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- Résumé -

Dans cette thèse, nous abordons deux problèmes qui semblent à première vue ne pas

avoir de liens entre eux. Ces deux problèmes sont le routage dans les réseaux sans fil ad hoc,

et la recherche basée sur des comparaisons dans des bases de données d’images. Pourtant,

le problème sous-jacent est essentiellement similaire et nous pouvons utiliser la même

stratégie pour attaquer ces deux problèmes. Dans les deux cas, la complexité intrinsèque

du problème est dans un certain sens basse. Nous pouvons exploiter cette propriété pour

concevoir des algorithmes performants.

Un réseau sans fil ad hoc est un réseau de communication composé d’appareils sans fil,

tels des ordinateurs portables ou des téléphones mobiles. Le réseau n’a pas d’infrastructures

fixes, et par conséquent les noeuds qui ne peuvent pas communiquer directement doivent

pouvoir utiliser d’autres noeuds comme relais pour transmettre leurs paquets. Un élément

important dans la conception et le déploiement de tels réseaux est bien sûr la méthode

de séléction de ces relais. Idéalement, nous aimerions obtenir une séquence de relais, ou

route, de la source à la destination qui soit aussi courte que possible. La longueur de

la route dépend typiquement de la quantité de trafique additionelle que nous sommes

prêts à générer. C’est ce compromis fondamental entre trafique et longueur des routes

auquel nous nous intéressons dans cette thèse. Nous exploitons le fait que le réseau de

communication est intrinsèquement de basse dimensions, ou en d’autres termes, de basse

complexité. Nous montrons que c’est bien le cas pour une grande class de modèles et que

nous pouvons concevoir des algorithmes performants qui exploitent cette propriété. La

basse dimensionalité implique que nous pouvons incorporer le réseau dans un espace de

basse dimension, ou construire une décomposition hiérarchique simple. Nous utilisons ces

deux techniques pour déveloper des algorithmes de routage.

La recherche basée sur des comparaisons dans des bases de données d’images est un

nouveau problème qui peut être défini comme suit. Est-ce qu’un utilisateur humain peut

trouver, dans une grande base de données, une image qu’il a en tête, ou au moins trouver

une image similaire à cette image, sans parcourir toutes les images ? Plus précisément,

nous posons la question de savoir s’il est possible de chercher une image dans une base



de données, uniquement en faisant des comparaisons. C’est-à-dire, en posant des ques-

tions du type “est-ce que l’image recherchée q ressemble plus à l’image A ou à l’image

B ?”. L’équivalent du trafique dans les réseaux sans fil sont ici les questions posées du-

rant la phase d’apprentissage aux utilisateurs humains. Nous aimerions poser aussi peu

de questions que possible pour préparer les données avant de débuter les recherches, tout

en garantissant une certaine qualité dans le résultat des recherches. Etant donné que l’es-

pace sous-jacent contenant les images n’est pas nécessairement métrique, ce problème nous

amène à réfléchir sur la recherche dans des espaces où seul des informations sur les rangs

respectifs peuvent être obtenues. Le rang de A par rapport à B est k, si A est le kème

élément le plus proche de B. Dans ce contexte, la basse dimensionalité peut être associée à

l’homogénéité de l’espace contenant les images. Nous verrons que cette homogénéité peut

être décrite par des propriétés définies sur les rangs. Les espaces homogènes peuvent être

décomposés en hiérarchie, et permettent de déveloper des fonctions de hashage perfor-

mantes.

Pour concevoir des algorithmes performants pour ces deux problèmes, nous pouvons

appliquer les mêmes techniques mutatis mutandis. Dans les deux cas, nous nous sommes

basés sur l’intuition que le problème possède une complexité intrinsèque basse, et que nous

pouvions nous servir de cette particularité du problème. Nos résultats se présentent sous

la forme de résultats de simulations et de bornes asymptotiques.

Mots Clés

Réseaux sans fil, Recherche, Réduction de Dimensionalité, Bases de Données, Routage,

Algorithmes, Bornes Asymptotiques, Similarité



- Abstract -

In this thesis, we address two seemingly unrelated problems, namely routing in large

wireless ad hoc networks and comparison based search in image databases. However, the

underlying problem is in essence similar and we can use the same strategy to attack those

two problems. In both cases, the intrinsic complexity of the problem is in some sense low,

and we can exploit this fact to design efficient algorithms.

A wireless ad hoc network is a communication network consisting of wireless devices

such as for instance laptops or cell phones. The network does not have any fixed infrastruc-

ture, and hence nodes which cannot communicate directly over the wireless medium must

use intermediate nodes as relays. This immediately raises the question of how to select the

relay nodes. Ideally, one would like to find a path from the source to the destination which

is as short as possible. The length of the found path, also called route, typically depends

on how much signaling traffic is generated in order to establish the route. This is the

fundamental trade-off that we will investigate in this thesis. As mentioned above, we try

and exploit the fact that the communication network is intrinsically low-dimensional, or

in other words has low complexity. We show that this is indeed the case for a large class of

models and that we can design efficient algorithms for routing that use this property. Low

dimensionality implies that we can well embed the network in a low-dimensional space, or

build simple hierarchical decompositions of the network. We use both those techniques to

design routing algorithms.

Comparison based search in image databases is a new problem that can be defined as

follows. Given a large databases of images, can a human user retrieve an image which

he has in mind, or at least an image similar to that image, without going sequentially

through all images? More precisely, we ask whether we can search a database of images

only by making comparisons between images. As a case in point, we ask whether we can

find a query image q only by asking questions of the type “does image q look more like

image A or image B”? The analogous to signaling traffic for wireless networks would here

be the questions we can ask human users in a learning phase anterior to the search. In

other words, we would like to ask as few questions as possible to pre-process and preprare



the database, while guaranteeing a certain quality of the results obtained in the search

phase. As the underlying image space is not necessarily metric, this raises new questions

on how to search spaces for which only rank information can be obtained. The rank of A

with respect to B is k, if A is B’s kth nearest neighbor. In this setup, low-dimensionality

is analogous to the homogeneity of the image space. As we will see, the homogeneity can

be captured by properties of the rank relationships. In turn, homogeneous spaces can be

well decomposed hierarchically using comparisons. Further, it allows us to design good

hash functions.

To design efficient algorithms for these two problems, we can apply the same techniques

mutatis mutandis. In both cases, we relied on the intuition that the problem has a low

intrinsic complexity, and that we can exploit this fact. Our results come in the form of

simulation results and asymptotic bounds.

Keywords

Wireless Networks, Search, Dimensionality Reduction, Databases, Routing, Algorithms,

Asymptotic Bounds, Similarity
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Chapter 1

Introduction

In this thesis we address two seemingly unrelated problems, namely routing in large mobile

wireless ad hoc networks, and comparison-based search in large databases of pictures.

However, as we will see, similar techniques can be used mutatis mutandis to work on

those two problems. In particular, in both cases we can try and exploit some properties

of the database or the network that make the intrinsic complexity of those structures low.

For both wireless networks and databases of pictures, it seems intuitive that there must

exist efficient search algorithms. Obviously, one of the main difficulties is to find the right

characterization of the problem, and then to design algorithms of which the performance

depends on this characterization. The low complexity typically leads to a hierarchical

decomposition or a low-dimensional representation, and roughly logarithmic search times.

We design algorithms that are very efficient when this intrinsic complexity is low. In

Sections 1.1 and 1.2 of this introductory chapter, we will first define and motivate those

two problems in a somewhat informal way. More precise and formal definitions, as well as

results, are then provided in subsequent chapters.

1.1 Routing in Mobile Wireless Ad hoc Networks

A mobile wireless ad hoc network is a network of nodes such as laptops, PDA’s, or cell

phones, that cannot rely on any fixed infrastructure to communicate. This model is differ-

1



Chapter 1. Introduction

ent from the classical model used in existing WiFi or cellular infrastructures, where nodes

communicate via a base station. This ad hoc setup implies that every node must have

the capability of acting simultaneously as a client, a server and a relay. The capacity to

act as a relay is crucial, as the source and the destination of a message might be out of

radio range and could consequently not necessarily communicate directly. An illustration

of an ad hoc network is shown in Figure 1.1. As mentioned above, ad hoc networks do

Figure 1.1: An illustration of a wireless ad hoc network composed of seven laptops. Due to
a limited radio range and to interferences, the laptops on the right hand side
and on the left hand side cannot communicate directly with each other. Rather,
messages must be relayed by intermediate nodes.

not depend on any fixed infrastructure. Clearly, there are many scenarios where this is

potentially an advantage. One could think of disaster relief situations, where existing base

stations would have been destroyed, and rescue workers would communicate in an ad hoc

manner. Alternatively, one could think of vehicular networks, in regions where construct-

ing base stations to ensure full coverage would be far to expensive. Another scenario which

is often cited as example are sensor networks. Such networks are composed of devices with

limited communication capabilities and obviously sensors. They are typically deployed in

regions which are hard to access and where building a fixed infrastructure would be too

costly or simply too difficult because of the terrain. Finally, the scenario that is maybe

the most interesting one is the use of ad hoc communications to extend the range of base

stations. This might be particularly interesting in countries where buying land to setup a

fixed antenna is very costly and legally difficult.

Due notably to the mobility of the nodes and the random nature of the wireless channel,

designing protocols for such networks is very challenging. One of the most difficult prob-

2



1.1. Routing in Mobile Wireless Ad hoc Networks

lems to solve for ad hoc networks is routing1. Indeed, in contrast to networks with fixed

infrastructure, communications cannot be routed through a central base station known to

all nodes. Further, one cannot even rely on a central repository containing the addresses

or locations of all nodes. As nodes are inherently mobile, routes change over time and

consequently fixed routing tables are not useful, as routes are often only valid for a short

period of time. Recall that distant nodes cannot communicate directly with each other

and intermediate nodes must act as relays. Hence, we need to design a routing scheme

that allows us to maintain short paths between nodes, while at the same time not adding

a large overhead in terms of signaling traffic. The latter point is of great importance in

wireless networks, where bandwidth is a scarce resource. The first part of this thesis will

be dedicated to the design of efficient routing schemes for mobile ad hoc wireless networks.

Intuitively, it seems that wireless ad hoc networks must be low dimensional. Indeed, it

seems that the embedding of the network into ℜ2 provided by the global positioning system

(GPS) coordinates should roughly capture the topology of the network. In other words,

the Euclidean distance between the positions of the nodes in the “real” world should be

roughly proportional to some graph distance measured in the network (e.g., we could build

a graph by adding an edge of weight 1 between nodes that can communicate directly and

measure distances as the shortest path distance in the graph). This intuition relies on the

fact that the signal strength decays super-linearly with distance, and that consequently

direct communications must be local2. In turn, distant nodes must communicate over

multiple hops, and the more distant nodes are, the more hops separates them. This idea

is clearly true if the nodes are distributed homogeneously and sufficiently densely on a

convex area, and if the radio range is small with respect to the diameter of the network.

In this case, a greedy forwarding strategy, where nodes repeatedly send packets to the

neighbor with the position closest to the destination of the message will be successful and

will lead to short routes. In case the nodes were mobile, the major difficulty would be

to locate the destination. The common solution to this problem consists in implementing

1In this thesis we focus on the scenario that multihop routing is the throughput optimal strategy. It is
perhaps appropriate to note that node cooperation might be important in other scenarios [ADT07,zLT07,
ADT09]

2This is true in the case when path loss decay with distance is large (α ≥ 3)

3



Chapter 1. Introduction

a distributed database in the network that is dynamically updated when the topology

changes.

In this thesis, we investigate the more general case where the network does not neces-

sarily originate from an homogeneous distribution of nodes. In particular, in any realistic

scenario, there could be obstacles such as walls, or topological voids, that prevent nearby

nodes from communicating directly or over a small number of relays. Hence, a greedy

forwarding strategy based on GPS coordinates would fail. Recovery mechanisms exist to

get out of so-called “dead-ends”, but they are also costly in terms of overhead, and are to

some extent dependent on a specific model for the network. Moreover, the fact that the

nodes are mobile prevents us from storing static routes, and maintaining all-to-all short

routes is too costly in terms of signaling traffic. We try and exploit the fact that even

though the network topology might not be perfectly homogeneous, it is still likely to be

low-dimensional. That is, the network might not necessarily be embeddable in a two di-

mensional space but potentially in a space of dimension either constant (i.e., independent

of the cardinality of the network), or at least only logarithmic in the cardinality of the

network. Our first approach will consist in developing a distributed algorithm that embeds

the network in a low dimensional space. We expect that by “pushing nodes around a bit”,

the new coordinates will correspond better to the topology of the network. In particular,

we now expect the Euclidean distance between nodes to be a better approximation of the

graph distance. This approach is described in Chapter 2. The virtual coordinates obtained

in that way will considerably increase the quality of greedy forwarding, while not increas-

ing the signaling traffic much. The results in Chapter 2 are based on simulations of our

routing protocol and comparisons with the performance of existing routing schemes. Our

second approach, described in Chapter 3, consists in developing a structure that adapts

to the intrinsic dimension of the network. Here, intrinsic dimension refers to the doubling

dimension, a notion to be defined more formally in Chapter 3, and which can informally

be defined as the maximum number of balls of radius r required to cover a ball of radius

2r. The results presented in Chapter 3 are in some sense a theoretical extension of the

results in Chapter 2. Indeed, in this chapter we try and formalize the intuition that we

will develop in Chapter 2. In contrast to the simulation results in Chapter 2, the results in
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Chapter 3 come in the form of asymptotic bounds. We also prove that for common mod-

els for wireless networks and mobility, the communication graph has desirable properties.

For instance, we try and capture the intuition that under mobility, distant nodes will not

suddenly be connected directly, if they were several hops apart. In fact, one of the key

contributions of this thesis is the formal analysis of networks with dynamically changing

topologies. In other words, our theoretical results do not only apply to static networks, but

also to networks of mobile nodes and networks with uncertain communcation channels.

1.2 Comparison-based Search in Image Databases

To explain the second problem, comparison-based search in large databases, we first give

an example that motivates this question. Assume that a large organization, a company,

the police or (why not) a dating service stores a large database of faces. For instance,

a company could store a database containing a picture of every employee, where every

picture is linked with the office number, the phone number and an email address. Assume,

further, that you recently met someone who was working on a topic of great interest to

you, and that you would like to find his contact details. As a distracted person, you only

remember the organization he works for, but forgot his name. Can you efficiently retrieve

the contact details of this person from the employee database, without an exhaustive

search i.e., can you design a search engine that returns the picture of this employee very

quickly? Similarly, the police could store a database of dangerous criminals. A victim

could then try to browse this database to find the person who attacked her, and help the

police arrest him. Potentially, no digital form of the query image is available, or automatic

image processing algorithms perform poorly because some images are taken in different

environments (e.g., light, angle, background, exposition, distance, etc.). Further, it is

hard to define a meaningful similarity measure based on image processing that fits the

perception of all humans, for all images. Nevertheless, it might be possible to actually

use humans as classifiers, if the number of questions humans must answer is reasonably

small. In this thesis, we try and characterize the properties which the image space must

have if we want to perform search based only on comparisons. The practical problem
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exposed above raises deeper and more theoretical questions about search in non-metric

spaces, which can be characterized only by relative distance information (i.e, by rank

relationships3). In particular, one could ask what desirable properties of such a space are.

We try and answer some of these questions in this thesis. In essence, our plan of attack for

this problem is analogous to the approach taken for wireless networks. Indeed, we first try

and find an appropriate characterization of the problem that makes its complexity low,

and then develop algorithms that exploit this property.

More precisely, we ask the question of whether we can search such a database of pictures

only by making comparisons. In other words, can we retrieve a picture similar to a query

image, only by asking questions of the type “does the image you are looking for look

more similar to image B, or image C” (an example is shown in Figure 1.2). As mentioned

Figure 1.2: The user is asked whether the image he is looking for i.e., the query image on the
left hand side, looks more similar to the reference image A or B. Even though
the man in reference image B is wearing a wig, a human user is very likely to
click on image B. Indeed, the user can very efficiently process and classify or
label the three images.

above, the intuition underlying this approach is that humans are excellent classifiers for

images, and that we can use them to do some processing which cannot be automated.

Comparisons based on feature vectors or other image processing techniques often partly

fail if the images are not taken under the same conditions. For instance, it is difficult to

compare images that are taken from different angles, with different backgrounds and with

different exposition times. It is then even more difficult to compute meaningful distances

or similarities based on these vectors. In fact, similarity between pictures is a notion that is

3The rank of A with respect to B is k, if A is B’s kth nearest neighbor.
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difficult to define formally, even in words, and even more difficult to measure automatically

based on the content of images. Nevertheless, we expect humans to be able to classify

images, at least up to a certain “precision”. For instance, we expect that if a user who

is looking for the picture of a woman, is asked whether this woman is more similar to a

woman or a man, he is very likely to click on the woman. Similarly, we expect humans to

have the capacity to classify images based on age, hair color, eye color, size of the ears, and

so on. More importantly, humans are likely to give more importance to criteria such as

gender and skin color, which leads to a shared notion of similarity. It is also likely that the

human brain takes into account other features that are not obvious. Hence, we intend to

use humans to answer “difficult” questions in the learning phase, and to perform searches.

One of the difficulties of this problem is that on one hand, there are many comparisons

that can be made, and on the other hand asking humans to make comparisons is very

costly in terms of time and effort. Thus, we must carefully choose the questions that we

ask users, while guaranteeing a certain quality of search. Another difficulty is that the

space in which the images live, and the similarities perceived by humans, might not result

in a metric space. Hence, we need to think about new ways of searching, as classical

approaches are not necessarily applicable.

In Chapter 4, we ask a more general theoretical question. Indeed, we ask what property

a space of object (e.g, images, but potentially also music, videos, etc.) must have such that

it can be searched efficiently by human users who can only make comparisons. Moreover,

given that the space of objects has such a property, we try and develop algorithms of

which the performance depends on this property. Again, as it is the case for wireless

ad hoc networks, it appears that images must have an intrinsic structure that has a low

complexity. For databases, we will measure this complexity in terms of two properties

of the space, namely its disorder constant and rank distortion. Both properties roughly

capture how homogeneous the space is. The first one, however, is a worst case criterion,

and the second one an average criterion. This setup is also interesting because, in contrast

to many existing formulations, we do not necessarily require the space in which the objects

live to be metric. Rather, we characterize the space in terms of its rank relationships. Such

relationships can be defined for any space.
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In Chapter 5, we then present the architecture of a system that implements some of the

ideas of Chapter 4. We also present experimental results for search based on comparisons.

As we will see, a practical implementation raises a number of additional issues. We

highlight a few of these issues and propose practical solutions. In particular, humans

sometimes (if not often) disagree on the notion of similarity, and we need to take care

of this problem. We try and reduce the number of training clicks further by combining

human training with image processing.

1.3 A Needle in a Flat Haystack

The problem underlying both routing in large wireless networks and comparison based

search in large databases is the same in essence. In both cases, we need to efficiently

retrieve a specific element in a large collection of elements i.e., in the database or in the

network. Further, we need to find good “paths” in the collection towards this specific

element, that is we must in some sense make the collection navigable. Indeed, in wireless

networks we must establish routes from source nodes to destination nodes, and in the

database, we must identify sequences of questions that allow us to retrieve specific ele-

ments. In both cases, an exhaustive search of the collection is too costly, either in terms

of control traffic, or in terms of questions that we need to ask the human user. Hence, we

need to develop methods to proactively process the elements in such a way that the search

phase can be considerably sped up. However, preprocessing does obviously not come for

free either. Surely, preprocessing also requires sending messages through the network or

asking questions. On the other hand, in the preprocessing phase, the cost can be amor-

tized over all the elements. Hence, in both cases, we need to find a trade-off between

preprocessing operations and search time.

The two problems addressed in this thesis were not chosen at random. Indeed, in

general it might not be possible to considerably reduce the search time by preprocessing

the elements. However, for routing in wireless networks and comparison-based search in

databases, it appears that the respective collections of elements have the desirable property

that they are not intrinsically very complex. The most natural notion of complexity is the

8



1.3. A Needle in a Flat Haystack

dimension in which the elements live. For instance, if the elements were a set of points

in ℜd, for large d, most problems might be difficult to solve. However, if the points lie

close to a low dimensional plain in ℜd, the problem might become much easier to solve.

Another difficulty that we have not mentioned so far is that even though the elements of

both problems live in spaces of low intrinsic complexity, we cannot “batch process” these

spaces by building classical data structures such as k-d-trees or hash tables. Indeed, we

are in both cases only given partial information e.g., a subset of hop distances or a subset

of human answers, and need to do the best possible job with it. In wireless networks, this

implies that we need to develop efficient distributed routing algorithms, and for database

search, it implies that we need to ask the right questions to human users, and be able to

work only with relative distance information i.e., we know that image A looks more like

B than like C, but we cannot obtain meaningful numerical values for distances between

images.

In Chapter 2, we make a first attempt at exploiting the intrinsically low dimensional

structure of wireless networks. We present an approach for embedding connectivity graphs

into a low-dimensional Euclidean space in a distributed way. We also show how the “virtual

coordinates” obtained this way can be used for greedy forwarding of packets. We evaluate

our techniques through simulations. In Chapter 3, we first show formally that a large

class of common models for the connectivity and the mobility of wireless ad hoc networks

share the property that the resulting communication graph is intrinsically low-dimensional

(a notion to be defined formally in Chapter 3). Then, we present algorithms that exploit

this low dimensionality and prove asymptotic bounds on the signaling traffic and the route

stretch. In Chapter 4, we present our work on comparison based search for image database.

In this chapter, we present a theoretical model for such spaces of images and algorithms

that exploit the properties of such spaces. Again, we prove asymptotic bounds on the

performance. Then, in Chapter 5, we present the architecture of a web platform that

implements the ideas from Chapter 4. Finally, in Chapter 6, we present our conclusions

and ideas for future work.

The three main chapters i.e., Chapters 2,3 and 4, treat clearly distinguishable topics.

In order to make those chapters self-contained, so that they can be read separately, each
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one has its own generally non-overlapping related work section. Similarly, we present a

model, definitions, assumptions as well as results in each of these chapters.
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Chapter 2

Virtual Coordinates for Routing in Dynamic Ad hoc

Networks

In this chapter, we investigate routing for mobile wireless networks based on virtual co-

ordinates. More precisely, we develop a distributed algorithm to embed the network into

a low dimensional space, and then perform greedy forwarding based on those virtual co-

ordinates. The algorithms developed in this chapter are evaluated through simulations

and compared to existing approaches. In Chapter 3, we will then formalize the intuition

developed in this chapter by first introducing models to capture the low intrinsic dimen-

sionality and the restricted mobility, and second by proving theoretical bounds on the

stretch and the signaling traffic for routing in wireless networks. Chapter 2 is structured

as follows. First, we introduce the different paradigms for routing in wireless networks.

Related work is discussed in Section 2.1, and some background on graph embeddings is

given in Section 2.2. In Section 2.3, we develop a random beacon-based embedding with

the following features: (i) approximates well the single snapshot graph distances, (ii) gives

a stable coordinate system when embedding dynamic graph topologies, and (iii) has low

overhead in terms of network-wide control traffic. This embedding algorithm is then com-

bined with a novel randomized greedy routing algorithm in Section 2.4. The idea behind

the randomized routing strategy is also independently applicable to other scenarios with

uncertainties in the topology or location. We give extensive simulation results to validate

the properties of our algorithms in Section 2.5.
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As mentioned in Chapter 1, mobile wireless networks comprise wireless devices with a

limited transmission range, such as laptop computers, personal digital assistants (PDAs),

cell phones, or embedded sensing and actuation devices. Such networks often rely on

multi-hop communication i.e., the forwarding of messages from a sender to a receiver

outside the sender’s radio range through intermediate nodes. One of the fundamental

problems in ad hoc networking is thus the routing problem.

There are two approaches to the routing problem. The first approach relies uniquely on

the topology of the network. Topology-based routing establishes an end-to-end path from a

source to a destination through flooding or partial flooding of the network. By flooding, we

mean that a node sends a message to all its neighbors in the network, which in turn resend

the message to all their neighbors and so on until either all nodes have seen the message, or

the hop count limit has been reached (partial flooding). Nodes either maintain a routing

table that contains next hop and distance information for each destination [PR99], or the

complete route can be stored in the header of all data packets [JMB01b]. The concept of

topology based routing is illustrated in Figure 2.1(a).

The second approach exploits the geometry of the network. Nodes forward packets to

neighbors geographically closer to the destination, assuming that the geographic proximity

is representative of the network distance [BMSU99,KK00,KWZZ03]. Geographic routing

protocols require a location service [DPH05, GV06], which can be queried to obtain the

location of other nodes. For instance, a location service could work as follows. If the

network area is known, every node can use a universally known hash function to map

its own identifier to a position in this area. In turn, every node can send its current

location to the node closest to the position obtained with the hash function. Later, when

a source node intends to send a packet to a node of which it only knows the identifier,

it hashes the identifier of the destination to a position in the area using the same hash

function. In turn, it queries the node closest to that position to obtain the location of

the destination. In Figure 2.1, we illustrate those two paradigms. Both approaches have

advantages and disadvantages. The protocol overhead of topology-based routing stems

from the flooding necessary for path establishment and maintenance. It is therefore very

sensitive to mobility and uncertain channel environments, since even small changes in a

12



Chapter 2. Virtual Coordinates for Routing in Dynamic Ad hoc Networks

(a) Topology based Routing (b) Geographic Routing

Figure 2.1: Figure 2.1(a) is an illustration of topology based routing. Typically, all-to-all
shortest path are maintained either reactively, or proactively. When the source
node u wants to send a message to the destination node d, it starts a scoped
flood, that is a flood with a limited hop count, and if a node is reached that has a
valid entry for the destination, that nodes replies to the source. The source can
then forward the packet on the reverse path and routing tables can be updated.
If no such node exists, the flooding radius is increased. In the worst case, the
entire network is flooded and the destination itself answers to the source to setup
the route. Figure 2.1(b) is an illustration of greedy geographic routing. Here,
the source node u, at position x(u), first greedily routes a packet to the position
where the location x(d) of the destination d is stored. There are different ways
to obtain such a location service, one way being to use a universally known hash
function to map the identifier of the destination to a position in the network
area. Obviously, this implies that d must regularly send updates to the node
closest to this location in order to for the location service to be up-to-date. The
node that stores d’s location replies to the source by forwarding the packet back
greedily. Knowing x(d), the source can now start forwarding packets greedily
to the destination. Note that the presence of inhomogeneities such as walls can
lead to dead-ends, which in turn lead to additional signaling traffic. Further, if
the nodes are mobile, the location service must be updated at a sufficiently high
frequency.
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node’s neighborhood may lead to the failure of routes, which need to be reestablished.

In contrast, geographic routing does not maintain state in the nodes, and forwarding

decisions require only local knowledge i.e., the geographic position of a node’s neighbors.

Topology changes that do not affect this local knowledge do not affect routing decisions,

and therefore do not have to be advertised network-wide. However, geographic routing is

inefficient when the network topology is not well captured by the geographic coordinates

of nodes (e.g., due to a fading channel, obstacles, etc.). In such inhomogeneous networks,

greedy routing towards the destination often reaches a local minimum, where no nodes

with forward progress are known. Here, a recovery strategy is necessary, which requires

either flooding or establishing state in nodes around the local minimum. This, together

with the overhead introduced by the location service, may be more costly than the use of

a topology-based routing protocol.

In this chapter, we investigate how to bridge the two paradigms. More specifically, we

are interested in building a virtual coordinate system that embeds the connectivity graph

in a way that is coherent with the network topology. Nodes which are close in the topology

should also be close in the embedding. Desirable properties of such a coordinate system

are that it allows efficient greedy routing, is robust to mobility and channel uncertainty,

and is cheap to maintain.

Embeddings of general graphs (roughly speaking a distance preserving mapping of a

graph metric to another metric) is a well studied topic, but few algorithms specifically

for wireless graphs exist. Furthermore, ad hoc networks require an efficient distributed

implementation of the embedding algorithm. Indeed, computing such an embedding in a

centralized way would be highly inefficient in mobile networks and would lead to a high

amount of signaling traffic and bottlenecks. Our main objective is to create embeddings

which provide efficient routes when combined with greedy routing. This also reflects on

the choice of the metric with which the wireless graph is embedded. The intuition which

drives the techniques used for our embedding algorithm is the following. We believe that

geometry plays an important role for long paths, whereas short paths are more subject to

local perturbations. In other words, we expect that on the large scale, the hop distance

in the graph must be roughly proportional to the Euclidean distance, while locally the
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behavior of the channel can be highly unpredictable.

2.1 Relationship to Published Works

Graph embeddings are an active area of research with many different applications [IM04].

Some of the concepts of this chapter, for example, are based on embedding algorithms

used for the analysis of molecular similarities [AX03].

For networking, embeddings have been studied mainly in the context of mapping net-

work distances in the Internet to Euclidian space [TC03, DCKM04], and relatively few

embeddings exist that are specifically designed for routing in wireless ad hoc networks.

The two schemes most closely related to the algorithms proposed in this chapter are the

pioneering work presented in [RRP+03] and the beacon vector routing (BVR) introduced

in [FRZ+05b].

In [RRP+03], a routing scheme (NoGeo) with a distributed relaxation algorithm is

presented. It iteratively builds a virtual coordinate system. The algorithm assumes that a

number of so-called perimeter nodes (located on the border of the network) know their real

coordinates in advance. Starting from random virtual coordinates, at every iteration, non-

perimeter nodes update their coordinates by averaging the coordinates of their neighbors,

while the coordinates of perimeter nodes remain fixed. The scheme also includes a flooding-

based mechanism to determine identity and/or coordinates of the perimeter nodes if they

are not known in advance. The protocol performs well in terms of success rate of greedy

routing, but the overhead to maintain perimeter nodes is very high when the topology is

dynamic. The overhead also grows superlinearly with the size of the network due to the

increased length of the perimeter. The algorithm critically depends on correct perimeter

node information and at lower overhead may lead to a completely distorted coordinate

system.

BVR [FRZ+05b] is intended for routing in sensor networks. Here, the hop distances to

beacon nodes directly form the virtual coordinates of a node, and the dimensionality of the

coordinate space corresponds to the number of beacons. The set of beacons is randomly

chosen and does not change unless a beacon fails. As in [RRP+03], greedy forwarding
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over the virtual coordinates is used as routing scheme. A distance metric is defined to

take into account the observation that greedy routing in the direction of a beacon is more

likely to lead to the destination than routing away from a beacon (explained in more detail

in Section 2.5). In case of a dead-end, a small scope flooding is initiated to find a node

that again provides greedy progress. The scheme is very sensitive to a bad initial choice

of beacons. It also does not cope well with mobility of beacons or an uncertain channel

environment, both of which lead to large shifts in the virtual coordinates. This not only

results in unstable routes, but also incurs a high cost for updating a location service with

the changing positions of the nodes.

There are a number of further embedding algorithms for routing in sensor networks.

In [NS03], a ringed tree graph is built for data-centric information processing with coor-

dinates that are similar to polar coordinates. Both MAP [BGJ05] and Glider [FGG+05]

build a virtual coordinate system based on a tiling of the network area. The former builds

a backbone structure adapted to the shape of the network topology and connects sensor

nodes to the nearest backbone node through shortest paths. The latter uses Delaunay

triangulation to form Voronoi cells and routes toward a so-called landmark node of the

adjacent Voronoi cell that lies in the right direction. Finally, some schemes use multidi-

mensional scaling techniques to build a coordinate system from connectivity information

(e.g., [SRZF04]). All of these systems have in common that they are not designed to cope

well with mobility or varying channel conditions. While the former may be less important

for sensor systems (but is very important for example for vehicular ad hoc communication),

the latter is an inherent property of all wireless networks.

2.2 Low-Dimensional Embeddings

In this section, we review recent results in embedding theory that motivate the beacon-

based embedding algorithm presented in the next section, and provide some intuition for

its design. Over the past decade, significant progress has been made in both algorithms

and bounds for embeddings of (finite) metric spaces (see for example [IM04] and references

therein). Given the distances D(·, ·) between n points in a metric space (X,D), the goal of
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the embedding is to find a mapping x
′
= f(x), x ∈ X,x

′ ∈ X
′
from X to another space X

′

such that for the metric D
′
(·, ·) in X

′
, for all points x, y ∈ X, the distances D

′
(f(x), f(y))

do not distort D(x, y) very much. More precisely, the embedding f(·) is said to have

distortion at most c if there is a r ∈ (0,∞) such that for all x, y ∈ X, rD(x, y) ≤
D

′
(f(x), f(y)) ≤ crD(x, y). For c = 1, the embedding is called non-contracting. Also,

typically the target space X
′

is a Euclidean space with D
′

being the l2 norm. In such

cases we can talk about the dimension of the embedding to be the dimension of X
′
.

In the aforementioned framework, many graphs1 do not admit low-distortion and low-

dimensional embeddings simultaneously. There has been a significant amount of effort in

classifying the distortion and dimension of specific classes of graphs (see Table 8.5.1 in

[IM04]). This leads to the notion that in general graphs are not “embeddable” i.e., do not

admit low-distortion embeddings in low-dimensional spaces. More recently, an alternate

question was posed in [KSW04], which introduced the notion of slack in embeddings. Slack

allows a small fraction of the distances to be arbitrarily distorted, while the others are

guaranteed to have a much smaller distortion. In particular, [ABC+05] showed that every

finite metric space can be embedded into a lp space with constant dimension O(log2(1
ǫ ))

with constant distortion O(log(1
ǫ )), if a fraction ǫ of the distances in the original space

can be arbitrarily distorted. However, the distortion may not be uniform across nodes.

Therefore we need a stronger notion of slack called uniform slack which means that for

every point u ∈ X, at most fraction ǫ of its pairwise distances can be arbitrarily distorted.

Embeddings with uniform slack is also explored in [ABC+05].

One of the main techniques in embeddings with slack is the use of a constant number

of beacons for the embedding. Such an embedding is based on triangulation i.e., recon-

structing the distance between two non-beacon points from their known distances to a set

of beacons. Clearly, for points that are close to each other, this can cause arbitrarily large

distortion. Hence, these pairs of points are counted towards the uniform ǫ slack.

The notion of slack is inherently useful for embeddings of wireless network graphs.

This is because a small number of edges suffice to transform a graph admitting a low-

dimensional embedding into a graph that does not. The randomness in node locations as

1We interchangeably use the term graph for a finite metric space.
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well as mobility and channel uncertainty (fading) can easily perturb the original geometry

enough to make the graph difficult to embed completely. However, our intuition is that

for wireless graphs, even though local geometry is easily perturbed through these sources

of randomness, at large scales this would matter much less. Therefore, slack eliminates

some of the local behavior, and allows to embed the larger-scale distances into a low-

dimensional space with low-distortion. We also use this principle of slack in Section 2.4,

where we develop routing algorithms.

We also note that graphs that do not possess low-dimensional embeddings can arise

even without channel uncertainty. Specifically, it is possible to construct unit-disk graphs

(UDG), where an edge between two nodes u and v exists if and only if ||x(u)− x(v)|| < 1,

for which no low-distortion, low-dimensional embeddings exist [MOWW04]. However,

these require specific node constellations that occur only with very low probability in a

random realization of node locations. Hence, these constructions are mostly of theoretical

interest.

2.2.1 Stable Dynamic Embedding of Connectivity Graph

We have discussed above the classical embedding problem of a metric space (X,D) into

another (usually normed) space (X ′,D′) through an embedding function f : X → X ′,

and the associated metrics for the quality of the embedding (stretch, slack).2 We now

introduce a novel aspect of the embedding problem discussed in this chapter: maintaining

a stable embeddings of a dynamic graph.

Indeed, the connectivity graph of a mobile wireless network changes over time be-

cause of node mobility and channel uncertainty. We can view this as a dynamic metric

space (X,D(t)), for which we would like to maintain an embedding f (t)(.). We define the

embedded distance between x1 and x2 at time t as D′(t) = D′(f (t)(x1), f
(t)(x2)).

What is a good dynamic embedding? For obvious reasons, we would like the dynamic

embedding f (t)(.) to be a faithful representation of (X,D(t)) for every time t. However,

this is not sufficient for our purposes, because it does not say anything about the evolution

of the embedding over time. For example, even if the metric space (X,D(t)) were fixed over

2We discuss other metrics from the field of multidimensional scaling in [TDGW07b].
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time, the embedded coordinates might fluctuate, provided the distances D′(t)(., .) remain

stable. This is undesirable, for the following reason.

In our setting, although the graph changes over time, it tends to change slowly. For

example, two nodes that are far apart at time t are unlikely to be very close a short time

after t, and vice versa. This is a result of physical constraints on node mobility processes

(nodes cannot jump from one place to another), and the fact that channels between nodes

strongly depend on geography, as explained above.

Therefore, the distances D(t) change slowly over time, with the largest relative changes

concentrated on short distances. The stable embedding problem amounts to maintaining

a dynamic embedding such that (a) the instantaneous distances D′(t)(., .) are close to the

real distances D(t)(., .) for every t, and (b) the coordinates f (t)(.) of the embedded space

changes as slowly as possible.

A stable embedding in our context is important for the following reasons. A geo-

routing algorithm has to be paired with a location service in order to be able to deliver

messages to particular nodes (or information items), rather than to particular locations.

A location service is essentially a distributed database that maintains the location of every

node in the network. The database has to be updated when the location of a node changes.

Suppose we have a node x that does not move, but whose coordinates in the embedding

f(x) change over time; then updates would have to be generated continually for this node,

resulting in overhead. A stable embedding minimizes this overhead.

A slightly different approach eliminates the need for location updates by merging the

location service into the routing protocol. In this approach, a message starts out with an

imprecise estimate of the destination’s location. It then refines this estimate as it travels

through the network. It has been shown that it is sufficient (depending on the mobility

process) that each node remembers when and at what location it was last a neighbor of

every other node. This approach, called Last Encounter Routing (LER) [GV06], amounts

to the message traveling towards past locations of the destination. If LER operates on

embedded coordinates, then a stable embedding ensures that these past locations are

close to the current location of the destination. Even though there is no need for location

updates in LER, an unstable embedding would manifest itself through increased route
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cost, as the message would frequently move “in the wrong direction”.

This illustrates that stable embeddings are important to minimize overhead in the

context of geo-routing. Therefore, in this chapter, our goal is to develop a distributed

algorithm that computes faithful and stable embeddings for slowly changing graphs.

In summary, the results on graph embeddings provide important insights for the de-

sign of the algorithms in 2.3 and 2.4. In the presence of mobility, designing a beacon

management method that produces stable embeddings is challenging. Slack is an impor-

tant concept for embeddings of wireless graphs since there are low probability events that

can significantly deteriorate embedding performance. In Section 2.3 we explore methods

that do local operations to account for such inaccuracies. There is always some degree of

distortion in embeddings and routing protocols need to take this into account. To this

end, we propose a randomized algorithm scheme in Section 2.4.

2.2.2 Observations on Wireless Connectivity Graph

We believe that connectivity graphs that arise from wireless networks are special, because

there is some underlying geometry associated with such graphs. On the one hand, channel

fading might destroy some local geometry associated with connectivity. On the other hand,

nodes originate from a 2-dimensional world, and connectivity is mostly local. Hence, we

suspect that geometry will play a large role in connectivity over larger distances. That is,

nodes positioned far apart in the real world are bound to communicate over multiple hops.

Therefore, even though one could still construct wireless connectivity graphs which do not

have such properties, our experiments and intuition suggest that such configurations occur

relatively rarely.

In order to understand some of these issues, we examine the problem using multi-

dimensional scaling (MDS) which is another technique for extracting coordinates from

pairwise distances widely used in statistics literature (see for instance [BG05]). Classical

scaling, [BG05], is a technique used in statistics to obtain (embedded) coordinates X

in Euclidean space of n points given only a matrix of pairwise distances3. Coordinates

3Note that the algorithm is centralized and requires knowledge of all pairwise distances. Hence, it is
not suited for a distributed implementation in wireless networks. Nevertheless, it can help us get additonal
insight
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obtained with this approach minimize the sum of squared errors between the original

distances and the Euclidean distances between points (which is also called the stress

function [BG05]) i.e.,

min
f

n∑

i=1

n∑

j=i+1

[

D(vi, vj) − D
′
(f(vi), f(vj))

]2
.

Therefore, the criterion used to evaluate the embedding in MDS is different from that of

the relative distortion criterion introduced earlier. The stretch criterion used in computer

science [IM04] is a worst case distortion, in contrast to the average distortion used in MDS.

A nice property of X is that it is a principal axes solution i.e., the variance along axes

is maximized [BG05]. We are interested in this variance as we want to show that the error

incurred by representing wireless connectivity graphs in low-dimensional Euclidean space

is small. In other words, in an optimal least square embedding in Euclidean space, only a

small number of dimensions are necessary to capture most of the variance.

Given a n × n matrix D(2) where the (i, j)-th entry in D(2) is given by D2(vi, vj), for

vi, vj ∈ V, we define a matrix B as,

B = −1

2
JD(2)J, (2.1)

where J = I − n−111T and 1 = [1, . . . , 1]T . The m-dimensional coordinate matrix of

classical scaling is given by X = Q+Λ
1
2
+, where Λ+ is the matrix containing the m largest

eigenvalues and Q+ the corresponding eigenvectors. Note that dimensions are nested so

that the m − 1 first dimensions of a m-dimensional embedding are the same as the m− 1

dimensions of an m − 1-dimensional embedding

In Figure 2.2 we show how geometry plays a role in the dimensionality of connectivity

graphs. We generate several G(2000, r, p)4 with varying average node degrees and for

p = 0.6 and p = 1 (see Fig. 2.2(a) and 2.2(b) respectively). Note that since the node

density is N
1 = N , the average node degree is p(N−1)πr2. We then use (2.1) to find the m-

dimensional coordinate matrix associated with this topology. Assume that the eigenvalues

4we define a connectivity graph G(N, r, p), where N is the number of nodes, r is the communication
radius, and p is a connection probability. First, every node i is placed uniformly at random at a position
x(i) on the unit square. Then, we add an edge between nodes i and j with probability p if ||x(i)−x(j)|| ≤ r
for all i, j. In this model the underlying assumption is that nodes can only communicate directly if they
are located physically close to each other, and that even in this case, some losses can occur because of the
random nature of wireless communications.
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[θ1, θ2, ...] in Λ are in decreasing order. In particular, we are interested in the spectrum of

the re-centered squared distance matrix B and how variance is distributed in the different

dimensions. In Fig. 2.2, we plot v(d) =
∑d

i=1 θi
∑D

i=1 θi
, where D is such that θD is the smallest

positive eigenvalue. This random experiment is repeated, and the cumulative results are

presented in Figure 2.2. It can be observed that there is a considerable gap between the first

and second dimensions, while there are only small increments for subsequent dimensions.

This indicates that most of the variance is captured by the two first dimensions. Further,

this gap diminishes as we increase the communication radius. These experiments seem

to suggest that wireless connectivity graphs are well representable using a small number

of dimensions. Not surprisingly, when we increase the average degree and consequently

the communication radius, geometry progressively plays a smaller role and the fraction

of the total variance in the two first dimensions is reduced. For a very large average

degree, the variance appears to be equally distributed in all dimensions. Interestingly,

when we make connectivity random by setting p = 0.6, we reduce the variance in the

two first dimensions. Intuitively, adding complexity to the channel also decreases the

embeddability of the connectivity graph in a low dimensional space.

In Fig. 2.3, we show that remarkably this low dimensionality is always present, inde-

pendently of the size of the network. This suggests that a smart design for a distributed

embedding algorithm should exploit this property and be highly scalable. In other words,

it seems that the communication overhead necessary to capture this low dimensional struc-

ture should be of O(1) per node, as adding new nodes does not change the properties of

the connectivity graph.

2.3 Embedding Algorithm

In this section, we describe our distributed probabilistic beaconing (PB) algorithm. We

first provide some intuition on the design of the algorithm, motivated by the discussion

in the previous section. We then formally define the algorithm and explain its operation

through an example.
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Figure 2.2: Cumulative distribution of variance in dimensions for G(2000, r, p) for various
average degree and probability p = 0.6 and p = 1 of link connectivity.

2.3.1 Embedding Heuristic

The basic idea of our algorithm is to use random beacons as anchors of an embedding.

The algorithm is specifically designed to maintain a stable embedding when the graph
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Figure 2.3: Cumulative distribution of variance in dimensions for G(N, r, 1). The average

degree (deg) is 16 (r =
√

deg
p(N−1)π ) and probability p = 1 of link connectivity. We

vary the networks size N . One can observe that the low dimensional structure
of wireless connectivity graphs is independent of N

changes over time, and to combine global beaconing with local correction operations to

restore local geometry as far as possible.

We now describe the heuristic for a node i to compute its current embedded position

x(i) for an embedding in M dimensions. We assume that a node i has information from

a set B of beacons for which it knows both its graph distance hBl
, Bl ∈ B and x(Bl), the

embedded coordinates of the beacon Bl ∈ B. From this, the node attempts to find its

embedded coordinates x(i) using the following criterion.

min
x(i)

∑

Bl∈B
[hBl

− ||x(i) − x(Bl)||]2
def
= min

x(i)
h(x(i)). (2.2)

We use a heuristic to solve this optimization problem because h(·) is a non-convex function.

Suppose node i knows its graph distance to a set of beacon nodes B = {B1, . . . , Bb}. An

iterative heuristic to solve (2.2) will update the position x(i) of node i by moving it
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2.3. Embedding Algorithm

Figure 2.4: Nodes a and b are neighbors, while node c is far away from both. The two
optimal positions of node a and b are close. In the worst case, a and b are
placed on opposite sides of the plane and the relative error is approximately 1
over the distance between these optimal positions. c being placed further apart,
the relative error in the distance is small. B1,B2 and B3 are beacons.

towards or away from the beacons. This is reminiscent of stochastic proximity embedding

(SPE) [Dim03].

If the wireless connectivity graph G were perfectly embeddable in two dimensions i.e.,

if there existed a placement of the node in ℜ2 such that all Euclidean distances between

the nodes were exactly equal to the hop distance in the graph, then, given the positions

and the shortest path distances to at least three beacons, the positions of all other nodes

would be uniquely determined. In reality, we expect G to be low dimensional only within

some slack ǫ. Therefore, G requires an embedding dimension of at least M = 2, with a

small incremental benefit for higher-dimensional embeddings (M > 2). Conceptually, in

the PB algorithm, randomly selected beacons flood the network one by one. All nodes, as

soon as they get the message from a new beacon, recompute their virtual position taking

into account the virtual position of the beacon, and the hop distance to the beacon. Hence,

after the flooding of the third beacon, this manifests itself by the nodes clustering close

to a two-dimensional hyperplane in the M -dimensional space. The relative error in the

distances between non-beacon nodes is bounded by the variance in higher dimensions for

nearby nodes, and becomes negligible for nodes far apart. An illustrative example where

G is inherently 2-dimensional with low variance in the third dimension is shown in Figure

2.4.
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2.3.2 Dealing with Dynamic Graphs

Under mobility and channel uncertainty, large scale distances remain relatively unaffected

over short time scales. We exploit this slow evolution by updating the embedding in a

lazy manner, but giving up on short distances. Specifically, we propose to use a sliding

window mechanism to update the embedding in the face of graph dynamics. Every time

the distance to a new beacon is learned, the oldest distance is thrown away. By only

changing one of the beacons at a time, the coordinate system cannot change drastically as

the other beacons remain fixed. Always choosing new random beacons ensures that we are

not dependent on the initial choice of beacons. A new random choice at every iteration

guarantees a good performance on average.

We include an additional mechanism to stabilize the embedding. To make the em-

bedding locally consistent, nodes estimate their distances to the beacons as the average

of their observed distance and the observed distances of their one-hop neighbors. The

underlying idea is that when a node moves into a new neighborhood, its distance estimate

should be close to the distance estimates of its new neighbors. Local coherence is especially

important for geographic routing, where all forwarding decisions are local.

2.3.3 Formal Description of PB Algorithm

At every time step k, a new beacon node is randomly selected. This beacon floods the

network with a control message, through which each node learns its shortest-path distance

in G to the new beacon.

Our heuristic updates node i’s embedded position x(i), by iteratively minimizing the

criterion given in (2.2) using a gradient-descent technique. Nodes know their (virtual)

Euclidean distance and graph distance to beacons and consequently new beacons can

be chosen with a higher probability if they are well embedded with respect to already

existing beacons. Adding new beacons will push nodes out of local minima. To increase

the probability that neighbors have similar coordinates (e.g., to move to the same side of

the plane in Figure 2.4), the input hop-distance to the algorithm is the average of a node’s

and its neighbors’ hop-distances. More precisely, at every time k, a randomly selected
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2.4. Routing Algorithm

beacon Bk floods the network with its virtual position x(k)(Bk), where the superscript

indicates the time-index of the coordinate. All other nodes i in the network obtain their

hop distance, or proximity, Pi(k) to Bk in this way. We initialize x(0)(B0) with a random

M -dimensional vector.

Nodes have a buffer in which they store their proximities (hop-distances) to the b last

beacons as well as the virtual positions of these beacons at the time they flooded. Let us

call B(k) the set of the b last beacons at time k, and Pi(k− l) the proximity of node i and

beacon Bk−l at time k− l. Let Eij = ||x(i)−x(j)|| denote the Euclidean distance between

nodes i and j with positions x(i) and x(j) (in the virtual/embedded space) and Ni the

one-hop neighbors of i. The probabilistic beaconing algorithm is shown in Algorithm 1.

This algorithm is executed by all nodes at every time step k i.e., every time a new beacon is

elected and floods the network. Nodes temporarily store a vector containing the average of

their distances to the beacons and the distance of their one-hop neighbors to the beacons.

Then, nodes iteratively project their position on a hypersphere around every beacon of

radius equivalent to the previously estimated distance ĥ to that beacon. The input to the

next iteration is the average of the projections. Figure 2.5 illustrates two iterations of the

algorithm in a two dimensional space with three beacons. In practice, given the average

hop-count ĥu(k) of its neighborhood, node vi attempts to minimize the criterion h(�x) given

in Equation 2.2. The gradient of h(�x) with respect to �x is 2
∑B

u=1
�x−bu

||�x−bu|| [||�x − bu|| − ĥu].

The iterative method proposed in Algorithm 1 is a gradient-descent method, which can

be shown to go to a local minimum and therefore converge. Instead of stopping after a

fixed number of steps W , we can also choose a stopping criterion such that the gradient

is small enough.

2.4 Routing Algorithm

As we have explained, geometry plays a role for large distances, such that a small number

of beacons are sufficient to embed at a low distortion and roughly place nodes at the

correct location. To accurately embed short distances, practically every node would have

to be a beacon and the dimension of the embedding would be much higher, which is not
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input : At time k, a vertex vi obtains distance Pi(k) to beacon Bk

output: Adjusted virtual position

for u = 0 to b − 1 do1.1

ĥu(k) ← 1
|Ni|+1

(
∑

j∈Ni
Pj(k − u) + Pi(k − u)

)

;
1.2

/* Adjust distances to beacons, averaged over neighborhood */

end1.3

x := 1
|Ni|+1

(
∑

j∈Ni
x(k)(j) + x(k)(i)

)

;
1.4

/* Starting point is center of mass of node i + neighbors */

repeat1.5

x := x + 1
b

∑b−1
u=0

(

ĥu(k) − ||x − x(k−u)(Bk−u)||
)

x−x(k−u)(Bk−u)

||x−x(k−u)(Bk−u)||1.6

/* Gradient descent */

until the maximum number of iterations W is reached ;1.7

x(k+1)(i) := x;1.8

/* Update position */

Algorithm 1: Probabilistic Beaconing (PB) Algorithm

a desirable property for an embedding algorithm. We propose two local mechanisms to

cope with these inconsistencies in the coordinate system.

The first mechanism is based on the principle of slack introduced in Section 2.2, which

showed that the largest distortion of the distances occured in the local neighborhood. To

overcome these errors, the idea is that every node can build a local routing table that is

sufficiently large to overcome this local inaccuracy of the coordinate system. Therefore,

the size of the slack is related to the size of such a local routing table.

Alternatively one can use Biased Random Walk (BRWalk) explained below. BRWalk

is designed for coordinate system which are slightly inaccurate, such as the one obtained

with PB or noisy samples of real coordinates in a dense network (without large voids).

It trades off path length for robustness by not trusting the coordinate system completely.

In BRWalk, the next hop is chosen randomly among all neighbors. By introducing ran-

domness into the routing decisions, we tolerate some “wrong” forwarding decisions which

on one hand increase the path length but on the other hand allow to transparently avoid

getting stuck in a dead-end. Nodes which are geographically closer to the destination

than the current node have a higher probability of being selected as next hop, but going

“backward” and loops are not excluded. In order to reduce the probability of visiting the
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Figure 2.5: Two iterations of the PB algorithm in 2 dimensions. The node projects itself
on a hypersphere of radius hu around every beacon Bu. The input to the next
iteration is the average of these projections. This implements a gradient-descent
minimization of h(·) defined in Equation 2.2.

same node several times, one can store a constant size list of the last visited nodes and

reduce the probability of returning to these nodes.

Assume a source s has a packet for a destination t. For every node j ∈ Ns, s computes

the difference between its Euclidean distance to the destination and the Euclidean distance

of node j to the destination ∆j = Est − Ejt. Then, the probability of choosing node j as

a next hop is given as pj =
f(∆j)∑

k∈Ns
f(∆k) . Additionally, if the packet can hold the identifier

of the last n hops in a variable path, one can modify the probability of visiting a node

which occurs several times in the path i.e.,

pj =
f(∆j, path)

∑

k∈Ns
f(∆k, path)

(2.3)

One possibility is to set f(∆j, path) = eα∆

2m where α is a parameter determining the “greed-

iness” of the routing and m is the number of times node j appears in path. Note that when
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α → 0, the routing algorithm simply performs a random walk and that when α becomes

large enough, BRWalk routing is equivalent to greedy routing (in this case the path is

not taken into account). The next hop is a sample drawn according to the distribution

given in Equation 2.3. Note that in this routing algorithm, packets need to have a time

to live (TTL) field, as in the worst case, with low probability they might never reach the

destination. We consider that a small percentage of lost packets is acceptable if it allows

us to considerably reduce the overhead.

2.5 Simulation Results

In this section we evaluate our algorithms through a series of simulations using a custom

discrete time simulator. In every round, nodes first move, then update their positions, and

then communicate. A node can communicate with any other node in the network during

such a round, potentially over multiple hops. We assume for simplicity that there is no

packet loss at the MAC layer.

2.5.1 Experiment Design

Our embedding algorithm is designed to cope with long term fading rather than with short

term fading. Consequently, we consider that nodes can move but that the channels, which

are determined by the environment, do not change over time. The network model we use

therefore consists of an S × S grid of locations. Every location can be occupied by none,

one or several nodes. The channel existing between the locations is drawn a priori. Hence,

if a node i occupies a location l1 and another node j occupies a location l2, these nodes will

be directly connected through an edge (i, j) if a link exists between the two locations l1 and

l2. In our simulation we consider that every location picks λ other locations according to

an exponential distribution with mean r for the distance and at angles chosen uniformly

at random around itself to connect to.5 Note that this is not a unit disk graph model

5Channels are considered to be bidirectional, so that a location which is “chosen” by another node can
have a degree higher than λ, while a node that randomly picks several times the same location might have
a degree lower than λ. We bound connectivity to λ locations for simplicity, and verified that the results
are equivalent to an exponential distribution over all points.
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(UDG)6, and consequently routing algorithms tailored for this particular class of graph

are not applicable (e.g., planarization in [BMSU99,KK00,KWZZ03]). To simulate node

mobility, we use the random walk (RW) model and the random waypoint (RWP) model.

When a node moves, its coordinates are rounded to the closest grid location. We compare

our approach with BVR [FRZ+05b] and with the averaging (NoGeo) approach proposed

in [RRP+03]. For NoGeo, unless stated otherwise, we consider that the perimeter nodes as

well as their positions are known. We made that choice as applying the “perimeter node”

criteria described in [RRP+03] led to a very large amount of falsely detected perimeter

nodes and in turn to very poor performance with the random channel model, especially

in mobile scenarios. By default, we consider 20 perimeter nodes. Unless stated otherwise,

we consider a network of size S = 30 with N = 1500 nodes with λ = 10 and an expected

communication range of r = 1.5. As a general rule, we allow an overhead of 10 messages

per node to build the embeddings per round (10 averaging steps for NoGeo, 10 beacons

can flood for BVR and PB). In BVR the dimension of the embedding is equivalent to

the number of beacons. To make the comparison with PB meaningful, we use the same

dimension of embedding for PB and BVR and 2 for NoGeo. We also use b = 20 for PB.

The dimension of embedding M can be considered low if it is constant and M ≪ N , where

N is the number of nodes. The dimension M set to 20 by default for PB and BVR.

2.5.2 Performance Metrics

We evaluate embedding algorithms according to the following criteria:

2.5.2.1 Distortion

Given two nodes i and j with virtual coordinates x(i) and x(j), we define the multiplicative

distortion as ||x(i)−x(j)||
rij

where rij denotes the shortest path distance in the connectivity

graph between i and j.

6In a UDG model, nodes i and j with positions x(i) and x(j) respectively are connected if and only if
||x(i) − x(j)|| ≤ r, for a fixed communication radius r.
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2.5.2.2 Greedy Routing Success Rate (GSR)

The fraction of packets that reach their destination by making only local forwarding de-

cisions based on the coordinates of the nodes in the neighborhood and the position of the

destination. For PB and NoGeo, we use classic greedy routing which forwards a packet to

the neighbor closest in Euclidean distance to the destination. For BVR, we use both greedy

routing and the routing algorithm proposed in [FRZ+05b], here called “BVR greedy” and

“BVR”, respectively. For the latter, the distance between two nodes p and d is given by

Aδ+ + δ−, where δ+(p, d) =
∑

max(pi − di, 0) and δ−(p, d) =
∑

max(di − pi, 0). Index

i corresponds to the ist coordinate. As in [FRZ+05b], we set weight A = 10 and take all

beacons into account. The neighbor that minimizes this distance function is chosen as a

next hop.

2.5.2.3 Path Stretch

The path stretch is the ratio between the actual number of hops a data packet traveled

from a source to the destination and the shortest path distance in hops between these two

nodes. We only consider successful communication.

2.5.2.4 Communication Overhead

We consider as overhead all packets that are not data packets. This includes the packets

flooded by beacon nodes as well as the packets used to build local routing tables and the

packets used in ring search.

2.5.2.5 Virtual speed

This metric captures how fast nodes move in the virtual coordinate space, i.e., the average

Euclidean distance between the virtual coordinates of nodes from one round to the next.

2.5.3 Static Networks

In this section, we investigate the performance of PB in static networks both in terms of

embedding quality and routing efficiency.
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2.5.3.1 Quality of Embedding

In Figure 2.6(a), we show the empirical cumulative distribution function (ecdf) of the

multiplicative distortion in a fixed network size. It can be seen that it is low with PB.

This indicates that PB can efficiently capture the inherently low dimensional structure of

wireless connectivity graphs. Further, a small number of beacons suffice to this end. One

can also point out the fact that the slope of the cumulative distortion curve with PB is

almost vertical which indicates a lower variance. It is interesting to note that the distortion

of BVR is high, since nodes are spread out in all dimensions. Due to the randomness of

the channel, there can also be highly distorted distances with the real coordinate system

(e.g., if nodes located in neighboring locations are not connected directly). With NoGeo,

the averaging procedure can place nodes arbitrarily close or far apart so that a fraction of

distances are highly distorted. As shown in Fig. 2.6(b), the mean multiplicative distortion

does not appear to grow considerably with the size of the network. In addition, it stays

very close to 1 with PB, which tends to indicate that even the additive distortion is small.

A direct consequence will be that geographic routing performs well on top of a virtual

coordinate system built with PB, independently of the size of the network.
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Figure 2.6: Cumulative distribution function of multiplicative distortion for 2000 nodes and
mean distortion as a function of number of nodes. When we increase the number
of nodes, we maintain a constant density of 2 nodes per grid location.
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Figure 2.7: GSR as a function of network size, node density and number of obstacles (ran-
domly placed straight walls of length 6). The overhead allowed to build the
embedding is set to 20 messages per node.

2.5.3.2 Quality of Routing

We will first investigate the performance of greedy routing on top of virtual coordinate

systems in a static setting. In particular, we will focus on the performance of the algorithms

in networks of increasing size, networks of increasing node density and in inhomogeneous

network topologies. We will also investigate local optimization mechanisms to improve

the quality of routing.

Scalability, Density, and Inhomogeneity Increasing the size of the network while

maintaining a constant density of 2 nodes per grid location has the effect of introducing

larger distances in the topology. The overhead per node allowed to build the embedding

is kept constant. A consequence is that in PB and BVR, the beacons are spread out.

We show in Figure 2.7(a) that this affects the GSR of PB only marginally. On the other

hand, a clear effect can be seen with NoGeo as the node positions depend on the position

of perimeter nodes and the averaging takes more time to reach the center of the network.

A direct consequence of the way the BVR embedding is built is that is is easier to route

toward beacons. Indeed, one can observe that the GSR decreases remarkably with this

approach when we increase the network size. A similar phenomenon can be observed when

the network area is reduced and the number of nodes is kept constant. Figure 2.7(b) shows

that NoGeo and also BVR are severely affected by changes in the network diameter, while

PB is relatively unaffected.

Increasing the network size also creates voids in the topology as not all grid locations

are occupied anymore, which reduces the GSR of real coordinates. This effect can also be
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seen in topologies with obstacles (see Figure 2.7(c)).

Note that the GSRs of NoGeo and BVR are fairly low since we limit all approaches

to the same overhead to build the embedding and the convergence speed of PB is higher.

Our simulations have shown that in order to reach the same GSR as PB, NoGeo and BVR

need an overhead of up to 100 messages per node in this setting.

Local Optimizations As explained in 2.2, small distances are hard to embed.

As explained in Section 2.4, allowing nodes to build local routing table of growing scope

can increase the GSR and reduce the path stretch remarkably as shown in Fig. 2.8(b) and

2.8(a), but the overhead to build the routing tables increases likewise.

BRWalk allows to trade path length for overhead. In Figure 2.8, we show that for a

sufficiently high value of the parameter α (see Section 2.4), the stretch can be as low as 2

while the GSR reaches 100%, which is similar to the one obtained with local routing tables

at no cost in terms of overhead. This shows that when a good next hop is available that is

much closer to the destination than the current node, this node should be chosen. In other

words, if we make a big progress in Euclidean space, we should trust the embedding. On

the other hand, when no such node exists, a next hop should be chosen randomly. This

result also suggests that there are small errors in the embedding. The ordering with respect

to a target node of nodes embedded nearby can be perturbed. In turn, this phenomenon

leads to wrong forwarding decision. Introducing randomness in the forwarding decisions

appears to be an efficient way to mitigate the effects of such disorderings.

2.5.4 Mobile Networks

Here, we study the behavior of embedding algorithms when the wireless connectivity graph

is dynamic because of node mobility.

2.5.4.1 Quality of Embedding

In mobile networks, we measure the quality of embedding by looking at the average virtual

speed of nodes in the virtual coordinate system. Only a certain amount of “fresh” distance

information is injected per round. In this case, the embedding is partly built based on
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Figure 2.8: GSR and path stretch for BRWalk routing and forwarding with local routing
tables. α captures the randomness of the forwarding in BRWalk. A greater
value for α means less randomness. In this experiment, packets have a memory
of 20 hops, as explained in Section 2.4.

outdated distance information. The virtual speed with PB is of the same order as the real

speed of the nodes. The sliding window mechanism mitigates the effect of injecting new

distances while the averaging mechanism mitigates the local incoherence in the coordinate

system. Again, we assume that for NoGeo perimeter nodes are given, since the perimeter

node detection procedure in [RRP+03] (a node is a perimeter node if it is further away

from a beacon node than all of its two hop neighbors) leads to a large number of false

positives and ultimately to the collapse of the coordinate system. In Figure 2.9(a), we

show the average virtual speed of nodes when the nodes move according to the RW and

RWP model with a speed of 1.
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Figure 2.9: Virtual Speed and GSR under mobility as a function of the allowed number of
iterations to update the coordinate system between every move

2.5.4.2 Quality of Routing

Second, we analyze the quality of routing in a dynamic setting.

Instantaneous GSR We investigate the performance of PB when we limit the number

of iterations to update the algorithm in every round. Figure 2.9(b) shows that as few

as 5 iterations are sufficient to obtain a high GSR. For the sake of clarity we only show

the results for the RWP as the RW results are very close. It is remarkable that even

under mobility a higher GSR than with real coordinates can be obtained. There is an

interesting trade-off between stability and GSR. The more fresh information is added to

the embedding, the more it moves but the better the GSR. In a static environment, BVR

is more stable since the beacon nodes never change, but the GSR of PB can still be up

to two to three times higher than that of BVR, depending on the number of beacons. In

a mobile environment, however, PB is both more stable and more efficient in terms of

GSR. Note that the GSR of NoGeo decreases because new perimeter nodes are selected

continuously, and the coordinate averaging does not manage to propagate through the

network sufficiently fast to keep up with the new information.

Reliable routing We now investigate reliable routing under mobility. When a packet is

stuck with greedy forwarding, a ring search is started until a node closer to the destination

is found for NoGeo and PB. For BVR, we use the recovery strategy proposed in [FRZ+05b]

37



Chapter 2. Virtual Coordinates for Routing in Dynamic Ad hoc Networks

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

Number of nodes

O
v
e
rh

e
a
d
/m

e
s
s
a
g
e

PB

NoGeo

BVR greedy

BVR

real

(a) Overhead per packet

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

d
e
a
d
−

e
n
d
s
/m

e
s
s
a
g
e

PB

NoGeo

BVR greedy

BVR

real

(b) Dead-ends per packet

0 2000 4000 6000 8000 10000
2

2.5

3

3.5

4

4.5

5

5.5

Number of nodes

fl
o
o
d
in

g
 r

a
d
iu

s
/d

e
a
d
−

e
n
d

PB

NoGeo

BVR greedy

BVR

real

(c) Flooding radius per dead-end

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

Number of nodes

p
a
th

 s
tr

e
tc

h

PB

NoGeo

BVR greedy

BVR

real

(d) Path stretch

Figure 2.10: Reliable routing under mobility. Nodes move according to the RWP model with
speed 1 and pause time 0. The are on average 2 nodes per grid location and we
maintain this density fixed while we increase the number of nodes. Nodes are
allowed an overhead of 5 messages to update the embedding before they move
again (5 iterations). The dimension of embedding is 20 for BVR and PB and
2 for NoGeo

which routes a packet toward the beacon closest to the destination. If along the way, the

packet reaches a node which is closer to the destination than the dead-end, greedy mode

is resumed. Otherwise, a ring search is started from the beacon. In Fig. 2.10, we are

interested in how the communication overhead to achieve reliable communication scales

with the size of the network. We allow only a fixed overhead per node to update the

embedding in every round, and consequently the embeddings will be based on outdated

distance information. In Fig. 2.10(a), it can be seen that reliable communications are

less costly in terms of overhead with PB than with the other approaches. Note that the
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overhead with real coordinates remains low as there is no additional cost to update the

real coordinate system. The gap between the different schemes grows as the size of the

network increases. Fig. 2.10(b) and Fig. 2.10(c) give us some insight. In the former, it

can be seen that the number of dead-ends per packet sent remains very low with PB. In

the latter, it is shown that when such a dead-end occurs recovery is cheap. Indeed, on

average a node only needs to search its two hop neighborhood to find a suitable next hop.

With the other approaches, the number of dead-ends per packet increases with network

size as well as the search radius necessary to find a next hop. It is also worthwhile to note

that the path stretch with PB remains more or less constant. These are indicators that

the quality of the embedding and its stability do only scale well with PB.

Location service Overall, our simulations show that the embeddings built with PB are

sufficiently stable to be used with Last Encounter Routing (LER) [GV06], resulting in

a complete solution for routing in dynamic wireless ad hoc networks with low overhead.

As expected, PB is particularly efficient compared to real coordinates in inhomogeneous

topologies. Indeed, our experiments have shown that in settings with obstacles the over-

head to route a packet with a PB embedding and LER (including the overhead to build

the embedding) remains lower than the overhead necessary to route a packet with LER

on top of real coordinates. This remains true when we increase the network size. We refer

the reader to [TDGW07b] for a more in depth explanation of LER on top of PB. Note

that when the topology is fixed, all embeddings oscillate very little and are consequently

also adapted for classical location services (LS). Indeed, location services updates are in

general triggered when a node has moved a certain distance.

2.6 Concluding Remarks

In this work we present a novel embedding algorithm for greedy routing on virtual coordi-

nates that is robust to network dynamics and random channel conditions. Its key feature

is the intricate combination of local information (averaging) and global information (prob-

abilistic beaconing) in an iterative, distributed manner. We give some intuition why these

connectivity graphs are inherently well embeddable even in the face of mobility. The pro-
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posed algorithm significantly outperforms existing embeddings in terms of success rate of

greedy routing, convergence and distortion of the embedding, and overhead in static as

well as dynamic environments. We further show that some degree of randomness in the

routing decisions alleviates the effects of local inaccuracies in the positions of the nodes.

In Chapter 3, we will formalize the intuition developed in this chapter.
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Chapter 3

Hierarchical Routing in Dynamic Ad hoc Networks

As we have seen in the previous chapter, a major challenge in the design of wireless

ad hoc networks is the need for distributed routing algorithms that consume a minimal

amount of network resources. Clearly, this is particularly important in dynamic networks,

where the topology can change over time, and therefore routing tables must be updated

frequently. Such updates incur control traffic, which consumes bandwidth and power.

Hence, we concluded that it was natural to ask whether there exist low-overhead schemes

for dynamic wireless networks that could produce and maintain efficient routes. In this

chapter, we again consider dynamically changing connectivity graphs that arise in wireless

networks. Our performance metric for the algorithms is the average signaling overhead

incurred over a long time-scale when the topology changes continuously. Our goal is again

to design a routing algorithm which can cope with such variations in topology. We intend

to maintain efficient routes from any source to any destination node, for each instantiation1

of the connectivity graph. By efficient, we mean that we want to guarantee that the route

is within a (small) constant factor, called stretch of the shortest path length. However,

in this chapter, we attack the problem in a different way. Recall that in Chapter 2, we

embedded the network in a low-dimensional space, so that we could perform greedy routing

on top of the virtual coordinate system. In this chapter, we try and get rid of the need for

a separate location service. In order to route to a destination, we need only the identity

1We assume inherently that the round-trip time (RTT) of a packet from source to destination is much
smaller than the time-scale of topology change.
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of the destination and not its address i.e., the control traffic to maintain the mapping

between node identity and address/location is incorporated into the overhead. Therefore,

in the wireless routing terminology, we have included the “location service” in the control

signaling requirement, and therefore hope to characterize the complete overhead needed

to maintain efficient routes. In contrast to the approach in Chapter 2 that mapped the

network to a low dimensional space independently of its intrinsic dimension, we try here

to develop an approach that adapts to this intrinsic dimension. The results presented

in Chapter 2 were based on simulations of heuristic routing and embedding algorithms.

While these approaches appear to be very promising and gave us an intuition about how

to deal with dynamic wireless networks, the difficulty to analyze the performance formally

is somewhat limiting. On the other hand, the new approach presented in this chapter,

as well as the theoretical analysis of the properties of wireless networks, allows us to

derive asymptotic bounds on the signaling overhead and the stretch. Further, the results

presented in this chapter can also give us insights about why the embedding algorithms

of Chapter 2 performed so well.

In order to develop and analyze the routing algorithms we utilize the underlying ge-

ometric properties of the connectivity graphs which arise in wireless networks. This geo-

metric property is captured by the doubling dimension of the connectivity graph. A graph

induces a metric space by considering the shortest path distance between nodes as the

metric distance. The doubling dimension of a metric space is the number of balls of radius

R needed to cover a ball of radius 2R. For example a low-dimensional Euclidean space

has a low doubling dimension as will be illustrated in Section 3.2. A metric space having

a low (constant independent of the cardinality of the metric space) doubling dimension is

called “doubling”. We show that several wireless network graphs (under conditions given

in Section 3.2) are doubling and therefore enable the design and analysis of hierarchical

routing strategies. In particular, it is not necessary to have uniformly distributed nodes

with geometric connectivity for the doubling property to hold, as illustrated in Figure 3.2

in Section 3.2. Therefore, the doubling property has the potential to enable us to design

and analyze algorithms for a general class of wireless networks. Moreover, for a large

class of mobility models, the sequence of graphs arising due to topology changes are all
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doubling (for specific wireless network models). Since there are only “local” connectivity

changes due to mobility, there is a smooth transition between these doubling graphs. We

can utilize the locality of topology changes to develop lazy updates methods to reduce

signaling overhead.

We show that several important wireless network models produce connectivity graphs

that are doubling. In particular, we show that the geometric random graph with connectiv-

ity radius growing as
√

log n with network size n, the fully connected regime of the dense

or extended wireless network with signal-to-interference-plus-noise ratio (SINR) thresh-

old connectivity, and some examples of networks with obstacles and non-homogeneous

node distribution are doubling. We define a sequence of wireless connectivity graphs to

be smooth if each of the graphs is doubling and the shortest path distance between two

nodes in the graph changes smoothly (defined in Section 3.2). This defines mild regularity

conditions on the mobility model.

Our main results in this chapter are the following. (i) For smooth geometric sequence

of connectivity graphs, we develop a routing strategy based on a hierarchical set of beacons

with scoped flooding. We also maintain cluster membership for these beacons in a lazy

manner adapted to the mobility model and doubling dimension. (ii) We develop a worst-

case analysis of the routing algorithm in terms of total routing overhead and route quality

(stretch). We show that we can maintain constant stretch routes while having an average

network-wide traffic overhead of O(n log2 n) bits per mobility time step. The load-balanced

algorithm would require O(log3 n) bits per node, per mobility time. Through numerics we

show that the theoretically obtained worst-case constants are conservative.

3.1 Relationship to Published Works

Routing in wireless networks has been a rich area of inquiry over the past decade or more.

In the introduction of Chapter 2, we gave an overview of the two main paradigms for

routing in wireless ad hoc networks: geographic routing and topology based routing. In

summary, geographic routing algorithms (see for instance [KK00] and references therein)

exploit the inherent geometry of wireless networks, and base routing decisions directly on

43



Chapter 3. Hierarchical Routing in Dynamic Ad hoc Networks

the Euclidean coordinates of nodes. Their performance depends on how well the Euclidean

coordinate system captures the actual connectivity graph, and these approaches can there-

fore fail in the presence of node or channel inhomogeneity (like in Figure 3.2 in Section

3.2). Another important, but often overlooked, issue with geo-routing is that geograph-

ical positions of the nodes need to be stored and continuously updated in a distributed

database in the network, to allow sources of messages to determine the current position

of the destination. This database is called a location service (see for instance [LJDC+00])

and must be regularly updated so that source nodes can query it. Location services typi-

cally rely on some a-priori knowledge of the geographical boundaries of the network. This

is necessary because these approaches typically establish a correspondence (for example,

through a hash function) between a node identifier and one or several geographical loca-

tions where location information about that node is maintained. An important feature

of our work is that we consider the total overhead incurred by the update and lookup

operations of the location service, and the overhead of the routing algorithm itself.

Topology based routing schemes (see [PR97] and [JMB01a]) do not utilize the under-

lying geometry of wireless connectivity graphs, but instead compute routes based directly

on that graph. As explained in Chapter 2, to reduce overhead, most of these schemes

only establish routes on demand through a route discovery operation, rather than con-

tinuously maintaining a route between every pair of destinations; in this respect, they

differ significantly from their counterparts for the wired Internet (such as OSPF, IS-IS,

and RIP). Recently established routes are cached in order to allow their reuse by future

messages. In distance-vector based approaches (e.g., [PR97]), this cached state resides

in the intermediate nodes that are part of a route, whereas in source-routing approaches

(e.g., [JMB01a]), the cached state resides in the source of a route. Despite such opti-

mizations, topology-based approaches suffer from the large overhead of frequent route

discovery operations in large and dynamic networks. This issue was, in fact, the reason

why geo-routing approaches have reached prominence.

Two schemes that utilize the underlying geometry of graphs are the works presented

in [RRP+03] (referred to as “NoGeo” in Chapter 2), and the beacon vector routing (BVR)

introduced in [FRZ+05a]. We used those two schemes as performance benchmarks in
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Chapter 2. These schemes were designed for static wireless networks2. Both these schemes

are heuristics which build a virtual coordinate system. Geographic routing on top of

these schemes was shown to work well through numerics, when compared to routing on

top of real coordinates. However, they utilize an external addressing scheme to make

a correspondence between addresses and names. In [TDGW07a] (the work presented in

Chapter 2), we studied routing on dynamic networks using a virtual coordinate system. For

large scale dynamic wireless networks, these heuristics pointed to significant advantages

to using some geometric properties for routing and addressing. These results motivated

the questions studied in this chapter.

There has been a vast amount of theoretical research on efficient routing schemes

in wired (i.e., static) networks (see for example [Gav01]). Most of this work has been

focused on the trade-off of memory (routing table size) and routing stretch. There are two

main variants of such routing schemes (i) labeled (or addressed) routing schemes, where the

nodes can be assigned addresses so as to reflect topological information; (ii) named routing,

where nodes have arbitrary names, and as part of the routing, the location (or address)

of the destination needs to be obtained (similar to a location service). This examines

the important question of how the node addresses need to be published in the network.

Routing in graphs with finite doubling dimension has been of recent interest (see [KRX06],

and references therein). In particular [Tal04] showed that one could get constant stretch

routing with small routing table sizes for doubling metric spaces, when we use labeled

routing. This result was improved to make routing table sizes smaller in [CGMZ05]. The

problem of named routing over graphs with small doubling dimension has been studied

in [KRX06] and [AGGM06], and references therein. To the best of our knowledge, there

has been no prior work on dynamic graphs over doubling metric spaces and on control

traffic overhead. It is worth pointing out that there is no direct correspondence between

control traffic and memory. Bounds on memory do not take into account the amount of

information which needs to be sent around in the network in order to build routing tables.

A good illustration is the computation of the shortest path between two nodes u and v

2Our simulations (see Chapter 2, Figure 2.10) confirmed that their performance degrades substantially
under mobility
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in a graph. While it is sufficient for every node on the path between these two nodes to

have one entry for v (of roughly log n bits i.e., the name of the next hop), computing that

shortest path requires a breadth first search of the communication graph and leads to a

control traffic overhead of O(n log n) bits.

3.2 Models and Definitions

A wireless network consists of a set of n nodes spread across a geographic area in the two-

dimensional plane. We model the network region as the square area [0,
√

n)×[0,
√

n) . The

n nodes move randomly in this area and we denote by x(t)(u) the position of node u at time

t. The connectivity between two nodes is represented by an edge on the connectivity graph

G(t)
n if they can communicate directly over the wireless channel. The connectivity between

two nodes depends on the distance between the two nodes (and could also depend on the

presence of other nodes, see Section 3.2.2). We consider that when a node u transmits

on the wireless channel, it broadcasts to all its neighbors in the connectivity graph G(t)
n .

Consequently, one transmission of a packet is sufficient for all direct neighbors to receive

that packet. To make the notation lighter, we will only add the dependence on time if

it is necessary to avoid confusion. The distance d(t)(u, v) between nodes u and v is the

shortest path distance between these nodes in G(t)
n . Note that d(., .) is a metric on G(t)

n ,

i.e., the distance between a node and itself is zero, the distance function is symmetric and

the triangle inequality applies. We will now define a ball of radius R around a node u. It

is simply the set of nodes within distance R of u. More formally, we can define it more

generally for any metric space as follows:

Definition 1. A Ball B(t)
R (u) around node u at time t in a metric space X is the set

{
v ∈ X|d(t)(u, v) ≤ R

}
.

In order to bound the control traffic overhead, we will recursively subdivide the con-

nectivity graph into balls. It will be crucial for us to bound the number of balls of radius

R necessary to cover a ball of radius 2R around some node u. In other words, we want to

find the smallest number of nodes vi such that all nodes within 2R of u are also within R

of some node vi. The notion of doubling dimension of a metric space captures this idea.
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Definition 2. The doubling dimension of a metric space X is the smallest α such that any

ball of radius 2R can be covered by at most α balls of radius R, for all R ≥ min(u,v) d(u, v)

i.e., ∀u ∈ X ∃ Su ⊆ X , |Su| ≤ α and

B(t)
2R(u) ⊆

⋃

j∈Su

B(t)
R (j)

Moreover, if α is a constant, we have the following definition:

Definition 3 (Doubling metric space). We say a metric space X is doubling if its doubling

dimension is a constant.

A good way to illustrate and understand the concept of doubling dimension and dou-

bling metric space is to look at the metric space defined by a set of points X in R
2 with the

Euclidean distance. A ball of radius 2R around a point x will simply be a disc of radius

2R around this point. To cover this disc, we will select a set of points such that all the

surface is covered by the corresponding set of discs of radius R. Note that the number of

discs required will not depend on R, and consequently this metric space would be doubling

(see Figure 3.1).

Figure 3.1: The metric space defined by a set of points in R
2 and the Euclidean distance is

doubling. Indeed, we can cover a disc of radius 2R by a constant (8 in this case)
number of discs of radius R, whatever the value of R. The number of small balls
required to cover the large ball depends on the “volume” of the balls, and not
on their cardinality.

In Section 3.2.1, we describe the geometric random graph model, which will be the

canonical model we will use to illustrate the ideas of the chapter. We also give an example
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of a non-homogeneous network to which our results can be applied. In Section 3.2.2,

we will develop the model where connectivity is determined by the SINR, and we have

uniform transmit power and full connectivity. We give the requirements for the mobility

model to result in a smooth sequence of wireless network graphs in Section 3.2.3. We state

the underlying assumptions and give a table of notations in Section 3.2.4.

3.2.1 Geometric random graph

We denote the geometric random graph by G(n, rn) and define its connectivity as follows.

Definition 4. A random geometric graph G(n, rn) has an unweighted edge between nodes

u and v if and only if ||x(u) − x(v)|| < rn, where {x(u)} are chosen independently and

uniformly in [0,
√

n) × [0,
√

n) .

In this chapter we will be interested in fully connected geometric random graphs, and

therefore focus on the case rn >
√

log n [GK98]. As a natural extension, we can also define

a sequence of random graphs G(t)(n, rn) with an unweighted edge between u and v at time

t if ||x(t)(u) − x(t)(v)|| < rn. Whether each graph in the sequence G(t)(n, rn) corresponds

to a random geometric graph as in Definition 4, depends on the mobility model for the

nodes. We discuss this in more detail in Section 3.2.3.

In Figure 3.2, we illustrate a non-homogeneous random network where connectivity

is not completely geometric as in Definition 4. An obstacle prevents communication be-

tween neighboring nodes, and therefore illustrates the complexities of wireless network

connectivity. This example is revisited in Section 3.3, where we show that though this

connectivity graph is more complicated than G(n, rn), it is still doubling, and therefore

the algorithms developed in this chapter are applicable. This illustrates the advantage of

our approach to network modeling.

3.2.2 SINR full connectivity

Since the wireless channel is a shared medium, the transmissions between nodes interfere

with each other. However, the signal strength decays as a function of the distance traveled,
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Figure 3.2: n nodes are distributed uniformly at random on a square area of side
√

n. A
wall of width rn/c is added, which only has a small hole in the middle. Again,
we assume rn >

√
log n. Nodes cannot communicate through the wall. Finally,

we remove the nodes below the wall, which leads to an inhomogeneous node
distribution.

and therefore we can define the SINR for transmission from node u to v as,

SINR =
Pn||x(u) − x(v)||−β

N0 +
∑

w �=u,v P ||x(w) − x(v)||−β
, (3.1)

where β is a distance loss (decay) parameter depending on the propagation environment,

Pn is the common transmit power of the nodes and N0 is the noise power. We can of

course easily adapt this to have power control for the nodes. A transmission is successful

if the SINR is above some constant threshold value ς. For static nodes, just as in the

case of geometric random graph, we assume that the node locations {x(u)} are chosen

independently and uniformly in [0,
√

n) × [0,
√

n) . This model for wireless networks has

been extensively studied in the literature (see [GK00, KV02]). The authors base their

analysis of the capacity of wireless networks on a TDMA scheme for the SINR connectivity

model of (3.1). We argue here that the structure of the resulting connectivity graph is

identical to that of G(n, rn), for rn >
√

log n. Therefore, the results we prove for G(n, rn),

would also be applicable to such graphs. In practice, it is a non-trivial task to design

a distributed scheduling protocol (MAC layer protocol) that mimics the behavior of this

TDMA scheduler. However, these MAC layer implementation issues are beyond the scope

of this document (see for instance [MSZ06]). We only make the argument here that the

connectivity graph resulting from such a TDMA scheme would yield the same behavior

as a G(n, rn).

We will subdivide the network into small squares of side sn = rn
c . We need to show that
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if two nodes u and v are in neighboring small squares (and so have the guarantee that they

can communicate under the G(n, rn) model as we will see in the sequel), then there exists

a TDMA scheme that allows them to communicate under the SINR connectivity model

of (3.1). If this is the case, then we can apply the same proof techniques for both models.

We let the maximum transmission power grow in the same way as we did for the G(n, rn)

model3 i.e. Pn ≤ (Noςrn)β. Additionally, we want to design a TDMA scheme such that

the capacity of all links is at least O( 1
log n) [bits/sec]. It can be shown (see [RS98]) that

every small square contains at most O(log n) nodes with high probability. Hence, we ask

that the traffic can flow at constant rate independent of n between neighboring small

squares, and that each node is treated equally. Note that this requirement is very similar

to the scheme proposed in [GK00] in which one node per small square can transmit at

constant rate to any neighboring square4.

Theorem 1. There exists a TDMA scheme such that all nodes can communicate with

any node located in a neighboring small square at a rate of O( 1
log(n)) [bits/sec]. Hence, the

aggregate traffic can flow between neighboring small squares at a constant rate independent

of n.

Proof. We take a coordinate system, and label each square with two integer coordinates.

Then we take an integer k, and consider the subset of squares whose two coordinates are

a multiple of k (see Figure 3.3). By translation, we can construct k2 disjoint equivalent

subsets. This allows us to build the following TDMA scheme: we define k2 time slots,

during which all nodes from a particular subset are allowed to transmit for the same

duration of O( 1
log n) seconds. Each small square contains at least one and at most O(log n)

nodes w.h.p. (see [RS98] and the proof of Theorem 3). We assume also that at most one

node per square transmits at the same time, and that they all transmit with the same

power Pn. Let us consider one particular square. We suppose that the transmitter in this

3Note that the G(n, rn) model corresponds to the SNIR model without interferences. Indeed, if we

remove interferences, two nodes can communicate whenever Pn||x(u)−x(v)||−β

N0

> ς for some threshold value

ς. Hence, two nodes can communicate whenever ||x(u) − x(v)|| < ( Pn

Noς
)1/β . In particular, we let Pn =

(Noςrn)β.
4The throughput achieved by this scheme is O( 1√

n log n
) [bits/second/node] when n source destination

pairs are chosen uniformly at random.
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Figure 3.3: Illustration of the TDMA scheduling scheme.

square transmits towards a destination located in a square at distance at most 1. We

compute the signal-to-interference ratio at the receiver. First, we choose the number of

time slots k2 as follows: k = 4. To find an upper bound to the interferences, we observe

that with this choice, the transmitters in the 8 first closest squares are located at a distance

at least 3 (in small squares) from the receiver (see left-hand side of Figure 3.3). This means

that the Euclidean distance between the receiver and the 8 closest interferers is at least

2sn. The 16 next closest squares are at distance at least 7 (in small squares), and the

Euclidean distance between the receiver and the 16 next interferers is therefore at least

6sn, and so on. The sum of the interferences I can be bounded as follows:

I ≤∑∞
i=1 8iPn [2sn(2i − 1)]−β

= Pn [2sn]−β∑∞
i=1 8i [(2i − 1)]−β

= (Noςrn)β
[
2 rn

c

]−β∑∞
i=1 8i [(2i − 1)]−β

This term clearly converges if β > 2. Now we want to bound from below the strength of

the signal received from the transmitter. We observe first that the distance between the

transmitter and the receiver is at most
√

2(s2
n) ≤ 2sn. The strength S of the signal at the
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receiver can thus be bounded by

S ≥ Pn min
{

1, 2s−β
n

}

= O(1)

Finally, we obtain the following bound on the SINR: SINR ≥ S
No+I . As the above

expression does not depend on n, the theorem is proved.

3.2.3 Uniform speed-limited (USL) mobility

Nodes are mobile and move according to the uniform speed-limited (USL) model, a fairly

general mobility model defined next. The USL model essentially embodies two conditions:

(i) the node distribution at every time step is uniform over the network domain, and (ii)

the distance a node can travel over a time step is bounded. We restrict ourselves to the

case in which the maximum speed is not dependent on n. In practice, of course, such an

assumption is realistic since the maximum speed of the nodes will not increase when new

nodes join the network.

Definition 5. A collection of n nodes satisfy the uniform speed-limited (USL) mobility

model if the following two conditions are satisfied:

1. At every time t, the distribution of nodes over the network domain is uniform.

2. For every node u and time t, the distance traveled in the next time step is bounded,

i.e., ||x(t+1)(u) − x(t)(u)|| < S.

The USL mobility model is quite general. For example, it includes the following cases:

(i) The nodes perform independent random walks with bounded one-step displacement.

The random walks can be biased, and the displacement distribution does not need to

be homogeneous over the node population. We have to assume that the nodes operate

in the stationary regime. (ii) The nodes follow the random waypoint model on a torus

(RWP). The system has to be in the stationary regime. (iii) The generalized random di-

rection models from [SMS06], which interpolate between the random walk and the random

waypoint cases, through a control parameter that can be viewed as the ”locality” of the
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mobility process. (iv) We can also allow for models where nodes do not move indepen-

dently. As an illustrative example, assume we uniformly place nodes on the square; the

nodes then move in lockstep according to any speed-limited mobility process, maintaining

their relative positions to each other. Observe that the uniform distribution is maintained

for all time steps5, and that the speed-limited property is true by definition.

We see that the USL class of mobility models is fairly general, and includes many of the

models that have been proposed in the literature. For simplicity, we consider that time is

discrete. In other words, we look at a snapshot of the network every ∆T seconds. At every

time step, the connectivity between nodes will be modified. Hence, we will work with a

sequence of connectivity graphs. In order to design a routing algorithm with a low control

traffic overhead, we will need to understand how fast the graph distances between nodes

can evolve over time. In particular, consider two nodes u and v at distance d = dt(u, v)

at time t. We want to bound the multiplicative factor by which this distance can change

in κ time steps. Formally, we define κ(τ, d) as follows:

Definition 6. We say that a communication network is κ(τ, d)-smooth if the shortest path

distance between any two nodes u an v at shortest path distance d cannot change by more

than a factor κ(τ, d) in τ time steps i.e., ∀u, v, we have:

max

{

d(t)(u, v)

d(t+τ)(u, v)
,
d(t+τ)(u, v)

d(t)(u, v)

}

≤ κ(τ, d)

Additionally, we simply say that the network is κ-smooth if there exists a constant ν

such that κ(νd, d) ≤ κ(ν) = κ independently of d. In this case, the distances grow at

the same speed at all scales. In the sequel, we will bound κ and ν for our model. This

USL property holds for a general class of random trip mobility models studied in [BV05],

where it is shown that the stationary distribution of such mobility models is uniform and

ergodic. We restate this theorem without proof.

Theorem 2 (Le Boudec and Vojnovic, see [BV05]). The random-trip mobility model has

uniform stationary distribution on [0, a) × [0, a).

5note that we move on a torus
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3.2.4 Assumptions

We consider that a time step ∆T is much larger than the round trip time (RTT) through

the network i.e., the time scale for mobility is much larger than the time scale for commu-

nications. For clarity and in order to simplify the analysis, we will make the assumption

that nodes can communicate instantaneously through the network. We also make the

assumption that there is a random permutation π on the nodes, and that all nodes in

the network know their rank in the permutation. In Section 3.6 we will then drop these

assumptions and consider practical aspects of the implementation. Finally, we say that a

result holds with high probability (w.h.p.) if it holds with probability at least (1−O( 1
nρ )),

for some constant ρ > 0. In Table 3.1, we summarize the notations used in this chapter.

x(t)(u) Position of node u at time t

d(t)(u, v) Shortest path distance from u to v at time t
rn Wireless communication radius

G(n, rn) Random geometric graph

B(t)
R (u) Ball of radius R around u

κ(τ, d) max
{

d(t)(u,v)

d(t+τ)(u,v)
, d(t+τ)(u,v)

d(t)(u,v)

}

≤ κ(τ, d)

Table 3.1: Table of notations

3.3 Network Properties

In this section, we prove some properties of the network models presented in Section

3.2, which are necessary to analyze the performance of our algorithm. We focus our

attention on the geometric random graph G(n, rn), but all the arguments can be extended

to the SINR full connectivity model with TDMA scheduling, discussed in Section 3.2.2.

In particular, for G(n, rn), we now consider the case in which the communication radius

rn is such that rn =
√

(1 + ǫ) log n > log1/2 n, where ǫ > 0.

For uniform speed-limited (USL) mobility models discussed in Section 3.2.3, at each

time, the node locations {x(t)(u)} have a distribution that is uniform over [0,
√

n) ×
[0,

√
n) . Therefore, we now discuss the property of a sequence of geometric random graphs,

G(t)(n, rn), under USL mobility model. We subdivide the network area on which the
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nodes live into smaller squares of side rn
c , where c is a constant chosen such that nodes in

neighboring squares are connected (see Fig. 3.4) and that an integer number of squares

fit into the network area. We arbitrarily set c =
√

5. We number the small squares from

Figure 3.4: Nodes in neighboring squares are connected

1 to m = n
(rn/c)2 = nc2

(1+ǫ) log n and denote by Ei the event that small square i does not

contain any node, in a sequence of geometric random graphs under USL dynamics over

nρ time steps, for some constant ρ. In the next theorem, we show that when nodes move

according to USL mobility model, all small squares will be populated w.h.p.

Theorem 3. There exists a constant ρ such that if we divide the network into small square

of side rn
c (with rn >

√
log n, c =

√
5), at every time step in a sequence of length nρ, every

small square contains at least one node w.h.p.

Proof. Consider a sequence of geometric random graphs over Z = nρ time steps. Denote
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by E
(j)
i the event the small square i is empty at time j. Let m = n

(rn/c)2 . We can compute:

P
[
⋃Z

j=1

⋃m
i=1 E

(j)
i

]

≤ Z
∑m

i=1 P
[

E
(j)
i

]

(a)
= Z

∑m
i=1(1 − 1

m)n

(b)
≤ Z

∑m
i=1 e−

n
m

= Zme−
n
m

= Z nc2

(1+ǫ) log ne−
nc2(1+ǫ) log n

n

≤ Z nc2

(1+ǫ) log n
1

n(1+ǫ)c2

(c)
≤ Z c2

(1+ǫ)nǫc2 log n

≤ O( nρ

nǫc2
)

= O( 1

nǫc2−ρ
)

where (a) uses the USL model which implies, due to uniform (marginal) distribution of

nodes P
[

E
(j)
1

]

= (1 − 1
m)n, (b) follows because (1 − 1

m)n ≤ e−
n
m (see [MR95], page 434),

and (c) follows because c =
√

5 > 1. We can now choose ρ such that ǫc2 − ρ > 0 and the

result follows.

It is immediate that in a single instantiation of the connectivity graph (i.e., at a given

time slot), every small square is populated w.h.p.

Corollary 1. With probability at least (1 − O( 1
nǫ )), there is no empty small square in a

sequence of length 1.

We are now ready to show that at every time step in a sequence of nρ connectivity

graphs, the connectivity graph is doubling w.h.p. Since we have a USL mobility model,

any graph G(t)(n, rn) is statistically identical to G(n, rn).

Theorem 4. G(n,
√

(1 + ǫ) log n) are doubling w.h.p.

Proof. By Corollary 1, all small squares of side rn
c contain at least one node w.h.p. Conse-

quently, neighboring squares (vertically and horizontally) have at least one communication

link. Denote by Ln the grid having the small squares as vertices, and with edges between

vertical and horizontal neighbors. Consider a ball Bupper = BG
2R(u) (i.e., a ball of radius
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2R in the communication graph G(n, rn)) centered around some node u. Clearly, all nodes

in Bupper must be contained in a square which is part of BLn
4Rc (u) i.e., Bupper ⊆ BLn

4Rc (u).

This follows from the fact that no node in Bupper can be further away from u than 2Rrn

in Euclidean distance, that the grid Ln is fully connected w.h.p., and that one link in

the grid has length rn
c . Similarly, one can see that BLn

R (u) ⊆ Blower = BG
R(u). This is a

consequence of the fact that Ln is a subgraph of G, i.e., two nodes in small squares R hops

a part in Ln cannot be more than R hops apart in G (see Fig. 3.5). For an appropriately

chosen constant α, we have:

Bupper ⊆ BLn
4Rc (u) ⊆

α⋃

j=1

BLn
R (vj) ⊆

α⋃

j=1

BG
R(vj) (3.2)

and G(n,
√

(1 + ǫ) log n) is doubling (i.e., any ball of radius 2R can be covered by a constant

number of balls of radius R).

Figure 3.5: Any ball of radius 2R can be covered by a constant number of balls of radius R.
In order to show this result, one can work with balls in the underlying lattice.
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Note that the close relationship of the geometric random graph and the corresponding

grid (lattice) is the basic insight behind this result. Additionally, note that it is possible

to build a deterministic geometric graph for which this property does not hold. We

present such a construction in Appendix A-1. Further, one can show that G(n, rn) are

not doubling w.h.p when rn <
√

log n. We prove this result in Appendix A-2. At this

point, we would like to emphasize that even though we analyze networks in which the

nodes are uniformly distributed on a square area, the doubling property is a much more

powerful tool. Indeed, our results and algorithms depend only on the doubling constant.

Consequently, the algorithms and the bounds can be applied to any other type of networks

or node configuration which lead to a doubling connectivity graph. For instance, one can

consider the network shown in Figure 3.2, described in Section 3.2.1. It can easily be

shown by using a technique similar to the one used in Theorem 4 that this network is

doubling. While we can seamlessly apply our routing algorithm to such a network, any

classical geographic routing algorithm would fail or require a high control traffic overhead

to get out of dead-ends. This is because packets would get stuck against the wall when

routed from the lower to the upper part of the network. In turn, this would considerably

degrade the performance in terms of stretch and control traffic overhead with respect to

the same network without a wall. In the next subsection we prove a set of sufficient

conditions for a wireless networks to have a constant doubling dimension.

3.3.1 Inhomogeneous Topologies

In the first part of this subsection, we show that under certain conditions, the presence

of topological holes (obstacles) in the network does not change the doubling property.

In particular, we are interested in how we can alter the topology of a fully connected

random geometric graph by removing nodes while still preserving the doubling property.

In the second part, we will generalize this idea to arbitrary metric spaces. Consider a

G(n, rn) with rn >
√

log n, such that full connectivity is guaranteed. The network area is

divided into squarelets of side rn
c , where c is chosen such that nodes in horizontally and

vertically adjacent squarelets are guaranteed to be within communication range. We now

arbitrarily select squarelets and remove all nodes they contain. We denote the new graph
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Figure 3.6: Graphs Gn , Ln and Hn . The network area is divided into squarelets of side rn

c

such that nodes in horizontally and vertically adjacent squarelets are guaranteed
to be within communication range.

we obtain by Gn . We denote by Ln the full grid where the squarelets are vertices and

by Hn the corresponding grid in Gn i.e., the thinned out grid obtained by selecting only

non-empty squarelets in Gn . In Ln , we add an edge between horizontally and vertically

adjacent squarelets (see Fig. 3.6). In Hn , we first add a an edge between horizontally

and vertically adjacent squarelets containing at least one node. Then, for every pair of

squarelets containing nodes that can communicate directly, we add an edge of weight

corresponding to the distance between those two squarelets in Ln . We add the edges

from the shortest to the longest one, and only if no path of the same length already exists

in Hn . We can now define a topological hole as follows:

Definition 7 (Topological Hole). A set of horizontally, vertically and horizontally adja-

cent empty squarelets in the graph Hn is called a hole if adding a (virtual) vertex in all of

the squarlets in that set modifies the distance between at least two vertices in Hn .

Let us denote by Vk the kth hole (k = 1, 2, 3, ...). We define the perimeter p(Vk) of Vk

as 2 times the maximum distance between any two vertices on the border of the hole i.e,

in squarelets adjacent to the empty squarelets defining the hole. Note that for all u, v, we

have dHn (su, sv) ≥ dGn (u, v).

Theorem 5. Let P = maxk p(Vk). Then, the doubling dimension is upper bounded by

O(P 2).
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Figure 3.7: A network with holes

Proof. Consider a ball BGn
2R (u) centered at u in Gn . First, observe that BGn

2R (u) ⊆
BoxLn

2Rc (u), where BoxLn
2Rc (u) is the box centered at the squarelet containing u in Ln which

contains all nodes at “maximum norm” 2Rc (i.e., l∞-norm) from this squarelet. In other

words, all nodes within 2R hops from u in Gn must be in a squarelet contained in this box.

We will now cover this box with smaller boxes BoxLn

max
{

1,
⌈

R
4γ

⌉}(svi). We need
⌈

16R2c24γ2

R2

⌉

=

64c2γ2 such boxes at most. Consider the same small boxes in Hn . Pick one non-empty

squarelet svi in each such small boxes. Note that the maximum hop distances between

two squarelets in such a small box in Ln is at most R
γ . For each of these hops, we might

have to make a detour of at most P steps. Consequently, the same two squarelets could be

at distance at most PR
γ in Hn . Observe now that for any two nodes v and w contained in

squarelets sv and sw respectively, we have dHn (sv, sw) ≥ dGn (u,w). For each squarelet

svi , we pick one node vi contained in this squarelet. Hence, for all nodes w contained in

this small box, we have dGn (vi, w) ≤ dHn (svi , sw) ≤ PR
γ . By setting γ = P , we obtain

the claim. The proof is illustrated in Figure 3.8.

We can extend this result to the case where the network can be divided into convex
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Figure 3.8: All nodes in a ball of radius 2R in Gn are contained in a box of radius 2Rc
squarelets in Ln . This large box in Ln can be covered by O(γ2) smaller boxes
of radius R/(4γ) squarelets. Any two nodes (say v and w) inside the same small
box must be in squarelets at distance at most R/γ in Ln . By hypothesis, the
perimeter of any hole is at most P . Consequently, the distance in Hn between
v and w is at most R squarelets. All nodes within R squarelets are also within
distance R in Gn , as the graph distance in Hn is always larger or equal to the
graph distance in Gn . Hence, if we select one node in each of the small boxes,
we are guaranteed to cover all nodes in the ball of radius 2R.

sets. We define a convex set in Gn with slack as follows:

Definition 8. Let Ψ be a set of nodes in Gn . Let Hn
(Ψ) be the squarelets in Hn containing

at least one node in Ψ. We say that the set Ψ is convex if ∀u, v ∈ Ψ, dHn
(Ψ)

(su, sv) =

dLn (su, sv), where su and sv are the squarelets containing u and v i.e., there must be at

least one shortest path inside the convex set. We say that the set Ψ is convex with slack

̟ if dHn
(Ψ)

(su, sv) ≤ ̟dLn (su, sv).

The perimeter of a convex set is defined the same way as the perimeter of a holes i.e.,

as two times the largest distance in the set. We can now state the following theorem

Theorem 6. Let ζ1, ζ2, ..., ζq be a partition of the network into q convex sets with slack

̟1,̟2, ...,̟q respectively. Let ϑ1, ϑ2, ..., ϑq denote the perimeter of the convex sets. The
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doubling dimension is then upper bounded by maxu,ρ 64c2
∑

ζi:ζi∩BoxLn
ρ (su)�=∅

(

⌈

ϑi
ρ

̟i

⌉

)2.

Proof. In the proof of Theorem 5, we have shown that any ball of radius 2R around some

node u is contained in a box BoxLn
ρ (su), where ρ = 2Rc (implying R = ρ

2c). We can cover

each convex set ζi intersecting this box with at most 16 ϑ2

R2

̟2
i

small boxes of side R/4̟i, as

shown in Theorem 5. Indeed, a convex area of perimeter ϑ can always be included in a

square area of side ϑ. If a convex set has slack ̟i, and is covered by small boxes of side

R/4̟i, then by selecting one node in each of the small boxes, we guarantee that all nodes

in the convex set are within R hops in Gn of one of the aforementioned selected nodes. If

the box BoxLn
ρ (su) is partitioned into several convex sets, selecting 64c2(

⌈

ϑi
ρ

̟i

⌉

)2 nodes in

each convex set ζi intersecting this box will in turn guarantee that all nodes in the box are

covered. Hence, the total number of balls of radius R needed to cover any ball of radius

2R is upper bounded by the maximum over all boxes (all centers and radii), of the sum

of the number of small boxes required to cover all the convex sets that intersect it.

In practice, this result implies that if we are given a decomposition of the network into

convex sets, we can bound the overall doubling dimension given the doubling dimension

of each set separately. Further, this result implies that networks that consist of a small

number of convex areas, which can each contain arbitrarily many small holes, have a

low complexity in terms of doubling dimension. We will now relate the “shapes” of a

topological hole to the doubling dimension. In particular, we will show that one can relate

the doubling dimension to the maximum number of connected components in any square

subarea.

Theorem 7. For any γ ≥ 2, the doubling dimension α is such that

α ≤ 4γ2c2 max

BoxLn
R/γ (u)

{

# of convex disconnected components with slack γ in BoxLn
R/γ (u)

}

Proof. In the proof of Theorem 5, we have shown that any ball of radius 2R around some

node u is contained in a box BoxLn
ρ (su), where ρ = 2Rc. In turn, we showed that by

dividing this box into smaller boxes of side R/γ, and by selecting one node in each box,

we could cover the larger ball of radius 2R. Now, in each small box of side R/γ, the
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presence of holes might create several disconnected components. However, we know that

inside each such component, we can cover any convex subset with slack γ with one nodes.

The result follows.

This last result gives us a characterization of the alterations we can make to a fully

connected G(n, rn) network, while only affecting the doubling dimension by a constant

factor. In particular, we can remove nodes as long as we do not create too many convex and

disconnected components in any square subarea. Note that we can still remove arbitrarily

many nodes as long as we only create small holes. Theorems 5 imply that topologies such

as the one shown in Fig. 3.9 have a constant doubling dimension. The results stated above

Figure 3.9: A network with topological holes and a constant doubling dimension. The size
of the large holes grow with n, but the network can be divided into a constant
number of areas, each being convex with slack O(1) i.e., each of the convex areas
contains only obstacles with a constant perimeter or that can only increase the
distance between nodes by a constant factor. Note that even though the doubling
dimension is low, greedy geographic forwarding of packets would fail as packets
would get stuck in dead-ends against the holes. Hatched regions are holes.
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are special cases of the more general result detailed in the sequel. Indeed, we can relate

the doubling dimension in a metric space to the doubling dimension in another metric

space if we know the distortion of the embedding that maps the points in one metric space

to the points in the other metric space. The example above is a special case of that setup

where we map the nodes of a graph to points in Euclidean space. Consider two metric

spaces (X, d) and (X ′, d′), where d and d′ are distance functions which define a metric on

the sets of point X and X ′. We could for instance consider the two metric spaces (X , ||.||)
and (H, d(., .)) i.e., the points in the plane with the Euclidean distance and the nodes

in the graph with the shortest path distance. A metric embedding is a bijective function

φ : X → X ′ which associates to a point in one metric space a point in another metric

space. We have already defined the notion of embedding in Section 2.2, but we repeat it

here for the convenience of the reader.

Definition 9 (Distortion of an Embedding). A mapping φ : X → X ′ where (X, d) and

(X, d′) are metric spaces, is said to have distortion at most D, or to be a D-embedding,

where D ≥ 1, if there is a K ∈ (0,∞) such that ∀x, y ∈ X,

Kd(x, y) ≤ d′(φ(x), φ(y)) ≤ KDd(x, y)

if X ′ is a normed space, we typically require K = 1 or K = 1
D . An embedding has

distortion D with slack ǫ if all but an ǫ fraction of node pairs have distortion D under

φ. Additionally, one can loosen this definition by allowing slack. The slack is said to

be uniform if each node has distortion at most D to a 1 − ǫ fraction of the other nodes.

Finally, an embedding with distortion D and slack ǫ is coarse if for every node u the

distortion is bounded to a node a distance greater than rǫ = inf
{
rs.t |BX

r (u)| > ǫn
}
.

The doubling dimension of a metric space embedded into another metric space can be

bounded as follows:

Theorem 8 (Bounding the Doubling Dimension). Consider a metric space (H, d) embed-

ded in another metric space (E , d′) by a function φ. Let the doubling dimension of E be

β. Let the distortion of this embedding be D. Then, H has doubling dimension α with

α ≤ O((2D)log β).
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Figure 3.10: Effect of embedding on doubling dimension

Proof. Choose any node u ∈ H. If the above condition is fulfilled, the images of all nodes

in BH
2R(u) can be at distance d′ at most 2KDR from u at φ(u). Hence, φ(BH

2R(u)) ⊂
BE

2KDR(φ(u)). We will now try to cover φ(BH
2R(u)) by as few balls BE

RK(φ(v)) as possible

(see Fig. 3.10, which illustrates this setup in the case when H is a graph and E the

Euclidean space). To do so, let us cover BE
2KDR(φ(u)) by small balls of radius KR in E .

Covering BE
2KDR(φ(u)) will require at most βlog 2D balls of radius KR in E , given that E has

doubling dimension β. We know that d(u, v) ≤ d′(u, v)/K, by definition 9. Consequently,

φ−1(BE
RK(φ(v))) ⊂ BH

R (v). We can conclude that BH
2R(u) ⊂ ⋃βlog 2D

j=1 BH
R (vj).

The presence of large obstacles in the network does not necessarily imply that the

network is not doubling. In particular,

Theorem 9. Consider a metric space E with doubling dimension β. A metric space H
that can be divided in k sets S1, S2, ..., Sk, such that each set embeds individually with

distortion Di into E has doubling dimension at most
∑k

j=1 β2 log 2Dj .

Proof. Consider any ball of radius 2R in H, such that the nodes in the ball belong to at

least two different sets (otherwise the theorem is clearly true). Note that the radius of

each of these subsets can be at most 4R. Consequently, we now that the part of the ball
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that belongs to Si can be covered by at most β2 log 2Di (by applying Theorem 8 to cover a

ball of radius 4R by balls of radius R). The theorem follows.

We can now broaden the class of communication networks that have low doubling

dimension. In particular, if we can subdivide the communication graph into a constant

number of subsets, such that each one embeds with constant distortion into the Euclidean

plane, the whole network is doubling. Consequently, topologies such as the one shown

in Figure 3.11 are doubling. In this example, we embed an unweighted graph into the

Euclidean plane. Note that the minimal Euclidean distance between nodes should be

ρrn (for some constant ρ), such that ρrnd(u, v) ≤ ||x(u) − x(v)|| ≤ O(1)ρrn. If this

equation is true for all pairs of nodes, then the distortion is O(1). There is an issue

when the nodes are neighbors in the communication graph, as the above rule implies

that the Euclidean distance between such pairs of nodes should then be at least O(rn).

However, we can ignore the distances below 2 as we will not cover balls of radius 1 (since

we have a broadcast medium, the degree of a node does not impact the communication

overhead). In such cases, it is obvious that geographic routing would fail, even though the

inherent complexity of the network is low. Indeed, packets would get stuck against walls.

Remarkably, our routing algorithm is oblivious to the topology and only depends on the

doubling dimension. Hence, there is absolutely no need to detect or identify obstacles.

The communication overhead will simply depend on the doubling dimension.

Figure 3.11: A set of doubling network topologies. The network is dense, and made inho-
mogeneous by the walls, which do no allow transmissions to go through. Note
that the walls stretch when n grows, such that the network wide distortion also
grows with n. Dashed lines indicate the separation into sets.
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3.3.2 Sequences of Communication Graphs

In this subsection we study the behavior of a sequence of communication graphs, without

any obstacles. We show that a sequence of G(t)(n, rn) of length nρ, for some constant ρ,

with the USL mobility model is κ-smooth. As already seen in Theorem 4, such a sequence

of graphs is doubling at every time instant.

Theorem 10. A sequence of G(t)(n, rn) of length ≤ nρ, where nodes move according to

the USL mobility model with maximum constant speed S is

max







rnd(t)

rnd(t)√
5
√

2
− 2

√
5
√

2τS
,
√

5
√

2(1 +
2τS

√
5
√

2

rnd(t)
)







smooth w.h.p.

Proof. Consider two nodes u and v at Euclidean distance q
(t)
2 = ||xu − xv||2 at time t.

Let q
(t)
1 = ||xu − xv||1 =

∑2
m=1 |xm(u) − xm(v)|. Further, denote by d(t) = d(t)(u, v) their

shortest path distance at time t. One can see that
q
(t)
2
rn

≤ d(t) ≤
√

5
√

2q
(t)
2

rn
. Indeed, the

shortest possible path will follow a straight line between u and v. The length of this line is

q
(t)
2 and one hop can be of length at most rn. In the worst case, the shortest path from u

to v will follow the shortest path in the grid formed by the small squares of side rn
c = rn√

5
,

which exists w.h.p. Recall that we can only guarantee horizontal and vertical connectivity

between small squares. The number of small squares in this path will be at most
√

5q
(t)
1

rn
.

One can easily show that q
(t)
1 ≤

√
2q

(t)
2 . Let x =




x1

x2



 =




x1

sx1



 = (xu − xv). We

have

q
(t)
2 =

√

x2
1 + x2

2 = x1

√
1 + s2

= (1 + s)x1

√
1+s2

1+s = q
(t)
1

√
1+s2

1+s .

Since, we have
q
(t)
2

q
(t)
1

=
√

1+s2

1+s , the term is maximized when s = 1. In Figure 3.12, we

illustrate this point. Similarly, at time t + τ , the shortest path distance will be bounded

by
q
(t+τ)
2
rn

≤ d(t+τ) ≤
√

5
√

2q
(t+τ)
2

rn
. However, we know that the Euclidean distance can change

by at most 2τS in τ time steps6. Consequently,

q
(t)
2 − 2τS

rn
≤ d(t+τ) ≤

√
5
√

2(q
(t)
2 + 2τS)

rn
(3.3)

6One can show that this remains true even if the nodes are reflected on the borders of the network
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Figure 3.12: Upper and lower bounds for the shortest path

We can now bound the multiplicative stretch as follows: Hence,

max

{

( 1√
5
√

2
− 2τS√

5
√

2q
(t)
2

)−1,
√

5
√

2(1 + 2τS)

q
(t)
2

)

}

= max

{√
5
√

2
q
(t)
2

q
(t)
2 −2τS

,
√

5
√

2(1 + 2τS

q
(t)
2

)

}

= max







rnd(t)

rnd(t)
√

5
√

2
−2

√
5
√

2τS

,
√

5
√

2(1 + 2τS
√

5
√

2

rnd(t) )






= κ(τ, d)

One can now observe that the time it takes to multiply the shortest path distance

between two nodes at distance d is proportional to d. Note that the larger the communi-

cation radius rn, the smaller κ. Hence, the distance grows at most linearly with time. In

particular, we have:

Corollary 2. There exist constants ν and κ defined in the proof such that a sequence of

nρ connectivity graphs, under the USL mobility model with maximum constant speed S, is

κ-smooth w.h.p.
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Proof. By theorem 10, we know that the sequence is

max







rnd(t)

rnd(t)
√

5
√

2
− 2

√
5
√

2τS
,
√

5
√

2(1 +
2τS

√
5
√

2

rnd(t)
)







-smooth w.h.p. Note that both terms decrease as a function of the communication radius

rn. Hence, we can set rn = 1 without decreasing κ(τ, d). Similarly, both terms go down

when the distance d(t) goes up. We can therefore also set d(t) = 1, which is the smallest

possible distance in an unweighted graph. Consequently, if we set τ = νd(t) = ν, we can

now write

κ(τ, d) ≤ max

{

1
1√
5
√

2
− 2

√
5
√

2νS
,
√

5
√

2(1 + 2νS
√

5
√

2)

}

which is constant for ν constant.

3.4 Routing Algorithm

We develop the routing algorithm and its performance analysis for a general class of

dynamic networks which produce a sequence of doubling and smooth connectivity graphs.

We have seen in Sections 3.2 and 3.3 that this applies to a class of wireless connectivity

models with USL mobility. For notational convenience we illustrate the ideas for a sequence

G(t)(n, rn) geometric random graphs with USL mobility.

Node identifier distance [hops] level next hop
...

...
...

...

Table 3.2: Routing Table RT

We decompose a time step into two phases: a beaconing phase and a forwarding phase.

In the former phase, a set of routes are established by letting all or a subset of nodes flood

the network at geometrically decreasing radii and nodes register with beacon nodes. In

the latter phase, this subset of routes is then utilized by source nodes to efficiently search

for the destination. Every node is equipped with a routing table as shown in Table 3.2.

We first describe two procedures used in the beaconing and the routing phase.
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flood(R,level) procedure :

When a node u initiates the flood(R, level) procedure, it broadcasts a flood packet as

shown in Table 3.3 to its direct neighbors in G(n, rn). The hop count field is initialized to

0 and the content of the Level field is set to the level of the beacon. How the level of the

beacon is determined will be specified in the sequel. All nodes can compute the maximum

hop count given the value of the level field in the packet. The neighbors which receive

this packet, after increasing the hop count by 1, add an entry to their routing table for

node u if no entry for the same node and level with lower or equal hop count is present

in the RT. The next hop field is set to the identifier of the node from which the packet

was received. The level field in the routing table is set to the level given in the packet. In

turn, the nodes which got the packet from u broadcast this packet to their neighbors. The

latter follow the same procedure and update the routing table if necessary. The packet

is discarded when the hop count reaches the maximum hop count (which is a function of

the level). Note that with this procedure, every node forwards the packet at most once

and the distance added to the routing table is the shortest path distance in G(n, rn). This

procedure also allows us to establish a reverse path from all nodes that get the packet

back to u. Indeed, it suffices for all these nodes to store the identifier of the node from

which they received the packet7. Further, for any node v, that reverse path is a shortest

path to u.

Pkt. Type Node Id. Hop Count Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

Table 3.3: Flood Packet

probe(relay,destination) procedure :

This procedure consists in sending a probe packet (see Table 3.4) to a “relay” node for

which the source has an entry in its routing table. The relay node will set the success

bit to 1 if it has an entry for the destination and 0 otherwise. We will make sure that

all nodes on the path between the source and the relay node have an entry for the relay

node in their routing table. Additionally, nodes on the path add a temporary entry for

7The packet for which they modified their routing table
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the source in the routing table. They set the next hop field to the identifier of the node

from which they received the packet and leave the level and distance field empty. Upon

receiving the packet, the relay node can either answer to the source on the reverse path

we just created if the answer is negative. Alternatively, it can take action as explained in

the sequel if it has an entry for the destination.

Pkt. Type Relay Id. Dest. Id. Success
O(1) bits O(log n) bits O(log n) bits 1 bit

Table 3.4: Probe Packet

We now separately detail the beaconing and the routing algorithms underlying our

routing protocol

3.4.1 Beaconing Algorithm

In this subsection, we start by describing the first time step, when nodes have not yet

moved and no information has been exchanged (the full algorithm is described in Algorithm

2). In a static network, the information exchanged in this first step would be sufficient to

setup a complete routing infrastructure. On the other hand, in a mobile environment, we

would need to cope with the dynamic topology and constantly update the routing tables.

How we deal with a dynamic environment is explained at the end of the subsection. Let

the cover radius at level i, for i = 1, ..., log ∆ (∆ being the diameter of the network), be

defined as ri = 2i and the flooding radius at level i be defined as fi = κ(ri+1 + ri), where

κ is a constant chosen such that κ(νd, d) ≤ κd, ∀d. In order for the routing algorithm to

work properly, it is crucial that beacons at level i are within the flooding radius of the

beacons at level i + 1, if they have common nodes inside their cover radii (see Fig. 3.13).

This is why we define the flooding radius above. Note that if the network is static, we can

set κ to 1. Else, the value of κ depends on how mobile the nodes are (see Def. 6).

The idea of the algorithm is to build a hierarchical cover of the network i.e., we would

like every node in the network to be within ri hops of a beacon node at every level i. We

say that when a node is within ri of a beacon b at level i, it is covered and a member of

b’s cluster at level i. It can only be in one cluster at every level. To achieve this, we let
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Figure 3.13: The flooding radius is chosen in such a way that beacons at level i hear the
floods of beacons at level i + 1. In static networks, this is ri + ri+1.

the nodes flood in a random order which can change at every time step. Before explaining

how we can implement this algorithm with only one scoped flood per node, we first explain

how the algorithm works conceptually. Given the random permutation π on the nodes,

we build the routing structure level by level, top-down. Hence, we start at level i = log ∆,

with node π(1) (i.e., the first node in the random permutation). No message has been

sent so far, and consequently this node is not covered on this level i (actually, on no level

at all). Thus, node π(1) start a flood with a hop count set to fi. All nodes that receive

this packet and are within ri hops from node π(1) will not flood on this level i anymore, as

they are covered and become members of π(1)’s cluster. However, all nodes that receive

the packet will remember the fact that node π(1) is a beacon at level i. Then, we go

through the nodes in the order given by the random permutation, and let the nodes flood

fi hops which were not covered before their turn comes. Once we are done with level i,

we repeat the same process at level i− 1. That is, node π(1) floods the network with hop
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count fi−1, and nodes within ri−1 hops will not be elected beacons (i.e., will not flood)

at this level. Then, again, we go through the random permutation and let nodes flood

fi−1 hops which were not covered before their turn comes. We continue this process until

we reach level 1. Note that many floods are redundant, as for instance node π(1) always

floods first when we start the process on a new level. We can implement this process in

a much more efficient way by letting all nodes flood only once. We explain this process

below

When we do a single pass through the random permutation, every node u is a beacon

at a given level h(u). The flooding radius, however, will depend on the highest level at

which a node is not covered. Let us denote by h(u) the highest level at which node u is

not covered. When node u’s turn to flood comes, it will determine the value of h(u) and

call flood(fh(u), h(u)). A node v which receives this flood will determine the lowest level

at which it could be a member of u’s cluster, say l(v). That is, it will determine the lowest

value j for l(v) such that d(u, v) ≤ 2j . This distance d(u, v) is known since v just received

a flood packet from u. It will then become a member of u’s cluster for all levels above l(v)

for which it has no membership yet and are below h(u). If a node becomes a member of

u’s cluster, it sends a membership packet (see Table 3.5) back to u. In this way, u learns

Pkt. Type Node Id. Beacon Id. Level
O(1) bits O(log n) bits O(log n) bits O(log ∆) bits

Table 3.5: Membership Packet

the identifier of all nodes in its cluster. Note that u also applies this procedure to itself,

and consequently could be a beacon at level i but not at level j < i. To summarize:

• Nodes start a scoped flood of the network with flood packets in a random order.

The radius of the flood of a node u is determined by the highest level h(u) at which

this node has not yet been “covered” (or equivalently is not member of a cluster).

This information is included in the packet.

• A node v that receives such a flood packet becomes a member of the sender’s (say

node u) cluster at level i (this concerns potentially more than one level) if the

following conditions are met:
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– If node v joins u’s cluster on level i, it is within ri hops of u.

– If node v joins u’s cluster on level i, it is not already member of another cluster

at this level.

– i is lower than or equal to h(u).

– If node v joins u’s cluster on level i, a membership packet is sent back to node

u to confirm the membership.

In practice, this optimized scheme is equivalent to electing node π(1) as a beacon on all

levels as soon as it floods. Then, node π(2) is elected as a beacon on all levels on which

it was not covered by node π(1), and so on. The other nodes infer from the hop count

whether they consider a node that floods as a beacon on a given level.

The control traffic will be dominated by the messages sent back by nodes to beacons

when they become members of a cluster, so should be rare. In other words, the election of

new beacons, and consequently the transmission of membership packets, should be rare.

However, we do not want the distance between nodes and beacons to grow by more than

a constant factor. Since we assume that the maximum speed of the node is constant, the

higher the level of a beacon, the more time it will take for nodes to double their distance

to this beacon. We want to elect new beacons and update memberships only for levels

at which the distances from beacons to cluster members could have been multiplied by a

constant factor. Recall that the network is κ-constrained (see Definition 6). Consequently,

the distance d(t)(u, v) between two nodes u and v cannot change by a factor κ in less than

νd time steps (see Corollary 2). In particular, if a node is at distance 2i of a beacon at

the time it becomes a member of its cluster, then we have dt+ν2i ≤ κ2i. Hence, we can

update the memberships at level i only every ν2i time steps8 (see Figure 3.14), and still

have guarantees on distances to beacons. Finally, note that when new beacons are elected

at level i, nodes which were previously beacons at this level loose this status. This will

lead to a routing scheme in which the distances can be distorted by at most a constant

factor to be calculated in the sequel. Additionally, in a dynamic environment, routes can

break. This is why we let the beacons (i.e., the beacons elected in previous time steps)

8Note that if a time step is a multiple of ν2i, it is also a multiple of ν2j , for j < i. Thus, we can again
let every node up to level i flood exactly once at the appropriate level.
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Figure 3.14: The memberships up to level i are updated every ν2i time steps. At the levels
above, beacons elected at earlier time steps simply flood again.

at all levels flood at every time step. Levels at which no membership updates take place

simply use the floods of the beacons to update their routes toward theses beacons. This

will ensure that a route always exists for all pair of nodes. We prove in Section 3.5 that

our choice of flooding and cover radius guarantees that a route always exists for any pairs

of nodes, and that the length of this route is within a constant factor of the shortest path.

In Figure 3.15, we give a simple with three levels. The beaconing algorithm is presented

in Algorithm 2. It is important to note that the routes are updated at every time step

and consequently routing toward a beacon will always be successful. Further, when the

membership at a given level i is updated, all the memberships at the levels j < i will also

be updated, and all memberships at these levels canceled.

3.4.2 Forwarding Algorithm

The forwarding algorithms works as follows: a source node u with a message for a target

node v searches for v by first probing (see description of probing procedure at the beginning
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Figure 3.15: The example start with empty routing tables. First, on the left, node u1 floods
at level 3. We focus on nodes u2 and u3. Node u2 is within 8 hops from u1

but further away than 4 hops. Consequently, it can only had an entry for node
u1 at level 3. At the same time, node u3 can add an entry for node u1 at the
levels 2 and 3, since it is at distance 4 of u1. Next, on the right, u2’s turn
to flood comes (right after u1’s turn). This node is already covered at level 3.
Consequently, it will flood at level 2. The node u3 could potentially add an
entry for this node at levels 1 and 2. However, it is already covered at level 2
and so adds only an entry for level 1. We do not show the entries beacons add
for themselves.

input : Routing Table at node u, Time t
output: -

Let Γ = max
{
0 ≤ j ≤ log ∆|t mod(ν2j) = 0

}
;2.1

Clear routing table entries with level ≤ Γ;2.2

Let h(u) be the level at which u is a beacon;2.3

if π(ℓ) = u then2.4

if h(u) ≤ Γ then2.5

Let h(u) be the highest level at which u is not covered;2.6

h(u) = h(u);2.7

end2.8

flood(fh(u), h(u));2.9

end2.10

Algorithm 2: Beaconing Algorithm at node u

76



3.4. Routing Algorithm

of the section) all the level 1 beacon it knows of. To do so, it looks at its routing table and

selects all nodes it knows of at level 1. If all answers are negative, that is all the level 1

beacons within range reply with a success bit set to 0, node u probes all level 2 beacons it

knows of. The procedure is repeated as long as all beacons answer negatively. A beacon

at level i with an entry for the destination in its routing table does not answer directly to

the source. Rather, this node will search downwards in the hierarchy by probing all the

level i−1 beacons it knows of. We show in the next section that one of these beacons must

have an entry for the destination. That beacon in turn probes all the beacons in knows

of at level i− 2. Meanwhile, the other beacons at level i− 1 will answer negatively to the

beacon at level i. The procedure is repeated recursively until the target itself is reached.

The target will then answer to the source on the reverse path which will later be used for

communication between the source and the destination. To summarize, the forwarding

algorithm starts with an “upstream” phase during which the source node probes beacons

level by level until a beacon is found which has the destination in its cluster. That beacon

then starts a “downstream” phase, during which we go down in the hierarchy. We illustrate

the forwarding procedure conceptually in Figure 3.16.

3.4.3 Load-balancing

This approach above guarantees a low network wide control traffic overhead. Over a long

period of time all nodes will get approximately the same average overhead. Yet, beacons

at the highest levels might get overloaded by the membership packets of the nodes in their

cluster when a membership update takes place. Therefore, on rare occasions, these nodes

will be hot spots in the network for a short period of time. To work around this problem,

memberships can be distributed in the cluster instead of stored at the beacon itself. First,

we now set the flooding radius to be f ′
i = κ(2ri+1 + ri). Additionally, whenever a beacon

floods at level i, it includes its membership at level i+1 in the packet. This information is

stored by all nodes that receive this flood packet. This will guarantee that all nodes that

are members of a cluster at level i, know how to reach all beacons at level i−1 inside that

cluster. Now, assume that a node u becomes a member of the cluster of a beacon bi(u) at

level i. Instead of sending the membership packet directly back to bi(u), it will now send
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Figure 3.16: Node u has a packet for node v. It searches in its routing table for all beacons
it knows of at level 1 and sends them a probe packet containing v’s identifier.
None of the beacons at level 1 has an entry for this node and consequently they
all answer negatively to node u. Next, node u repeats the same procedure with
all the beacons it knows of at level 2. Again, all beacons answer negatively. On
the third level, now, a beacon has an entry for node v. This beacon will probe
all the beacons it knows of at level 2, while the other beacons at level three
will answer negatively to u. A beacon at level 2 must have an entry for v. This
beacon again probes all the beacons it knows of at level 1 among which one
must have an entry for v itself. Meanwhile, the other beacons reply negatively
as they do not have any entry for v.

its membership packet directly toward the beacon ψi−1(u) at level i−1 inside this cluster,

where ψi−1(u) denotes the beacon inside bi(u)’s cluster with the identifier closest to u’s

identifier. In turn, as soon as the packet reaches a node which is a member of ψi−1(u)’s

cluster at level i−1, the membership packet is redirected toward the beacon ψi−2(u) which

is a member of ψi−1(u)’s cluster at level i−1 (i.e, the beacon inside ψi−1(u)’s cluster which

has the identifier closest to node u’s identifier). The process is repeated until we reach a

single node, which will store u’s identifier on behalf of bi(u). Note that the membership can

only be registered at a single location in the cluster reachable through a unique sequence

of clusters. This remains true even when nodes move. Indeed, the nodes in the cluster of
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bi(u) will only forward the packet to beacons at level i− 1 which were in the same cluster

at the time the membership for this level got updated. Of course, whenever level j < i

is updated, we do now not only need to send u’s identifier toward its new beacon at that

level. Additionally, the node that holds u’s identifier at level j might not be reachable

anymore through a path of clusters with identifiers closest to u’s. Consequently, this node

will need to forward u’s identifier toward the beacon at level j with the identifier closest

to u’s. Again the process will be repeated recursively until a single node is reached. As we

will see, the cost of avoiding hot spots is a factor log n in the total control traffic. Finally

and most importantly, with this procedure beacons no longer get overloaded. Rather, the

traffic is be distributed in its cluster.

The data forwarding process remains the same except that the source node will not

probe the beacon itself, but rather search for the node in the beacon’s cluster that should

hold the destination’s identifier. If this node holds the identifier, it will then probe the

beacons one level below in the same way. Recall that the nodes which potentially hold

u’s membership can be reached at any given instant in time through a unique sequence of

clusters. The procedure is repeated until the destination is reached.

3.5 Performance Analysis

In this section, we analyze the performance of our algorithm analytically both in terms

of control traffic and of route stretch. As in Section 3.4, we do this for a sequence of

doubling and smooth connectivity graphs, and will use G(t)(n, rn) with USL mobility for

illustration.

The bounds derived in this section hold w.h.p. when we are in a sequence of length nρ

of α-doubling connectivity graphs. In the sequel, α, κ and ν are the constants derived in

Section 3.3. Let us denote by ∆ = O(
√

( n
log(n))) the diameter of the network. To bound

the control traffic necessary for beaconing, we will rely on the α-doubling property of the

metric space to show that a node can only hear a constant number of beacons at every

layer. We will first show that a ball of radius 2R around any node u can only contain at

constant number of balls (clusters) of radius R, when we select the centers of the balls
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of radius R in an arbitrary order and ensure that two centers cannot be closer than R.

We will later use this result to show that a node can hear at most a constant number of

beacons at any given level.

Theorem 11 (Random Cover). Let BX
2R(u) be a ball of radius 2R centered at u in a

graph metric (X, d) with doubling constant α. Then, there exist at most k ≤ α2 nodes vi,

(i = 1, 2, .., k) such that BX
2R(u) ⊆ ⋃k

i BX
R (vi) and min(i,j)d(vi, vk) > R.

Proof. By definition of an α-doubling metric space, there must exist a cover of a ball of

radius 2R consisting of at most α balls of radius R. Recursively, there must also exist an

R
2 -cover consisting of α2 points. One can select at most one center vi in each ball of radius

R/2, as any other point inside this ball is within R of vi. Hence, one can select at most

α2 such centers.

Corollary 3. Let B be a ball of radius R > R′ in an α-doubling metric space (X, d).

Then, one can select at most k ≤ ( R
R′ )

2log(α) nodes vi, (i = 1, 2, .., k) such that BX
R (u) ⊆

⋃k
i BX

R′(vi) and min(i,j)d(vi, vj) > R′. In particular, if R = ηR′ for some constant R, then

k is at most a constant (η)2log(α) independent of n.

Proof. Let R = 2iR′. Hence, R′ is doubled log R
R′ times to obtain R. By Theorem 11, B

can be covered by α2log R
R′ = ( R

R′ )2log(α) balls of radius R′.

Here, one can think of the radius R of the large balls as the flooding radius, and of the

radius R′ of the small balls as the cover radius. Indeed, we use this result to show that a

node u can hear the floods of all beacons within a given radius R. Moreover, this ball of

radius R can contain at most ( R
R′ )2log(α) beacons, since beacons must be at least R′ apart.

3.5.1 Control Traffic

Theorem 12. The average control traffic overhead per time step for beaconing is at most

O(n log2 n) bits.

Proof. We will analyze the control traffic at level i. Recall that a beacon at level i floods

a distance fi = κ(2i+1 + 2i) at every time step. Further, at the time the memberships are
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updated at level i, a beacon node at this level cannot be within ri = 2i of another beacon

at that level. If it were the case, this node would not elect itself as a beacon at this level.

Level i is updated every ν2i time steps. Consider a node u. By Corollary 10, no nodes

that are further away than κfi hops at the time the memberships are updated at level i

could move within fi of u in less than ν2i time steps. However, that is before this level

is updated again. Consequently, the number of beacons whose flood can reach u at any

given time step is at most the number of level i beacons in a ball of radius κfi at the time

the membership is updated. In turn, node u will broadcast9 the flood packets of at most

that many beacons for this level i. By Corollary 3, this number is a constant10 given by

(κfi

2i )2log(α) = (3κ2)2 log α. Given that there are O(log n) levels, that there are n nodes and

that a flood packet has size O(log n) bits, the average control traffic overhead per time

step for beaconing is at most O(n log2 n) bits.

We now compute the control traffic overhead necessary for nodes to update their mem-

berships with beacons. Recall that level i and all levels below are updated every ν2i times

steps and that a node can only be a member of one cluster at every level. Furthermore, a

node only becomes a member of a cluster if it is within 2i of the corresponding beacon.

Theorem 13 (Membership Update Overhead). The average control traffic overhead per

time step to update memberships without load-balancing is at most

n log ∆ log n

ν
= O(n log2 n)

bits.

Proof. Consider a sequence of T time steps. The memberships will be updated up to

level i every ν2i time steps, so T
ν2i times in a sequence of length T . At the time of the

update, a node can be at distance at most 2i from a beacon at level i. Consequently, the

overhead in bits generated by a node in a sequence of T time steps is upper bounded by
∑log ∆

i=1
T

ν2i 2
i log n = log ∆

ν log n.

9recall that when a node broadcasts a packet it is received by all direct neighbors in the connectivity
graph. Consequently, there is one packet transmission per beacon of which a flood packet is received.

10In the load-balanced scheme, this constant is (5κ2)2 log α.
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Finally, we will show that the average control traffic overhead when load-balancing is

used is increased by at most a factor log n.

Theorem 14 (Membership Update Overhead). The average control traffic overhead per

time step to update memberships with load-balancing is at most

n log2 ∆ log n

ν
= O(n log3 n)

bits.

Proof. Consider a sequence of T time steps. The memberships will be updated up to level

i every ν2i time steps, so T
ν2i times in a sequence of length T . At the time of the update,

a node can be at distance at most 2i+1 from a beacon at level i − 1 inside its cluster at

level i. Similarly, a node can be at distance at most 2i from a beacon at level i − 2 inside

its cluster at level i−1. In the load balanced scheme, we have to count the overhead to go

down the hierarchy of beacons. For a beacon at level i, this is at most 2i×2. Consequently,

the overhead in bits generated by a node in a sequence of T time steps is upper bounded

by 4
∑log ∆

i=1
T

ν2i 2
i log n = 4 log ∆

ν log n. However, node u is a member of a cluster at all log ∆

levels. Recall that the node that holds u’s identifier must always be reachable through a

path by choosing the beacon (cluster) with the identifier closest to u’s. Hence, whenever

level i gets updated, all log ∆ nodes that hold u’s identity must follow the same procedure

as u itself. We conclude that the overhead is upper bounded by log ∆4 log ∆
ν log n bits.

3.5.2 Route Stretch

In this section we will show that the route found with the forwarding algorithm is only a

constant factor longer than the shortest path. Additionally we show that the destination

location discovery takes a negligible fraction of a flow throughput.

Theorem 15 (Routing Stretch). The worst case multiplicative routing stretch is O(1).

Proof. We first analyze the stretch without load balancing. Consider that we want to route

from a node u to a node v, and that we had 2k ≤ d(u, v) ≤ 2k+1, the last time level k was

updated before the route search takes place. Let us denote by bi(v) the beacon to which
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node v had registered the last time level i ≤ k was updated before the route search takes

place. Clearly, we have d(u, bv(k)) ≤ κ(2k+1 + 2k), and d(bi(v), bi−1(v)) ≤ κ(2i + 2i−1).

This is true since the membership of node v at level i must have been updated at most

ν2i time steps before the routing takes place, and that at the time the time level i gets

updated, we have d(bi(v), bi−1(v))) ≤ d(bi(v), v)+d(v, bi−1(v)) by triangle inequality. Note

that d(bi(v), bi−1(v)) ≤ fi−1 and that d(u, bv(k)) ≤ fk. Hence, a route must exist between

u and v and the length r(t+τ)(u, v) of the route at time t is at most:

r(t)(u, v) ≤∑k
i=1 fk = κ

∑k
i=1(2

i+1 + 2i)

= 3κ
∑k

i=1 2i = 3κ2k+1−1
2−1 ≤ 6κd(t)(u, v)

In the worst cast, nodes u and v have moved closer together (by a factor κ) while the

beacons have moved further apart. Indeed, we have d(t+τ)(u, v) ≤ κd(t)(u, v) for τ ≤ ν2k

as our network is κ-constrained. Note that if we waited longer that ν2k, memberships

would be updated again at level k and we could find another beacon at distance 2k at

most from v at level k. Hence, the worst case stretch is r(t+ν2k)(u,v)

d(t+ν2k)
≤ 6κ2 = O(1).

Every node can only hear floods from a constant number (µ = (3κ2)2 log α, see Theorem

12) of beacons at every level. Recall that the source will first probe all beacons at level

1, then all beacons at level 2 and so on. The procedure is repeated up to level k at which

the source u will send a packet to bk(v). Note that the distance from u to this beacon can

be at most κ2k+1 + 2k = fk and so it must hear its floods. In turn, when routing down

the hierarchy, beacon bj(v) will probe at most a constant number ((3κ2)2 log α of beacons

at level j − 1. Finally, the distance between a node u and a beacon at level i can be at

most fi and a probe packet will traverse at most 2fi packets when a beacon at level i is

probed (back and forth). This means that for discovery of the location of the destination,

we need a probe overhead of at most µ6κd(u, v) packet transmissions. Therefore, this is a

negligible part of the throughput of a flow since it consumes roughly the equivalent of a

few packet headers of a flow from source to destination. A similar statement can be made

for the load-balanced case.
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3.6 Implementation Issues

In Section 3.5, we have computed worst case bounds which may be conservative in terms

of constants. In this section, we explore this aspect by looking at simulation results for

the control traffic and for the stretch. Recall that we had computed that for each of the

O(log n) levels, a node has to retransmit a packet of at most (3κ2)2 log α beacons. Even

if we set the maximum speed as well as the parameter ν to 1, this is still
√

10 + 20 and

consequently the constant in the bound on the overhead at least as high as (3(
√

10 +

20)2)2 ≈ 2.5 · 106! In Figure 3.17, however, we show that in practice this constant is

approximately 30. This simulation was run with 50 up to 10000 nodes moving at a

maximum speed of 1. One can observe that the experimental scaling behavior corresponds

extremely well to the theoretical behavior. To stress this fact, we also plot 100 log n as a

benchmark. Note that the overhead is expressed in number of packets rather than bits (a

packet being of size O(log n)).

Similarly, in Figure 3.18 we show that for a network of 1000 nodes, the stretch is at

most 1.5 for all node pairs. If we compute the maximum theoretical stretch, we can show

that it is again considerably larger and hence a pessimistic bound. These small constants

could make a practical implementation realistic.

We have made a certain number of assumptions in our models, which we now clarify. In

practice, the random permutations on the nodes, which determines the order in which the

flooding occurs, could be implemented by using random timers; more precisely, by letting

all nodes draw a random delay independently of each other every ∆T seconds. Obviously,

the interval from which nodes draw this delay should be made sufficiently large so that

we can avoid collisions. However, a level in the hierarchy will be rapidly covered, and in a

practical implementation the covers at different levels could be built in parallel. Further,

different parts of the network are independent except at the highest level, and we could

exploit this spatial diversity to parallelize the beaconing process. Hence, we speculate

that it is possible to reduce the length of the beaconing phase to a small constant times

the maximum round-trip time. Note that one could apply the algorithms to underlying

networks that are not doubling. In this case, we would not be able to give provable bounds
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Figure 3.17: Average control traffic overhead per node in packets as a function of the network
size. Nodes move at a speed of maximum speed of 1. The confidence interval is
given by the 95% and 5% percentiles. The size of a packet is O(log n) bits. We
also plot 100 logn to show that our analytical predictions match the simulation
results.

on the control overhead and the stretch as we did for doubling networks.

3.7 Concluding Remarks

In this chapter, we showed that a large class of wireless network models belong to a larger

class of networks, the doubling networks, in which efficient routing can be achieved. Hence,

we have formalized the intuition developed in Chapter 2, that the structure of wireless

networks was intrinsically low-dimensional. To design an efficient routing scheme, one can

hierarchically decompose the network by relying on the doubling property to prove that

the control traffic overhead and the stretch will remain low, even for dynamic doubling

networks. This holds for a fairly broad class of uniform speed-limited (USL) mobility

models. One advantage of the proposed routing algorithm is that it is robust, in that
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Figure 3.18: Empirical cumulative distribution of stretch (route length/shortest path) for a
network with 1000 nodes moving at a maximum speed of 1.

it works well in certain situations in which other existing algorithms cannot work well.

This was illustrated in Section 3.2.1 for an example network with obstacles. We believe

that many more such examples can be created where the use of the doubling rather than

geographic properties would be crucial. To the best of our knowledge, our results are the

first provable bounds for routing quality and costs for dynamic wireless networks. These

techniques might give us insight into algorithm design for more sophisticated wireless

network models.
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Chapter 4

Comparison-based Nearest Neighbor Search

We now move on to the second main topic of this thesis, namely comparison-based search

in databases. In this chapter, we address this search problem from a formal theoretical

point of view. In particular, we investigate methods to search a database of objects that

do not necessarily live in a metric space. Recall that we consider the situation where we

want to search and navigate a database, but we do not know the underlying relationships

between the objects. This implies, in particular, that distances may be difficult to discern,

or may not be well-defined. As mentioned in Chapter 1, such situations are common

with objects where human perception may be involved. A collection of pictures of faces,

taken from different angles and distances is an illustration of such a dataset. Indeed, the

distances between feature vectors might be far from the similarity perceived by humans.

Notwithstanding, either with human-assistance or approximate classification, we may be

able to determine the relative proximity of an object with respect to a small number of

other objects1. More precisely, Humans have the ability to compare objects and make

statements about which are the most similar ones, though they can probably not assign a

meaningful numerical value to similarity. This led to the question of how to design search

algorithms based on binary similarity decisions of the type “A looks more like B than C”.

More formally, we aim to design an algorithm that given a query object (e.g., the face

of a person we are looking for), efficiently returns an object that is similar to that object

1We provide the architecture for a practical implementation of such a system in Chapter 5.
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among the objects in a database. To do so, we have access to a similarity oracle which,

given two reference objects and a query object, can tell which of the two reference objects

is most similar to the query object. We measure the performance of all our algorithms in

terms of the number of questions that we need to ask the oracle. This is motivated by the

fact that we consider that it is very costly to ask human users to answer questions. Hence,

we aim at minimizing the number of such questions. We can pre-process the database

during a learning phase, and use the resulting answers to facilitate the search process.

One way to understand this setup is to consider that the objects live in a hidden

space, which can only be accessed through the aforementioned oracle. We do not make

the assumption that the “hidden” space in which the database objects live needs to be

a metric space. Using the aforementioned oracle, one can retrieve for every object u in

the database a sorted list of the other objects according to their distance to u. We call

the position of object v in this list the rank of v with respect to u, and denote it by

ru(v). Clearly, this relationship can be asymmetric i.e., ru(v) �= rv(u) in general. This

setup raises several new questions and issues, as any space can be described by its ranks

relationships. How much does the fact that the rank of some object v w.r.t. some other

object u is k, and the rank of w w.r.t. u is k′ tell us about the rank of w w.r.t. v? In

this chapter, we introduce the notion of rank distortion (see Section 4.2 for a rigorous

definition). The rank distortion captures how closely rv(w) is related to the average

1
n

∑

u |ru(v)−ru(w)|. The framework introduced in [GLS08], defines approximate triangle

inequalities on the ranks, another way to capture these relationships. Those inequalities

roughly tell us how “transitive” the similarity relationship is and give us a notion of

combinatorial disorder. If we have this information, we can use partial rank information

to estimate, or infer the other ranks. In this chapter, we will first investigate the case where

we can use such a characterization of the hidden space as an input to our algorithms. We

develop a randomized hierarchical scheme that improves the existing bounds for nearest

neighbor search based on a similarity oracle (see Section 4.1). We also prove, as far as we

know, the first lower bound on the average number of questions to be asked for randomized

nearest-neighbor search in this setup (see Section 4.4). Then, in Section 4.5, we ask what

can be done if no characterization of the hidden space is known and therefore cannot
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be used as an input to the algorithms. In that case, we cannot estimate, or limit, ranks

anymore if we have partial rank information. Nevertheless, we develop algorithms that can

decompose the space such that dissimilar objects are likely to get separated, and similar

objects have the tendency to stay together. This generalizes the notion of randomized

k-d-trees (see [DF08]) to our setup. Building on this intuition, we introduce the notion

of rank-sensitive hashing (RSH) in Section 4.5.3. Similarly to locality-sensitive hashing,

we can retrieve one of the R nearest neighbors of a query point very efficiently. The hash

function itself does not require any characterization of the subjacent space as an input.

However, the smallest value of R we can choose depends on the rank distortion. In general,

both the criteria (combinatorial disorder and rank distortion) we use to characterize the

hidden space seem to capture how “homogeneous” that space is. It appears that the

less homogeneous it is, the more difficult it becomes to search. In particular, if the rank

relationship is very asymmetric, and some objects are far from every other object, the

information contained about those objects in the ranks matrix is very sparse and hard to

capture. We apply this idea of RSH to NN search, but we believe that this might be useful

in other scenarios as well. We investigate the implications of RSH for objects randomly

placed in ℜd.

4.1 Relationship to Published Works

The nearest neighbor (NN) problem, and many variations thereof, have been extensively

studied in the literature (see for instance [Cla06] and [Ind04] for surveys). In particular,

very efficient algorithms have been developed for specific classes of metric spaces, such

as metric spaces with a low intrinsic dimension or a bounded growth factor. In [KL04],

the authors introduce ǫ-nets, a very simple data structure for nearest neighbor search

(and many other applications). The complexity of those nets depends on the doubling

dimension (see definition 2, in Section 3.2) of the underlying space. In [KR02], the authors

present a random sampling algorithm to produce a data structure for search in growth

restricted metrics. The restricted growth guarantees that a random sample will have some

nice properties. In particular, by randomly selecting a small number of representatives
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at different scales for every object in a learning phase, one can zoom in on the nearest

neighbor of a query point during the search phase. On the other hand, search when the

underlying space is not necessarily a metric space appears to have very little prior work. In

some sense, it is a generalization of the above problem, as any dataset can be represented

by its rank relationships.

The problem of searching with a similarity oracle was first studied in [GLS08]2, where a

random walk algorithm is presented. The main limitation of this algorithm is the fact that

all rank relationships need to be known in advance, which amounts to asking the oracle

O(n2 log n) questions, in a database of n objects. The authors of [LZ09] and [GLS08] work

with a combinatorial framework for nearest neighbor search, which defines approximates

inequalities for ranks analogous to the triangle inequality for distances. Their bounds

depend crucially on the combinatorial disorder, represented by the disorder constant D

of the database (a notion to be defined more formally in Section 4.2, which captures to

what extent the triangle inequality on ranks can be violated). In [LZ09], a data structure

similar in spirit to ǫ-nets of [KL04] is introduced. It is shown that a learning phase with

complexity O(D7n log2 n) questions and a space complexity of O(D5n + Dn log n) allows

to retrieve the nearest neighbor in O(D4 log n) questions, in a database of n objects.

The learning phase builds a hierarchical structure based on coverings of exponentially

decreasing radii3. We will show (see Section 4.3) that we can improve those bounds by a

factor polynomial in D, if we are willing to accept a negligible (smaller than 1
n) probability

of failure. Our algorithm is based on random sampling, and hence can be seen as a form

of metric skip list (as introduced in [KR02]), but applied to a combinatorial (non-metric)

framework. However, the fact that we do not have access to distances forces us to use

new techniques in order to minimize the number of questions we need to ask (or ranks

we need to compute). In particular, we sample the database at different densities, and

infer the ranks from the density of the sampling, which we believe is a new technique. We

also need to relate samples to each other when building the data structure top down. We

also present what we believe is the first lower bound for our problem of searching through

2Our interest in this formulation arose from an applied viewpoint in the implementation of the face-
browser system (see Chapter 5).

3the radius of a ball is defined as the cardinality of that ball.
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comparisons.

A natural question to ask is whether one can develop data structures for NN when

a characterization of the underlying space is unknown. This has been addressed in the

case when the underlying metric space has low ”intrinsic” dimension and one has access

to metric distances in [KL04,DF08]. In [DF08], it is shown that one can build a binary

tree decomposition of a dataset of points in ℜd, such that the diameter of the sets in the

tree is reduced by a constant after a number of level that only depends on the intrinsic

dimension of the data, and not d. The term intrinsic dimension either refers to the doubling

dimension (also referred to as Assouad dimension) or the local covariance dimension4.

Therefore, one can similarly ask such a natural question in our framework where we do

not have access to metric distances (or they do not exist). We develop a binary tree

(hierarchical) decomposition, when the characteristics of the underlying space (disorder

constant) is unknown. This extends the result of [DF08] to our framework, where we only

have access to the underlying space through comparisons.

The approximate nearest neighbor problem consists in finding an element that is at

distance at most (1 + ǫ)dmin from the query point q, where dmin = mini d(i, q). In [IM98],

Indyk and Motwani present two algorithms for this problem. In particular, locality sensi-

tive hashing, through which they obtain an algorithm with polynomial learning and query

time polynomial in d and log n. For binary vectors, it is remarkable that the performance

of the algorithm does not depend on the dimension. A survey of results for LSH can be

found in [AI08]. In [Pan06], Panigrahy shows that instead of using a large number of hash

tables as it is the case in the approach above, only a few can be used. These are then

hashed to several randomly chosen objects in the neighborhood of the query point, and

it is shown shows that at least one of them will fall into the same bucket as the nearest

neighbor. The authors of [MNP06] prove a lower bound on the parameter ρ = log 1/p
log p/P

for (r, cr, p, P )-locality sensitive hashing schemes. We present a new hashing scheme that

is rank-sensitive (RSH). How efficient the scheme is depends on another property of the

hidden space, its rank-distortion. The rank-distortion need not be an input to the algo-

4Set S ⊂ ℜD has local covariance dimension (d, ǫ, r) if its restriction to any ball of radius r has
covariance matrix whose largest d eigenvalues satisfy σ2

1 + ... + σ2
d ≥ (1 − ǫ)

∑D
i=1 σ2

i .
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rithm, however, the performance will depend on it. We give sufficient conditions for RSH

to work and demonstrate its application to NN search. We also evaluate its performance

for randomly placed points in ℜd and show that its performance improves with d.

To the best of our knowledge, the notion of rank-sensitive hashing and approximate

(and randomized) nearest neighbor search using similarity oracle is studied for the first

time in this thesis. Moreover, the hierarchical search scheme proposed is more efficient

than earlier schemes. The lower bound presented appears to be new and demonstrates

that our schemes are (almost) efficient.

4.2 Definitions and Problem Statement

In this section, we define formally the notions that we use in the rest of the chapter. We

consider a hidden space K with distance function d(., .), and a database of objects T ⊂ K,

with |T | = n. We do not have access to the distances between the objects in K directly.

We can only access this space through a similarity oracle which for any point q ∈ K, and

objects u, v ∈ T returns:

O(q, u, v) =







u if d(u, q) ≤ d(v, q)

v else
(4.1)

For the sake of simplicity, we consider that all distances in K are different. Note that the

objects do not need to be in an underlying metric space for this similarity oracle. We now

define the notion of rank.

Definition 10. The rank of u in a set S with respect to v, rv(u,S) is equal to c, if u is

the cth nearest object to v in S.

To simplify the notation, we only indicate the set if it is unclear from the context i.e.,

we write rv(u) instead of rv(u,S) unless there is an ambiguity. Note that rank need not

be a symmetric relationship between objects i.e., ru(v) �= rv(u) in general. Further, note

that we can rank m objects w.r.t. an object o by asking the oracle O(m log m) questions.

To do so, create the ranking w.r.t. o by adding one object at a time. Observe that in order

to add the (i + 1)th object to the list, we need to ask log(i) questions. More precisely, we
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need to ask whether the (i+1)th object is closer to o than the object currently at position

i/2. Then, we can recurse on the set new set of objects (e.g., if the object to insert is

closer than the i/2th object, select the i/4th object as the new “pivot”). Summing over i,

the total number of questions to be asked to sort m objects is O(m log(m)).

Our first characterization of the space of objects is through a form of approximate

triangle inequalities first introduced in [LZ09] and [GLS08]5. Instead of defining a rela-

tionship between distances, these triangle inequalities define a relationship between ranks.

These relationships depend on a property of the space called the disorder constant D.

In [LZ09] and [GLS08], four such inequalities are defined, all implying the others with

D′ = D2.

Definition 11. The rank disorder of a set of objects S is the smallest D such that ∀x, y, z ∈
S, we have the following approximate triangle inequalities:

1. rx(y, S) ≤ D(rz(x, S) + rz(y, S))

2. rx(y, S) ≤ D(rx(z, S) + ry(z, S))

3. rx(y, S) ≤ D(rx(z, S) + rz(y, S))

4. rx(y, S) ≤ D(rz(x, S) + ry(z, S))

In particular, rx(x, S) = 0 and rx(y, S) ≤ Dry(x, S).

We define a rank-ball of radius r around some point x as βx(r) = {i ∈ S|rx(i) ≤ r}.
Recall that a “distance” ball is defined as Bu(r) = {i ∈ S|d(u, i) ≤ r}. Hence, if rx(v) = r

and o ∈ βx(r), then o ∈ Bx(d(x, v)).

We further define the rank matrix R where rij = ri(j), and the matrix W = R + R′

(note that the matrix W is symmetric). For a subset S ∈ K, we define its diameter

∆S = maxi,j∈S wij. Let ρi denote the ith column of R i.e., we associate to every object

o ∈ T a vector ρo ∈ {0, ..., n − 1}n, such that the jth coordinate of o is given by rj(o).

We now define the rank-distortion of a set S as follows:

5We have another characterization called rank distortion in Definition 12.
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Definition 12. We say of a set of objects S that its rank distortion function is f : N+ →
ℜ+, if f is monotonically increasing and if there exists γ > 0 (the rank-distortion) such

that ∀u, v ∈ S:

f(ru(v)) ≤ ||ρv − ρu||1 ≤ γf(ru(v))

Lemma 1. If the function f is linear i.e., f = cru(v), then the four approximate triangle

inequalities are implied with D ≤ γ.

For example, for the first inequality, we have rx(y,K) ≤ ||ρx − ρy||1/c ≤ (||ρx − ρz||1 +

||ρz − ρy||1)/c ≤ γ(rz(x,K) + rz(y,K)). The proof for the other inequalities is similar.

We can define the nearest neighbor problem as follows:

Definition 13 (R-nearest neighbor problem). Given a set of objects T and a query point

q, return one of the R objects in T closest to q. In particular, if R = 1, return the closest

object to q in T .

We say that a hashing scheme is (r,R, p, P )-sensitive if

Definition 14. We call a hashing scheme h, ”(r,R, p, P )-rank-sensitive” if ∀q ∈ K, u ∈ T ,

P [h(q) = h(u)|rq(u,T ) < r] > p and P [h(q) = h(u)|rq(u,T ) > R] < P

Note that we should have P < p.

Finally, we say that a result holds with high probability (w.h.p.) if it hold with

probability higher than 1− 1
n .

4.3 Contributions

One of the difficulty of searching a hidden space arises from the fact that we cannot know

how transitive the rank relationship is i.e., we cannot know whether the fact that A is

similar to B, and B is similar to C implies that A is similar to C. This is problematic in

the sense that even if the oracle tells us that A is closer to our query point than B, it

does not necessarily imply that points close to A are better candidates than points close

to B. In metric spaces, such a guarantee is provided by the triangle inequality. A way to
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characterize the hidden space is to limit the extent to which the triangle inequality on ranks

can be violated. The combinatorial framework, introduced in [LZ09,GLS08], (see definition

of approximate triangle inequalities) does exactly that. In this chapter, we improve on

their results in two ways. We provide more efficient algorithms using randomization and

also provide a new lower bound for such randomized algorithms. More precisely, we show

that if we only require success with high probability for nearest neighbor search, we can

exploit the fact that a sample of randomly chosen points will have nice properties. In

particular, it will be very likely that every object in the database will have an object

sampled that is similar to itself. By sampling more and more densely at every level of

a hierarchy, we will ultimately sample all objects. The key observation is that in order

to find the sample closest to a particular object, we will only need to look at objects for

which the closest sample at the level above in the hierarchy was also close to that object.

We introduce a conceptually simple randomized hierarchical scheme that allows us to

reduce the learning compared to the existing algorithm (see [LZ09, GLS08]) by a factor

D4, memory consumption by a factor D5/ log2 n, and a factor D/ log n log log nD3
for

search (see Section 4.1). This algorithm’s performance is best when the disorder constant

is small.

Theorem 16. There exists a data structure, which for a given query point q, can re-

trieve its nearest neighbor with high probability in O(D3 log2 n log log nD3
) questions. The

learning requires asking O(nD3 log2 n log log nD3
) questions in total. We need to store

O(n log2 n/ log(2D)) bits in total.

We then prove a lower bound on the average search time to retrieve the nearest neighbor

of a query point for randomized algorithms. Our result confirms the intuition we have

developed so far. Indeed, the higher the disorder constant, the more difficult it becomes

to search. One way to interpret this result is that the higher the disorder constant D, the

less information the answer to a question to the Oracle provides us.

Theorem 17. There exists a space, a configuration of a database of n objects in that space

and a distribution over placements of the query point q such that no randomized search

algorithm, even if O(n3) questions can be asked in the learning phase, can find q’s nearest
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neighbor in the database for sure (with a probability of error of 0) by asking less than an

expected Ω(D log( n
D2 ) + D2) questions.

Consequently, our schemes are asymptotically (for n) within a factor Õ(D) of the

optimal scheme (i.e., within Dpolylog(n) questions of the optimal search algorithm). The

proofs of those two theorems are provided in Section 4.4.

Clearly, one of the limitations of the schemes above is that we need to know the

disorder constant. It might be possible to estimate the value of the disorder constant

based on a sample of objects in the database. Limitations of this approach are the fact

that we might considerably degrade the performance of the algorithms if the estimator is

inaccurate, and that we might run into trouble if the query point does not come from the

same distribution as the database points T . We therefore extend, in Theorem 21, the idea

of k-d-trees to our setup. We provide an algorithm to build a binary tree that adapts to

the disorder of the hidden space (see [DF08] for an analogous result for ℜd). In Section

4.5.3, we present a new rank-sensitive hash function with many potential applications.

The idea of rank-sensitive hashing is that by computing many times a hash function

drawn at random, similar objects will be assigned the same hash value more frequently

than dissimilar objects. The performance of the rank-sensitive hashing scheme depends

on the rank-distortion of the hidden space. Instead of capturing how “transitive” the rank

relationship is, the rank disorder captures how the rank ru(v) relates to the average rank

i.e., E [|rj(v) − rj(u)|]. In other words, if we picked an object x at random, and sorted all

other objects w.r.t. this object, how would |rx(v) − rx(u)| relate to ru(v)? If ru(v) can

be approximated by a function f of E [|rj(v) − rj(u)|]), then we can exploit this fact to

separate points close to q and points far from q.

Theorem 18. Given a set of objects S with rank-distortion function f , and rank distortion

γ, there exists a function h which is (r, (1 + ǫ)r, 1 − f(r)
n2 , 1 − f((1+ǫ)r)

n2γ )-rank-sensitive.

A special case is when the function f is constant. Then, the behavior of the function

is similar to the one observed with locality-sensitive hashing for binary vectors. One of

the consequences is that we can retrieve one of the R = (1 + ǫ)r nearest neighbors of a

query point q in nO(γ
ǫ
) questions. By using the output of the hash function in a different
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way, we can compute an overall ranking of the objects. We can then retrieve ”popular”

objects i.e., those which are close to many other objects. This idea is discussed in Section

4.5.2.

4.4 Searching with Known Disorder Constant

In this section, we make the assumption that the disorder constant D, of T ∪ {q} is

known, and that we can consequently use it as an input to our algorithms. Knowing D is

an advantage, as it allows one to rapidly exclude some candidate objects during the search

phase. In other words, we can take advantage of the fact that if we found an object close

to the query point q, then objects which are far from that object cannot be the nearest

neighbor of q. We first present an algorithm for nearest-neighbor search. The algorithms

builds a hierarchical decomposition of the test set T . The construction succeeds with high

probability i.e., for a fixed query point q, the data structure is such that it will return q’s

nearest neighbor w.h.p. Then, we present a lower bound on the search complexity.

4.4.1 Hierarchical Data Structure For Nearest-Neighbor Search

The learning phase is described in Algorithm 3. The algorithm builds a hierarchical de-

composition level by level, top-down. At each level, we sample objects from the database.

The set of samples at level i is denoted by Si, and we have |Si| = mi = a(2D)i log n, where

a is a constant independent of n and D. At each level i, every object in T is put in the

“bin” of the sample in Si closest to it. To find this sample at level i, for every object o

we rank the samples in Si w.r.t. o (by using the oracle to make pairwise comparisons).

However, we will show that given that we know D, we only need to rank those samples

that fell in the bin of one of the at most 4aD log n nearest samples to o at level i − 1.

This is a consequence of the fact that we carefully chose the density of the samples at

each level. Further, the fact that we build the hierarchy top-down, allows us to use the

answers to the questions asked at level i, to reduce the number of questions we need to

ask at level i+1. This way, the number of questions per object does not increase as we go

down in the hierarchy, even though the number of samples increases. The search process

97



Chapter 4. Comparison-based Nearest Neighbor Search

is described in Algorithm 4. The key idea is that the sample closest to the query point on

the lowest level will be its nearest neighbor. Hence, by repeating the same process as for

inserting objects in the database, we can retrieve the nearest neighbor w.h.p.

input : A database with n objects z1, ..., zn and disorder D
output: For each object u, a vector φu of length log n/ log(2D). The list of all

samples ∪iSi

for i ← 1 to L = log n
log 2D do3.1

Let Si be a set of a(2D)i log n objects chosen u.a.r. in the database T ;3.2

for j ← 1 to n do3.3

if i = 1 then3.4

cj(1) ← S13.5

else3.6

cj(i) ←3.7
{

v ∈ Si|position of φv(i − 1) in c′j(i − 1) smaller than 4aD log n
}

;

/* cj(i) is the set of samples in Si, for which the closest

sample in Si−1 was one of the (at most) 4aD log(n)
closest sample to zj in Si−1 */

end3.8

if |cj(i)| = 0 then3.9

Report Failure3.10

else3.11

c′j(i) ← sort cj(i) according to rzj (v, Si), ∀v ∈ cj(i);3.12

φj(i) ← first object in c′j(i);3.13

/* φj(i) is the sample in Si closest to zj */

end3.14

end3.15

end3.16

Algorithm 3: Learning Algorithm

We will now show that Algorithm 3 succeeds with probability higher than 1− 1
n (w.h.p.)

and that it requires asking less than O(D3 log2 n log log nD3
) questions w.h.p.

Theorem 19. Algorithm 3 succeeds with probability higher than 1 − 1
n (w.h.p.) and it

requires asking less than O(nD3 log2 n log log nD3
) questions w.h.p.

We first prove two technical lemmas that we will need to prove Theorem 19.

Lemma 2. If we throw m = ab log n balls into b bins, each chosen uniformly at random,

then the first bin will contain at least one ball with probability 1 − 1
na

98



4.4. Searching with Known Disorder Constant

input : A database with n objects and disorder D, the list of samples, the
vectors φ, a query point q

output: The nearest neighbor of q in the database

c′q(1) = S1;4.1

for i ← 2 to L = log n
log 2D do4.2

cq(i) ←
{
v ∈ Si|position of φv(i − 1) in c′q(i − 1) smaller than 4aD log n

}
;4.3

c′q(i) ← sort cq(i) according to rq(v, Si), ∀v ∈ cq(i);4.4

end4.5

return first object in c′q(
log n

log 2D )4.6

Algorithm 4: Search Algorithm

Proof. The probability that a bin contains no ball is

P [a bin contains no ball] = (1 − 1
b )

ab log n

≤ e−a log n

= 1
na

Lemma 3. We throw m balls into n bins, each chosen uniformly at random. We number

the bins from 1 to n. Then, the probability that the bins 1 to n
c contain more than (1+τ)m/c

or less than (1 − τ)m/c balls is at most 2e−τ2m/3c.

Proof. We throw the balls one after the other into the bins. Let Xi = 1 if the ith ball falls

in one of the n
c first bins, and 0 else. Let X =

∑

i Xi. Clearly, we have E [X] = m/c, as

P [Xi = 1] = 1/c and all Xi’s are independent. By the Chernoff Bound (see for instance

[MU05], page 67), we have P [|X − E [X]| > τm/c] < 2e−τ2m/3c.

We are now ready to prove Theorem 19.

Proof of Theorem 19. Let mi = a(2D)i log n denote the number of objects we sample at

level i, and let Si be the set of samples at level i i.e., |Si| = mi. Here, a is an appropriately

chosen constant, independent of D and n. Further, let λi = n
(2D)i−1 . We will first show

the for every object o ∈ T ∪ {q}, where q is the query point, the following four properties

of the data structure are true w.h.p.

1. |Si ∩ βo(λi+1)| ≥ 1
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2. |Si ∩ βo(λi)| ≤ 4aD log n

3. |Si+1 ∩ βo(λi−1)| ≤ 16aD3 log n

4. |Si ∩ βo(4λi)| ≥ 4aD log n

5. |Si+1 ∩ βo(4λi−1)| ≤ 64aD3 log n

Fix an object o and a level i. To visualize the proof, place all objects in the database on

a line, such that the object u with rank ro(u,T ) = r is located at distance r from o (see

figure 4.1). Property 1 tells us that at least one of the samples at level i will be such that

Figure 4.1: We place all objects on the line such that the object u with rank ro(u, T ) = r is
located at distance r from o.

its rank w.r.t. o is smaller than λi+1 i.e., ∃s ∈ Si s.t. ro(s) ≤ λi+1. Clearly, by Lemma

2, this is true with probability at least 1 − 1
na (set m = mi and b = (2D)i = n

λi+1
in the

lemma). Property 2 tells us that not too many objects can have rank less than λi at level

i w.r.t. o. Let c = n
λi

= (2D)i−1. Now, by lemma 3 (set m = mi = a(2D)i log n and

τ = 1), the probability that more than 2a(2D)i log n/(2D)i−1 = 4aD log n samples are

among the λi = n
c closest samples to o is less than 2e−2aD log n/3 = 1

nΩ(a) . The proof of

Property 3 is identical, except that we replace λi by λi−1. Then, we have c = (2D)i−2,
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2mi+1

c = 16aD3 log n, and the probability that |Si+1 ∩ βo(λi−1)| > 16aD3 log n is smaller

than 1
nΩ(a) , as before. For Property 4, we expect 8aD log n objects to be sampled at level i

among the 4λi closest objects to o. Again, by lemma 3, the probability that less than half

that many objects get sampled is at most 1
nΩ(a) . Finally, the proof of Property 5 is almost

identical to the proof of Property 2. By choosing a large enough, we can make sure that

the five properties are true for all objects and all levels w.h.p. (take the union bound over

the n objects and the L = log n
log 2D levels).

From now on, we assume that we are in the situation where Properties (1) to (5)

are true for all objects (which is the case w.h.p.). Again, fix an object o. Consider a

sample s ∈ Si+1 such that ro(s) ≤ λi+1 (note that Property 1 guarantees that there is

a least one such sample). Further, let s′ ∈ Si be the sample at level i closest to s i.e.,

s′ = minx∈Si rs(s
′). Again, by Property 1, we know that rs(s

′) ≤ λi+1. Hence, by the

approximate triangle inequality 3 (see Section 4.2), we have:

ro(s,T ) ≤ λi+1 and rs(s
′),T ) ≤ λi+1 ⇒ ro(s

′),T ) ≤ 2Dλi+1 = λi

Consequently, we know that the sample that is closest to o at level i + 1 will be in the bin

of a sample s′ ∈ Si that has rank ro(s
′,T ) ≤ λi. The algorithm associates every object o

to the closest sample on each level. Hence, to find that sample for object o at level i + 1,

it would be sufficient to rank (w.r.t. o) all sample in Si+1 that fell in the bin of a sample

at level i that has rank less than λi. Property 2 tells us that |Si ∩ βo(λi)| ≤ 4aD log n.

Hence, by inspecting the bins of the at most 4aD log n closest samples to o at level i, and

ranking the samples at level i + 1 that fall in those bins, we are guaranteed to find the

closest sample (that is what we do on Line 3.7 of Algorithm 3). Property 4 tells us that

all of the 4aD log n closest samples to o at level i have rank less than 8λi. Consider a

sample s ∈ Si such that ro(s,T ) ≤ 8λi and a sample s′′ ∈ Si+1 that falls in the bin of s.

By property 1, we must have rs′′(s,T ) ≤ λi + 1. Thus, by inequality 2, we have:

rs′′(s,T ) ≤ λi+1 and ro(s,T ) ≤ 8λi ⇒ ro(s
′′,T ) < D(8λi + λi+1) ≤ 4λi−1

By property 5, there are at most O(D3 log n) such samples at level i + 1. This is the

maximum cardinality of cj(i) on line 3.7 of the Algorithm 3.
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To summarize, at every level in the hierarchy, and for every object, we need to rank

at most O(D3 log n) samples (which is what we do on Line 3.12 of Algorithm 3). Con-

sequently, we need to ask at most O(nD3 log2 n log log nD3
) questions in total to rank at

most O(D3 log(n)) objects for every object and level. The algorithm only fails with neg-

ligible (smaller than 1
n) probability if an object has no sample that falls within λi at any

level i.

The proof of Theorem 16 is then immediate.

Proof of Theorem 16. The upper bound on the number of questions to be asked in the

learning phase is immediate from Theorem 19. For each object, we need to store one

identifier (the identifier of the closest object) at every level i in the hierarchy, and one

bit to mark it as a member of Si or not. Hence, the total memory requirements6 do not

exceed O(n log2 n/ log(2D) bits. Finally, the properties 1-5 shown in the proof of Theorem

19 are also true for an external query object q. Hence, to find the closest object to q on

every level, we need to ask at most O(D3 log2 n log log nD3
) questions. In particular, the

closest object at level L = log2D(n) will be q’s nearest neighbor w.h.p.

Note that this scheme can be easily modified for R-nearest neighbor search. At the

ith level of the hierarchy, the closest sample to q will, w.h.p., be one of its n
(2D)i nearest

neighbors. If we are only interested in the level of precision, we can consequently stop the

construction of the hierarchy at the desired level.

4.4.2 Lower Bound

In this section, we first construct a configuration of n objects, and define a distribution

over query points, such that the disorder constant is D. Then, we show that no search

algorithm can be guaranteed to find the nearest neighbor of the query point in less than

expected Ω(D log n
D2 +D2) questions. We make the assumptions that all possible questions

related to the n database objects can be asked during the learning phase, and even that

the structure of the database is known. Then, we attach a query point to the database

constellation in a random way. Consider the graph shown in Fig. 4.2. It is a star with

6Making the assumption that every object can be uniquely identified with log n bits.
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α branches, each composed of n/α2 supernodes. All edges in this part of the graph have

weight 1. Inside each supernode, there are α database objects. A root node that connects

the supernode to the other supernodes, and α objects, each connected to the root with a

different edge. The weights of these edges range from 1/4α to α/4α. Finally, the query

point will be connected to one object on every branch of the star. Hence, the query point

has α direct neighbors (one on each branch of the star). The edges connecting the query

point to the graph have weights ranging from 1 to 1 + ǫ, where ǫ ≪ 1/4α. Note that we

cannot know which are the direct neighbors of the query point, nor what the weights of

the corresponding edges are. Thus, given the n database objects and the answers to all

possible questions we can ask about the database, we need to find the nearest neighbor of

the query point. First, we show that this structure has disorder Θ(α).

Lemma 4. The graph shown in Fig. 4.2 with the shortest path distance has disorder

constant D = Θ(α).

Proof. Consider the configuration given in Figure 4.2. We need to show that for all triples

x, y, z, where x, y, z ∈ T ∪ {q}, we have rx(y) ≤ D(rz(x) + rz(y)). First, let us consider

two nodes x and y such that d(x, y) = d, with d > 1. Clearly, these two nodes must

be in two different supernodes as the maximum distance inside a supernode is is strictly

smaller than 1. Further, we have |βx(d)| ≤ 4α2d, ∀x ∈ T ∪ {q}. Indeed, even if x is in the

supernode at the center of the star, there are at most αd other supernodes within distance

d. Each supernode can contain at most α nodes. Further, the query point could be within

distance d of x, in that case there could be at most 2dα2 additional objects in the balls.

On the other hand, we have |βz(d/2)| ≥ dα/2, ∀z ∈ T ∪{q}. Indeed, even if z is placed at

the end of a branch, there are at least dα supernodes within distance d, each containing

α nodes. Hence, we have rx(y) ≤ 4α2d ≤ 2Dαd ≤ D(rz(x) + rz(y)) by setting α = D/2.

We have used the fact that rz(x) + rz(y) ≥ |βz(j)| + |βz(d − j)| ≥ 2|βz(d/2)|.
If the distance is smaller than 1, then x and y must be inside the same supernode.

In that case, we have rx(y) ≤ α ≤ 2D ≤ D(rz(x) + rz(y)). We can prove the other

inequalities in a similar way.

In the proof of Theorem 17, we show that we can lower bound the expected running
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time of any randomized algorithm on the example of Figure 4.2. The idea of the proof is

that we must identify and compare all direct neighbors to the query point, and then find

the nearest neighbor among the direct neighbors. We show that we cannot identify all

direct neighbors in fewer than an expected Ω(D log n
D2 + D2) questions.

Figure 4.2: A graph with disorder constant α and shortest path distance. The graph forms
a star with α branches. Each branch is composed of n/α2 “supernodes”. Each
edge between the ”roots” of the supernodes in the star has weight 1 (w denotes
the weight in the figure). Each supernode (see zoomed region on the right side of
the figure) is in turn composed of a ”root”, and a smaller (α)-ary tree (of depth
1) consisting of α actual database objects. The weights of the edges in the tree
range from 1/4α to α/4α (are picked u.a.r. in this range). Finally, a query
point is randomly connected to one non-root node on each branch of the star
with edges of weights ranging from 1 to 1 + ǫ (dashed lines), where ǫ ≪ 1/4α.
The distances on the graph are shortest path distances. There are (n

α
)α ways to

connect the query point to the database. Further, for each such configuration,
there are α possible choices for the nearest neighbor (the direct neighbor which
is connected to the query point with the edge of smallest weight). We assign
weights to the edges connecting direct neighbors to the query point in such a
way that each of the direct neighbors is equally likely to be the nearest neighbor,
and each weight is different.
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Proof of Theorem 17. Consider the graph metric with shortest path distance in Figure

4.2. Yao’s minimax principle (see [MR95]) states that, for any distribution on the inputs

the expected cost for the best deterministic algorithm provides a lower bound on the

expected running time of any randomized algorithm. The graph structure (solid lines in

Figure 4.2) is known, but the weights of the edges are unknown. The graph consists of a

star with α branches, each composed of n
α2 supernodes. Each of the supernodes in turn

contains α database objects (i.e., objects in T ). Clearly, in total there are αα n
α2 = n

objects. We know the answers to all questions of the type O(a, b, c), where a, b, c ∈ T . We

attach a query point q to that graph, and we assume that each ”position” of the query

point (as shown in Fig. 4.2) is equally likely. That is, the query point is attached to one

(non-root) object chosen u.a.r. on each branch of the star with an edge. This object is

a called a direct neighbor. The weights of the corresponding edges are chosen between

1 and 1 + ǫ in a random way as well (such that we do not have ties, and each of the

direct neighbors is equally likely to be the nearest neighbor). In other words, the input

distribution is uniform over all configurations. First, note that q’s nearest neighbor must

be one of the objects connected directly to it i.e., one of the α direct neighbors. Indeed,

let δ = {u ∈ T |u is a direct neighbor of q}. Then, we have d(u, q) < d(v, q), when u ∈ δ

and v ∈ T \δ. Further, any of these direct neighbors could be q’s nearest neighbor with

equal probability.

Assume that we are given for free the answers to all questions, except the questions of

the type O(q, x, y), where both x, y ∈ δ. This amounts to knowing which are the direct

neighbors (i.e., we know the set of α nearest neighbors to q), but not knowing anything

about the ranking of those direct neighbors with respect to q. Indeed, by construction,

all direct neighbors are closer to the query point than any other object in the database.

Hence, if we used the oracle to compare a direct neighbor with another object (which is

not a direct neighbor), the oracle would always answer that the direct neighbor is closer

to the query point. So, we could not exclude one of the direct neighbors as the nearest

neighbor (we do not learn anything about the nearest neighbor). Further, the comparison

of two objects z, t /∈ δ does not tell us anything, since we do not know the weight of the

edges. For instance, the fact that the second closest object to q inside a supernode Φ
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containing a direct neighbor is closer than the second closest object to q inside another

supernode Φ′ also containing a direct neighbor does not tell us that the direct neighbor

inside Φ is closer than the direct neighbor inside Φ′. Hence, in order to identify the nearest

neighbor, the best deterministic algorithm must at least ask α questions to find the nearest

neighbor among the direct neighbors (we must traverse the list of direct neighbors and

ask the oracle to compare every object with the current best candidate). Consequently,

we must first identify all direct neighbors, and then compare them with each other.

Note that there are (n
α)α ways to choose the direct neighbors, and that each configura-

tion is equally likely. Identifying all direct neighbors is equivalent to knowing which of these

configurations we are in. Let X denote the random variable of which each outcome corre-

sponds to a configuration. Then, the entropy of X is log(n
α )α = α log(n/α2)+α log α bits.

The answer to every question we ask the oracle will reduce the uncertainty about which

configuration we are in. In order for the probability of error pe to be equal to zero i.e.,

in order to be sure that we found the all direct neighbors, Fano’s inequality (see [CT06],

p39) tells us that we must know at least a set of answers A such that H(X|A) = 1 bit to

have the pe ≥ 0.

For every branch of the star, choosing a direct neighbor u.a.r. is equivalent to choosing

a supernode u.a.r., and then a direct neighbor inside that supernode u.a.r. First, assume

that we know, on each branch, in which supernode the direct neighbor is located. Let

us focus on one branch, and the supernode on this branch containing a direct neighbor.

Denote that supernode by Φ. In that case, in order to identify the direct neighbor in Φ,

we must ask questions of the type O(q, a, b), where a, b ∈ Φ. Asking a question where

either a, b or both are outside Φ does not tell us anything about which object is the direct

neighbor, as all objects inside Φ are closer to q than any object outside that supernode.

Further, note that the answer to any question of the type O(q, a, b), where a, b ∈ Φ and

d(z, b) > d(z, a) is b only if b is q’s direct neighbor in Φ. Hence, the answer to a question

of this type allows us to exclude only one object at a time7. Hence, for each of the α

supernodes that contain a direct neighbor to q, we must ask an expected Ω(α) questions

7The same is true if we ask questions where a and b are in different supernodes. What matters is that
we can only exclude one object as being a direct neighbor every time we ask a question.
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to identify the direct neighbor. Knowing all the direct neighbors, when the supernodes in

which they are located are known, reduces the entropy by α log(α) bits. Indeed, there are

α such supernodes, and α choices for the direct neighbor inside each of these supernodes

(i.e., if we fix the supernodes containing the direct neighbors, there are αα ways to choose

the direct neighbors). As every question only excludes one object inside a supernode as

direct neighbor, in total we must ask Ω(α2) questions to the oracle.

Let us now remove the assumption that we know which supernodes contain a direct

neighbor. There are ( n
α2 )α ways to choose the supernodes that contain the direct neighbors.

The entropy for this random choice is consequently α log(n/α2) bits. Thus, at best, we

need to ask α log(n/α2) questions (in the best case each question reduces the number of

possible configurations by 2) in order to know in which supernodes the direct neighbors

are located. In total, we consequently need to ask at least an expected Ω(α log n
α2 + α2)

questions, to reduce the entropy by log(n
α )α = α log(n/α2)+α log α bits and having pe ≥ 0.

By letting α = Θ(D), we obtain the claim.

4.5 Searching with Unknown Characterization

When we cannot use any characterization of the hidden space as an input, we cannot be

sure to retrieve the nearest neighbor of a query point q, unless we ask O(n) questions.

Indeed, unless we go sequentially through all objects and compare them to the current

nearest neighbor, there could always be an object closer to the query point. In Section

4.4, we heavily relied on the fact that by sampling objects u.a.r., we could find objects

close to the query point. Knowing the disorder constant then allowed us to exclude other

objects as near neighbors i.e., we could be almost sure that some objects were not among

the closest neighbors of the query point. More precisely, as illustrated in Section 4.5.1,

knowing the disorder and partial rank information, we can easily limit ranks. If we do

not know D or another characterization, we can still hope that by building a hierarchical

decomposition, dissimilar objects will be separated rapidly as we walk down from the root

to a leaf. Hence, we would also expect objects similar to q to be close to it in the tree.

However, we cannot bound this rank relationship, as we cannot use a characterization
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as an input to the algorithm. First, however, we will give an example of a simple and

intuitive algorithm that shows how much we can gain by knowing the disorder constant,

or equivalently what we lose if we do not have such a characterization.

4.5.1 Consequences of knowing the disorder constant

If we know that an object u is the jth nearest neighbor of an object x (i.e., we have

rx(u,T ) = j), and we are looking for an object y, such that ru(y,T ) < ζ, then we know

that y must lie in an annulus centered at x of a certain width around u i.e., we know that

a ≤ rx(y) ≤ b, where a and b are functions of j and ζ. In particular, we have:

Lemma 5. Consider three objects x, y, and u. Let rx(u) = j and ry(u) < γ (1), or

ru(y) < ζ (2). Then, y must lie in an annulus such that j
D − ζ ≤ rx(y) ≤ D(j + ζ).

Proof. The result follows directly from the approximate triangle inequality (see Definition

11). The lower bound follows from inequality 3 for (1) and inequality 2 for (2). The upper

bound follows from inequality 2 for (1) and inequality 3 for (2).

By sampling m objects u.a.r., and computing all ranks w.r.t. to these objects, we can

thus narrow down the search space to an annulus of width depending on D and on the

rank of the closest sample.

Theorem 20. Given a query object q ∈ K, we can retrieve one of its R nearest-neighbors

in T by asking an expected m + log n + D + D2n
mR + 1 questions, with constant probability.

The learning phase requires asking an expected O(nm log n) questions to sort all objects

w.r.t. the m samples.

Proof. During a learning phase we sample m objects S = {s1, ...sm} u.a.r in T , and

rank all other objects with respect to the objects in S i.e., ∀s ∈ S, u ∈ T , we compute

rs(u,T ) by querying the oracle (this can be done by asking O(mn log n) questions). In

the search phase, we start by finding the point in S closest to q, that is we want to find

x = argmins∈Srq(s). This can be done in m steps by traversing the list of objects in S

sequentially and storing the closest element seen so far. In particular, for every object in S,

we ask the oracle whether it is closer to q than the current minimum, and if so it becomes
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the new minimum. Then, using binary search, we can find j′ = rx(q) (i.e., we ask the oracle

whether q is closer to x than the element y such that rx(y) = n/2, and then apply this

process recursively on the new ”interval”). Now, given that in the learning phase we sample

m objects u.a.r. in T , we know that P [rq(x) = j] = m
n (1− j

n)m (j has the distribution of

the minimum of m integers selected uniformly at random between 1 and n). Further, we

know by triangle inequality that j
D ≤ j′ ≤ Dj. Hence, by Lemma 5, all objects o such that

rq(o,T ) < R must lie in an annulus centered at x such that j
D2 −R ≤ rx(o) ≤ D2j + DR

(see Figure 4.3). This annulus contains at most (D+1)R+j(D2− 1
D2 ) < (D+1)R+j(D2)

Figure 4.3: The R nearest neighbors of q must lie in an annulus around x.

objects, of which R are the R nearest neighbors of q. Hence, by sampling (D + 1) + j(D2)
R

times, we will retrieve an R-nearest neighbor with constant probability. Thus, the expected

number of times we need to sample is
∑n

j=1
m
n (1− j

n)m((D + 1)+ j(D2)
R ) ≤ (D + 1)+ nD2

mR .

For every sample, we ask the oracle if it is closer to q than the currently closest sampled

point. If so, we store this point, else we delete it.

In particular, by setting m =
√

n
R , we can retrieve one of the R nearest neighbors

with constant probability in expected O(D2
√

n
R ) questions. The example is similar to

what happens on a given level in the scheme of Section 4.4.1, where we applied this idea

to develop a hierarchical scheme. In some sense, we applied this scheme repeatedly for
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Figure 4.4: We decompose a set S into two sets S0 and S1. To do so, we select two
points x1 and x2 u.a.r. in S, and let S0 = {u ∈ S|rx1

(u) < rx1
(x2)} and

S1 = {u ∈ S|rx1
(u) ≥ rx1

(x2)}.

smaller and smaller values of R, while reducing the search space. The fact that we know

D, as is illustrated by the algorithm above, allows us to exclude some objects as being

nearest neighbors. Indeed, if we have information about the rank of the sample w.r.t. the

query point, or vice-versa, then we know the nearest neighbor must lie in an annulus of

known width. On the other hand, if no characterization is known, we cannot exclude any

object, whatever the density of the sampling. In the next section, we ask whether we can

build a data structure that adapts to the characteristics of the space, without requiring

them as input. In other words, we ask whether we can decompose the space in such a way

that dissimilar objects are likely to be separated, and similar objects remain close to each

other, without knowing a characterization of the space.

4.5.2 Binary Tree Decomposition

A natural and simple way to build a data structure suited for search operations is to

build a tree. By recursively applying Algorithm 5 (see Figure 4.4), we can decompose the

database into a binary tree. Clearly, this algorithm does not require any characterization of

the space as an input. As illustrated in Section 4.5.1, if we do not know a characterization
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of the hidden space, we cannot limit the ranks if we only have partial rank information.

However, we can expect this decomposition to adapt to the structure of the underlying

space. In other words, even though we do not know any characterization of the space,

we expect that if the space is sufficiently homogeneous similar nodes are more likely to

end up in the same set than dissimilar objects. Let the expected diameter after the

input : A set S of objects ∈ T
output: Two sets of objects S0 and S1 = S\S0

pick two objects x1 and x2 u.a.r. in S;5.1

S0 = ∅, S1 = ∅;5.2

forall u ∈ S do5.3

if O(x1, x2, u) = u then S0 = S0 ∪ u else S1 = S1 ∪ u;5.4

end5.5

Algorithm 5: Rank-Ball Cut

decomposition of S into S1 and S0 be defined as ∆̃S = |S0|
|S| ∆S0 + |S1|

|S| ∆S1 ≤ ∆S (by

analogy to the notion in [DF08]). Observe that the diameter of a set (see definition in

Section 4.2) has the following property.

Lemma 6. The diameter of a set S with |S| = n is always less than or equal to 2n i.e.,

∆S ≤ 2n, with equality when d(u, v) = d(v, u) in the hidden metric space (symmetric

distance function).

Proof. Clearly, if |S| = n, for any pair of point u and v, we have ru(v, S) ≤ n. Hence,

ru(v) + rv(u) ≤ 2n for all u, v. In case the distances are symmetric in the hidden space,

we can rank the distances from the smallest distance to the largest distance. Consider

the pair v,w, such that d(v,w) = d(w, v) > d(i, j), for all i, j. Then, we clearly have

rv(w) = n and rw(v) = n, since there cannot be any point further away from v than w,

and vice-versa.

We can compute the expected diameter after the decomposition of S into S0 and S1.

First, observe that it will always decrease, as the cardinality of the two new sets must

be smaller or equal to the diameter of S. Let us denote by x1 and x2 the two randomly

selected points in the set S. Let rx1(x2) = k. By the approximate triangle inequality

(1), for any pair of points u and v in S0, we have ru(v) ≤ D(rx1(u) + rx1(v)) ≤ 2Dk.
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Hence, the diameter ∆S0 must be smaller or equal to 4Dk. We can then easily compute

the expected diameter to be ∆̃S ≤ 4D
n k2 + 2n − 2k. Further, the optimal value for k

is k = n
4D . However, by choosing x2 at random, we cannot ensure that rx1(x2) takes a

specific value. Nevertheless, we know that the value of k is uniformly distributed between

1 and n. Assume that we want ∆̃S ≤ ǫ2n, for some ǫ < 1. Then, we can prove the

following theorem:

Theorem 21. Let ǫ < 1. Then,

P
[

∆̃S ≤ ǫ2n
]

=
1

2D

√

1 − 8D(1 − ǫ)

Proof. We need to compute the probability that k is such that 4D
n k2 + 2n − 2k < ǫ2n,

or equivalently 2D
n k2 − k + (1 − ǫ)n < 0. Solving for k, we obtain k =

1±
√

1−8D(1−ǫ)
4D
n

=

n
4D ± n

4D

√

1 − 8D(1 − ǫ). Hence, the number of values of k for which the above condition

is fulfilled is | n
4D + n

4D

√

1 − 8D(1 − ǫ) − n
4D + n

4D

√

1 − 8D(1 − ǫ)| = n
2D

√

1 − 8D(1 − ǫ).

As we choose k u.a.r. from n values, we have P
[

∆̃S ≤ ǫ2n
]

= 1
2D

√

1 − 8D(1 − ǫ)

Let a ”good cut” be a cut such that the diameter is reduced by epsilon. The probability

that we reduce the diameter y a factor ǫ degrades with increasing values of D. Hence,

even though the disorder constant is not an input to the algorithm, the performance will

depend on the disorder constant. For instance, if D were constant, then we would reduce

the diameter by a constant with constant probability. In general, we roughly need log(1/c)
log(ǫ)

good cuts to divide the diameter by a constant c. In any case,

Lemma 7. The depth of the binary tree is O(log n) w.h.p.

Proof. Let δ < 0.5 be a constant independent of n,D. Consider a particular path in

the binary tree from the root to a leaf. Let ni denote the number if objects in the set

at level i and ki the rank of x2 w.r.t x1 (i.e., rx1(x2)) chosen at level i. Let Xi = 1 if

δni ≤ ki ≤ (1 − δ)ni. As ki is distributed u.a.r. in 1, .., ni, we have P [Xi = 1] = 1 − 2δ.

If Xi = 1, the number of objects is reduced by a factor at least 1 − δ at this level i.e.,

max {|S0|, |S1|} < (1−δ)ni. As there are n objects in total, we can not reduce the number

of objects by a factor (1 − δ) more than s = log(n)
log(1/(1−δ)) times. In m levels on the path,
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the expected number of times we expect Xi to be equal to 1 is µ = (1 − 2δ)m. If we set

m = 2as
(1−2δ) , for some constant a > 1 we have

P
[
∑m

j=1 Xj < µ/2 = as
]

< O(1/poly(n))

By the Chernoff bound. There are at most n paths (one per leaf). Taking the union bound

over these paths, we obtain the claim.

An interesting fact is that the probability that a node u falls in the good set i.e., the

ball around x1 is given by φu = P [u ∈ βx1(rx1(x2))] = 1
n

∑

j(1 − rj(u)
n ). Hence, ”outliers”

are likely to be put in the same bin as other outliers, while similar objects are likely to

be put in the same bin. For instance, an object y far away from all other objects, such

that ∀u ∈ T we have ru(y) = n, will hardly ever be put in the good set. Conversely, if

there is a set of very popular nodes, which have a low rank w.r.t. all other objects, they

will often end up in the good set. Consequently, this function can be used to estimate

how “central”, or popular an object is (analogous to the notion of 1-median in [Ind99]).

Yi =
∑

j 1{node i is in the good set}, where the sum goes over randomly selected hash

functions and 1{} is the indicator function, will provide such an estimate. It also implies

that outliers are more likely to be separated from other objects. In particular, if we

computed k times the result of a randomly chosen hash function h, Yu would be roughly

equal to kφu. By sorting the Yi’s, we obtain a ranking of the objects by popularity. In the

next subsection, we will try to exploit this property to design a hashing scheme.

4.5.3 Rank-Sensitive Hashing

We have developed the intuition that by randomly cutting out balls in the hidden space, it

is more likely that similar objects will stay together, and dissimilar objects be separated.

This should be sufficient, if we can amplify this property, to allow us to efficiently search

for similar objects by using an appropriately chosen hash function. Indeed, we will now

show how we can use this technique to develop a rank sensitive hashing scheme. The rank

distortion provides us a sufficient condition for the scheme to work. Our hash function

h selects two objects u.a.r in T (say x1 and x2), and assigns values h(u) ∈ {0, 1} to all
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objects u as follows

h(u) =







1 if O(x1, x2, u) = u

0 if O(x1, x2, u) = x2

Note that computing h requires asking a single question per object, and that the algorithm

does not require any characterization of the space as input. The function h is (r, (1+ǫ)r, 1−
f(r)
n2 , 1 − f((1+ǫ)r)

n2γ )-rank-sensitive. This is the result of Theorem 18

Proof of Theorem 18. First, we compute the probability that the hash function h is dif-

ferent for two objects u and q.

p = P [h(u) �= h(q)]

=
∑

i,j∈T P [h(u) �= h(q)|x1 = i, x2 = j]P [x1 = i, x2 = j]

=
∑

i,j∈T 1{rx1(x2)∈[rx1(q),rx1 (u)]}P [x1 = i, x2 = j]

=
∑

i∈T E

[

1{rx1 (x2)∈[rx1 (q),rx1(u)]}
]

P [x1 = i]

= 1
n

∑

i P [rx1(x2) ∈ [rx1(q), rx1(u)] |x1 = i]

= 1
n2

∑

i |ri(u) − ri(q)|
= 1

n2 ||ρu − ρq||1

Hence, we have

P [h(u) = h(q)|rq(u) ≤ r] = 1 − 1

n2
||ρu − ρq||1 ≥ 1 − f(r)

n2

and

P [h(v) = h(q)|rq(v) ≥ (1 + ǫ)] = 1 − 1

n2
||ρv − ρq||1 ≤ 1 − f((1 + ǫ)r)

n2γ
)

Where the two inequalities follow from Definition 12.

A special case is when the function f is linear. Then, we obtain the following result.

Corollary 4. We can retrieve one of the (1 + ǫ)r-nearest neighbors in T of a query point

q, with constant probability, by asking nO(γ
ǫ
) questions, where γ is the rank distortion of

T , when the rank distortion function is linear ( i.e., f(r) = cr).

Proof. The proof is analogous to the proof for locality-sensitive hashing for binary vectors

provided in [IM98] (a short introduction to locality-sensitive hashing is provided in Section

A-3). More precisely, for an (r,R, p, P )-rank sensitive hashing scheme, retrieving one of
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the R nearest neighbor of a query point q will requires O(nθ) evaluations of the hash

function. θ is defined as
log 1

p

log p
P

. It can be shown that θ ≤ 1
1+ǫ

γ
−1

= O( γ
1+ǫ). Indeed, the

probabilities p and P take the same form as if we hashed binary vectors of dimension n2/c,

and let r′ = r, and (1 + ǫ′)r′ = (1 + ǫ)r/γ. Then, θ ≤ 1
ǫ′ (see [IM98]).

Intuitively, one situation where f is roughly constant is when the underlying space is

close to a line in ℜd. Further, our numerics have shown that even for higher dimensions,

when the underlying space is homogeneous (e.g., points distributed u.a.r. in a unit box

with wrap around distances), the function f is very steep for small values of ru(v) and

then almost linear. An example is given in Figure 4.5. Note that in order for this scheme
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Figure 4.5: The hidden space consists of 1600 points distributed u.a.r. on [0, 1]d, where
d = 1, 2, 4. To avoid border effects, we compute distances with wrap-around.
We plot the ||ρu −ρv|| against ru(v), for a fixed u. The results are averaged over
100 samples and the error bars correspond to the standard deviation. Note that
the slope is first steep and then linear. Such a function is appropriate for RSH,
as the function f increases monotonically. Further, the fact that we have a steep
slope for small values of R make those spaces particularly attractive. Indeed,
this implies that P decreases rapidly (so we can search for R-nearest neighbors,
even for small R), and p is sufficiently large for small values of r. This example
shows that for homogeneous spaces, the rank distortion function is such that we
can perform RSH efficiently.

to allow us to retrieve the nearest neighbor of a query point q efficiently, it is sufficient

to have a constant gap between f(rq(1)) and f(rq(j)), for j ≥ 2. In the next subsection,
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we investigate what happens in high-dimensional Euclidean spaces, and show that such a

gap exists as long as the query point q is sufficiently close to its nearest neighbor.

4.5.4 Rank-Sensitive Hashing in high-dimensional Euclidean Spaces

In order to illustrate and understand the behavior of the RSH algorithm of Section 4.5.3,

we run simulations for normally distributed points in ℜd. More precisely, in our setup we

draw the positions of the n database objects according to N(0, Id), and choose a query

point as follows. We choose one of the n points u.a.r, say x., and then select the query

point u.a.r. in a box of side δ centered at x. For an (r,R, p, P )-rank sensitive hashing

scheme (see definition 14), the number of questions we need to ask in order to retrieve

one of the R nearest neighbors grows as nρ, where ρ = − ln p
ln(p/P ) (see [IM98], and Appendix

A-3). In the case in point, we have no information about the distances in the underlying

space. Hence, we can only fix a value for ρ (i.e., fix the maximum number of questions we

are willing to ask in the search phase), and ”hope for the best”. Our aim is to determine

numerically, in this setup, the value of R we can expect for a fixed value of ρ as a function

of the dimension of the space d.

To do so, for several values of the dimension d, we generated 100 point constellations

(standard normal distributed) and placed the query point q as explained above (with

δ = 0.1). For each constellations and each point i, we estimated the probability that

h(i) = h(q), by sampling 1000 rsh functions. For a fixed ρ, we can compute P = p
1+ρ

ρ . In

order to estimate R, we computed the distance ν between the query point and the furthest

point j with P [h(j) = h(q)] ≥ P . Then, we estimated R as R = |Bq(ν)|. That is, for all

points i outside Bq(ν), we have P [h(i) = h(q)] < P , and for the specified value of ρ, we

can retrieve one of the R nearest neighbors.

Somewhat surprisingly, R decreases with increasing dimensionality. In particular, the

probability that the query point and its nearest neighbor get the same hash value goes to

one, while for all other points the probability that they get the same hash value as the

query point remains bounded away from 1 by a constant. In Figure 4.6, we plot R as a

function of the logarithm base 2 of the dimension. It can be seen that for large values

of d, R tends to 1. This phenomenon is remarkable, as generally high dimensionality
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makes search more difficult. The distance oracle seems to allow us to actually search more

efficiently in high dimensional spaces than in low-dimensional spaces.
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Figure 4.6: We plot R as a function of the dimension for 1000 points standard normally
distributed in ℜd. The query point is selected uniformly at random in a box of
side 0.1 centered at a randomly selected point. The value of R decreases as the
dimension increases. The results are averaged over 100 constellations of 1000
points. The error bars correspond to the standard deviation.

We now try and get an insight into why this is case. The following theorem has been

shown by Demartines (see [Dem94], and also [FWV07]):

Theorem 22 (Demartines). Let X ∈ ℜd be a random vector with i.i.d. components:

Xi ∼ F . Then,

E [||X||2] =
√

ad − b + O(1/d) and

var {||X||2} = b + O(1/
√

d)

where a and b are constants that do not depend on the dimension.

The theorem is valid whatever the distribution F of theXi might be. Different distri-

butions will lead to different values for a and b, but the asymptotic results remain. The

theorem proves that the expectation of the euclidean norm of random vectors increases

as the square root of the dimension, whereas its variance is constant and independent of

the dimension. Therefore, when the dimension is large, the variance of the norm is very
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small compared with its expected value. Hence, for n points chosen independently and

d large enough, if we apply Chebyshev’s inequality and take the union bound over all n

points, with an arbitrarily high probability all n norms will be Θ(
√

d). Indeed, we have

that P
[
|||X|| −

√
ad − b| > bα

]
< 1

α2 , for some constants a and b independent of d. By

letting α = n, where c > 1, we make sure that the bound holds for all points w.h.p.

We can now state the following theorem:

Theorem 23. Let T be a set of n points in ℜd, and let the position x(i) of each object

i ∈ T be chosen independently from N(0, Id). Let q be a query point. Let y denote its

nearest neighbor in T and let mini∈T ||x(i)− q|| = ||y− q|| = δ. Then, (i) if δ = o(
√

(d)),

P [h(q) = h(y)] → 1, as d → ∞, and (ii) if δ = Θ(
√

d), then P [h(q) = h(y)] → η, as

d → ∞, where η < 1 is a constant independent of d strictly smaller than 1.

Proof. We have just shown (see Theorem 22) that all points lie very close to the surface

of a d-dimensional sphere of radius Θ(
√

d). By selecting two points x1 and x2 randomly

for RSH, we hence roughly speaking select two points u.a.r on the surface of this sphere.

Observe that for point v,w, t on the surface of the sphere, we have ||v − t||2 > ||w − t||2

implies vT t < wT t. Consider a query point q at x(q) ∈ ℜd and a point x(y) = x(q) + ∆,

such that ||∆|| = δ. Let us denote by F (q), F (x2) and F (y) the projections of q, x2

and y on x1. Thus, P [h(q) �= h(y)] = P [F (x2) ∈[F (q), F (y) ]]. The normal distribution

is a 2-stable distribution (see for instance [DIIM04]), and consequently F (q) − F (y) is

distributed as Xδ, where X ∼ N(0, 1). Moreover, by the same argument, xT
2 x1 has

distribution X ′Θ(
√

d), where X ′ ∼ N(0, 1).

Let us now consider case (i). The probability that q and y get a different value is

the probability that X ′Θ(
√

d) ∼ N(0,Θ(d)) falls in an interval of width Xo(
√

d). Indeed,

by Chebyshev’s inequality, for d large enough, Xo(
√

d) will be O(
√

d) with an arbitrarily

high probability. At the same time, the maximum of the the pdf of N(0,Θ(d)) decreases

as 1√
2πd

with d. Hence, we have P [h(q) = h(y)] = 1 − Θ( δ√
d
) → 1.

In case (ii), the probability goes to a constant. Indeed, with constant probability,

|X| > 1 (about 0.32, according to the ”68-95-99.7” rule). Hence, q and y are always at

least a standard deviations of X ′ apart with constant probability. Further, the diameter
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of the d-dimensional sphere is Θ
√

d, and the projection of x2 on x1 must lie inside this

sphere. The probability that X ′ (which has standard deviation Θ
√

d) falls in any interval

of width Θ(
√

d) inside the sphere is independent of the dimension.

Hence, there is always a constant probability that an arbitrary point in T and q get

separated. On the other hand, the probability that the query point and its neighbor get

the same hash value goes to one for very large d, if the query point is sufficiently close

(i.e., within o(
√

d)) of its nearest neighbor. Consequently, in very high dimensional spaces

with normal distribution of points, the nearest neighbor can be retrieved in as little as

O(log n) questions, as long as its distance to the query point is o(
√

d). Conceptually, in

high dimensional spaces, all nodes will start looking “similar”, except the nearest neighbor,

which will lie relatively extremely close to the query point.

4.6 Concluding Remarks

We addressed the problem of finding an object similar to a query object among the objects

in a large database. In contrast to most existing formulations, we asked whether the

database can be searched efficiently if its distance information can only be accessed through

a similarity oracle, and the underlying objects need not be in a metric space. The oracle

is motivated by a human user who can make comparisons between objects but not assign

meaningful numerical values to similarities between objects. This raises new interesting

questions on what are good properties of the rank relationships, what are good and efficient

algorithms and what is the right characterization of such a space. We worked with two

such characterizations in this chapter. One that captures the transitivity of the rank

relationship through disorder constant (D), and the other one, rank distortion (γ), which

captures how rank ru(v) relates to Ei [ri(v) − ri(u)]. We presented a new randomized

algorithm that improves the performance of existing algorithms for the combinatorial

framework, and proved a lower bound on the search complexity. We also propose a new

characterization of the hidden space, rank-distortion, and show that the performance of

a novel rank-sensitive hashing scheme depends on that property. Rank-sensitive hashing

enables (approximate) nearest neighbor search in a manner similar to locality sensitive
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hashing. We believe that ideas of searching through comparisons form a bridge between

many well known search techniques in metric spaces to perceptually important (non-metric

spaces) situations. In Chapter 5, we present an architecture for a system that implements

some of the ideas introduced in this chapter. Further, we present some experimental results

for perceptual search. In particular, we asked human users to perform searches based on

rank-sensitive hashing and evaluated the quality of the output for various amounts of

training.
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Chapter 5

A Platform for Similarity Search

In this chapter, we present the architecture of an image database search engine based

on a practical implementation of Rank-Sensitive Hashing (RSH), a notion introduced in

Section 4.5.3 of Chapter 4. Our goal is to index images in such a way that one can find

an image similar to a query image only by answering questions on relative similarity i.e.,

only by making pairwise comparisons. Recall that our RSH function is used to map an

image to a binary vector. Each coordinate corresponds to a ball in the “hidden” image

space, and for a given image the corresponding bit is set to 1 if the image is inside that

ball and 0 otherwise.

The scheme in Chapter 4 was based on the answers of a perfect similarity oracle.

In practice, humans are not perfect oracles and consequently a few adjustments need to

be made. In order to improve the performance of the system and reduce the number

of questions we need to ask human users, we try and combine perceptual search based

on answers given by users and automatic feature extraction based on image processing.

The key idea is that we first use an image processing technique, in our case “eigenfaces”

(see [TP91a,TP91b]), to compute approximate similarities between images. This might

sound surprising, as we motivated the need for comparison-based search by the fact that

image processing performs poorly. Further, we also argued that it’s extremely difficult

to compute meaningful distances between images. Undoubtedly, image processing does

not perform well. Notwithstanding, we can hope that this process helps us obtain a very
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rough idea of which images are similar, and most importantly helps us isolate the “hard”

questions for which we use precious human interventions i.e., the questions we need to

ask the human users. In particular, pairs of very similar images or very different images

are likely to be mapped to close by, respectively distant, positions. Thus, we intend to

use human comparisons to refine the automatically generated similarity measures, for the

triples of images we are the least confident about. The reference pairs of images (i.e., the

pairs used for RSH) are selected, as it is the case for RSH, u.a.r. among all possible pairs.

Clearly, it seems impossible to design a system that will return the image most similar to a

query image, among all the images in a database, for all users and queries. This is simply

due to the fact that humans have different perceptions of similarity, and hence, even with

infinite training, we could probably not pre-process the database such that efficient search

is possible for all users. Nevertheless, we can try to speed up the search process, such that

for most users the queried face will be one of the first answers provided by the system. At

least, we can expect to design a system that performs substantially better than exhaustive

search. Ideally, our system should present the images to the user sorted by relevance,

analogously to what a web search engine does for websites. Hopefully, exhaustive searches

will be extremely rare, and most searches will result in a rapid retrieval of the desired

image or at least of a similar image. As mentioned above, in a real system, we do not

have access to an exact distance oracle, which given a reference pair and a query image,

returns the reference image closest to the query image. Humans will sometimes (or even

often) disagree. If, for example, we fixed a reference pair (say images A and B) and a

query image, and asked 100 humans to act as oracles, it is likely that some fraction f

would answer A, and a fraction 1 − f would answer B. If f were close to 0 or close to

1, we could be pretty confident about the answer another random user would give to this

question. On the other hand, if f were close to 0.5, A and B would probably both be as

similar to the query image.

Likewise, our intuition is that an image processing technique such as “eigenfaces” will

provide distances between images, but we need to decide which distances are meaningful.

Recall that RSH consists in picking two images u.a.r., say A and B, and then to assign

a bit 1 to an image C if it lies inside the ball BA(d(A,B)), and 0 otherwise. Clearly, if
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the distances provided by image processing corresponded exactly to human perception,

we could use them to mimic the oracle. However, in practice we cannot make such an

assumption. Nevertheless, we expect that if the distance d(A,C) ≪ d(A,B), or d(A,C) ≫
d(A,B), then we can trust the automatically generated distances and base the output of

RSH on them. On the other hand, if those two distances are roughly the same, we need

ask humans to reinforce this value.

We now first review the literature related to perceptual search and image similarity in

Section 5.1. Then, we briefly explain the image processing technique that we use in Section

5.2. In Section 5.3, we present the architecture of an RSH implementation. Finally, in

Section 5.4, we present our results.

5.1 Relationship to Published Works

Image processing and face recognition have been extensively investigated in the litera-

ture. In particular, two main problems related to ours were studied. First, the design

of algorithms to extract features invariant to rotation, scaling, shifts, exposition, etc was

investigated. Second, researcher tried to find meaningful ways to measure similarities, or

distances, between feature vectors. By meaningful, we mean that the computed similarity

must be related to the similarity perceived by humans. In this section, we review some of

the publications related to those two problems. In [SR06b] and [SR06a], systems for per-

ceptual navigation of an image database are presented. Roughly speaking, these systems

provide a graphical user interface (GUI) for database navigation. Both systems are based

on image processing. A map is displayed on which similar images (based on features ex-

tracted with image processing) are displayed together. In contrast to our approach, no ef-

fort is made to integrate human feedback in the training phase. More precisely, in [SR06b],

images are displayed on a spherical visualization space that users can rotate. In [SR06a],

a hierarchical navigation system based on multi-dimensional scaling (MDS, see [BG05]) is

presented. In [Low04], a method is presented for extracting distinctive invariant features

from images, that can be used to perform matching between different views of an object

or scene. This method is well adapted if the same object, but rotated or shifted, must be
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retrieved from two different images. The authors of [KS04] present an extension of the

approach in [Low04] that makes it more robust. They use principal component analysis in-

stead of smooth histograms to the gradient patches. In [RTG00,Dem04,NSDW+07,SJ99],

various approaches to measure similarities between images are presented. In particular,

in [RTG00], the authors propose to use the Earth Mover’s distance to measure distances

between feature vector. It is more robust than histogram matching techniques, in that

it can operate on variable length representations of the distributions. In [NSDW+07]

and [SJ99], the authors introduce similarity measures based on fuzzy logic and fuzzy sets.

Finally, Turk and Pentland [TP91a,TP91b], propose methods specific for face recognition

and similarity measure. In this work, we apply their method, and we describe it in more

details in Section 5.2.1. A comparative study of face recognition algorithms is presented

in [HPAC03]. This study has the advantage that it includes an evaluation of image pre-

processing techniques and of combinations of different techniques. Note that we based our

choice of a face recognition technique on the results of this paper.

Another body of literature related to this work investigates issues related to active

learning. The underlying assumption of active learning is that a large set of unlabeled

data is available, but that asking users to assign labels to objects in order to train a

classifier is costly. Learning theory asks whether it is possible to label only a subset of the

objects in the database, and then infer the rest of the labels. In particular, the question

arises of how to select that subset of examples to be labeled. The learning algorithm itself

is allowed to select the subset of unlabeled examples to be labeled. However, in contrast

with a passive learning algorithm, an active learning algorithm can select the objects

to label iteratively. In particular, it can take into account the previously seen labels to

select the labels to be revealed. For instance, for a linear classifier, an active learning

algorithm would typically request the labels of the objects close to the current best guess

for the decision boundary. In general, the approaches presented in the literature require

that one can compute meaningful distances between objects before labeling takes place.

In [DH08] for instance, the active learning algorithm takes a hierarchical decomposition of

the database objects as input. Active learning relates to RSH, as in a certain sense users

assign labels to pictures by making statements about similarity. We do not have to specify
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explicitly what the labels are, but we must select good reference images. Other references

on active learning include [CGJ96,LG94,Set09,BHW08]. Though we do not explicitly use

active learning techniques in the current approach, we believe that such techniques will be

very useful to extend and improve our scheme. For instance, instead of choosing reference

pairs for RSH u.a.r., we could try and select a new pair that is very discriminant.

5.2 Image Processing

Typically, images are stored as three a × b matrices R,G and B, where P = ab is the

number of pixels in the images. The matrices R,G and B represent the red, green and

blue intensities of every pixel. Each entry in those matrices is an 8 bit vector1, representing

a value between 0 and 255. A pixel with intensities (0, 0, 0) is completely black, while a

pixel with intensities (255, 255, 255) is completely white. As suggested by the authors

of [HPAC03], who provide an extensive comparison of face processing technique, we pre-

process images by resizing them if necessary, normalizing intensities and converting them to

gray scale. Assume that a pixel i has intensities (ri, gi, bi). Then, intensity normalizations

consists in modifying, ∀i, the intensities as follows:

(ri, gi, bi) ← ( ri
ri+gi+bi

, gi

ri+gi+bi
, bi

ri+gi+bi
)

A its name indicates, this techniques aims at mitigating the effects of different brightnesses

in different colors channels. Conversion to gray scale is simply done by replacing the RGB

triple for every pixel by a single value, which is a weighted sum of the three color intensities.

Different conversion formulas exist. A common conversion is as follows:

Ii = 0.3ri + 0.59gi + 0.11bi

Note that the weights are based on experimental results. The gray scale image can now be

stored as a single a×b matrix I. This image can then be converted to a vector Λ, simply by

concatenating the rows of the matrix. In order to obtain a low-dimensional representation

of the images, we project these vectors on so called eigenfaces. This technique is explained

1the resolution could vary, but for the sake of simplicity, we make the assumption that there are 255
levels of intensity.
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below. That is, we try to represent every image as a combination of “basis vectors” in the

image space.

5.2.1 Eigenfaces

In this section we give a brief explanation of the eigenface method of face recognition, while

referring the reader to Turk and Pentland [TP91a,TP91b] for more detailed explanations.

We chose this approach based on the comparative study in [HPAC03], and on the fact

that when dealing with images of faces taken for large organizations, we can expect the

image format to be fairly standard.

We compute the covariance matrix C, of facial images from a set of M training images

in vector form {Λ1,Λ2, ...,ΛM} as follows:

Ψ = 1
M

∑M
i=1 Λi

Φi = Λi − Ψ

A = [Φ1Φ2...ΦM ]

C = 1
M

∑M
i=1 ΦiΦ

T
i

= AAT

The eigenvectors and eigenvalues of this covariance matrix are calculated using standard

linear methods and the M ‘ eigenvectors with the highest eigenvalues chosen to formulate

the projection matrix u. A face-key ω i.e., an image vector projected into the face space,

can then be produced by the following equation for an image Λ:

ωj = uT
j (Λ − Ψ) for j = 1 to M

These face-keys can than be compared using the Euclidean distance measure.

5.3 System

Assume that we are given a database T of n images. We intend to map each of these images

to a RSH vector in [0, 1]kn . Intuitively, kn should be roughly ⌈log(n)⌉, so that a different

binary vector can be assigned to every image. However, each of the entries corresponds to

an “approximation” of the value of an RSH function as presented in Chapter 4, Section
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Figure 5.1: The 18 first eigenfaces for a set of 20 training images of size 82 × 65.

4.5.3. Every coordinate should tell us, for a given reference pair Aj , Bj, if the image under

consideration is inside or outside the ball BAj(d(Aj , Bj)). It is an approximation, because

neither image processing nor human training can provide us the exact value of the hash

function. Rather, we will consider that a value larger to 0.5 indicates that the image is

inside the ball, and a value smaller than 0.5 that it is outside. The closer the value is to

0.5, the less confident we are about it. This concept is illustrated in Figure 5.2.

The learning phase works as follows. For every image, as mentioned above, we intend

to store a binary vector of length kn, where each of the kn entries corresponds to an

approximation to the answer which the similarity oracle presented in Chapter 4 would

give for a given reference pair of images. Hence, we choose kn pairs of images u.a.r among

the n(n−1)
2 possible distinct pairs to be the reference pairs for RSH. Obviously, the pairs

are the same for all images and remain fixed once chosen. Every image is pre-processed

when added to the database. First, an image I is resized, so that all images have the

same size. Then, we normalize the intensity, as explained above in Section 5.2. Finally,
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Figure 5.2: We illustrate how the jth coordinate of the RSH vector for an image C is com-
puted. The jth coordinate corresponds to the reference pair Aj , Bj . If image C
is inside the ball BAj

(d(Aj , Bj)), the hash value is 1, otherwise it is 0. However,
neither image processing nor human training can tell us exactly where image C
lies. Hence, we compute an initial value based on image processing, which lies
between 0 and 1. The closer the value is to 0.5, the more uncertain we consider
it to be. Later, this value will be refined through human training. If the image
lies clearly outside the ball, most human should agree and training will push the
value down to 0 (and vice-versa if it is clearly inside the ball).
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the image is converted to grayscale, and its face-key is computed, as explained in Section

5.2.1. Then, for each of the kn RSH reference pairs (Aj , Bj) and image I, we compute the

ratio

rI,j =
||ωAj − ωBj ||2

||ωAj − ωBj ||2 + ||ωAj − ωI ||2
where ωx denotes the face key of image x (see Section 5.2.1). Clearly, if this ratio is close

to 0, then the image I is outside the ball BAj (d(ωAj , ωBj )), and if it is close to 1, we can

be confident that it is inside. In Figure 5.3, we summarize this process. Human users

Figure 5.3: The block diagram for image insertion

come into play when a ratio is close to 0.5. For all triples for which this ratio rI,j is such

that max {rI,j, 1 − rI,j} < θ, where θ ∈ [0.5, 1] is some threshold value, we can ask human

users to refine it. In particular, consider a triple Aj, Bj , I, for which rI,j is close to 0.5.

Assume that at some point in time, t users have acted as oracle for this triple, and a new

user answers the question. Then, we simply recompute the ratio as

rI,j ← trI,j

t+w + w
t+w rI,j

and update t ← t + w. That is, the current value of the ratio is the average of the

users opinions given so far. An arbitrary weight e.g., a weight of 1, can be given to

the initial ratio obtained with image processing, and an arbitrary weight of w to clicks.

Straightforwardly, the higher w, the more importance we give to clicks.
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In the search phase, we repeat the same process by asking the user the same kn

questions (corresponding to the kn reference pairs), but for the query point. That is,

for all of the kn balls, we want to know whether the query point lies inside or outside.

This time, we get a binary vector of answers a ∈ {0, 1}kn . This is because in the search

phase, a user will be shown every reference pair only once. Depending on which of the

reference images the user clicks, a 1 or a 0 is stored. Finally, we sort the objects in the

database according to ||a − rI ||1, ∀I ∈ T , where rI denotes the vector (rI,1, rI,2, ..., rI,kn).

The user is presented the results from the most similar image to the least similar image.

Potentially, one could improve the results by adding tags to images, and using them to

break ties among images at close distances. Further, in order for the system to work

well, different users should compare images roughly in the same way. In other words,

comparisons should be based on the same criteria, and the weight given to each criteria

should be the same. For instance, assume that the reference pair consists of an asian

woman, and a Caucasian man, and that the query image is an asian man. Depending

on the user, both reference images could be considered to be the most similar one to the

query image. In order to mitigate this undesirable effect, we give the users an order on

the criteria in our experimental setup, which they must use to break ties. For instance,

gender always comes before ethnicity, and consequently the right answer above would be

the caucasian man. We now present a few of these experimental results.

5.4 Experimental Results

We have implemented a full-fledged test system in Matlab, in order to obtain experimental

results on perceptual search based on RSH (a screenshot of the training phase is shown in

Figure 5.4). We tested perceptual search based on comparisons on a database of 110 faces,

of different gender, ethnicity, age, etc. The images we used to test our implementation

come from the Indian Face Database [JM02], a collection of faces of the University of

Essex [Spa02], and a collection of pictures of friends and colleagues. We set kn = 10,

θ = 0.9 and w, the weight of a click, to 10. The Eigenfaces were computed based on 20

training images. Seven users were each asked to search for two query images selected u.a.r
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Figure 5.4: A screen shot of the training phase in the Matlab implementation.

in the database. This amounts to 20 clicks per user for searches. Additionally, they were

asked to make 200 training clicks. We then computed the rank of the query image in the

search results, after various amounts of training clicks. That is, we ranked the images

with respect to their l1 distance to the search vector as explained above, and looked at the

rank of the query image in the result list. Note that the training clicks of all users were

randomly mixed and shuffled. Clearly, if no image processing nor training were done, the

average position of the query image in the result list would be in the middle, so roughly

n/2. In Figure 5.5, we plot the average percentage of the database that must be inspected

before the query image is found (i.e., the relative rank of the query image in the result

list), as a function of the number of training clicks. It can be seen that the curve converges

to an average value of roughly 20%. This means that on average the searched image (query

image), will appear among the 22 first results presented to the user. Clearly, without any

processing, this average would be close to 50% i.e., 55 images. Image processing alone

(without training) improves over exhaustive search by roughly 10%.
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Figure 5.5: We show the effect of human training on RSH results. The plot shows the
average percentage of the database that must be inspected before the query
image is found, as a function of the number of clicks. The error bars correspond
to the standard deviation

Collecting clicks from users is not necessarily an easy task, which explains the relatively

small number of clicks and users. Nevertheless, the results in Figure 5.5 show that training

has a clear impact on the quality of the search. Indeed, training improved the quality of

the results by roughly 20% over perceptual search based uniquely on image processing.

In itself, this result is interesting as it shows that different users agree more often than

not. Indeed, training clicks from different users could have canceled each other out. After

observing and talking to users, it appeared that most users find it rather simple to classify

faces based on criteria such as ethnicity, age or gender. This fact certainly explains that

training led to an improvment, as such distinctions are easy to make for humans, but

difficult for computers. We also believe that this is how humans “compute” similarity, by

tagging images and matching them whenever possible. On the other hand, when all faces

are roughly similar and come from the same “group” of people, classification becomes
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much more difficult, and seems to be based on the face shape, and criteria specific to

each user. Hence, the quality of the search results also depends on the composition of the

database. If the faces are very clustered in different group, search will be easier than if

they all belong to the same group. Note also that in this experiment we tried to retrieve a

specific image, and not any image that is similar to that image. This choice was motivated

by the fact that we wanted to obtain sound numerical results. A closer look at the search

results after all training clicks (see Figure 5.6) shows us that roughly 30% of the time,

the searched image will be among the 10 first results (in our database of 110 images),

and roughly 50% of the time among the 15 best results. On the other hand, 20% of the
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Figure 5.6: CDF of the quality of search results after training. It can be seen that roughly
50% of images appear among the 15 first search results. Conversly, there is a
fraction of the images which are hard to classify and have rank higher than 50.

searches will produce very bad results i.e., the searched image will not be among the 50

first images shown to the user. This result tends to indicate that there is some inherent

slack in the process. In other words, for most of the images the RSH vector is meaningful

and corresponds to some extent to human perception. On the other hand, for a part of

the images, the process fails and they are very hard to retrieve.
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5.4.1 Web Platform

In addition to the experimental results exposed above, we have implemented in the frame-

work of several student project, a web platform for comparison based search. The current

version of the website can be found at http://ipg.epfl.ch/∼dtschopp/facebrowser/. The

underlying mechanisms and algorithms are the same as for the matlab implementation.

Additionally, we offer the users the possibility to insert images, to tag them, and to add

contact details for the person on the images. When new images are inserted, new reference

pairs are automatically selected. Users can also navigate the database, either by moving

from one image to one of the most similar images, or by moving to a completely different

image (we added links to images with exponentially spaced ranks e.g., to image with ranks

2, 4, 8, 16, 32, ... w.r.t. to the current image). The website is written in PHP, html and

mySQL.

5.5 Concluding Remarks

In this Chapter, we have presented the architecture for a systems that implements image

search based on rank sensitive hashing (RSH). The system allows users to retrieve an image

in a database on average more rapidly than if they had to search the database exhaustively.

In a certain sense, every pair of images selected to be part of the hashing scheme is a form

of label, or coordinate. Every image in the database gets labeled automatically through

image processing. Further, the labels we are most uncertain about are refined by human

users. Those coordinates can then be used to compute distances between images. Search is

entirely based on a small sequence of questions, which is processed to output the label of the

query image. In contrast to classical labeling schemes, we do not have to explicitly define

labels. While these implementations are in early stages, we believe that this approach can

be greatly improved. Our experiments have shown that human training can considerably

improve the search results. Currently, we are very conservative in the training phase, as

a training click only modifies one coordinate of one image. Though this can influence the

outcome of a large number of searches, the impact remains small (an image can gain or

lose one rank in the search results). Another possible option would be to use the training
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5.5. Concluding Remarks

clicks to learn a distance function, and use this distance function to iteratively recompute

the coordinates of the images. Most interestingly maybe, we could use active learning

techniques to select the reference pairs for RSH. In particular, as the number of images

in the database increases, we need to select new reference pairs. In that case, we could

select those pairs based on the clicks collected so far instead of choosing them u.a.r. One

possibility might be to select pairs that have not been well discriminated, and consequently

lie in a region of the hidden space where objects are not well classifiable.
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Chapter 6

Conclusions and Future Work

In this thesis, we have discussed a routing and a search problem. The two problems share

the particularity that we can exploit their low intrinsic complexity to develop efficient

algorithm for the “retrieval” of a target node or database object. In both cases, the

problem was selected because it seemed natural and intuitive that the problem could be

solved if we managed to understand its structure. In turn, after characterizing the problem

by an appropriately chosen property of the space in which the objects or nodes live, we

could design good algorithms that depend only on this property. Indeed, it seemed natural

to assume that the intrinsic dimension of the connectivity graph of very large wireless ad

hoc networks was low dimensional. Clearly, this intuition comes from our perception of

the physical world in which the nodes live. It appears natural that distant nodes have to

communicate over mode relays than nearby nodes. It also seems natural that the topology,

in general, changes more rapidly at the local scale than at the global scale. In the case

of image databases, our intuition was that humans have the ability to classify pictures of

faces based on a relatively small number of criteria. Hence, it must be possible to obtain

a representation of a set of human faces that is low dimensional and easily searchable.

Here, one of the main issues is that humans cannot assign meaningful distances to pairs of

pictures, and that automatic comparison is difficult. Consequently, in addition to be low

dimensional, sets of images should also be searchable by comparisons. In both cases, one

of the difficulties is to identify and understand the right characterization of the problem.
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Chapter 6. Conclusions and Future Work

Clearly, this work is mainly theoretical, and one possible continuation would be the

design of a system to test and evaluate our results in a real world setup. In the case of

image database search, and more generally search based on human perception, we believe

that there is a lot of additional work that needs to be done in order to fully understand the

problem. In particular, one could design more efficient hash functions for rank-sensitive

hashing, and obtain more robust characterizations of the sets of images or objects in

general. One option would be to combine automatic classification with human based

search to obtain a new kind of search engine for images. Also, the majority of our results

on this problem are based on the characterization of the hidden space given by the disorder

constant. This criterion is a worst case criterion. Hence, on average, the results might be

considerably better. We went in this direction by introducing the idea of rank distortion,

which is an average criterion. However, it is not a trivial task to compute this distortion,

even for simple spaces. Thus, we believe that it is still possible to make considerable

progress on this problem. This work could potentially also be related to recent results on

inference of rankings.

Regarding the routing problem, we believe that the doubling dimension is a robust

notion of complexity. One interesting extension of our work would be to investigate trade-

offs of control traffic overhead and throughput. That is, how much signaling traffic must

be sent around in the network, in order to establish a path, or several paths with some

guarantees on the throughput (e.g., average or minimal throughput). Here, one could

examine recent results on hierarchical cooperation (e.g., groups of nodes can cooperate to

mimic MIMO transmission schemes) in wireless networks, and try and design transmission

schemes which implement such cooperation schemes. Another variation of the problem

would consist in loosening the requirement that there must always exist all-to-all paths

in the network. One could replace this requirement by the requirement that there must

always exist a path for a fraction of the node pairs, or that a path must exist with a given

probability. Potentially, it would be possible to design schemes that only guarantee the

existence of a fraction of the paths, with a dramatic reduction of control traffic.
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A-1 Unit Disc Graphs

Another common model used in studies on wireless networks are Unit Disk Graphs (UDG),

which are the deterministic variants of the random geometric graphs. The randomness

of the positions of the nodes is removed and they can be placed arbitrarily on a finite

of infinite area. The channel model is completely deterministic as before and nodes are

connected if their Euclidean distance is below a threshold distance r, called the communi-

cation radius. In mathematical terms, two nodes u and v with positions x(u), x(v) ∈ [0, R]2

are connected if and only if ||x(u) − x(v)|| < r. We will now show that there exist UDG

which are not α-doubling (see Section 3.2 for a definition of an α-doubling metric).

Theorem 24. There exists an infinite UDG for which is no constant that upper bounds

the doubling dimension i.e., UDG are not doubling.

Proof. Consider the graph shown in Figure A-1. To show that this graph is not α-doubling,

we must show that there exists no constant such that all balls of radius R can be covered

a constant α number of balls of radius R/2, for all R. Consider the ball centered around

u in the figure. One can see that there are R/4+ 1 “columns” which cross the middle row

at a distance less than R/2 from u (that is, the intersection of the column and the row is

less than R/2 hops away from u). The intersection of each of these columns with Bu(R)

is of length more than R (see hatched zones on Figure A-1). Consequently, for each of

these columns there is at least one node at distance more than R/2 from the middle row.
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Figure A-1: An infinite UDG obtained by deleting all the nodes in every second column of
a grid, except for the nodes on the the middle row. Consequently, “columns”
are 2r apart.

To cover these nodes, we need to place at least one ball of radius R/2 on each of these

columns. Hence, the doubling dimension is lower bounded by R/4 and tends to infinity

as R goes to infinity.

One can notice that in the non-doubling UDG in the proof of Theorem 24 results from

a careful construction. In Appendix A-2, we show however that such a structure will occur

with high probability when rn <
√

log n in random geometric graphs.

A-2 Random Geometric Graphs with subthreshold

Communication Radius

We first consider the case in which the communication radius r is such that rn = r =

(log n)
1
2
− θ

2 < log1/2 n and θ ∈ ] ζ, 1 ]. ζ is a constant such that 0 < ζ < 1.
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A-2. Random Geometric Graphs with subthreshold Communication Radius

Lemma 8. For any constant β, there exists constants γ > 0 and b > 0 such that a small

square area of side γr with b nodes contains a subgraph of doubling dimension β + 1 with

probability p > 0.

Figure A-2: A non-doubling subgraph in a random geometric graph

Proof. Consider the small square shown in Fig. A-2 of side γr, where γ is a constant

independent of n to be specified later. Subdivide the small square further into mini-

squares of side r/c. Choose the constant c such that there exists a constant k satisfying
√

2(k−2) > c ≥
√

k2 + 1. Under these conditions, two nodes in mini-squares separated by

(k− 2) other mini-square will be connected, but not mini-squares r(k− 2)
√

2/c apart (see

right hand side of Fig. A-2). Consider now the graph on the left hand side of Fig. A-2.

Assume that each full (colored) mini-square contains exactly one node. We now focus on

the ball BG
2R(u) and will lower bound the number of balls of radius R necessary to cover

it. On the ⌊R/2⌋ first vertical branches from the left, the last node of the branch inside

that ball (circled) must be covered by a ball of radius R centered on the same branch.
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This is clear since the length of the branch is larger than R. Consequently, the doubling

dimension of this graph is at least ⌊R/2⌋ ≥ R−1
2 . We want the doubling dimension to

be larger than β, which can be easily achieved by choosing R such that R−1
2 > β. Let

R = 2β+2 > 2β+1. Further, we can now set γ = (2R+5)(k−1)/c = (4β+9)(k−1)/c and

b = (2R + 1)
⌈

2R+1
2 + 1

⌉
= (4β + 5)

⌈
4β+5

2 + 1
⌉

. This ensures that the doubling dimension

is strictly larger than β.

It remains to be shown that when such a small square contains b nodes, the graph

constructed above occurs with probability p > 0. The number m of mini-squares contained

in a small square of side γr is m = γ2r2

r2/c2
= γ2c2 which is constant. Each node can fall in

any of the m squares with equal probability. Hence, all mb configurations are equiprobable

and p = 1
mb > 0.

We number the small squares from 1 to m = n
(γr)2 = n

γ2 log1−θ n
and denote by Xb

i the

indicator variable that takes value 1 when small square i contains exactly b nodes.

Lemma 9. There are at least n1/2 squares containing b nodes with probability at least

(1 − O( 1
en0.25 )) for n sufficiently large

Proof.

E [X] = E
[∑m

i=1 Xb
i

]

=
∑m

i=1 P
[
Xb

i

]

=
∑m

i=1

(
n
b

)
( 1

m)b(1 − 1
m)n−b

≥ m(n
b )b( 1

m)b(1 − 1
m)n

≥ n
bb (γ

2 log1−θ n)b−1(1 − 1
m)mγ2 log1−θ n

≥ n
bb (γ

2 log1−θ n)b−1 1

22γ2 log
1−θ
2 n/ log

1−θ
2 e

≥ O(n
1−O( 1

logθ n
)
)

≥ O(nδ)

where δ ≥ 7
8 for n sufficiently large, since θ > ζ.

Let Si be the random variable representing the small square into which the ith node

falls. Let F be the number of small squares containing exactly b nodes after all nodes have

been placed. Then the sequence Zi = E [F |S1, ..., Si] is a Doob Martingale. One can show

that F = f(S1, S2, ..., Sn) satisfies the Lipschitz condition with bound 1. Indeed, changing
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A-2. Random Geometric Graphs with subthreshold Communication Radius

the placement of the ith ball can only modify the value of F by at most 1. We therefore

obtain:

P
[
|F − E [F ]| ≥ n5/8

]
≤ 2e−2n10/8−1

= 2
1

e2n1/4

by the Azuma-Hoeffding inequality. Consequently,

P
[
F < n1/2

]
< P




F < E [F ] − n5/8

︸ ︷︷ ︸

=n7/8−n5/8>n1/2






≤ 2 1

e2n1/4 ≤ 2 1

en1/4

and

P
[
F ≥ n1/2

]
≥ (1 − 2

1

en1/4
)

It now remains to show that in this regime, G(n, r) are not doubling with high proba-

bility.

Theorem 25. G(n, (log n)
1
2
− θ

2 ), where θ ∈ ] ζ, 1 [ and ζ is a constant such that 0 < ζ < 1,

are not doubling with high probability.

Proof. By Lemma 8, for any constant β, a small square area of side γr with b nodes

contains a graph of doubling dimension > β with probability p > 0. By Lemma 9, there

are n1/2 such small squares containing b nodes w.h.p. Let F denote the number of small

squares containing exactly b nodes. Consequently, the probability that at least one of this

squares contains a graph of doubling dimension > β is given by:

P [not doubling] =
∑m

j=1 P [not doubling|F = j]P [F = j]

≥ (1 − O( 1

en0.25 ))
∑m

j=n1/2(1 − (1 − p)j)

≥ (1 − (1 − p)n
1/2

)(1 − O( 1

en0.25 ))

≥ (1 − (1 − p)n
1/2

)2

≥ (1 − 2
xO(n) )

where x = ( 1
1−p) > 1. Consequently, with probability at least (1 − 2

xO(n) ), there exists no

constant which bounds the doubling dimension of G(n, (log n)
1
2
− θ

2 ).
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A-3 Locality-Sensitive Hashing

A family of hash functions H is said to be locality-sensitive (see [IM98]) if:

Definition 15. We call a family of hash functions H , ”(r, cr, p, P )-locality-sensitive” if

P [h(q) = h(u)|d(q, u) < r] > p and P [h(q) = h(v)|d(q, v) > cr] < P

Then, we can show the following result (from [IM98]). Let k = log p
P

(2n). Define

g(x) = (h1(x), ..., hk(x)), where hi(x) ∈ H. We assume that d(p, q) ≤ r, for some point p.

Consider any point p′ such that d(p′, q) > cr. We have (1),

P1 = P [g(p∗) = g(q)] ≥ pk

and (2)

P2 = P [g(p′) = g(p)|g(p∗) = g(q)]

=
P [g(p′) = g(p), g(p∗) = g(q)]

P [g(p∗) = g(q)]

≤ P [g(p′) = g(p)]
P [g(p∗) = g(q)]

≤ (P
p )k

= 1
2n

Hence, if (1) is true, then (2) is true with probability at least 1−∑p′s.t. rq(p′)>R
1
2n ≥ 1

2 .

Further, by substituting k in P1, we have P1 ≥ n−ρ. Finally, by choosing l = nρ functions

gj , we ensure that at least one of them satisfies both properties (1) and (2). In order to

search for the nearest neighbor of a point q, we compute g1(q), ..., gl(q), and return an

arbitrary point that falls in the same bin as q for every function gj . There are at most

nρ such objects. We can then return the closest point to q among these objects. With

constant probability, this point will be one of the cr nearest neighbors of q.
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