i
)

= I(XK;Y |X(Si+1∪K)c),

where (a) follows from the fact that ∀Q ⊂ Si, R(Q) ≥ I(XQ;Y |XSc
i
). The equality in (a)

holds if K = Si \ Si+1. This proves the direct part.

To prove the converse, let RSc
1
∈ RY |XSc

1
, and RSi\Si+1

∈ DY XSc
i
|XSi\Si+1

, for i = 1, . . . ,m.

We have to prove that R(L) ≤ I(XL;Y |XLc) holds for all L ⊆ [M ] with equality if L = Si,
i = 1, . . . ,m. R(Si) = I(XSi

;Y |XSc
i
) is true since RSi\Si+1

∈ DY XSc
i
|XSi\Si+1

and

R(Si) =
m∑
j=i

R(Sj \ Sj+1) =
m∑
j=1

I(XSj\Sj+1
;Y |XSc

j
) = I(XSi

;Y |XSc
i
), i = 1, . . . ,m.

13



Now let L ⊆ [M ] and define Li = L ∩ Si \ Si+1, i = 0, 1, . . . ,m with S0 = [M ] by con-
vention. Then L =

⋃m
i=0 Li is a disjoint partition. From RSc

1
∈ RY |XSc

1
and L0 ⊆ Sc1 it

follows R(L0) ≤ I(XL0 ;Y |XSc
1\L0). Furthermore, since RSi\Si+1

∈ DY XSc
i
|XSi\Si+1

, R(Li) ≤
I(XLi

;Y |XSc
i ∪(Si\Si+1\Li)) = I(XLi

;Y |XSc
i+1\Li

) for all Li ⊆ Si \ Si+1. Therefore,

I(XL;Y |XLc) =
m∑
i=0

I(XLi
;Y |XSi−1

j=0 Lj∪Lc)

(a)

≥
m∑
i=0

I(XLi
;Y |XSc

i+1\Li
)

≥
m∑
i=0

R(Li)

= R(L),

where (a) holds since

i−1⋃
j=0

Lj ∪ Lc = [M ] \
m⋃
j=i

Lj ⊇ Sci+1 \
m⋃
j=i

Lj = Sci+1 \ Li,

and (b) holds since for j ≥ i + 1, Lj ⊆ Si+1 implies that Lj does not intersect with Sci+1.
This completes the proof.

2

From the previous theorem, the dimension of FS1,S2,...,Sm is

dim(FS1,S2,...,Sm) = dim(RY |XSc
1
) +

m∑
i=1

dim(DY XSc
i
|XSi\Si+1

)

= M − |S1|+
m∑
i=1

(|Si| − |Si+1| − 1)

= M −m.

The theorem also implies that all points in FS1,S2,...,Sm may be approached via group succes-
sive decoding with groups of users decoded according to the following order: (Sc1,S1 \S2,S2 \
S3, ...,Sm−1 \ Sm,Sm).

Corollary 8 Let S1 ⊃ S2 ⊃ . . . ⊃ Sm be a telescopic sequence. R ∈ FS1,...,Sm|A iff RSc
1
∈

RY |XSc
1
, RSi\Si+1

∈ DY XSc
i
|XSi\Si+1

for i = 1, . . . ,m, and RA = 0.

Proof : Recall that FS1,...,Sm|A = FS1,...,Sm ∩ BA. Hence R ∈ FS1,...,Sm|A iff R ∈ FS1,...Sm and
RA = 0. The rest follows from Theorem 7.

14



2

From the above Corollary we conclude that

dim(FS1,S2,...,Sm|A) = dim(FS1,S2,...,Sm)− |A|
= M − |A| −m.

Furthermore, R ∈ FS1,...,Sm|A may be approached by decoding groups of users in the order
([M ] \ A \ S1,S1 \ S2,S2 \ S3, ...,Sm−1 \ Sm,Sm).

4 Number of faces of dimension D

Now we are ready to derive the number of D-dimensional faces in R for any D = 0, 1, . . . ,M .
We start by describing the number of D-dimensional faces of the dominant facet.

Proposition 9 The number of D-dimensional faces in the dominant facet of R is

Nd(M,D) =
M−D∑
j=1

(
M −D

j

)
(−1)M−D−jjM . (6)

Proof: Any D-dimensional face on the dominant facet is labeled by F[M ],S2,...,SM−D
. The

difference sets [M ]\S2,S2 \S3, . . . ,Si \Si+1, . . . ,SM−D \∅ form an (M−D) partition of [M ].
There is a one-to-one correspondence between a D-dimensional face and such a partition.
The number of such ordered partitions is

Nd(M,D) =
∑

m1,m2,...,mM−D
mi≥1,∀iP

i mi=M

(
M

m1,m2, . . . ,mM−D

)
=

∑
m1,m2,...,mM−D

mi≥1,∀iP
i mi=M

M !∏
imi!

. (7)

To go further, we expand the following polynomial(
x

1!
+
x2

2!
+ · · ·+ xM

M !

)M−D
=

M(M−D)∑
k=M−D

xk
∑

m1,...,mM−D
mi≥1,∀iP

i mi=k

1

m1!m2! . . .mM−D!
,

15



and note that the coefficient in front of xM multiplied by M ! gives (7). Therefore,

Nd(M,D) = M ! coeff

( M∑
i=1

xi

i!

)M−D

, xM


(a)
= M ! coeff

( ∞∑
i=1

xi

i!

)M−D

, xM


(b)
= M ! coeff

(
(ex − 1)M−D, xM

)
(c)
=

dM

dxM
(ex − 1)M−D

∣∣∣∣
x=0

,

where coeff(f(x), xi) is the coefficient of xi in the Taylor series expansion around zero of the
function f(x), (a) is true since taking all the terms up to M or up to infinity will not change
the coefficient in front of xM , (b) follows from the Taylor expansion of ex, and (c) follows
from the definition of the Taylor expansion.

To prove (6), we use the Binomial formula to expand (ex − 1)M−D, namely

(ex − 1)M−D =
M−D∑
j=0

(
M −D

j

)
ejx(−1)M−D−j.

Taking the M -th derivative,

dM

dxM
(ex − 1)M−D =

M−D∑
j=1

(
M −D

j

)
ejx(−1)M−D−jjM ,

and setting x = 0 we obtain (6).

2

Observe that by letting D = 0, using the fact that there are M ! vertices in the dominant
facet, from (6) we obtain an alternative expression for M ! that is

M ! =
M∑
j=1

(
M

j

)
(−1)M−jjM .

The number of faces in the dominant facet is directly connected to the Stirling number of the
second kind [15, 18], denoted by

{
M
n

}
. This is known as Karamata notation [14]. The Stirling

number of the second kind is the number of ways we can partition a set of M elements into
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n nonempty subsets. In calculating the number of D-dimensional faces, all permutations of
such partitions have to be counted. That is,

Nd(M,D) = (M −D)!

{
M

M −D

}
.

Like for facets, it is useful to distinguish between front and back faces. Hence we say that a
face FS1,S2,...,Sm|A, is called a front face if A = ∅ and a back face if A 6= ∅.

Proposition 10 The total number of front faces of dimension D, denoted by Nf (M,D),
equals

Nf (M,D) = Nd(M,D) +Nd(M,D − 1). (8)

Proof: Any D-dimensional front face has a label FS1,S2,...,SM−D|∅ for some S1 ⊆ [M ]. If
S1 = [M ] , the front face is in the dominant facet and there are Nd(M,D) such faces. If
S1 ⊂ [M ] the front face is not in the dominant facet. Since there is a one-to-one relationship
between the subscripts of FS1,S2,...,SM−D|∅ and those of F[M ],S1,S2,...,SM−D|∅ when S1 ⊂ [M ], if
follows that the total number of front faces not in the dominant facet is exactly Nd(M,D−1).
To obtain the total number of front D-faces we have to add this number and the number
Nd(M,D) of D-faces in the dominant facet.

2

We now have an expression for Nd(M,D) (Proposition 9) and an expression for Nf (M,D)
(Proposition 10). Next we derive an expression for the number of back faces Nb(M,D).

Proposition 11 The total number of D-dimensional back faces in R is given by

Nb(M,D) =
M−1∑
i=D

(
M

i

)
Nf (i,D). (9)

Proof: To derive (9), we observe that all back faces are front faces for some other channel
with fewer users. This can be seen from the label FS1,S2,...,Sm|A of a back face, where A 6= ∅.
The dimension of this face is M − m − |A|. Recall that A ∩ S1 = ∅. If we remove all
users with index in A, we obtain the front face FS1,S2,...,Sm|∅ of an (M − |A|)-user MAC. The
dimensionality of this face is also M − |A|−m. Running over all pertinent subsets A ⊂ [M ]
yields

Nb(M,D) =
∑
A⊂[M ]

0<|A|≤M−D

Nf (M − |A|, D).
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Since there are
(
M
|A|

)
subsets of cardinality |A|,

Nb(M,D) =
M−D∑
|A|=1

(
M

|A|

)
Nf (M − |A|, D) =

M−D∑
i=1

(
M

i

)
Nf (M − i,D)

=
M−D∑
i=1

(
M

M − i

)
Nf (M − i,D) =

M−1∑
i=D

(
M

i

)
Nf (i,D).

2

Now we are ready to derive an expression for the total number of D-dimensional faces in R.

Theorem 12 The total number of D-dimensional faces in R, 0 ≤ D ≤M , is

N(M,D) =
M∑
i=D

(
M

i

)[
(i+ 1−D)i −

i−D∑
j=1

(
i−D
j − 1

)
(−1)i−D−jji

]
. (10)

Proof: First we observe that

N(M,D) = Nf (M,D) +Nb(M,D) =
M∑
i=D

(
M

i

)
Nf (i,D).

Using (8) we obtain

N(M,D) =
M∑
i=D

(
M

i

)
[Nd(i,D) +Nd(i,D − 1)], (11)

where Nd(D,D) = 0, Nd(D,D − 1) = 1 and, by convention, Nd(i,−1) = 0 (the latter is
needed for the case D = 0). Furthermore, from (6) we obtain

Nd(i,D) +Nd(i,D − 1)

= (i−D + 1)i +
i−D∑
j=0

ji(−1)i−D−j+1

[(
i−D + 1

j

)
−
(
i−D
j

)]

= (i−D + 1)i −
i−D∑
j=0

(
i−D
j

)
ji+1(−1)i−D−j

i−D + 1− j

= (i−D + 1)i −
i−D∑
j=1

(
i−D
j − 1

)
(−1)i−D−jji. (12)

Inserting (12) into (11) yields (10) and completes the proof.
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2

Next we determine a closed form expression for the total number N(M, 0) of vertices and
the total number N(M, 1) of edges.

Lemma 13 The total number of vertices in R is beM !c.

Proof: From (11),

N(M, 0) =
M∑
i=0

(
M

i

)
Nd(i, 0)

(a)
=

M∑
i=0

(
M

i

)
i! =

M∑
i=0

M !

(M − i)!
=

M∑
i=0

M !

i!

= M !
∞∑
i=0

1

i!
−M !

∞∑
i=M+1

1

i!

(b)
= eM !−M !

∞∑
i=M+1

1

i!
,

where in (a) we have used the well known fact that the number of vertices Nd(i, 0) of the
dominant facet of an i-user region is i! and (b) follows from the Taylor series expansion of e.
Since eM !−M !

∑∞
i=M+1

1
i!

is an integer, and

∞∑
i=M+1

M !

i!
=

∞∑
i=1

M !

(M + i)!
=
∞∑
i=1

1∏i
j=1(M + j)

<

∞∑
i=1

i∏
j=1

1

M + 1
=
∞∑
i=1

(
1

M + 1

)i
=

1/(M + 1)

1− 1/(M + 1)
=

1

M
≤ 1,

it follows that

N(M, 0) =
M∑
i=0

M !

i!
=

⌊
N(M, 0) +

∞∑
i=M+1

M !

i!

⌋
= beM !c. (13)

2

Lemma 14 The total number of edges in R is
M

2
beM !c.
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Proof: From (11) we have

N(M, 1) =
M∑
i=1

(
M

i

)
(Nd(i, 1) +Nd(i, 0)).

Furthermore, since Nd(i, 0) = i!, from (7),

Nd(i, 1) =
∑

m1,m2,...,mi−1
mj≥1,∀jP

j mj=i

(
i

m1, . . . ,mi−1

)
= (i− 1)

(
i

2, 1, . . . , 1

)
=
i!(i− 1)

2
.

Therefore,

N(M, 1) =
M∑
i=1

(
M

i

)(
i! +

i− 1

2
i!

)
=

1

2

M∑
i=1

(
M

i

)
i! (i+ 1)

=
1

2

M∑
i=1

M !

(M − i)!
(i+ 1) =

1

2

M−1∑
j=0

M !

j!
(M − j + 1)

=
M + 1

2

M−1∑
j=0

M !

j!
− 1

2

M−2∑
k=0

M !

k!

(a)
=

1

2
[(M + 1)(beM !c − 1)− (beM !c −M − 1)] =

M

2
beM !c,

where in (a) we use (13) to obtain
∑M−1

j=0 M !/j! = beM !c − 1 and
∑M−2

j=0 M !/j! = beM !c −
M − 1.

2

5 Summary

The capacity region of an asynchronous memoryless multiple-access channel is the union
of certain polytopes. The points in those polytopes are exactly the rate tuples that can
be approached at an arbitrarily small error probability. In this paper we have developed
operational and structural properties that apply to those polytopes. The centerpiece of our
developments are the labels that we use to tag their faces. For non-degenerated cases (the
only kind considered in this paper), the set of labels is the set of expressions of the form
(S1,S2, . . . ,Sm|A), where A ⊆ [M ] and [M ] \ A ⊃ S1 ⊃ S2, . . . ,⊃ Sm. This extends the
labeling introduced in [12]. Each label of the above form tags one face and each face has a
unique such tag. We have shown that the label S1,S2, . . . ,Sm|A tags a face of dimension
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M −m− |A|. By counting the number of such expressions for a fixed k, we find the number
of faces of a given dimension.

We have also shown that a rate tuple on the face with label S1,S2, . . . ,Sm|A may be ap-
proached via successive decoding, as follows: the users with index in ([M ] \ A \ S1 are
decoded first, followed by the users with index in S1 \ S2, followed by those with in-
dex in S2 \ S3 etc. The users with index in Sm are decoded last. The users with in-
dex in A do not need to be decoded since they have vanishing rate. The decoding order
([M ]\A\S1,S1 \S2,S2 \S3, ...,Sm−1 \Sm,Sm) is an equivalent alternative way to label faces.

Table 1 summarizes the expressions for the number of faces of a given dimension, where
f

(i)
n (0) = d

dx
(ex − 1)n

∣∣
x=0

. The logarithm of the total number of D-dimensional faces as a
function of D, for M = 1, 2, . . . , 20 is shown in Fig. 5.

Table 1: Number of vertices, edges, facets and D-dimensional faces for an M -user MAC.

Objects In R In the dominant facet

Vertices beM !c M !

Edges M
2
beM !c M !(M − 1)/2

Facets M + 2M − 1 2M − 2

D-faces
∑M

i=D

(
M
i

) (
f

(i)
i−D(0) + f

(i)
i−D+1(0)

)
f

(M)
M−D(0)
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Figure 5: Total number of D-dimensional faces (expressed in logarithmic form) as a function
of D. Each curve corresponds to a value of M . The curve that corresponds to M = m,
m = 1, 2, . . . , 20, is the one that hits the abscissa at D = m.
.
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