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Résumé
Lorsque l’on capture une scène à l’aide d’un appareil photographique, les cou-
leurs de l’image résultante dépendent non seulement des propriétés de réflexion
des éléments constituant la scène, mais également de la lumière ambiante lors
de la prise de vue ainsi que des caractéristiques de l’appareil. Il est souvent
nécessaire de dissocier les contributions de ces trois éléments, notamment de
séparer l’influence des propriétés de réflexion des objets de celle de la lumière,
grandeurs définies sur toute la gamme de longueurs d’onde visibles. La déter-
mination d’illuminant ou de réflectances à partir d’une image RGB est un
problème sous-déterminé qui requiert des connaissances ou hypothèses supplé-
mentaires pour sa résolution.

Dans cette thèse, nous étudions comment de l’information redondante pré-
sente dans une série d’images peut être exploitée afin d’en déterminer l’illumi-
nant ou les réflectances. Nous démontrons qu’il est possible de déterminer avec
précision la couleur d’objets sous la forme de valeurs tristimulus à partir d’une
image RGB standard capturée par une caméra inconnue sous des conditions
d’éclairage non contrôlées et sans accès aux données du senseur. La scène con-
tient par contre un nombre réduit de couleurs de référence en la forme d’une
cible de calibration spécifique. La correction doit être limitée à une gamme
restreinte de couleurs similaires à celle de l’objet qui seront comparées à des
références permettant de calculer une transformation linéaire. Cette méthode
est utilisée dans deux applications visant à fournir un conseil personnalisé au
consommateur en maquillage et décoration d’intérieur, respectivement. La pré-
cision de la correction est de ΔE∗ab � 1 à 2 selon la composition de la cible,
ce que nous démontrons être suffisant pour les deux applications présentées et
permettant des résultats satisfaisants.

Nous avons également développé une méthode permettant de calculer le
spectre d’illuminants pour une série d’images capturées par une caméra fixe.
Dans ces images, il y a aussi bien des éléments variables, tels des changements
de lumière et de contenu, que des éléments constants. Nous proposons d’utiliser
ces derniers comme références afin de résoudre le problème de la constance des
couleurs. Plus exactement, nous exploitons le fait que les reflectances de ces
objets, bien qu’inconnues, sont les mêmes dans chaque image. Nous inver-
sons une série de modèles de formation d’images en parallèle et, en forçant les
réflectances résultantes à être égales, déduisons l’illuminant de chaque image.
Des simulations utilisant des valeurs RGB synthétiques modélisant les éléments
constants ont démontré qu’il était possible de déterminer les illuminants na-
turels avec une erreur angulaire médiane inférieure à 3◦.

Mots-clés: Constance des couleurs, balance des blancs, redondance, illumi-
nant.
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Abstract

The colors in a digital image do not only depend on the scene’s reflectances,
but also on the lighting conditions and on the characteristics of the imaging
device. It is often necessary to separate the influence of these three elements, in
particular to separate the contribution of the object’s reflection properties from
the one of the incident light. Both are usually represented by spectral quan-
tities, i.e., defined over the visible spectrum. The retrieval of illuminant and
reflectances from an RGB image, which provides three values per pixel, is an
under-determined problem and requires additional information or assumption
on the scene’s content in order to be solved.

In this thesis, we study how redundant information across a set of images
can be exploited to recover either illuminant or reflectance knowledge. We
demonstrate that accurate object color can be retrieved as tristimulus values
from standard RGB images captured with an unknown camera under uncon-
trolled lighting conditions and no access to raw data, but containing a limited
number of reference colors in the form of a specific calibration target. The
correction must be constrained to a limited range of colors similar to the one of
the object of interest, which are compared to pre-computed references for the
derivation of a linear transform. We implement this method for two consumer
oriented applications in Makeup and Home Décor, respectively, which provide
users with color advice. The correction accuracy is of ΔE∗ab � 1 to 2 depending
on the design of the target. We show that this accuracy is sufficient for the
applications at hand.

We also developed a method to retrieve illuminant spectra from a set of
images taken with fixed location cameras, such as panoramic or surveillance
ones. In pictures captured with such devices, there will be changes in lighting
and dynamic content, but there will also be constant objects. We propose
to use these elements as reference colors to solve for color constancy. More
precisely, we exploit that their reflectances, while unknown, remain constant
across images. We invert a series of image formation models in parallel for a
set of test illuminants and, by forcing the output reflectances to match, deduce
the illuminant under which each image was captured. Simulations on synthetic
RGB patches demonstrate that real daylight illuminants can be retrieved with
a median angular under 3◦ from sets containing as little as four images using
a limited number of reference surfaces.

Keywords: Color constancy, white-balancing, redundancy, illuminant.
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Frequently Used Terms,
Abbreviations, and Notations

Terms and abbreviations
Achromatic color Perceived color devoid of hue.

Brightness The attribute of visual perception according to which an area
appears to emit more or less light.

Chroma Colorfulness of a visual sensation relative to an achromatic stimulus
of the same brightness.

Chromatic color Perceived color possessing a hue.

Color adaptation or constancy Ability of the human visual system to main-
tain the color appearance of an object roughly constant across a wide
range of illumination conditions.

Color space Generic representation of colors in space, usually of three dimen-
sions (CIE 1987).

Colorfulness The attribute of visual perception according to which the per-
ceived color of an area appears more or less chromatic.

Colorimetry The part of color science of measurements of physically defined
color stimuli and their numerical representation.

CIE Commission Internationale de l’Eclairage.

CMF Color matching functions.

D65 illuminant Standard CIE average daylight illuminant with a correlated
color temperature of 6500K.

HSV Human visual system.

Hue The attribute of color perception denoted by blue, green, yellow, purple,
and so on.

Illuminant Spectral power distribution of a light source.

Lambertian Attribute of a surface reflecting light equally in all directions.

xi



xii Frequently Used Terms, Abbreviations, and Notations

Lightness Relative brightness. Variations in lightness range from “light” to
“dark.”

LMS Least mean square.

Luma Weighted sum of gamma-compressed RGB components, denoted by the
letter Y .

Luminance Photometric measure of the luminous intensity.

Metamerism Metameric color stimuli have the same tristimulus values, but
different reflectance spectra. Metamers are objects that have the same
color appearance under one illuminant, but appear different under an-
other illuminant.

Munsell Color System Color space specifying colors by three attributes:
hue, value (lightness), and chroma.

Opponent colors theory Colors are encoded in three opponent channels:
red−green, yellow−blue, and light−dark. It explains why combinations
such as reddish-green and blueish-yellow do not occur (Hering 1878).

Output-referred image state Image state associated with image data that
represents the color space coordinates of the elements of a image that
has undergone color rendering appropriate for a specified real of virtual
device and viewing conditions (ISO 2004).

Saturation Colorfulness of a visual sensation relative to an achromatic stim-
ulus regardless of their brightness.

Scene-referred image state Image state associated with an image data that
represents estimates of the color space coordinates of the elements of a
scene (ISO 2004).

SPD Spectral power distribution.

Trichromacy Condition of possessing three types of independent photorecep-
tor for color vision.

Tristimulus values Generally CIE XYZ tristimulus values. Triplet of values
describing a color stimulus under a specified illuminant.

White-point Set of tristimulus values of a white surface under a given illu-
minant.
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Notations and variables
E(λ) Illuminant spectra
e(λi), 1 ≤ i ≤ 31 Illuminant spectra in vector form
Ei(λ), 1 ≤ i ≤ Nε Illuminant basis functions
ε = (ε1, ..., εNε) Illuminant descriptors
θnE , φnE Spherical angles indexing daylight illuminants
Nε Number of illuminant descriptors
Ne Number of illuminant candidates
N Number of images
NE Number of illuminants

S(λ) Reflectance spectra
s(λi), 1 ≤ i ≤ 31 Reflectance spectra in vector form
Si(λ), 1 ≤ i ≤ Nσ Reflectance basis functions
σ = (σ1, ..., σNσ ) Reflectance descriptors
Nσ Number of reflectance descriptors

Rk(λ), 1 ≤ k ≤ Nρ Sensor sensitivities
rk(λi), 1 ≤ i ≤ 31, 1 ≤ k ≤ Nρ Sensor sensitivities in vector form
ρk(λ), 1 ≤ k ≤ Nρ Sensor responses
Nρ = 3 Number of sensors

p = (p1, ..., pNρ) Average patch pixel values
Np Number of selected patches

n runs over the images
nE runs over the illuminants
nε runs over the illuminant descriptors
np runs over the patch numbers
nσ runs over the reflectance descriptors
fe Error function
eang Angular error
Λ,M,E , ... Matrices
x,p, ε, ... Vectors
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Chapter 1

Introduction

We all know what color is, we experience it everyday. But when it comes to
giving a precise definition, we are not so confident of our understanding. So,
what is color? According to the Collier’s Dictionary, color is the:

quality of an object, or substance, perceived as a visual sensation
resulting from its transmission or reflection of light of any or all of
the various parts of the spectrum.

The Oxford American Dictionary, on the other hand, defines color as:

the sensation produced by various rays of light of different wave-
length [...].

Figure 1.1: Colors arise from the interaction of light reflected by the objects’
surfaces with the human visual system.

The comparison of these two definitions points out a fundamental question:
Is color an objective property of objects or is it purely subjective? Is color
physics or physiology? Color indeed arises from the interaction of light with
objects, but only exists as it is seen by an observer, as depicted by Figure 1.1.

3



4 Chapter 1.

From a physical measurements point of view, color depends on the inter-
action of the visible light with objects. The term visible light refers to the
part of the electromagnetic spectrum that can be detected by the human eye,
which corresponds typically to wavelengths from about 380 to 760 nm. Figure
1.2 illustrates the visible spectrum. The energy distribution of a light source,

Figure 1.2: The visible spectrum. Source: Encyclopedia Britannica.

or illuminant, as a function of the wavelength is given by its spectral power
distribution. The intrinsic “color” of an object is specified by its reflectance
spectrum, which describes the percentage of the incoming light that its surface
reflects as a function of the wavelength and, in general, of the angle under which
we view the surface. A “white” surface, for instance, reflects all visible wave-
lengths equally, while a “red” surface absorbs the visible wavelengths under
about 480 nm and only reflects the “red” part of visible light. Mathematically,
the light reaching our eye after being reflected by the surface of an object is
the product of the light source’s spectral power distribution with the object’s
surface reflectance and is called the color signal.

From a subjective point of view, the “red” light that enters our eye after
being reflected by a “red” object only becomes “red” after it has been captured
and processed by the human visual system and interpreted as such. Further-
more, the perceived red does not only depend on the incoming color signal, but
also depends on the object’s texture and size, on the illumination level, on the
color of the surrounding objects, and on the observer.

The human visual system adapts to the color of the illuminant, a phe-
nomenon referred to as chromatic adaptation. As a consequence, we are able
to perceive the color of objects mostly unchanged across significant ranges of
lighting conditions, which is referred to as color constancy. Memory colors,
which also contribute to color constancy, refer to the phenomenon that many
objects have a color associated with them. For example, people have typical
memory colors for grass, skin, and blue sky. It has been shown that such colors
are often remembered as lighter and more saturated than the actual objects
(Bartelson 1960), that is, we recall the sky bluer and the grass greener than
they really are. For an overview of these phenomena, see (Fairchild 2005).

In this thesis, we will consider color as a physical property, i.e., that the
color of an object is characterized by its reflectance in the sense that once it is
known, we can compute the corresponding color signal for any illuminant. Color
is regarded as captured by a standard color camera that will be characterized
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by the sensitivity of its three sensors to the red, green, and blue portions of the
visible light. Image formation will be modeled as

ρk =
∫
λvisible

S(λ)E(λ)Rk(λ) k = {red; green; blue} , (1.1)

where S(λ), E(λ), Rk(λ) are, respectively: the object’s reflectance factor, the
illuminant spectral power distribution, and the sensitivities of the imaging de-
vice, either the eye or a camera sensor, to the incoming color signal. This
simple model cannot account for the color appearance phenomena mentioned
earlier, but is a good approximation for digital cameras. If we consider a dig-
ital color image, each pixel has three numerical RGB (for Red, Green, and
Blue) components ρk to represent a color. These components are modeled by
Equation (1.1).

We are now asking the following question: What information on the object
and light can be retrieved from a standard RGB image? More precisely, can we
separate the influence of the illuminant from the influence of the reflectances
using only the information given by the image?

This is not trivial. The first difficulty comes from the ambiguity of the
information carried by a color signal about both the reflectance of objects and
the light. As the color signal enters our eye or a camera, the information
on the illuminant and reflectance is already combined: A red surface viewed
under a white light may give rise to the exact same color signal as a white
surface viewed under a red light. The second difficulty is that retrieving spectral
quantities, i.e., defined over the visible wavelengths, from only three pixel values
per location is an ill-posed problem. Formally, at each pixel, we have three
equations of the form (1.1); the reflectance and illuminant being integrated
over the visible wavelengths, the spectral information is lost and the image
formation cannot be inverted exactly.

There are many applications that require to separate the influence of the
illuminant and reflectance. For example, it is generally desirable for image pix-
els to be representative of the actual surface reflectance of the object indepen-
dently of the illuminant. White-balancing refers to the operation of rendering
a scene as if it had been captured under a pre-defined illuminant by globally
adjusting the proportion of the red, green, and blue in an image. Automatic
white-balancing is the camera’s equivalent of the human visual system’s chro-
matic adaptation. The scaling coefficients are computed from the image content
through a color constancy algorithm, which often returns an estimation of the
illuminant in the form of its white-point, that is, the RGB values of a white
surface viewed under the scene’s illuminant.

Illuminant compensation plays also an important role is some computer
vision applications: Color has been shown to bring useful information in tasks
such as object recognition or segmentation. It is indeed an object property that
is mostly independent of its geometry and can thus be efficiently employed in
object indexing algorithms (Swain and Ballard 1991), for example. However,
in order to be accurately representative of an object, image colors must be
illuminant independent (Funt et al. 1998, Finlayson et al. 2001b).

Mathematically, color constancy is an ill-posed problem that cannot be
solved exactly. Many approaches have been proposed over the last 30 years
to reduce the dimension of this under-determined problem and return useful
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illuminant descriptors, such as introducing assumptions on image statistics
(Buchsbaum 1980, Gershon et al. 1988), on surface properties such as specular
highlights (Lee 1986), or by using redundancy in two, or more, images (D’Zmu-
ra and Iverson 1993a, DiCarlo et al. 2001, Finlayson et al. 2005, Lu and Drew
2006).

In this thesis, we will investigate how we can exploit redundant information
across color images to retrieve reflectance and illuminant information. More
precisely, we focus on two different problems, namely recovering illuminant and
camera independent color values from standard RGB images and retrieving
illuminant spectra in a set of images taken with fixed location cameras.

We know (Eq. 1.1) that the resulting pixel values in a color image do not
only depend on the actual color of the objects in the photograph, but also
depend on the illuminant and camera characteristics. Images are processed to
compensate for these two factors, but this is never perfect, which is an issue
for online shopping, for example. A consumer may wrongly pick a garment
according to its color on the screen, which may differ significantly from its
actual color. The first method we present offers a solution to overcome this
issue in two specific cases: Makeup and Home Décor. In the first situation, the
customer takes a self-portrait with her own camera and sends it via multimedia
message (MMS) with her cell phone to the advisory service, which will assess the
foundation that suits best her skin tone relying only on the incoming image.
No additional information on the camera and on the illuminant is available.
The subject is asked to hold a calibration target while taking the picture. This
target is designed specifically for the application and helps correcting the image
such that the face pixels are representative of the actual skin tone and can be
employed to return appropriate makeup advice. We then adapt this method
to Home Décor. Let us assume a consumer to have a green couch and to
need advice on which wall color would complement its color. We suggest that
the customer images the couch, or any decoration item, along with a specific
calibration target and sends the picture to a cell phone or internet based service,
which will take the target information to correct the couch color and return a
set of wall color suggestions.

In the second part of this thesis, we consider a quite different framework.
We are working with sets of images that have been captured in a given place
with a fixed camera. This corresponds, for example, to the case of security
cameras. In images taken with such devices, the lighting conditions will vary
(at different times of the day or under changing weather) as most of the content
(people or cars passing by). However, there are static objects, such as buildings,
that will be present in all the images. While we may not know the reflectance
properties of these elements, we know that they will not change from day to
day. Formally, it means that, while the reflectance spectra S(λ) in Equation
(1.1) are unknown, they remain constant in all the images, which allows us
to retrieve the illuminant spectra E(λ) in all the images taken with a fixed
location camera.
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1.1 Contributions and overview

1.1.1 Color assessment of skin tones

We propose a method for the color correction of skin tones from standard RGB
images taken with uncalibrated cameras and under uncontrolled illumination
conditions. A subject is imaged with a calibration target of reference colors
covering the range of human skin tones that we use to correct the subject’s
image by way of a linear transform. Once the image is color corrected, the face
color is in a reference space. In other words, the pixel values are correlated
with the actual face color and are independent from the lighting conditions
and camera. This method is implemented in a makeup advisory service us-
ing cell phone cameras. The user takes a self-portrait holding a copy of the
calibration target and sends the image via multimedia message (MMS). After
color correction, the face color estimate is compared to an existing database
of makeup recommendations built by an expert. The user’s skin tone is classi-
fied and the system returns a foundation color advice according to the expert’s
opinion.

The specificity of the method lies in the design of the correction target,
which is application dependent. It is not possible to accurately correct all
colors in an image with a linear transform. However, we demonstrate that a
small range of colors, skin tones in this particular example, can be properly
corrected with this simple procedure. The values obtained correlate well with
color values derived from in-vivo spectral measurements and are consistent
across a range of cameras of different quality and resolutions.

1.1.2 Color assessment of object colors

Although initially designed for skin tones, our color correction procedure can be
applied to any color by using a set of targets, as we demonstrate in the specific
case of a Home Décor application. In this context, the user images a decoration
object along with an appropriate color correction target and sends the picture
to either a cell phone or internet based service that will return a set of colors
complementing the object. As previously, the color of the object is corrected
in order to discard the influences of the lighting conditions and of the camera
characteristics and compared to an existing database of color recommendations
built by a interior designer. As the color correction is accurate for limited ranges
of color only, the system uses several color calibration targets to cover all hues.

We demonstrate that the accuracy of the method depends on the similarity
of the object and reference target colors. We propose a method to quantify
this similarity with volumes spanned by target patch values in the sRGB space,
which can be used to give feedback when the color correction is not accurate
or to help the user select the appropriate target.

While this color correction method is presented as integrated into two spe-
cific applications, these results are more fundamental. It shows that we can
obtain an accurate colorimetric estimate of any color object imaged with an
unknown consumer camera and illumination by imaging the object with an
adapted correction target.



8 Chapter 1.

1.1.3 Illuminant retrieval for fixed location cameras
In Chapter 5, we present a method for retrieving illuminant spectra from a set
of images taken with a fixed location camera, such as a surveillance or panorama
camera. In such images, there will be significant changes in lighting conditions
and scene content, but there will also be static elements in the background.
As color constancy is an under-determined problem, we propose to exploit the
redundancy and constancy offered by the static elements of the images to reduce
the dimensionality of the problem. Specifically, we assume that the reflectance
properties of these objects remain constant across the images taken with a
given fixed camera. With respect to the other problem discussed above, the
static elements of the scene become the “color target,” although with unknown
reflectances. Here, we exploit the fact that we can take several images of the
same scene.

We demonstrate that we can retrieve illuminant and reflectance spectra in
this framework by modeling the redundant image elements as a set of synthetic
RGB patches. We define an error function that takes the RGB patches and a
set of test illuminant spectra as input and returns a similarity measure of the
redundant surfaces reflectances. The test illuminants are then varied until the
error function is minimized, returning the illuminants under which each image
in the set was captured.

We suggest two function minimization methods: selecting a set of illumi-
nant spectral power distributions that constitute scene illuminant candidates,
we minimize the error function by testing all illuminant combinations. This
approach avoids expressing the illuminant using linear models and can thus
be applied to any illuminant type. However, it becomes computationally pro-
hibitive if a large set of test illuminants or a large number of images is consid-
ered. We thus propose to minimize the error function by gradient descent. It is
applied to illuminants that can reasonably be expressed as a linear combination
of three basis functions. The error function is then defined with the illuminant
descriptors as variables and minimized by gradient descent.

1.1.4 Overview
Chapter 2 covers several notions of color science. We review a simple model
for image formation, several important color spaces, a generic in-camera pro-
cessing workflow, color transforms, and linear models for illuminant and re-
flectance spectra. We also review important color constancy algorithms and
illuminant estimation error measures. Chapter 3 presents a method allowing
an accurate color assessment of skin tones from uncalibrated images. Chapter
4 explains how the color assessment designed for skin tones can be modified and
extended to correct any object color by using several color calibration targets.
The method is applied to a Home Décor application. Chapter 5 presents an
approach for the retrieval of illuminants in a set of images containing several
redundant surfaces, corresponding to the case of fixed location cameras. The
method is tested on standard daylight illuminants, real daylight illuminants,
and artificial illuminants. Chapter 6 concludes the thesis.

Appendices A and B report the details of the color appearance model
CIECAM02 and of the two-stage recovery of illuminant and reflectance spectra
(D’Zmura and Iverson 1993a), respectively. Appendix C.1 shows the im-
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ages of all the subjects from the skin color assessment experiments reported
in Chapter 3. Appendix D presents a historical review of color harmony
theories. Appendix E presents the images of the decoration samples used in
the experiments reported in Chapter 4. Appendix F contains supplementary
material for Chapter 5, such as details on the algorithm’s code, plots of the
test illuminants, and additional results.
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Chapter 2

General background

In this chapter, we review some important concepts of color imaging. Section
2.1 presents a Lambertian image formation model and Section 2.2 briefly dis-
cusses colorimetry and metamerism. Section 2.3 describes the generic workflow
of a digital camera. Section 2.4 reviews several important color spaces, namely
CIE XYZ, sRGB, CIELAB, and CIECAM02. Sections 2.5 to 2.7 present con-
cepts about color correction, illuminant retrieval, and white-balancing. We
review color correction transforms in Section 2.5 and linear models for illumi-
nant and reflectance spectra in Section 2.6 and see how they can be used to
reduce the dimensionality of the illuminant retrieval problem. Finally, Section
2.7 reviews a series of color constancy algorithms and explains how error in
illuminant estimation can be quantified.

2.1 Image formation model
A color response, either captured by a camera or the human eye, depends on
three factors. The illuminant, or surrounding light, at a spatial location x is
described by its spectral power distribution (SPD) E(x, λ), where λ is the wave-
length. The reflectance spectrum S(x, λ) represents the proportion of incident
light reflected by an object at each wavelength between 400 and 700 nm. It
characterizes the color of its surface. The sensor sensitivities Rk(λ) describe
the response of a multi-channel imaging system to the incoming radiation, or
color signal C(x, λ) = S(x, λ)E(x, λ), as a function of the wavelength (see Fig-
ure 2.1). The resulting sensor response or color response ρk(x) of a sensor k at
a spatial position x is given by the product of the illuminant, the reflectance,
and the sensor sensitivities integrated over the visible range

ρk(x) =
∫
λ

S(x, λ)E(x, λ)Rk(λ)dλ . (2.1)

These continuous spectra can be represented by 31 discrete values sampled
at 10nm intervals over the visible range 400 − 700nm. Smith et al. (1992)
demonstrated that illuminant spectra can be represented using this sampling
without significant loss of accuracy in terms of sensor responses, as long as
they are relatively smooth, which is the case for daylight illuminants (Judd et
al. 1964). This simplified image formation model assumes a “flat world” with

11
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(a) Reflectance (b) Emittance

(c) Transmittance

Figure 2.1: A color response depends on three elements: the reflection properties
of the objects - the reflectance, the light, and the response of the imaging device
- a camera or the eye. Plot (a) shows the reflectance spectra of the red, green,
and blue patches from the MacBeth ColorChecker. Plot (b) shows three illuminant
spectra, incandescent A (solid), fluorescent F11 (dash-dotted), and daylight D65
(dashed). Plot (c) shows the sensitivities of a Canon 350D camera.

single uniform illuminants, Lambertian surfaces, i.e., reflecting light uniformly
at each angle (see Figure 2.2), and no surface inter-reflections. The integral in
(2.1) can be replaced by a sum and the sensor responses rewritten as

ρk(x) = s(x, λ)Tdiag(e(x, λ))rk(λ) , (2.2)

where the vectors s(x, λ), e(x, λ), and rk(λ) are, respectively, the sampled
spectra S(x, λ), E(x, λ), and Rk(λ). diag(e(x, λ)) is a 31× 31 matrix with the
vector entries of e(x, λ) on its diagonal.

The sensor sensitivities Rk(λ) may represent any imaging system’s sensi-
tivity functions - real or modeled - such as the cone fundamentals or the CIE
1931 color matching functions (see Section 2.4.1). In this thesis, ρk(x) generally
represents the sensor response of a standard RGB camera and k = {R;G;B}
indexes the red, green, and blue channels.
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(a) Specular reflection (b) Lambertian or diffuse reflection

Figure 2.2: A specular or mirror-like surface reflects an incoming ray of light,
represented by the blue arrow, into a single outgoing direction, while a Lambertian
surface reflects light equally at all angles.

2.2 Trichromacy, colorimetry, and metamerism
We have seen that the color of a surface is characterized by its reflectance
spectra. Once we know it, we can compute the corresponding sensor responses
for any imaging device under any light. However, it is not always necessary
to retrieve the full spectrum to characterize the color of an object, due to the
integrative nature of the human visual system (HVS). The HVS is trichromatic,
that is, the retina contains three types of receptors that are responsible for
color vision and are sensitive to different parts of the visible spectrum (von
Helmholtz 1867). Any color stimulus C(λ) can be matched by an additive
mixture of three primaries Cr(λ), Cg(λ), and Cb(λ) as

C(λ) = RCr(λ) +GCg(λ) +BCb(λ) , (2.3)

where R, G, and B are the tristimulus values of C(λ). In other words, three
values suffice to describe the color appearance of a surface under fixed lighting
conditions. Consequently, the color of an object can be specified by a triplet of
values under a canonical illuminant, known as the tristimulus values. Similarly,
an illuminant can be described by the tristimulus values of a white surface
S(λ) ≡ 1. In Chapters 3 and 4, we assess object colors from uncalibrated
images not by retrieving full reflectance spectra, but as illuminant and camera
independent sRGB values.

Metamerism is another important consequence of the integrative nature of
the HVS. In daily life, it means that two objects having the same color under a
given illuminant may appear different under another illuminant due to slightly
different reflectance spectra. Most of us have experienced metamerism with
clothing. A fabric that appears black at home under incandescent light may
appear blueish or brownish in the office under fluorescent lighting. Mathemati-
cally, it means that for any tristimulus values there exists an infinity of ambigu-
ous illuminant-reflectance combinations giving rise to them. A white surface
under a reddish illuminant may produce the same color signal C(λ) = S(λ)E(λ)
as a red surface viewed under a white light. These illuminant-reflectance pairs
are named metameric pairs. For a more complete review of these phenomena
see, for example, Ebner (2007).
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Figure 2.3: Any color can be matched by a mixture of red, green, and blue pri-
maries. A monitor displays an image as a sum of a red, green, and blue components.

2.3 In-camera processing
Figure 2.4 shows a typical in-camera processing pipeline (ISO 2004). A scene is
first captured by a sensor and stored in a raw format that is a device-dependent
sensor space. The second step allows to compensate for the scene and camera
characteristics. It includes white-balancing and a transform of image data into
a standard color encoding. At this stage, the image is said to be in a scene-
referred or input-referred state, which represents an estimate of the scene’s
colorimetry. Such images are typically in a 12-bits per channel format, which
maintains the scene’s original dynamic range and gamut. The image then
undergoes a series of color rendering operations, resulting in a image that
can be displayed or printed correctly. These steps depend on the rendering
intent, which is generally to obtain a pleasing image on the desired output
medium. The image is in an output-referred state, i.e., the image is represented
by coordinates for some real or virtual output. Images are most often encoded
in sRGB (Section 2.4.2), which describes images such that they can be displayed
on a monitor.

2.4 Color spaces
A color space is a “geometric representation of colors in space, usually of three
dimensions” (CIE 1987). This broad term covers many types of spaces. In
additive RGB spaces, e.g., sRGB, color is expressed as a sum of three red, green,
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Figure 2.4: Generic in-camera processing workflow. Modified from ISO (2004).
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and blue primaries. In opponent color spaces, e.g., Y CbCr, color is represented
by three components: lightness or luma - a sum of the RGB components - and
two opponent components - differences of the RGB components corresponding
to red− green and yellow− blue. In perceptual spaces, e.g., CIELAB, color is
described by its perceptual attributes, namely hue, lightness, and chroma.

Color spaces, being accurately defined, allow to communicate color infor-
mation without ambiguity. More precisely, a colorimetric color space is defined
by three elements: a relationship between the space values and CIE colorime-
try, an illuminant white-point - usually D50 or D65, and a color component
transfer function (ISO 2004). This function accounts for the nonlinear response
of a device or of the HVS; it is often a power-law or logarithmic function and
is usually called a gamma function and denoted γ. The white-point is a set of
tristimulus values specifying the reference white under a given illuminant.

A color space encoding is the digital encoding of a color space (ISO 2004),
i.e., it includes an additional color space range and a digital encoding method.
For example, colors specified in an RGB space can have values in [0, 1] and all
values outside these bounds will be clipped. It also defines a digital code value
range: if 8-bits per channel are used, color values will be encoded using integers
in [0, 255]. A color image encoding is based on a color space encoding but also
includes any information necessary to properly interpret the color values, such
as the image state, the intended image viewing environment, and the reference
medium (ISO 2004).

In this section, we review three color spaces: CIE XYZ, sRGB, and CIELAB.
We also briefly discuss the color appearance model CIECAM02.

2.4.1 XYZ color space
The Commission Internationale de l’Eclairage (CIE) has defined a standard
observer by color matching experiment (Wyszecki and Stiles 2000). Figure 2.5
illustrates the experiment principle. An observer is shown monochromatic stim-
uli activating a 2◦ area of the retina corresponding to the fovea, which has the
highest cone density. The subject is asked to match each stimulus with an ad-
ditive mixture (2.3) of three monochromatic primaries (700nm, 563.1nm, and
435.8nm). The mixture weights are reported as a function of the monochro-
matic stimulus wavelength and define the color matching functions (CMF) r,
g, and b shown in Figure 2.6. These r, g, b values are then converted into the
imaginary primaries x, y, z in order to eliminate the negative values of r indi-
cating that the monochromatic stimulus could not be matched without adding
some red to it (CIE 1986). y(λ) is forced to be equal to V (λ), the eye response
to luminance (Wyszecki and Stiles 2000). The luminance is the measure of
the luminous intensity of a light source, as opposed to the lightness, that is,
the nonlinear response of the eye to luminance. In other words, the luminance
is a physical quantity, whereas lightness is a perceptual attribute. The CIE
XYZ tristimulus values of a surface characterized by a reflectance spectrum
S(λ) viewed under illuminant E(λ) are computed using the image formation
model (2.1), where Rk(λ) = x, y, z. Y represents the luminance of the stimulus.
Tristimulus values are usually normalized such that the maximum of Y is 100.
CIE XYZ are called tristimulus values and x, y, z the color matching functions
of the CIE 1931 standard colorimetric observer or simply the CIE 1931 color
matching functions. They are shown in Figure 2.6.
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Figure 2.5: r, g, b color matching functions were determined by color matching
experiments. The observer matches a monochromatic test light with a sum of red,
green, and blue primaries by adjusting their relative intensity until it matches the
test light.
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(a) r, g, b plotted in red, green, and blue, respec-
tively. r has negative values.

(b) x, y, z plotted in red, green, and blue, respec-
tively.

Figure 2.6: r, g, b and x, y, z color matching functions.

The CIE XYZ tristimulus values are fundamental for colorimetry. Two
stimuli with equal CIE XYZ values color match, i.e., have the same appear-
ance when viewed under the same illuminant and under the same viewing
conditions. CIE XYZ color space serves as the basis for all colorimetric color
space definitions.

The intensity of XYZ can often be discarded and a stimulus conveniently
represented by two dimensional chromaticity coordinates (x, y) computed as

x = X

X + Y + Z y = Y

X + Y + Z . (2.4)

The normalization projects all colors onto the plane X + Y + Z = 1 and the z
coordinate becomes redundant.

2.4.2 sRGB
There are many RGB color spaces, each created for a particular purpose. They
are defined by a set of additive RGB primaries, a white-point, and a color com-
ponent transfer function (ISO 2004). The RGB sensors are a linear combination
of the color matching functions x, y, z.

The sRGB standard was created as a default color image encoding for the
internet (Stokes et al. 1996, IEC 61966-2-1 1999). It is defined by ITU Rec. 709
primaries representative of a typical CRT monitor. sRGB values are defined
by the following transformation of the CIE XYZ tristimulus values:⎡

⎣ RG
B

⎤
⎦ =

⎛
⎝ 3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416
0.0556 −0.2040 1.0570

⎞
⎠
⎡
⎣ XY
Z

⎤
⎦ . (2.5)

Values falling outside the range [0, 1] are clipped. The color component transfer
function, or gamma function, is given by

γ(x) =
{

12.92x x ≤ 0.0031308
1.055x 1

2.4x− 0.055 x > 0.0031308 (2.6)
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Figure 2.7: The solid line shows the XYZ CMF in xy chromaticity space,
i.e., y(λ) = y(λ)/(x(λ) + y(λ) + z(λ)) as a function of x(λ) = x(λ)/(x(λ) +
y(λ) + z(λ)). It encloses the range of chromaticities perceptible by an average ob-
server or, in other words, the gamut of human vision. Its boundary, named spectral
locus, represents the monochromatic stimuli. The black dot represents the white
point of D65. The red, green, and blue dots represent the sRGB primaries and the
dashed triangle represents sRGB gamut, i.e., the colors that can be represented in
sRGB by addition of the three primaries. The range of colors lying outside of the
sRGB gamut and that cannot be represented in sRGB is quite large.
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Figure 2.8: sRGB color matching functions.

and is applied to the RGB values after transformation (2.5). The white-point
is the standard daylight illuminant D65. The transformation (2.5) from CIE
XYZ to RGB, the gamma function (2.6), and the white-point define sRGB as
a colorimetric color space, on which we can define a encoding method. The
normalized values are converted to 8-bits per channel by multiplying the output
of (2.6) by 255 and rounding it to the closest integer.

Colors in sRGB can be represented in a unit cube whose axes represent red,
green, and blue. Gray values R = G = B lie on the line going from (0, 0, 0) to
(1, 1, 1), as illustrated in Figure 2.9.

sRGB is an output-referred image encoding that was designed to represent
colors that can be displayed on a CRT monitor. It thus cannot encode all colors
and its main disadvantage is the relatively small size of its gamut, as illustrated
by Figure 2.7. sRGB remains the most common output-referred encoding: All
consumer cameras still output images that are encoded in sRGB and we can
assume that any digital image file is in sRGB format, unless specified otherwise.

2.4.3 CIELAB

RGB representations of colors are adapted for additive devices, but are not
intuitive descriptions. [250, 250, 0] is better conveyed by a “saturated light
yellow.” Colors can be described by three perceptual attributes: hue - here
“yellow,” saturation, and lightness.

The CIELAB color space (CIE 1978) was initially created to provide a single
color difference measure that would replace the many color difference formulas
used at that time. Its coordinates are the lightness L∗ and the two opponent
components a∗ = red−green and b∗ = yellow−blue computed from CIE XYZ
tristimulus values using equations (2.7) to (2.10),

L∗ = 116f(Y/Yn)− 16 , (2.7)
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Figure 2.9: Colors in sRGB can be represented in a unit cube. The encoding is
additive; for example, red + green = R + B = (1, 0, 0) + (0, 0, 1) = (1, 0, 1) =
magenta.

a∗ = 500[f(X/Xn)− f(Y/Yn)] , (2.8)

b∗ = 500[f(Y/Yn)− f(Z/Zn)] , (2.9)

where
f(x) =

{
x1/3 x > 0.008856

7.787x+ 16/116 x ≤ 0.008856 . (2.10)

The CIE XYZ values of the stimulus are first normalized by the tristimulus
values of the illuminant white-pointXnYnZn. A cube root f(x) (2.10) modeling
the perceptual response to luminance is applied to this adapted stimulus. The
resulting signals are combined into the three opponent responses light− dark,
red− green, and yellow − blue channels. The multiplicative constants ensure
the space’s perceptual uniformity.

Chroma is defined by
C∗ab =

√
a∗2 + b∗2 . (2.11)

It is a measure of what we call “saturation” in common language, but the two
terms should not be confused. Saturation is the colorfulness of a stimulus rela-
tive to its own brightness, while chroma is colorfulness relative to the brightness
of a similarly illuminated area that appears white (Fairchild 2005).

Hue is given by
h∗ab = tan−1(b∗/a∗) . (2.12)

Hue angles can be represented on a wheel, even though the perceptual unique
hues (red, green, yellow, blue) do not align with the CIELAB a∗b∗ axes (Fairchild
2005). The “saturated light yellow” of our example expressed in sRGB by
[250, 250, 0] is described by L∗ = 96, C∗ab = 98, and h∗ab = 102◦. Figure 2.10
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represents Munsell colors (Munsell 1905) in CIELAB coordinates. Munsell
colors are specified by the perceptual dimensions hue, lightness, and chroma
distributed by roughly equal perceptual increments (see Appendix D). In an
ideal perceptually uniform color space, colors having the same hue would lie
on straight lines and colors having the same chroma would lie on circles. Their
representation thus gives a geometrical estimation of the color space uniformity.

The color difference between two color stimuli 1 and 2 is given by the
Euclidian distance between their CIELAB coordinates

ΔE∗ab =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2 =
√

ΔL∗2 + Δa∗2 + Δb∗2 .
(2.13)

ΔE∗ab = 1 is usually considered to represent a just noticeable difference (JND),
i.e., to be the minimum distance between two distinguishable color stimuli.
While this is a general rule of thumb, it is not always exact. This is due to
CIELAB imperfect perceptual uniformity, but also to the dependency of JND
on the sample size, on the viewing conditions, on the observer, etc.

CIELAB most important limitation is probably its lack of hue constancy,
especially towards blue hues (Hung and Berns 1995, Moroney 2003), as illus-
trated by Figures 2.10(a) and 2.10(c).

2.4.4 CIECAM02

CIECAM02 (Moroney et al. 2002) is the most recent color appearance model.
It is more complex to implement than CIELAB and can predict a larger range
of phenomena. In this thesis, we only use CIECAM02 as a “better CIELAB”
when measuring color differences because of its improved overall perceptual
uniformity. Figure 2.10 shows Munsell colors in both CIELAB and CIECAM02.
Comparing the geometrical uniformity of the left and right plots of shows that
CIECAM02 is more uniform than CIELAB.

Input data for the CIECAM02 includes the tristimulus values CIE XYZ
of the color stimulus and of the white-point XnYnZn, the adapting luminance
LA, and the relative luminance of the surround. It returns lightness, brightness,
chroma, colorfulness, saturation, and hue.

We will need the lightness J , chroma C, hue h, and their cartesian coordi-
nates

ac = C cos(h) , (2.14)
bc = C sin(h) . (2.15)

While CIECAM02 does not provide an official color difference formula,
CIECAM02 coordinates (J, ac, bc) correlate well with CIELAB ones (L∗, a∗, b∗)
and color differences can be computed as

ΔEc02 =
√

ΔJ2 + Δa2
c + Δb2c . (2.16)

The detail of the formulas is reported in Appendix A.
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(a) CIELAB (b) CIECAM02

(c) CIELAB (d) CIECAM02

Figure 2.10: CIELAB (left) and CIECAM02 (right) are two perceptual color
spaces. Plots (a) and (b) show the entire gamut of Munsell colors; plots (c)
and (d) only show Munsell colors having a medium lightness (L∗ = 50). The geo-
metrical representation of the uniformly perceptually spaced Munsell colors shows
that CIECAM02 is more uniform, especially for darker blue and purple colors.

2.5 Color constancy and white-balancing

The HVS is said to be color constant, i.e., it adapts to the illuminant and
sees colors roughly independently of the lighting conditions. It was modeled
over a century ago by von Kries (1902). He assumed that the three types of
color photoreceptors in the retina, named cones, adapt independently to light.
There are three types of cones: L, M, and S. Each is sensitive to visible light
at different wavelengths: long, medium, and short, as indicated by their name.
Color constancy is achieved by individually adjusting the gains of the cone
responses. Mathematically it translates into

La = kLL Ma = kMM Sa = kSS , (2.17)
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where L, M , S and La, Ma, Sa represent the initial and adapted cones re-
sponses, respectively. kL, kM , kS are the inverse cone responses to either a
white (1/Lwhite, 1/Mwhite, 1/Swhite) or a maximum stimulus (1/Lmax, 1/Mmax,
1/Smax). It can be written in the matrix form⎡

⎣ LaMa
Sa

⎤
⎦ =

⎛
⎝ 1/Lmax 0 0

0 1/Mmax 0
0 0 1/Smax

⎞
⎠
⎡
⎣ LM
S

⎤
⎦ . (2.18)

This diagonal formulation of chromatic adaptation is named the strong von
Kries coefficient model (von Kries 1902).

White-balancing in cameras follows the same formalism. It is performed
early in the in-camera processing pipeline (see Section 2.3) and corresponds to
the independent scaling of the R, G, B channels:⎡

⎣ RaGa
Ba

⎤
⎦ =

⎛
⎝ α11 0 0

0 α22 0
0 0 α33

⎞
⎠
⎡
⎣ RG
B

⎤
⎦ . (2.19)

The values of the color correction transform coefficients αii are computed by a
color constancy algorithm (see Section 2.7). This diagonal model holds as long
as the sensors are not too correlated, which is the case for most cameras.

There are more general chromatic adaptation models, called weak von Kries
models, in which off-diagonal terms in (2.19) are non-zeros (Brainard and
Wandell 1992): ⎡
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α31 α32 α33

⎞
⎠
⎡
⎣ RG
B

⎤
⎦ . (2.20)

It has been shown that generalized coefficients models (2.20) can be successfully
applied in color constancy (Finlayson et al. 1994a, Finlayson et al. 1994b). A
3× 3 linear transform is applied to the sensors making them sharper - i.e., less
correlated - prior to applying a diagonal transform.

Non-diagonal models can be interesting for images taken with low quality
devices such as cameras integrated into cell phones, since they typically have
broad-band sensors to increase the quantum efficiency, at the expense of color
image quality (Baer et al. 1999). The off-diagonal terms αij in the color trans-
form (2.20) correspond to channel crossover. For example, α21 represents how
much of the green channel will be added to the red channel after correction.

2.6 Linear models for illuminants and reflectances
Color constancy algorithms can have many different outputs, illuminants or
reflectances, spectra or tristimulus values. Either way, the image formation
model presented in Section 2.1 must be inverted. Retrieving an illuminant
spectrum E(λ) from (2.2) requires solving for 31 unknowns - its 31 samples -
from only three equations - one for each RGB. One way of reducing the number
of unknowns in the system of equations is to express the illuminant spectrum
E(λ) and the reflectance spectrum S(λ) as linear sums of a limited number of
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(a) The 13 CIE standard daylight illuminants
D40 to D100 are represented by the lines going
from red to blue.

(b) Daylight illuminant basis functions. The
first, second, and third basis functions are rep-
resented by the blue solid, black dash-dotted,
and red dashed lines, respectively.

Figure 2.11: Plot (a) shows the CIE standard daylight illuminants. Plot (b) shows
the three first basis vectors characteristic of daylight illuminants.

basis functions. Determining spectra reduces to determining the weights called
illuminant and reflectance descriptors.

Most natural and man-made surfaces reflectance spectra are smooth enough
to be represented by a linear combination of a low number of basis functions.
Cohen (1964) demonstrated that Munsell surface reflectances could be approx-
imated by the average reflectance plus two additional components, i.e., by a
sum of three basis functions. However, later work showed that five to seven
(Maloney 1986) or even eight (Parkkinen et al. 1989) basis functions were nec-
essary to accurately represent real surface spectra.

These basis functions can be computed by principal component analysis
(PCA) on a large set of reflectance spectra (Maloney 1986, Marimont and
Wandell 1992, Westland et al. 2000). Reflectance spectra can be written as

S(λ) =
Nσ∑
i=1
σiSi(λ) , (2.21)

where σi are the weights or reflectance descriptors, Si(λ) the surface reflectance
basis functions, and Nσ the number of basis functions.

Similarly, Judd et al. (1964) decomposed daylight illuminant spectra as
sums of three basis functions Ei, i.e.,

E(λ) =
Nε∑
i=1
εiEi(λ) , (2.22)

where εi are the illuminant descriptors, E1(λ) is the average daylight, and
Nε = 3 is the number of basis functions. The authors computed the illumi-
nant basis functions by principal component analysis on a total of 622 spectra
from three sets of daylight measurements. Using only three basis functions,
i.e., the average daylight E1 plus two orthogonal characteristic vectors, they
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could reconstruct the illuminant spectra dataset with good accuracy, measured
as the variance between measured and reconstructed spectra. They also pro-
posed a method to compute the spectra of typical phases of daylight illuminants
(CIE 2004) using these three basis functions. These standard illuminants are
designated by the letter “D” followed by a number corresponding to the illumi-
nant correlated color temperature. That is, the temperature to which an ideal
black body radiator needs to be heated to match a certain light source color.
For instance, D65 specifies a daylight illuminant with a correlated color tem-
perature of 6500K. Figure 2.11 shows the standard daylight illuminant phases
D40 to D100 and the three basis functions E1(λ), E2(λ), and E3(λ) obtained by
PCA.

Using this formalism, the image formation model (2.2) can be rewritten as

ρ = Rdiag(Beε)Bsσ = Λεσ , (2.23)

where R is a 3 × 31 matrix containing the sensor sensitivities. The matrix
Be contains the Nε illuminant basis functions and the matrix Bs contains the
Nσ reflectance basis functions. ε and σ contain the illuminant and reflectance
descriptors εi and σj , respectively. The matrix Λε is called the lighting matrix.
We will see this formulation in detail in Chapter 5.

2.7 Color constancy algorithms
Color constancy algorithms aim at retrieving illuminant descriptors or illumi-
nant independent reflectance descriptors from RGB images. The dimension of
this under-determined problem can be reduced by introducing assumptions on
the image or scene content. The algorithms presented in this section are clas-
sified in two categories: Single light methods exploit the content of one scene
or image to retrieve illuminant information, whereas multiple lights methods
retrieve illuminant descriptors from a set of two, or more, images containing
redundant information.

2.7.1 Single light methods
The illuminant can be estimated by introducing simple assumptions on the
scene content. The max-RGB (Land and McCann 1971) algorithm relies on
the presence of a white patch in the scene to retrieve illuminant descriptors.
More precisely, it assumes the scene white-point to correspond to the maximum
sensor response in each channel of an image

ρE �→ [max(ρR),max(ρG),max(ρB)] , (2.24)

where the three-dimensional vector ρE designates the RGB values of a white
surface, i.e., having a reflectance spectra S(λ) ≡ 1, and the symbol �→ means
“is derived from.” This simple algorithm performs well if a “white-like” patch
is present in the scene, but it may return erroneous results if one, or more,
color channel is saturated or if no white patch is present. The gray world
algorithm estimates the illuminant by assuming that the average of an image
is gray, i.e., that the average reflectance of the objects present in the scene is
constant (Buchsbaum 1980). The scene white-point is estimated by calculating
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the average value of each color channel

ρE �→ [ρR, ρG, ρB ] . (2.25)

The algorithm performs poorly if the variety of colors in the image is too low or
if the influence of the larger surfaces bias the result. The latter can be prevented
using a weighted gray world approach, where the importance of each surface
is independent of its size. This can be done by segmenting the image prior
to taking the image segments average (Gershon et al. 1988) or by averaging
the image histogram. Gershon et al. (1988) also modified Buchsbaum’s (1980)
method by adding information about the properties of surfaces likely to appear
in a scene. The scene illuminant is found by mapping scene color values onto
an ideal material space formed by the descriptors of “all” surface reflectances.
Variations of the gray world algorithm include the grey edge hypothesis (van de
Weijer and Gevers 2005) and shades of gray (Finlayson and Trezzi 2004).

Rather than retrieving a white-point, some algorithms retrieve spectral
quantities. The dimension of the ill-posed illuminant retrieval problem must
then be reduced, for example by expressing illuminant and reflectance spectra
by linear models. In this framework, Maloney and Wandell (1986) assume the
number of sensors to be superior to the number of degrees of freedom of the re-
flectance descriptors. They retrieve the illuminant by inverting a linear model
(see Section 2.6). If we apply this approach to the case of an RGB camera, we
have three sensors and can thus approximate the scene reflectances by a sum
of only two functions, which is not enough to accurately represent reflectance
spectra. This method can thus not be applied in practice.

A series of algorithms resulted from the observation that not all colors can
arise under any illuminant. For example, a bright blue cannot been seen under
an incandescent light. Formally, this is because the values of a color signal
C(λ) = S(λ)E(λ) for all S(λ) ∈ [0, 1] are limited by the illuminant spectral
power distribution E(λ). Forsyth (1990) follows this idea and shows that color
gamuts - the sets of RGB values that can be observed under a given light -
are convex and bounded. The color gamut of an illuminant can be built by
calculating the RGB responses resulting from “all” surfaces observed under
that illuminant. The algorithm consists of two steps. First, it computes the
set of possible solutions composed of the lights whose gamuts contain all the
image RGB values. The best color correction transform is then chosen as the
transform leading to the largest corrected gamut volume. Variations of this
method take the mean (Barnard et al. 2000) or the median (Finlayson and
Hordley 2000) over the set of possible solutions. Finlayson (1996) modified
Forsyth’s (1990) approach by working in a two-dimensional chromaticity space
and excluding illuminants that are unlikely to occur in real scenes, such as
purple lights. Color by correlation (Finlayson et al. 2001a) presents a similar
approach: The maximum likelihood of an illuminant occurrence is computed
using the correlation between the image chromaticities and the chromaticities
expected for each test illuminant. Gamut mapping approaches in general and
color by correlation in particular perform better than simpler methods such as
max-RGB or gray world (Barnard et al. 2002a, Hordley and Finlayson 2004).
To a lesser extent, such methods may also fail if the range of colors present in
the image is not large enough, in which case the RGB gamut derived from the
image will not be representative of the gamut of the actual illuminant.
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2.7.2 Multiple lights methods
There are other color constancy approaches that consider multiple lights or im-
ages. Two images taken under different illuminants or several surfaces viewed
under different lights provide redundant information that can be exploited to
solve for color constancy. The flash/no flash method takes two images of one
scene captured with and without flash. Knowing the flash properties, informa-
tion on the illuminant can be retrieved. DiCarlo et al. (2001) take an image
pair to compute an estimate of the scene lit by the flash only and, knowing
the flash spectral power distribution, use this last image to retrieve objects
reflectance functions. They finally employ these reflectances to estimate the
illuminant in the image taken without flash. Lu and Drew (2006) present a
variation of the method.

The chromagenic approach takes two images of one scene captured with
and without a colored filter placed in front of the camera (Finlayson et al.
2006). The filter is chosen such that the relationship between the filtered and
unfiltered RGB values depends strongly on the illumination. The knowledge of
its transmittance is used to solve for color constancy. The algorithm is tested on
a set of precomputed illuminants. More precisely, transform matrices mapping
unfiltered RGB onto filtered RGB are computed in a preprocessing step. The
estimated illuminant minimizes

‖ T iQ−QF ‖ , (2.26)

where QF and Q represent the filtered and unfiltered RGB, respectively, and i
runs over the test illuminants. T i = ΛFi Λ−1

i , where ΛFi and Λi represent the
filtered and unfiltered illuminants lighting matrices.

Finlayson (1994) presents a method to solve for color constancy taking
two sets of three, or more, surfaces viewed under two different illuminants.
The illuminant and reflectance spectra are modeled by tri-dimensional linear
models. He considers the transformsM1,2 mapping the sensor responses under
the first illuminant to the ones under the second illuminant. He shows that
the illuminant descriptors ε1 = (ε11, ε12, ε13) and ε2 = (ε21, ε22, ε23) can be found
by solving

Qε1 = Pε2 , (2.27)

where P is a 9 × 3 matrix containing the stretched out 3 × 3 basis lighting
matrices Λi, i = 1, 2, 3. The three columns of Q are the matrices M1,2Λi in
the form of 9× 1 vectors. The solution of (2.27) is the intersection of the two
tri-dimensional spaces spanned by the columns of P andQ and is found by the
method of the principal angles, which chooses ε1 and ε2 such that the angle
between Qε1 and Pε2 is minimized.

In (Finlayson et al. 1995), the authors note that all the possible transforms
mapping the chromaticity coordinates of a surface viewed under a unknown
illuminant to a canonical one roughly lie on a straight line and that these
transforms for different unknown illuminants lie on different lines. By inter-
esting them, they can recover illuminant independent chromaticities for the
surface. Kawakami et al. (2004) present a variation the method that is more
robust to noise.

D’Zmura and Iverson (1993a, 1993b, 1994) present a solution for illuminant
and reflectance retrieval when Np surfaces are viewed under N illuminants.
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Illuminant and reflectance spectra are expressed as sums of a small number
of basis functions and the image formation model is expressed as (2.23). This
form is called bilinear : if the illuminant descriptors εi are fixed, the problem is
linear in the reflectance descriptors σj and inversely. The authors write (2.23)
for all the surfaces and illuminants and combine the resulting equations in the
compact form

Fσ̃ = 0 , (2.28)

where σ̃ is built using exclusively the reflectance descriptors σj and F depends
on the illuminant descriptors εi, the illuminant and reflectance basis functions
Ei(λ) and Sj(λ), the sensors responses Rk(λ), and the color responses ρ. More
precisely, F is of the form

F =

⎛
⎜⎜⎜⎝

F1 −F2 0 . . . 0
F1 0 −F3 0
...

. . .
F1 0 −FNσ

⎞
⎟⎟⎟⎠ , (2.29)

where the Nσ matrices Fj = CjD. Cj are block-diagonal matrices whose
blocks Bj are built using the sensor sensitivities Rk(λ), the illuminant basis
functions Ei(λ), and the reflectance basis functions Sj(λ) as

(Bj)ki =
∫
λ

Rk(λ)Ei(λ)Sj(λ)dλ , j = 1, . . . , Nσ . (2.30)

The matrix D contains the sensor responses ρ of the Np surfaces viewed under
the N illuminants. The details of the derivation can be found in Appendix
B. The first step of the method is to solve (2.28) by singular value decompo-
sition and retrieve the reflectance descriptors σj from σ̃. At this stage, the
reflectances are known and the illuminant descriptors can be retrieved in a
second step. Indeed, the problem is now reduced to a simple linear system in
εi and we have for each surface np and each illuminant n

ρnp,n =
Nσ∑
j=1
σnp,jBjεn , (2.31)

or, equivalently,

εn = [
Nσ∑
j=1
σnp,jBj ]−1ρnp,n . (2.32)

This formulation assumes that the Bj are square, i.e., that the number of
reflectance basis functions Nσ is equal to the number of channels Nρ of the
imaging device. It can be extended to the cases where Nσ � Nρ by adding
entries to Bj to make it square. The supplementary entries must be linearly
dependent to the existing columns. The case Nσ > Nρ is not generally solv-
able. D’Zmura and Iverson (1994) report the conditions on the number of color
channels Nρ, the number of surfaces Np, the number of illuminant descriptors
Nε, the number of reflectance descriptors Nσ > Nρ, and the number of illumi-
nants N under which the illuminants and reflectances can be simultaneously
retrieved. The conditions are of the form Np = Nε = Nσ = N > Nρ. The
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authors also suggest that conditions of the form N = Np > Nε = Nσ > Nρ
may lead to perfect recovery. These conditions on the number of parameters
for the problem to be solvable are restrictive.

In Chapter 5, we present a method allowing to retrieve illuminant spectra
using a small number of redundant reflectances present in a set of N images.
Using the assumption that the reflectance of these surfaces, while unknown,
remains equal in all the images, we can deduce the illuminant in each image in
the set. This approach can be classified as a multiple lights method.

The main difference between our method and approaches using pairs of re-
dundant images such as the “flash/no flash” or “chromagenic” approaches is
that we only use the redundancy of reflectances rather than information on
the difference between two images (the flash spectral power distribution in the
“flash/no flash” approach or the colored filter transmittance in the chromagenic
approach). Another difference is the number of input images required to es-
timate the illuminants: these methods, when considering uniform illuminants,
retrieve one illuminant using two images, an original and a modified image;
whereas our method allows retrieving N illuminants in N input images. Also,
our input images do not need to represent the same scene, but only to contain
several objects present in every scene.

The approach described in Chapter 5 presents most similarities with D’Zmu-
ra and Iverson’s (1993a, 1993b, 1994) approach. By combining the information
on all surfaces viewed under all illuminants into one system of linear equations,
they first recover the reflectance descriptors by inverting this linear system and
then use the resulting descriptors to compute the illuminants. In our approach,
we solve in parallel several linear systems, one for each individual surface viewed
under each test illuminant. We force the resulting reflectance descriptors to be
equal, which allows us to deduce the illuminants.

2.7.3 Illuminant estimation error measure
The error in white-point estimation is often computed as the angle between the
vectors ρE and ρ̂E formed by the real and retrieved white-points and is called
the angular error (Hordley and Finlayson 2004, Barnard et al. 2002a, Barnard
et al. 2002b)

eang = arccos( ρE ◦ ρ̂E

‖ ρE ‖‖ ρ̂E ‖ ) . (2.33)

The space in which the angular error is computed is often not specified. We can
assume that it is either the camera RGB or, in case the camera sensor responses
are not accessible, CIE XYZ. This measure has the advantage of being intensity
independent, but RGB or even CIE XYZ spaces are not perceptually uniform
and two different real and retrieved illuminant pairs (ρE

1 , ρ̂
E
1 ) and (ρE

2 , ρ̂
E
2 )

may give the same angular error (2.33), while corresponding to perceptually
different ones. Also, the angular error is space dependent.

The illuminant estimation error can also be computed in a perceptual space,
such as CIELAB. As opposed to the angular error (2.33), ΔE∗ab is perceptually
meaningful, but requires more computation and is not intensity independent.
Hordley (2006) computed an approximate equivalence between both measures.
For example, an angular error of about 3◦ in XYZ corresponds to an error in
CIELAB of about ΔE∗ab = 6.8. An error ΔE∗ab � 6 seems to be acceptable
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for real images (Hordley 2006). Moreover, an error in white-balancing will be
more or less noticeable depending on the image content and on the direction
of the color shift (Nikkanen et al. 2008), aspects that cannot be accounted by
a simple illuminant error measure.

Barnard et al. (2002a) compute the angular error on a set of test images with
a root mean square (RMS) estimation. Hordley and Finlayson (2004) argue
that the RMS is not adapted to illuminant estimation error, whose underlying
distribution is not normal, and suggest to use the median error instead.

The algorithms presented in this section assume a “flat world” as presented
in Section 2.1 on the image formation model. Real scenes contain multiple
illuminants, shadows, and specularities. Real surfaces are not Lambertian and
create inter-reflections, i.e., the light reflected from an object strikes other sur-
rounding objects, illuminating them with a colored light that is the combina-
tion of the incident light and object’s reflectance. These factors may reduce
the performances of the color constancy algorithms.

2.8 Summary
We reviewed that captured color depends on the product of three main factors,
namely the illuminant spectral power distribution, the object’s reflectance prop-
erties, and the imaging device response to incoming light, integrated over the
visible spectrum (Section 2.1). As a consequence of the integrative nature of
image formation, a color stimulus can be specified by tristimulus values under
a canonical illuminant, i.e., a point in a three-dimensional color space such as
the additive sRGB or the perceptual CIELAB (Section 2.4). We also presented
the generic workflow of in-camera processing (Section 2.3) and focused on color
correction and illuminant compensation (Section 2.5). White-balancing is gen-
erally performed using 3 × 3 diagonal linear transforms whose coefficients are
computed by a color constancy algorithm (Section 2.7). More precisely, we
have seen that the retrieval of reflectance or illuminant spectra from triplets of
RGB values is an ill-posed problem that cannot be solved without additional
information or assumption on image content. For example, expressing spectra
as a sum of a small number of basis functions allows reducing the dimension
of the illuminant retrieval problem (Section 2.6). Finally, we have seen that
the error in illuminant estimation can be quantified as the angle between the
vectors representing the real and retrieved white-points, respectively (Section
2.7.3).
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Chapter 3

Skin color assessment from
uncalibrated images

3.1 Introduction
We present an application designed to provide women with cosmetic advice
through their mobile phones (Green 2007) and focus on the color correction
method targeted towards skin tones. The consumer takes a self-portrait and
sends the resulting picture via multimedia messaging service (MMS) to an
advisory service, which returns a makeup recommendation. The image can
be captured in any environment; the system is designed to work equally well
under fluorescent, daylight, or incandescent lights. Our algorithm color corrects
the image, extracts the face pixels, compares them with an existing database
associating makeup recommendations with skin tones, and returns a foundation
shade suggestion in a short text message (SMS). Figure 3.1 illustrates the
system.

A foundation is a tinted cream, or liquid, used as a base for facial makeup.
It is the second most popular product in the annual $160 billion worldwide
market of cosmetics. Despite the popularity of this product, studies showed
that choosing the right foundation is a difficult task and that about 94% of
women were wearing the wrong shade (Jain et al. 2008). The system does
not simply return the foundation matching the skin in color but uses the color
corrected face image to replicate the opinion of an expert stored in a database.

For the system to work properly, an accurate color correction of skin tones
is necessary. As we have seen in Chapter 2, the colors in an image depend on
the camera characteristics, object properties, and lighting conditions. Different
cameras will most likely return different pixel values when capturing the same
scene in the exact same conditions. The in-camera processing varies among
manufacturers and camera models resulting in important variations across im-
ages. As we are working with images that are already rendered, we cannot
access raw data or bypass the in-camera processing. Moreover, the growth
of low quality devices such as cell phone integrated cameras results in larger
rendering variations.

The color of a surface is fully characterized by its reflectance spectrum,
which can be measured by spectrometry, but which can also be specified by tris-
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Figure 3.1: The user sends an image of herself via MMS. The system color corrects
the image, extracts face values, compares them to a database built with the help
of a makeup expert and returns foundation color advice in the form of a short text
message.

timulus values (Section 2.2) measured by a colorimeter whose response mimics
the CIE 1931 color matching functions x, y, z (CIE 2004). However, our ap-
plication requires to assess color from a standard RGB image and such devices
are thus not adapted. Still, standard RGB cameras can be used as colorimeters
(Farrell et al. 1994, Wu et al. 2000), provided that they have been previously
calibrated and are employed under controlled illumination conditions. Never-
theless, it requires access to the raw data of the camera. Such approaches are
too restrictive for the present application, as the color correction must be fast.
Also, the consumer must be able to use her own camera under any lighting
conditions without requiring specific equipment.

Because our application only requires the assessment of the color of skin
tones, images can be corrected using a limited number of reference colors
present in the scene in the form of a color calibration target. This is a simple
and inexpensive alternative to the use of calibrated devices. The only require-
ment is that the image contains, in addition to the subject’s face, the calibration
target designed specifically for the correction of skin tones. The target patches
are automatically detected and their values compared with reference ones. A
color correction matrix is computed and applied to the entire image, prior to
face pixels extraction. Figure 3.2 shows the system’s pipeline. The experiment
is run on photographs of faces taken with uncalibrated cameras under uncon-
trolled light conditions. The images were captured with consumer cameras
employed in fully automatic mode, the images are thus already rendered.
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Figure 3.2: Overview of the image processing pipeline for skin color classification.

3.2 Background
3.2.1 Cameras as colorimeters
Retrieving reflectances from camera responses is not trivial. For many appli-
cations, however, it is sufficient to retrieve colorimetric values rather than the
full reflectance spectrum. The human visual system is indeed unable to recover
spectral information (Section 2.2). A three channel imaging device is thus suffi-
cient to retrieve tristimulus values under known illuminant conditions. Several
approaches using standard RGB cameras as colorimeters have been proposed.
Farrell et al. (1994) present a method to turn a scanner into a colorimeter.
Wu et al. (2000) use an RGB camera to compute calibration matrices mapping
camera RGB to CIE XYZ. Color transforms are computed by minimizing a
cost function in CIELAB space or the mean square error in CIE XYZ color
space under several selected illuminant conditions. The application was the
colorimetry of human teeth. Hubel et al. (1997) present a method to compute
3×3 color transform matrices intended for camera calibration in digital photog-
raphy by simple least squares regression, white-point preserving least squares
regression, and weighted white-point preserving least squares regression.

Camera calibration is generally performed using a standard calibration tar-
get, such as the widely used MacBeth ColorChecker (Barnard and Funt 2002).
The transform is usually applied prior to the image rendering implemented in
the camera. Such calibration methods require the access to the raw data of
the sensor. We present a post-calibration method, i.e., we apply a color trans-
form on rendered images captured under unknown illuminants with unknown
cameras. Cai (2002) shows a similar approach to determine tongue color from
images containing a MacBeth ColorChecker.

3.2.2 Skin color measurement
Skin appearance has been studied in computer graphics (for skin rendering),
computer vision (for detection and tracking of faces), medicine (for diagnostic
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Figure 3.3: Example of skin spectra. The four colored patches correspond, from
left to right, to examples of North Asian (blue dotted), Caucasian (red dash-
dotted), South Asian (dashed), and Africanoid (green solid) skin spectra.

purposes), and cosmetology (for makeup and skin care). In particular, it has
been shown that, across the range of possible human skin tones, lightness varies
more than chromaticity (Störring et al. 2001). The relative constancy of the
skin chromaticity is often used as a cue in face detection algorithms (Hsu et
al. 2002).

Skin color is usually measured with reflectance spectrometry (for a review
see Igarashi et al. 2005). Figure 3.3 shows examples of typical skin spectra. The
perceived color of skin depends on its pigmentation, blood microcirculation,
roughness, sebum, and perspiration (Barel et al. 2001). The multiple layers of
the skin make accurate color measurement difficult as its reflectance properties
are not Lambertian (Igarashi et al. 2005). In other words, the perceived color
and brightness of the skin depend upon its viewing angle. Even though they
are not optimal for skin measurement, traditional spectrometers are inexpensive
and simple to use and hence still widely employed for skin colorimetry (Clarys
et al. 2000).

Narrow band spectrometers were developed specifically for skin measure-
ment after observing that the color of skin has two main components, which
selectively absorb wavelengths, melanin and hemoglobin, located in two dif-
ferent layers of the skin (Taylor et al. 2006). The use of spectrometers has
significant drawbacks: the area measured is about 0.05 cm2 while the skin
is not homogeneous (Barel et al. 2001). Indeed, uneven tan, blemish, rosacea,
and shine are responsible for skin unevenness. Furthermore, the pressure of the
probe on the skin can be an important source of bias (Piérard 1998). Caisey et
al. (2006) developed a proprietary device composed of an integrating sphere, a
spectrometer, and a 3-CCD camera allowing non-contact spectroscopy of dif-
ferent parts of the face and simultaneous imaging for estimation of the skin
unevenness.

The melanin and hemoglobin components have been modeled as indepen-
dent and extracted using in-vivo measurements (Nakai et al. 1998). Tsumura
et al. (1999) applied the independent component analysis method to the pixel
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values of color images of faces. They extracted two independent color compo-
nents without any a priori assumption on skin properties. The two components
are identified a posteriori with melanin and hemoglobin. The results were used
for skin color reproduction and rendering and are thus not applicable to our
problem.

3.3 Our approach
Skin tone is assessed from a single uncalibrated image taken in fully automatic
mode with a consumer camera under uncontrolled illumination conditions. We
have no access to raw data and have no information on the in-camera process-
ing; the color correction is performed on already rendered images. We suppose
that the camera performs white-balancing and encodes images in sRGB, which
has a defined white-point of D65. Image rendering implemented in consumer
cameras aims at producing pleasing images resembling our memory of the scene.
Saturation and contrast are generally boosted and such output-referred images
are not colorimetrically accurate. Moreover, due to imperfect illuminant com-
pensation, different sensor sensitivities, and variations in image processing and
in quality across devices, uniform color rendering is never achieved. The result-
ing image colors of a given scene imaged with different uncalibrated cameras
will have important variations. Figure 3.4 shows examples of possible varia-
tions in color across devices. It displays the images of three subjects imaged
with four different cameras used in fully automatic mode before and after color
correction. To be able to classify skin tones, we need face pixels to have the
same sRGB values independently of the illuminant and camera. In other words,
we need the image sRGB to correlate with the actual colorimetry of the skin
rather than its appearance after an “ideal” image rendering. We use a known
reference target present in an image to compute a color correction transform.

The target patches are extracted automatically. Their detection is based
on the segmentation of the image into regions whose contours are located at
zero crossings of the Laplacian of a smoothed luminance version of the image
(Harville et al. 2005). Their values are averaged and compared against a set
of pre-computed reference sRGB triplets allowing the computation of an image
dependent color transform. The correction is applied to the entire image prior
to a Viola-Jones (2001) face extraction. The entire workflow is illustrated in
Figure 3.2.

3.3.1 Reference target
The target contains three rows of eight patches set against a black background
and surrounded by a frame used for its automatic detection (see Figure 3.5).
The first row contains primary and secondary colors and two shades of gray.
The two last rows contain 16 patches characteristic of the range of human skin
ordered by uniformly increasing lightness alternating on two rows.

We printed the target on matte photopaper medium and measured the
reflectance spectrum of each patch. Figure 3.6 shows the desired patch spectra
and the actual printed target spectra. The solid lines represent spectra typical
of human skin. The dotted lines represent spectra of the printed skin color
patches. These patches must have reflectances as smooth and as close to actual
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Figure 3.4: The image color values of a given scene imaged with different uncal-
ibrated cameras can have important variations. The subjects were imaged using
four cameras: a HP850 (3.9 megapixels), a Canon S400 (4.0 megapixels), a Nikon
D1 (2.7 megapixels), and a Nokia 6820 cell phone camera (0.1 megapixels). Rows
1, 3, and 5 show the uncorrected images and row 2, 4, and 6 show the corrected
images.
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Figure 3.5: The target contains three rows of eight patches. The two last rows
contain 16 patches characteristic of the range of human skin. The patches of the
actual target are not numbered.

human skin spectra as possible to avoid metamerism. The measured spectra
allow computing first CIE XYZ values under illuminant D65 using the image
formation model (2.23), where s(λ) are the target reflectances, e(λ) is the
standard illuminant D65, and rk(λ) are the CIE x, y, z color matching functions.
The CIE XYZ values are converted to sRGB according to (2.5) and (2.6).

3.3.2 Color transform
We are computing a linear transform that maps the pixel values of an incoming
image, referred as image extracted or uncorrected, onto reference ones. After
correction, the image pixels are referred as corrected.

While incomplete illuminant compensation and variations in in-camera pro-
cessing may result in different pixel values, the image encoding (sRGB) is well
defined. However, sRGB is not perceptually uniform and it seems natural to
compute a transform that will minimize a perceptually meaningful error, such
as CIELAB ΔE∗ab (2.16) (Wu et al. 2000). That is, sRGB image extracted tar-
get values are converted into CIE XYZ and then CIELAB ones, that are then
compared with CIELAB reference values. The color transform can minimize,
for example, a color distance ΔE∗ab averaged over the target values. The re-
sulting transform is applied to the face pixels, which are then used for the skin
tone classification. This approach requires several color space conversions that
will slow down the transform computation. As we need the color correction to
be fast, we are rather computing a transform that minimizes a Euclidian dis-
tance between image extracted sRGB target values and sRGB reference ones.
Furthermore, the image values are not linearized prior to the color transform
computation, which brings several advantages, besides allowing a faster com-
putation. First, the target skin colored patches were chosen such that they are
uniformly distributed in lightness and keeping the nonlinearity in sRGB allows
keeping “perceptual” intervals between target patches. Second, the in-camera
processing includes nonlinear rendering steps, such as tone mapping, that may
introduce errors if linearizing the image extracted sRGB values.
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Figure 3.6: Printing accuracy of the reference target: The solid and dashed lines
represent spectra of the desired and printed skin colored patches, respectively.

Let us now briefly go back to the general case of linear transform compu-
tations for color space conversions and consider a transform A1→2 that maps
values between two arbitrary color spaces. We have

S2 = S1A1→2 , (3.1)

where S1 = [R1G1B1] and S2 = [R2G2B2] are 31 × 3 matrices containing the
respective primaries of the color spaces 1 and 2 in vector form. In other words,
we are looking for a transform A1→2 that maps S1 onto S2. This transform
must minimize some error function, such as the square error ||S1A1→2−S2||2.
It can be computed using the Moore-Penrose pseudo-inverse denoted +

A1→2 = S+
1 S2 = (S1ST1 )−1ST1 S2 . (3.2)

We are applying the same formalism in our approach. We need to find a
transform that maps sRGB values extracted from images to sRGB values that
correlate with the skin colorimetry, i.e., that are independent of the camera
characteristics and of the lighting conditions. We do not use a traditional
3 × 3 color transform, but rather use a 3 × 4 transform. It acts as a 3 × 3
color transform, plus an offset accounting for the variations in exposure across
images. The matrix A maps the target patches mean color values M extracted
from the image onto reference target values T

T{3×n} = A{3×4} ·M{4×n} , (3.3)

where T is a matrix whose ith column contains the ith value of the n reference
patches ti = (tredi , t

green
i , tbluei )T and M is a matrix whose ith column contains

the ith value of the n mean camera patch color mi = (mredi ,m
green
i ,mbluei , 1)T .

We want to find A that minimizes ‖T −A M‖2, i.e., a least mean square
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(LMS) error in sRGB color space. A is computed as

A = TM+ . (3.4)

The pseudo-inverse of M is computed by singular value decomposition. For
each image, the target patches are extracted and the color transform A (3.4)
is calculated. This transform is then applied to the entire image prior to face
pixels extraction and color classification (Harville et al. 2005). The linear trans-
form A will differ depending on the camera characteristics and lighting condi-
tions.

The least mean square transform computation (3.4) is fast, but gives no
control on the error repartition. While the color of the target patches will be
properly corrected, the colors located “in between” the target patches cannot
be exactly controlled. To ensure the correction accuracy, the colors considered
must be limited to a small range, such as skin tones. For example, if the
reference colors ti span a large gamut, such as a MacBeth ColorChecker, the
sampling of the color space is coarse and, while the overall appearance of the
image will be good, the correction will not be accurate enough to obtain a
colorimetric estimate of the scene. If we limit the range of colors to be corrected,
it gives some control on the error amplitude and we can assume that the colors
falling in the gamut formed by the reference values will be accurately corrected.
Also, the overall appearance of the image after correction may be poor, which
is unimportant as long as the skin pixels are properly corrected.

3.3.3 Validity of the color correction approximation by a linear
transform

In this section, we demonstrate that the color correction can be approximated
by a linear transform. Let us assume that there exists a function f(x) which
exactly maps the uncorrected normalized sRGB image values onto ideal sRGB
ones

f : [0, 1]3 −→ [0, 1]3
x �−→ y = f(x) . (3.5)

Let us also assume that this function is continuous and n-times continuously
derivable over [0, 1]3. Moreover, let us assume f ′′(x) to be bounded. Under
these assumptions, f(x) can be expended using Taylor’s formula

f(x) = f(a) +∇f(a)(x− a) + (x− a)TH(a)(x− a) +R2(x) , (3.6)

where ∇f(a) and H(a) are, respectively, the gradient and the Hessian matrix
of f evaluated at x = a and R2(x) is the remainder. In this case, x = (R,G,B)
represents a face color and a = (Rref , Gref , Bref) represents the center of mass
of the reference colors or, in other words, the average reference value. As we
are considering a limited range of colors and assuming that all face colors are
close to the reference ones, |x − a| remains small and the second order term
can be neglected. We thus have

f(x) ∼= f(a) +∇f(a)(x− a) +R2(x). (3.7)
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The remainder R2 can be evaluated using Cauchy’s estimate

|R2| ≤ sup
y∈[0,1]3

∣∣∣ 12!
∂2f(y)
∂y1∂y2

∣∣∣ = B (3.8)

and we then have that

f(x) ∼= f(a) +∇f(a)(x− a) +B . (3.9)

If we regroup the constant terms into one constant Bo, we finally obtain that

f(x) =∇f(a)x +Bo . (3.10)

The function f(x) maps uncorrected sRGB values onto corrected ones: If the
images were ideally rendered, this function would tend towards the identity.
The assumptions on f(x)’s continuity are thus reasonable and justified a pos-
teriori by experiment. Equation (3.10) holds and the color correction can
indeed be approximated by a linear term plus an offset, as presented in Section
3.3.2.

3.4 Experiments and results
Fifty-three subjects holding a copy of the color calibration target were imaged
with four cameras: a HP850 (3.9 megapixels), a Canon S400 (4.0 megapix-
els), a Nikon D1 (2.7 megapixels), and a Nokia 6820 cell phone camera (0.1
megapixel). The HP850 images are reported in Appendix C.1. The illuminant
is a mixture of a side daylight illumination through a window and an overhead
fluorescent lighting. The skin reflectance of the 53 subjects was also measured
on a uniform area of the cheek with a portable Microflash spectrometer using
a 0◦/45◦ geometry.

We determine which patches should be used for the best color correction
accuracy in Section 3.4.1. We show in Section 3.4.2 that computing the color
correction transform in nonlinear or linear sRGB results in an equivalent cor-
rection accuracy. We compare face colors values extracted from the images
with sRGB ones derived from the skin spectral measurements in Section 3.4.3
and finally look at face colors obtained with the different imaging devices in
Section 3.4.4.

3.4.1 Color correction accuracy
The color correction transform A depends on the target patches used to com-
pute (3.3). Harville et al. (2005) demonstrated that the primary and secondary
colors should be left out. It was not established whether the achromatic patches
should be considered in the color correction transform computation. The black
and white background could be employed in (3.3), but as these colors are the
most likely to be clipped, they are not taken into account.

The matrix A maps the target patch values extracted from an image onto
reference values. We can visualize this color correction by looking at the convex
hulls of the reference, image extracted, and color corrected target values in
normalized sRGB, as illustrated by Figure 3.7. The experiment was run on
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Figure 3.7: Two-dimensional illustration of the color correction. The gamuts of the
uncorrected, reference, and corrected target values are represented respectively by
the cyan, green, and magenta triangles. Colors located within the reference gamut,
represented by the ’x’, are accurately corrected, as opposed to colors located outside
of the reference gamut, represented by the ’+’.

the 53 images taken with the HP850 camera. Figure 3.8 displays four images
from this set: the images before correction have variations in color, despite
being captured with the same camera. The gamuts of uncorrected, reference,
and corrected skin colored target patches illustrate how accurately the color
correction maps the skin tones.

In order to assess the usefulness of the gray patches in determining the
color correction transform, we compare the outcome of a set of color correction
transforms Atest

s computed using solely skin colored patches versus a set of color
correction transforms Atest

s+g computed with the two additional gray patches.
The target is the only well defined element in the image, we thus use it to
estimate the color transform performance with a leave-one-out method on its
patches. Each of the 16 skin colored patches is successively corrected by a color
transform computed from the remaining patches - 15 skin colored and the two
optional gray patches. The color correction error is computed as the Euclidian
distance between the normalized sRGB and CIELAB coordinates of the image
extracted test patch value after color correction and its reference. The error
is averaged over the 16 skin colored patches extracted from 53 images, i.e., a
total of 848 patches. Table 3.1 reports the results. We see that leaving out
the gray patches in the computation of Atest allows a color prediction of an
average ΔE∗ab ≈ 0.86 as opposed to ΔE∗ab ≈ 1 with the middle grays. The
average error in normalized sRGB are respectively 1% and 1.2%. Skin tones
are thus better mapped with a color correction transform computed from skin
tones without additional gray patches. Indeed, leaving out the gray patches
limits the size of the target gamut, which results in a more accurate correction
of skin tones. The standard deviation is quite large: The error ΔE∗ab averaged
over the 53 images ranges from 0.59 for patch No. 13 (numbered according to
Figure 3.5) to 2.72 for patch No. 1. This is explained by the “leave-one-out”
method: The corrected target test patch may lie outside of the gamut formed
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Figure 3.8: Four subjects were imaged in the same conditions with the HP850 camera used in automatic
mode. Under each pair of images, we show the convex hulls of the image uncorrected skin colored target
values (cyan), reference target values (green), and image corrected target values (magenta). The corrected
values and reference values overlap.

by the remaining 15 skin colored patches used to compute the color transform
Atest and cannot be corrected accurately. Figure 3.9 shows test patch No. 1
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norm sRGB ΔE
mean median std mean median std

skin 0.010 0.009 0.005 1.03 0.86 0.69
skin + gray 0.012 0.011 0.004 1.15 1.00 0.57

Table 3.1: Color differences in normalized ΔsRGB and ΔE∗ab for transforms using
skin colored patches only vs. transform using two additional middle gray patches.
The error is computed on the 16 patches using a leave-one-out method and is
averaged over the 53 images.

Figure 3.9: If the skin colored patch values (magenta dot) are too different from
the 15 patches (green surface) used to compute the color correction transform, it
cannot be accurately color corrected.

(magenta dot), corrected with an error ΔE∗ab = 2.72, and the convex hull
formed by the 15 remaining skin colored patches (green surface). Patch No. 1
indeed lies outside of the gamut formed by the remaining patches. We use the
difference in volume between the gamuts formed by the 15 patches with and
without the test patch as an estimate of how “far out” the test patch lies from
the reference colors by computing

ΔV = V
skin − V test

V test , (3.11)

where V test and V skin are the volumes of the convex hulls formed by the 15
patches and the 16 skin colored patches, respectively. ΔV correlates well with
ΔE∗ab. ΔV ranges from zero if the test patch is in the reference gamut to 0.68
for patch No. 1. While this points out a shortcoming of the color correction
accuracy estimation method, it illustrates how important it is that the color of
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sRGB ΔE
mean std mean std

16 patches 0.007 0.003 0.71 0.39
8 patches: row 1 0.009 0.003 0.82 0.42
8 patches: row 2 0.009 0.004 0.81 0.47
8 patches CIELAB 0.008 0.003 0.76 0.41
4 patches CIELAB 0.008 0.005 0.82 0.85

Table 3.2: Color differences in normalized sRGB and ΔE∗ab for transforms using
16, 8, and four patches, respectively. The error is computed on the 16 extracted
skin patches averaged over the 53 images.

the object to be corrected lies close to the gamut formed by the target colors
used in the transform computation (Eq. 3.3).

The number and size of the patches have an influence on the quality of the
color correction. To compute (3.3), T{3×n} and M{4×n} must have at least
four columns and thus the minimal set contains four patches; four points are
necessary to span a volume in a three-dimensional space. We estimate the
influence of the number of patches by computing five transforms computed
from

1. 16 skin colored patches

2. 8 patches: the first row of skin tones (odd numbers)

3. 8 patches: the second row of skin tones (even numbers)

4. 8 patches (1, 2, 5, 8, 9, 10, 12, and 15) selected manually to form a convex
hull of all skin colored patches in CIELAB, including two patches in the
center

5. 4 patches (1, 8, 10, and 12) selected manually to form a convex hull of
all skin colored patches in CIELAB.

Table 3.2 reports the color correction errors when 4, 8, and 16 patches ttest
i

are used for the color correction. There is no significant difference between
the average ΔE∗ab errors resulting from color transform computed with 4, 8, or
16 patches, but the standard deviation σ is larger when only using 4 patches,
indicating that more patches allow a more uniform color correction of skin
tones.

For a better color correction accuracy, a larger number of patches is more
desirable, but reducing the number of patches allows one to increase their
size. Larger color patches are better detected, especially for low resolution
cameras. In the images taken with the Nokia 6820 cell phone, patches are as
small as 15 × 15 pixels (see Figure 3.10). At this scale, JPEG artifacts may
cause the background to leak into the target patches and introduce important
errors in the estimation of the patches’ color. Even though skin tones can be
color corrected using only four patches, the color correction is less uniform
and less robust. If, for example, shadows are projected on just one patch, the
resulting color transform becomes inconsistent. A higher number of patches
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Figure 3.10: JPEG artifacts can introduce error in the color correction transform
estimation for low resolution cameras.

allows a finer sampling of skin tones and in general more accurate transforms,
while larger patches are easier to detect. The trade-off depends mainly on the
camera resolution. Despite the recent increase in cell phone cameras resolution,
the file size of the MMS message is limited by the carrier: the image will be
downsampled and resolution remains an issue.

3.4.2 Computation of the transform in linear sRGB
In this section, we are comparing the correction accuracy of the transform
computed in nonlinear sRGB as presented in Section 3.3.2 (referred to as NL
for “nonlinear”) with the accuracy that we can obtain if computing it in linear
sRGB. We are testing two new types of color transforms: we compute A by
comparing linear reference values with first image values linearized by applying
a fixed gamma γ = 2.4 (referred to as L1) corresponding to the nonlinearity of
the sRGB color encoding (Section 2.4.2) and then with image values linearized
by applying an image dependent gamma γvar (referred to as L2). In the latter
case, we deduce γvar by comparing the logarithm of linear reference values
against the logarithm of the image extracted target values. Let us consider the
equation

xref = ylin = yγvar
im , (3.12)

where xref , ylin, and yim represent the red, green, and blue components of,
respectively, the linear reference, the linearized image (which we are looking
for), and the image patch values. If we take the logarithm of this expression,
we have

log xref = log ylin = log yγvar
im = γvar log yim (3.13)

or equivalently
γvar = log xref

log yim
. (3.14)

The slope of the linear regression of log xref against log yim thus gives us the
varying gamma γvar. The distributions of the resulting γvar are displayed in
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mean median std mean median std
HP Canon

NL 1.03 0.86 1.15 1.04 0.89 0.64
L1 1.00 0.84 1.31 1.10 0.95 0.66
L2 1.06 0.88 1.38 1.17 0.99 0.75

Nikon Nokia
NL 1.64 1.29 1.40 2.04 1.81 1.18
L1 1.45 1.17 1.06 2.03 1.83 1.10
L2 1.19 0.96 0.80 2.01 1.81 1.08

Table 3.3: Color differences in ΔE∗ab for transforms computed in nonlinear sRGB
(NL), in sRGB linearized with γ = 2.4 (L1), and in sRGB linearized with an image
dependent γvar (L2). The numbers in italic denote that the ΔE∗ab difference of L1
or L2 compared to NL is not statistically significant (with α = 0.05).

Figure C.1.
The color correction accuracy is expressed in terms of CIELAB ΔE∗ab dif-

ferences computed using the leave-one-out method on the target patches as
reported in Section 4.3.2. The statistical significance of these differences is
tested by applying the Kruskal-Wallis nonparametric one-way analysis of vari-
ance (Whitley and Ball 2002), which returns the p-value (between 0 and 1) for
the null hypothesis that the two, or more, data samples are drawn from the
same population, i.e., have the same median and distribution. More precisely, if
the p-value is smaller than the confidence level α, the null hypothesis is rejected
with a probability 1 − α, that is, the samples are from different populations,
which in our case means that the ΔE∗ab differences are statistically significant.
A p-value larger than α indicates a failure to reject the hypothesis, that is, the
samples probably have the same distribution and the variations of ΔE∗ab are
caused by fluctuations without statistical significance. The choice of α depends
on the desired confidence level; it is common to choose α equal to 0.01 or 0.05,
corresponding to a reliability of the test result of, respectively, 99% and 95%.

Table 3.3 reports the correction error in terms of CIELAB differences for
the three color transform computations. The smallest ΔE∗ab differences are
reported in bold for each of the four cameras. We see that the transform cor-
rection leading to the best accuracy depends on the camera and that none of
them systematically yields to a more precise correction. Moreover, the differ-
ences in ΔE∗ab across cameras are larger than the ones across transforms for a
given camera.

We extend the analysis by comparing each of the three transforms for all
pairs of cameras and report which transform performs the best in each case.
Table 3.4 reports, respectively, the performance of NL vs. L1, N1 vs. L2, and
L2 vs. L1. We also compute the statistical significance of these results with
the Kruskal-Wallis test, whose p-values are reported in Section C.3, and only
keep the statistically significant results. These tables must be read as follows:
the diagonal terms correspond to the comparisons between two different trans-
forms applied on the same images, while the non-diagonal terms represent the
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a) L1-HP L1-Canon L1-Nikon L1-Nokia
NL-HP L1 NL NL NL
NL-Canon L1 NL NL NL
NL-Nikon L1 L1 L1 NL
NL-Nokia L1 L1 L1 ∅

b) L2-HP L2-Canon L2-Nikon L2-Nokia
NL-HP ∅ NL NL NL
NL-Canon L2 NL NL NL
NL-Nikon L2 L2 L2 NL
NL-Nokia L2 L2 L2 ∅

c) L1-HP L1-Canon L1-Nikon L1-Nokia
L2-HP L1 L2 L2 L2
L2-Canon L1 L1 L2 L2
L2-Nikon L1 L1 L2 L2
L2-Nokia L1 L1 L1 ∅

Table 3.4: Comparisons of a) the transform computed with nonlinear sRGB values
(NL) against the one computed with linear sRGB (L1, γ = 2.4), b) the transform
computed with nonlinear sRGB values (NL) against the one computed with linear
sRGB (L2, γvar), and c) the transform computed with linear sRGB values (L2,
γvar) against the one computed with linear sRGB (L1, γ = 2.4) for each pair of
cameras. The table reports the transform leading to the smallest median error
ΔE∗ab. The symbol ∅ indicates that the result is not statistically significant (with
α = 0.01), while a number in italic indicates that 0.01 � p-value � 0.05.
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Figure 3.11: Spectrally derived values (x-axis) vs. image extracted values (y-axis)
for Canon S400, HP850, Nikon D1, and Nokia 6820. The top row shows luma
values Y = (R+G+B)/3. The bottom row shows normalized color coordinates
r = R/(R+G+B) and g = G/(R+G+B). The black dotted line indicates the
identity relation.

comparisons between images captured with two different cameras and corrected
with two different transforms. All off-diagonal results are statistically signifi-
cant with a probability 1 − α = 99%, which indicates that the camera model
is of greater influence than the choice of sRGB for the transform computa-
tion. We can conclude from this analysis that computing the color correction
transform in nonlinear sRGB results in an equivalent color correction accuracy,
but requires less computation and is thus preferable to a computation in linear
sRGB.

3.4.3 Face color derived from spectral measurements
The faces are extracted using the Viola-Jones face detection (Harville et
al. 2005, Viola and Jones 2001) and only pixels having a luma between 10%
and 90% - computed as Y = (R + G + B)/3 - are considered in order to re-
move outliers due to hair, eyebrows, eyes, lips, and specularities. The mean
color values of the remaining pixels after color correction are then taken as the
skin color estimate. The skin reflectance of each face was also measured. We
computed sRGB skin values for each of the 53 people from the measured skin
reflectance spectra. sRGB values are converted into normalized color coordi-
nates Y = (R+G+B)/3, r = R/(R+G+B), and g = G/(R+G+B). These
values were compared with face colors extracted from the HP850 images color
corrected with the transform computed over the 16 skin colored patches. The
correlation between extracted (Yimage, rimage, gimage) face colors and spectrally
derived (Yspectra, rspectra, gspectra) values is high (see Figure 3.11). However,
spectrally derived values have systematically smaller r = R/(R+G+B) com-
ponents and larger Y = (R + G + B)/3 components than the ones extracted
from the images. These differences can be caused by several factors: direct
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measurement of skin reflectance by spectrometry is not optimal, as there are
often important differences of shades within one face; the pressure of the probe
can be a source of error; the skin is not Lambertian nor flat. The higher image
r = R/(R + G + B) component is consistent with the pressure of the probe
pushing the blood away and making skin appear whiter to the spectrometer.
The lower image Y = (R+G+B)/3 may be caused by a significant amount of
shadows remaining in the estimated skin pixels despite the luma bounds applied
to remove non-skin pixels. Skin color sRGB values extracted from color cor-
rected images cannot be directly matched with the ones derived from spectra.
Nevertheless, the systematic discrepancies indicate that the color correction of
skin tones is coherent across cameras.

3.4.4 Color correction across cameras
Figure 3.12 shows examples of one subject imaged with four different cameras.
Despite variations in color before correction, skin tones after correction are
close. The figure also shows the gamuts of the corresponding target values
in normalized sRGB space. The skin colored patch values extracted from the
four images before correction (cyan surface) are different but overlap with the
reference values (green) after correction (magenta). The method relies on the
assumption that the subject face color lies in or close to the target gamut.

Although we could not directly link image corrected sRGB values with
spectrally derived ones, the recommendation system only needs skin tones to
be consistently assessed independently of the camera. The cross-camera corre-
lation is estimated by comparing the luma Y = (R + G + B)/3 and the color
coordinates r = R/(R + G + B) and g = G/(R + G + B) of the face colors
across cameras. Figures 3.13 and 3.14 show the luma Y and normalized chro-
maticity coordinates (r, g) extracted from images taken with the four cameras.
Values are displayed for each pair of cameras. A black dotted line indicates the
identity relation.

The correlation is high across all pairs of cameras and the relation is linear.
Table 3.5 reports the correlation coefficients for the corresponding (Y, r, g) val-
ues for each pair of cameras and the equivalent CIELAB ΔE∗ab color difference
averaged over all images. Correlation coefficients range from 0.90 to 0.98 for Y ,
from 0.57 to 0.96 for r, and from 0.82 to 0.91 for g. The correlation coefficients
are lower for (r, g) compared to Y . This it is due to the smaller range of values
that (r, g) can take compared to Y and not to a lower estimation accuracy. We
have indeed seen in Section 3.2.2 that lightness varies more than chromaticity
across the range of possible human skin colors. The average absolute difference
in normalized luma ΔY = |Y1 − Y2| ranges from 1.57% for the HP-Canon pair
to 2.93% for the Nikon-Nokia pair, while the normalized chromaticity coordi-
nates Δr = |r1 − r2| and Δg = |g1 − g2| range from, respectively, 0.42% and
0.27% for the HP-Canon pair to 1.16% and 1.09% for the Nikon-Nokia pair.
The error in normalized sRGB = ||sRGB1 − sRGB2||2 ranges from 0.035 for
the HP-Canon pair to 0.064 for the Nikon-Nokia pair (see Table 3.6). The
average ΔE∗ab ranges from � 1.8 to � 5.

The quality of the estimation depends clearly on the quality of the camera.
The low resolution of the Nokia images and the systematical overexposure of
the Nikon dataset explain the less favorable result obtained for this pair. The
resulting error ΔE∗ab � 5 is quite large, but the extracted face color still allows
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Figure 3.12: The subject was imaged with four cameras in the same conditions, but automatic white-
balancing shows important variations. The cameras are, from left to right and top to bottom, a Canon
S400, a HP850, a Nikon D1, and a cell phone camera Nokia 6820. Under each pair of images, we show the
convex hulls of the image’s uncorrected skin colored target values (cyan), reference target values (green),
and image’s corrected target values (magenta). The corrected and reference values overlap.
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Figure 3.13: Luma Y = (R+G+B)/3 values compared for each pair of cameras.
The x-axis shows (from left to right) cameras HP850, Nikon D1, and Nokia 6820
and the y-axis show (from top to bottom) cameras Nikon D1, Nokia6820, and
Canon S400. The black dotted line indicates the identity relation. The circle
corresponds to the subject imaged in Figure 3.15.
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Figure 3.14: Normalized color coordinates r = R/(R+G+B) and g = G/(R+
G+B) compared for each pair of cameras. The x-axis shows (from left to right)
cameras HP850, Nikon D1, and Nokia 6820 and the y-axis shows (from top to
bottom) cameras Nikon D1, Nokia6820, and Canon S400. The black dotted line
indicates the identity relation. The circle corresponds to the subject presented in
Figure 3.15.
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HP Nokia Nikon Canon HP Nokia Nikon Canon
Y g

HP 1 1
Nokia 0.93 1 0.80 1
Nikon 0.98 0.90 1 0.86 0.82 1
Canon 0.98 0.91 0.96 1 0.91 0.84 0.85 1

r ΔE∗ab
HP 1 0
Nokia 0.80 1 3.59 0
Nikon 0.89 0.57 1 3.28 5.32 0
Canon 0.96 0.71 0.94 1 1.90 4.00 3.40 0

Table 3.5: Correlation coefficients between the (Y, r, g) values of extracted skin
color and corresponding average ΔE for each pair of cameras.

HP Nokia Nikon Canon HP Nokia Nikon Canon
ΔY = |Y1 − Y2| Δg = |g1 − g2|

HP 0 0
Nokia 0.020 0 0.005 0
Nikon 0.018 0.029 0 0.007 0.011 0
Canon 0.016 0.019 0.026 0 0.003 0.006 0.005 0

Δr = |r1 − r2| ΔsRGB =
√

ΔY 2 + Δr2 + Δb2
HP 0 0
Nokia 0.006 0 0.047 0
Nikon 0.011 0.012 0 0.042 0.064 0
Canon 0.004 0.009 0.012 0 0.035 0.051 0.054 0

Table 3.6: Error between the (Y, r, g) and sRGB values of extracted skin color for
each pair of cameras averaged over the 53 images.

for a good classification of skin tones. An accuracy of ΔE∗ab = 1, considered
as the distance between two distinguishable color stimuli, may not be required
for all applications.

A closer look at Figures 3.13 and 3.14 shows that the clouds of (Y, r, g) points
are compact except for one outlier, indicated by the circles. It corresponds to
a subject whose skin color lies outside of the gamut of target skin tones with
ΔV = 0.16 (Eq. 3.11). Figure 3.15 shows the subject before and after color
correction and the corresponding target gamuts. The cyan and magenta circles
indicate the subject’s mean face color before and after correction, respectively.
Despite the target values being accurately mapped, the face color is too far
from the reference colors to be properly corrected.
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Figure 3.15: The outlier indicated by a circle in Figures 3.13 and 3.14 corresponds
to a subject whose skin color lies outside of the target skin colored patches gamut.
We see in Figure 3.14 that her skin tone does not get consistently corrected across
the images.
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3.5 Discussion
Colors cannot be accurately retrieved from images taken with uncalibrated
cameras. However, a limited range of colors can be estimated by using appro-
priate information in the form of a target present in the scene. A transform
mapping the scene target color values onto pre-computed target reference ones
is calculated by least mean square estimation in sRGB and applied to the en-
tire image. The least mean square estimation of the color correction matrix in
sRGB allows an accurate yet fast and computationally inexpensive color cor-
rection. Nevertheless, the sRGB values of the image element to be corrected
must lie close to the reference sRGB values used to compute the correction
matrix.

With this method, skin tones can be consistently classified from uncali-
brated images taken with a large variety of cameras and color corrected using
a target consisting of patches characteristic of the range of human skin tones.
With this mapping, skin tones can theoretically be estimated with an error of
about 1% in sRGB and ΔE∗ab < 1 . This bound is obtained by estimating the
error on the known target patches, which are Lambertian and flat.

There is noise in the measurement of face colors using real images, due to the
estimation of the face pixels, the shadows, and the texture and unevenness of
skin. However, results correlate well with spectral data and across a variety of
devices, with a resolution as low as 0.1 megapixel and poor image quality. These
results were obtained using four cameras from four different manufacturers and
without bypassing any of the image processing implemented in the camera.

The high correlation across devices indicates that with a solid ground truth,
the system can be correctly trained to give consistent results. The assessment
of color is not perfect, but it does not require any expensive calibrated imag-
ing devices or controlled illuminant and can be performed with any consumer
camera.

The method assumes a uniform illuminant across the image; shadows and
mixed illuminants can be an important source of error. A comparison between
the two halves of the face allows eliminating some failing cases. Also, the
number and size of the patches have an influence. A greater number of patches
gives a finer sampling of skin tones and more robustness. Reducing the number
of patches allows to increase their size and thus improves the extraction and
estimation of the target color values, especially for low resolution cameras. The
trade-off depends on the application and on the type of cameras used.

3.6 Summary
A scene imaged under the same lighting conditions but using different cameras
will generally result in different pixel values. This is due to incomplete illumi-
nant compensation and to variations in image rendering. Consequently, colors
cannot be accurately assessed from standard RGB images, unless the camera
is calibrated.

In this chapter, we presented a post-calibration method for the correction
of skin tones to be employed in a consumer makeup advice application, which
excludes the use of calibrated devices. We demonstrated that accurate skin
tone assessment can be achieved by imaging a subject’s face along with a color
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calibration target characteristic of human skin. The target pixels are extracted
and their values compared to reference ones in order to compute a linear color
correction transform that is applied to the entire image prior to the face pixels
extraction.

We showed that skin tones can be corrected with an accuracy of ΔE∗ab <
1. When considering real images though, the error is larger and the average
cross-camera color differences range from ΔE∗ab ∼ 2 to ΔE∗ab ∼ 5 for various
camera pairs. However, image extracted face colors exhibit a high correlation
with values derived from spectrometric measurements, despite a systematic
discrepancy in lightness. More generally, we have demonstrated that skin tones
can be accurately corrected provided that their values are close to those from
the reference colors. In the next chapter, we will establish that a similar method
can be applied to any range of colors.



Chapter 4

Color assessment for a Home
Décor application

4.1 Introduction
In this chapter, we present how to extend the skin color assessment method
presented in Chapter 3 to any object color in the framework of an advisory
service for Home Décor. Instead of providing users with a foundation matching
their skin tone, we want to give them advice on colors complementing their
furniture or interior.

A color harmony is a pleasing combination of colors and many theories
exist on how to obtain such combinations. Appendix D presents a short histor-
ical review of color harmony theories. Most commonly accepted rules concern
combinations of hues. They are simple to express in terms of hue angles, but
introducing rules for the influence of lightness and chroma or the sample size is
a difficult task. Moreover, these theories only take into account the objective
aspects of color, such as hue angles, but they do not take into account the
more subjective aspects of color, such as color emotions or symbolism; sub-
jective perception of colors varies among cultures. It is thus not possible to
create universal rules of color harmonies. The simplest method to find sets of
harmonious colors is to use existing palettes created by interior designers or
artists, who remain the most qualified at applying the sometimes subjective
laws of color harmony. For these reasons, we do not attempt to generate color
harmonies, but are rather interested in providing a color assessment method
allowing the use of any existing color palettes and mimic the opinion of an
expert, the same way the foundation advice application employed a database
built by a makeup expert.

In Chapter 3, we assessed skin color from a single digital picture taken with
an unknown consumer camera under unknown lighting conditions, using solely
a calibrated reference target representative of skin tones present in the scene.
In this chapter, we demonstrate that this method can be extended to assess the
color of virtually any object. As only a limited range of colors can be corrected
with our method, we design a set of correction targets covering all hues. The
system is fed with an image of an interior color to be coordinated, such as a piece
of fabric or a portion of a wall. The object is imaged with an adapted target
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allowing an accurate color correction of the object. The corrected object pixels
are extracted, their values converted to CIECAM02 and compared against a
database of paint samples to find the closest match. The system then returns a
set of paints complementing that match. We demonstrate that our method can
be applied to Home Décor. An expert, a professional interior designer, graded
the results as very good. Her opinion was also used to optimize the matching
metric.

We present our approach in detail in Section 4.2. Section 4.3 discusses the
accuracy of the color correction and the grading of the results by a Home Décor
expert. Section 4.4 concludes the chapter. A more complete review of color
harmony theories can be found in Appendix D.

4.2 Our approach
In Chapter 3, we demonstrated that we could assess skin tones from uncali-
brated images with good accuracy (ΔE∗ab < 1) using a color target consisting
of patches covering the range of possible skin colors. Considering that we
could color correct skin tones with a single target and that they span a hue
angle of about 20◦ in CIELAB (see Figure 4.1), we can roughly estimate that
360◦/20◦ = 18 targets would be necessary to correct all hues with a similar
accuracy. However, it is not practical for users to choose among that many
targets. We thus decided to employ nine targets covering all hues, at the cost
of a lesser accuracy. We assume that high accuracy in color correction is more
critical for skin tones than for the present application.

It must be noted that we consider object colors, i.e., colors stimuli aris-
ing from the reflection of incident radiant power by objects (Wyszecki and
Stiles 2000). For a given spectral power distribution, we can compute, e.g., CIE
XYZ tristimulus values for all possible reflectance spectra. The points taken for
all object color stimuli define an object color solid (Wyszecki and Stiles 2000),
whose shape and volume depend on the SPD. These solids are subsets of the
CIE XYZ color space, i.e., we are not actually considering “any” color stimuli,
but the more limited range of actual object colors. However, we will encounter
a variety of object textures and shapes, which may modify the surface’s color
appearance. Additionally, we may come across dyed objects, whose reflectances
can be non-smooth, which causes metamerism issues, or may even be fluores-
cent (absorbing light at a certain wavelength and re-emitting it at another
wavelength). The variety of textures and materials can be a source of error.

The system returns a set of paint colors coordinated with the one of the
imaged object. The paint database consists of colors grouped by palettes of
four (see Figure 4.3). We do not need exact color matching, rather, we are
interested in selecting the closest shade match in a color palette. The palette
is the basis of our color coordination recommendation. In other words, we
are not creating a palette complementing the object’s color, but are looking
for the best match in an existing database of coordinated paint colors created
independently by an artist or an interior designer. The actual composition of
the paint database and the choice of color palettes are not relevant per se; the
database can be replaced by any other color palettes collection.

The results were graded by a Home Décor expert, hereafter referred as “the
expert.” Our metric of success is the agreement between the algorithm and
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Figure 4.1: Skin tones only represent a limited color range and span a hue angle
of about 20◦ in CIELAB. The surfaces represent the color values of the target
used for skin color correction covering the range of human skin tones in sRGB and
CIELAB.

the expert in the choice of a corresponding palette. The quality of the color
assessment is based on the expert’s opinion and our metric is optimized after
these results. That is, we are testing if the advice can give solid guidelines to
users in real conditions such as what colors to add to a room while keeping an
existing design element. The system has to work with a relatively low number
of calibration targets and under many real conditions, such as limited palettes
and non-uniformity of the samples.

In the application presented in Chapter 3, the target patches were ex-
tracted automatically. More precisely, they were detected as regions whose
contours correspond to the zero crossing of a second order derivative of the
image (Harville et al. 2005). The same extraction method can be applied to
the present approach; however, it has not yet been implemented and the object
and patch pixels were extracted manually.

4.2.1 Reference targets
Eight targets consist of a selection of Munsell Colors (Munsell 1905) covering
a hue angle of roughly 60◦. A target contains 24 patches, 21 come from 7
secondary hues distributed to cover a good range of chroma and lightness,
and three are paints extracted from our database. The range of colors of two
adjacent targets overlap. Targets were ordered by similar hues to facilitate
their use. Hue is the most natural attribute of color, it makes the choice of the
target by visual matching much simpler for users. Also, overlapping hues avoid
having an object whose color may be in-between charts. We added a ninth
chart made of 24 paint samples from the paint database covering a variety of
beiges and browns, colors that are common in Home Décor and may require
a finer sampling. Figure 4.2 shows the color correction targets. The target
reference values were computed as reported in Section 3.3.1.
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(a) Target 1 (b) Target 2 (c) Target 3

(d) Target 4 (e) Target 5 (f) Target 6

(g) Target 7 (h) Target 8 (i) Target 9

Figure 4.2: The color correction uses 8 targets covering all hues, plus a target
consisting of brown and beige paint samples.

4.2.2 Color transform
The color correction follows the same computation as presented in Section
3.3.2. A linear transform is computed by comparing image extracted patch
values with reference ones and by minimizing a least square error in nonlinear
sRGB. The only difference is that users must choose one of the nine color charts.
They image the object and chart together, the target patches are extracted,
their color pixel values are averaged and compared to reference values given by
sRGB triplets.

4.2.3 Matching metric
In order to find colors complementing the object, we first need to find which
paint in the database constitutes its best color match. An immediate way of
matching these colors is to compare the sRGB values of the 252 paint samples
in the database with the corrected image object value and minimize a distance
in sRGB

ΔsRGB =
√

(Ro −Rp)2 + (Go −Gp)2 + (Bo −Bp)2 , (4.1)

where ‘o’ stands for ‘object’ and ‘p’ for ‘paint’. For each object from our set
of decoration items samples (see Appendix E), we retrieved the paint minimiz-
ing this distance and visually compared the objects with the paints returned
by the system. The results were poor, which can be explained by the lack of
perceptual uniformity of the sRGB color space. The range of colors considered
in the Home Décor application is not constrained to a small range of colors,
such as skin tones, and the minimization of a distance in sRGB is not adapted.
The color matching must be done in a perceptually uniform color space, such
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as CIELAB or CIECAM02. We chose CIECAM02 over CIELAB for its bet-
ter perceptual uniformity. Moreover, CIELAB’s lack of uniformity in bluish
hues (Moroney 2000) may introduce errors when considering blue or purple
samples. The object and paint samples are thus matched by minimizing their
color difference in CIECAM02. The object pixel values are converted from
sRGB to CIE XYZ and then to CIECAM02 (see Section 2.4.4). Input data for
CIECAM02 includes the tristimulus values CIE XYZ of the object and of the
white point XwYwZw, the adapting luminance LA, and the relative luminance
of the surround. Viewing conditions parameters are chosen as advised for the
previous model CIECAM97s when considering sRGB (Moroney 2000), i.e., the
white-point is D65, the adaptive luminance LA = 4 cd/m2, and the relative
luminance of the surround is “average.”

The Euclidian distance between the object’s and paint’s CIECAM02 values

ΔE02 =
√

(Jo − Jp)2 + 100(ao − ap)2 + 100(bo − bp)2 , (4.2)

where ‘o’ stands for ‘object’ and ‘p’ for ‘paint’, is minimized. J represents
the CIECAM02 lightness and a and b are the red − green and yellow − blue
components, respectively. These components were chosen for computational
simplicity over the hue h and chroma C. a and b are multiplied by a factor
100 to adjust them to the range of lightness J . Using the actual cartesian
coordinates (ac, bc) (2.14 and 2.15) would probably have given slightly better
results, as we will see in Section 4.3.4. Color differences will be expressed as
ΔE02 when the metric (4.2) used by our system is considered, but will also be
expressed if needed as ΔEc02 (2.16) for a better perceptual estimation or ΔE∗ab
(2.13) for comparison with the results from Chapter 3. ΔE02, ΔEc02, and ΔE∗ab
values are generally very close.

4.2.4 The algorithm
The algorithm consists of the following steps:

1. Users choose a target whose hue is similar to the hue of the object. They
image the object and target together.

2. The target patches are extracted. The color correction transform A (3.3)
mapping the image target values M onto reference values T is computed
and applied to the entire image.

3. The object pixels values are extracted, averaged, and converted to CIE-
CAM02.

4. The object color is compared against a collection of 63 coordinated paint
palettes, each consisting of four coordinated colors, i.e., a total of 252
paints. The system chooses the paint closest to the color of the object in
CIECAM02 (Eq. 4.2).

5. The system finds the palette containing the best match and the three
paints complementing its color, hence complementing the object (see Fig-
ure 4.3).
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Figure 4.3: Paint samples are grouped in palettes of four colors. The system
matches the object color to one of the paints and returns the corresponding palette.
The figure shows, from left to right, the uncorrected image, the corrected image,
and the corresponding paint palette.

4.3 Experiments and results
Sixty-three decoration objects were imaged with three cameras, a HP R-967
camera (10 megapixels) and two 2 megapixels cell phone integrated cameras,
a Nokia 7310 and a Sony W580i, under uniform fluorescent light along with
a properly chosen color calibration target. Images of the sixty-three samples
can been seen in Appendix E, as the corrected images and the resulting color
palettes. Fluorescent lighting conditions are common in office environments
and stores, as well as in homes with the increasing use of energy-saving light
bulbs (the European Union, Canada, the United States of America, and many
other countries have agreed on banning the use of standard incandescent light
bulbs by 2012). Despite fluorescent light sources having peaky spectral power
distributions and creating more metamerism problems, they will progressively
become the main artificial light source and were thus considered in our appli-
cation.

The object database consists of 63 samples of various colors and materials.
The samples were chosen such that their colors cover most hues. The choice of
beige, brown, and wood-like samples is larger (26 samples) as these colors are
very common in Home Décor. The samples are: wood (7 samples), linoleum
(8 samples, including some mimicking wood), tiles (10 samples, including two
semi-transparent glass tiles), kitchen tops (6 samples), and fabrics (32 sam-
ples). We intentionally chose different, textured, non uniformly colored, and
non Lambertian samples to test the system in “real” conditions. However, the
database only contains flat and relatively smooth samples, our method may
thus have to be adapted depending on the geometry of the considered decora-
tion object. The database and the targets were created independently, i.e., we
did not use the targets as references while collecting the samples.
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The object CIECAM02 values are compared against the CIECAM02 values
of the paint samples by minimizing the Euclidian distance (4.2). The color
database consists of 252 paint samples from a paint manufacturer grouped in 63
palettes of four colors. The system picks the paint closest to the object among
the 252 paint samples and returns the palette containing the one matching the
object’s color. The system thus returns four colors, one matching and three
complementing the object. Examples of color palettes can be seen in Figure
4.3.

We determine if light colors risk being clipped in sRGB in Section 4.3.1,
characterize the color correction accuracy in Sections 4.3.2 and 4.3.3, and dis-
cuss how the results correlate with the expert’s opinion in Section 4.3.4.

4.3.1 sRGB gamut size and white-balance
We have seen in Section 2.4.2 that the sRGB color space’s main disadvantage
is the small size of its gamut. Light colors and variations of beige are common
in decoration and are precisely the colors most likely to be clipped in sRGB.

We measured the reflectance spectra of all the paint samples in the database
using an Eye-One Pro spectrometer with 45◦/0◦ measurement geometry, used
them to generate CIELAB values (Section 2.4.3) as viewed under several il-
luminants, and represented them along with the sRGB gamut in a 3D plot.
Figure 4.4 shows the gamuts of sRGB (colored surface) and the gamuts of all
paint samples under the illuminants incandescent A (red curve), daylight D50
(blue curve), daylight D65 (green curve), and fluorescent F7 (white curve).
The orange dotted line represents the gamut of the printer used to produce the
color correction targets. CIELAB values for beige colors under incandescent
illuminant A lie outside of the sRGB gamut. In order to estimate if this is an
issue in practice, we conducted the following experiment: we built a target us-
ing the brown and beige paint samples reflectance spectra and imaged it with
two cameras, the HP R-967 and the Sony W580i, under several light booth
illuminants (daylight D65, cool white, Horizon, fluorescent TL84, and incan-
descent A). A set of images was taken in automatic white-balancing mode and
another set was taken under two fixed white-balancing modes, named “sunny”
and “daylight” for the HP and Sony cameras, respectively. We assumed that
these modes compensate for an illuminant close to D65, which is the defined il-
luminant of sRGB. We thus considered that these modes performed no or little
illuminant compensation and refer to them as “no white-balancing.” We can
visualize this color correction by looking at the convex hulls of the reference,
image extracted, and color corrected target values in normalized sRGB (Figure
3.7). Figures 4.5 and 4.6 show the resulting images for each respective camera
and two illuminants, the fluorescent TL84 and “Horizon” matching a reddish
sunset light. The top images are obtained using automatic white-balancing.

When no white-balancing is applied, most of the patches imaged with the
Sony cell phone camera are clipped in the red channel and the red informa-
tion cannot be recovered (see Figure 4.5). The reference values (green surface)
and the image corrected ones (magenta) do not overlap and present large de-
viations. The error has less of an impact when using the HP camera, but
the phenomenon is still present (see Figure 4.6). Table 4.1 reports the corre-
sponding color correction errors in (Y, r, g). We see that the use of automatic
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Figure 4.4: Color values of beige paints viewed under a reddish illuminant (red
curve) fall outside of sRGB gamut and may not be correctly represented in rendered
images. The colored surface represents sRGB gamut in CIELAB. The solid curves
represent CIELAB values generated from paint samples reflectance spectra under
four illuminants: incandescent A (solid red), daylight D50 (solid blue) and D65
(solid green), and fluorescent F7 (solid white). The orange dotted line represents
the gamut of the printer used to produce the correction targets.
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Figure 4.5: Will beige be clipped because of the relatively small size of sRGB gamut? A set of beige values
were imaged with the Sony W580i camera under illuminants TL84 and the reddish “Horizon”. Under each
pair of images, we show the convex hulls of the image uncorrected target values (cyan), reference target
values (green), and image corrected target values (magenta). We see that beige colors are clipped under a
reddish illuminant and cannot be recovered after correction. Automatic white-balancing avoids this issue.
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Figure 4.6: Will beige be clipped because of the relatively small size of sRGB gamut? A set of beige values
were imaged with the HP R-967 camera under illuminant TL84 and the reddish “Horizon”. Under each pair
of images, we show the convex hulls of the image uncorrected target values (cyan), reference target values
(green), and image corrected target values (magenta). We see that beige colors are clipped under a reddish
illuminant and cannot be recovered after correction. Automatic white-balancing avoids this issue.
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TL84 Horizon TL84 Horizon
ΔY = |Y1 − Y2| Δg = |g1 − g2|

HP auto WB 0.015 0.018 auto WB 0.002 0.002
no WB 0.015 0.020 no WB 0.002 0.004

Sony auto WB 0.015 0.017 auto WB 0.004 0.004
no WB 0.012 0.016 no WB 0.004 0.005

Δr = |r1 − r2| ΔsRGB =
√

ΔY + Δr + Δg
HP auto WB 0.002 0.002 auto WB 0.015 0.019

no WB 0.002 0.006 no WB 0.015 0.022
Sony auto WB 0.005 0.007 auto WB 0.016 0.018

no WB 0.005 0.015 no WB 0.014 0.022

Table 4.1: Color correction accuracy of brown and beige colors under two illumi-
nants: fluorescent TL84 and the reddish “Horizon.” The error Δr is larger when
the samples are imaged under the illuminant “Horizon” without white-balance, but
not when automatic white-balance is used. It indicates that clipping of beige colors
should not an issue whenever consumers use their camera in fully automatic mode.

white-balancing does not have an influence on the final correction error ampli-
tude under illuminant TL84, but has an important influence for the illuminant
“Horizon,” especially on the r component. That is, clipping seems to be an is-
sue under reddish illuminants. On the other hand, this problem does not occur
in our two examples when automatic white-balancing is used. White-balancing
is not complete, yet it allows all reference values to be correctly recovered after
color correction. Consequently, we can assume that if a consumer uses the
camera in fully automatic mode, even under a reddish light, clipping of beige
colors should not be an issue. White-balancing actually happens early in the
in-camera processing pipeline, while sRGB encoding happens rather at the end
of it(see Section 2.3). This would explain our observations, with illuminant
compensation being performed in a “camera raw” color space having a larger
gamut than sRGB and taking place prior to clipping.

4.3.2 Color correction accuracy
In this section, we estimate the color correction accuracy using the 63 images
taken with the HP R-967. Figure 4.7 shows six samples before and after color
correction and the corresponding target values in normalized sRGB. The accu-
racy of the color correction cannot be estimated using the samples reflectance
spectra due to the variety of non Lambertian and textured materials in the set.
However, it can be estimated using the target patches, which are known, and a
leave-one-out method, such as presented in Section 3.4.1. Each target patch is
successively corrected using a color correction transform computed from the 23
remaining patches. The error in color correction is computed as the difference
between the patch image extracted normalized sRGB values after color cor-
rection and the corresponding reference ones. This is done for the 24 patches
extracted from the 63 images, i.e., a total of 1512 patches. The average error
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Figure 4.7: Examples of color correction. All images were taken with the HP
R-967 camera. Under each pair of images, we show the convex hulls of the image
uncorrected target values (cyan), reference target values (green), and image cor-
rected target values (magenta). The corrected values and reference values overlap.
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Figure 4.7: Examples of color correction. All images were taken with the HP
R-967 camera. Under each pair of images, we show the convex hulls of the image
uncorrected target values (cyan), reference target values (green), and image cor-
rected target values (magenta). The corrected values and reference values overlap.



72 Chapter 4.

Figure 4.7: Examples of color correction. All images were taken with the HP
R-967 camera. Under each pair of images, we show the convex hulls of the image
uncorrected target values (cyan), reference target values (green), and image cor-
rected target values (magenta). The corrected values and reference values overlap.
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Figure 4.8: ΔE02 (4.2) error amplitude in color correction for each of the 9 targets.
The numbering refers to Figure 4.2. The results are obtained using a leave-one-out
approach on the target patches. The bars show the standard deviation σ.

in normalized sRGB target values is 2.02% (σ = 1.02%). The equivalent errors
in CIECAM02 (4.2) is ΔE02 = 2.19 (σ = 1.17). Figure 4.8 shows the color cor-
rection errors ΔE02 for each of the nine targets. The error is target dependent.
It can also be expressed as ΔEc02 = 2.02 (σ = 1.09) or ΔE∗ab = 1.98 (σ = 1.02).
The equivalent error for the similar estimation of the color correction accuracy
for skin color assessment (see Section 3.4.1) was ΔE∗ab < 1 (σ < 1). The error
in color correction is larger that the error obtained in Chapter 3 when correct-
ing skin tones, which is unsurprising given that each target covers a hue angle
of about 60◦ as opposed to about 20◦ previously.

4.3.3 Color correction across cameras
The color correction accuracy estimated on the target patches remains within
2% in sRGB, but real decoration samples are not as smooth and uniform as
the target patches used to compute the correction errors. Figure 4.9 shows a
total of four samples imaged with the three cameras HP R-967, Nokia 7310,
and Sony W580i under fluorescent illuminant. Variations in color are strongly
reduced after color correction. The figures also show the gamuts of the cor-
responding target values in sRGB. The reference patch values extracted from
the images before correction (cyan surfaces) differ from the reference values
(green), but overlap after color correction (magenta) for all 12 examples. We
assume that the color of the object of interest lies in or close to the gamut of
the corresponding correction target and is accurately corrected, which is the
case for about two third of the samples, as we will verify shortly.

The resulting object color needs to be independent of the camera. We
estimate the color correction accuracy across cameras by comparing the luma
values Y = (R +G + B)/3 and the normalized color coordinates r = R/(R +
G+B) and g = G/(R+G+B) of the object colors before and after correction.
Figure 4.10 shows the luma Y and the normalized chromaticity coordinates
(r, g) extracted from the images of the 63 samples captured with the three
cameras. Values are displayed for each pair of cameras. A black dotted line
indicates the identity relation. This figure should be compared with Figures
3.13 and 3.14. The correlation is high across the three pairs of cameras. Table
4.2 reports the correlation coefficients for the corresponding (Y, r, g) values and
the equivalent CIECAM02 ΔEc02 color differences averaged over all images.
Correlation coefficients range from 0.97 to 0.98 for Y , from 0.96 to 0.98 for r,
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Figure 4.9: Cross-camera correction. Under each pair of images, we show the
convex hulls of the image uncorrected target values (cyan), reference target values
(green), and image corrected target values (magenta). The corrected values and
reference values overlap.



4.3. Experiments and results 75

Figure 4.9: Cross-camera correction. Under each pair of images, we show the
convex hulls of the image uncorrected target values (cyan), reference target values
(green), and image corrected target values (magenta). The corrected values and
reference values overlap.
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Figure 4.9: Cross-camera correction. Under each pair of images, we show the
convex hulls of the image uncorrected target values (cyan), reference target values
(green), and image corrected target values (magenta). The corrected values and
reference values overlap.
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Figure 4.9: Cross-camera correction. Under each pair of images, we show the
convex hulls of the image uncorrected target values (cyan), reference target values
(green), and image corrected target values (magenta). The corrected values and
reference values overlap.
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HP Nokia Sony HP Nokia Sony
Y g

HP 1 1
Nokia 0.98 1 0.93 1
Sony 0.97 0.97 1 0.94 0.93 1

r ΔEc02
HP 1 0
Nokia 0.97 1 3.49 0
Sony 0.96 0.98 1 5.22 6.18 0

Table 4.2: Correlation coefficients between the (Y, r, g) values of extracted object
color and corresponding average ΔE02 for each pair of cameras.

HP Nokia Sony HP Nokia Sony
ΔY = |Y1 − Y2| Δg = |g1 − g2|

HP 0 0
Nokia 0.058 0 0.017 0
Sony 0.037 0.078 0 0.021 0.020 0

Δr = |r1 − r2| ΔsRGB =
√

ΔY 2 + Δr2 + Δg2
HP 0 0
Nokia 0.033 0 0.13 0
Sony 0.034 0.022 0 0.10 0.15 0

Table 4.3: Average error between the (Y, r, g) and sRGB values of extracted object
color each pair of cameras.

and from 0.93 to 0.94 for g. The average absolute difference in normalized luma
ΔY = |Y1 − Y2| ranges from 3.7% to 7.8%, while the normalized chromaticity
coordinate Δr = |r1 − r2| ranges from 2.2% to 3.4% and Δg = |g1 − g2| ranges
from to 1.7% to 2.1%. The error in normalized sRGB ||sRGB1 − sRGB2||2
ranges from 0.10 to 0.15 (see Table 4.3).

This color correction error is about three times larger than the cross-camera
error obtained in the skin color assessment experiments (Section 3.4.4). We
have indeed seen that the angle spanned by skin tones in CIELAB is about
20◦ and we used only nine targets to cover for all 360◦ hues angles. Moreover,
the variety of samples of different materials and textures contributes to the
color correction error. The texture of skin across the images of the experiment
reported in Chapter 3 is by far more uniform that the many textures available
in our samples database. Furthermore, for the few samples having two, or
more, colors, such as dotted fabrics, the system took the average color, but
we asked the expert to only consider the dominant color. When building the
samples database, we intended to produce a “worst case scenario” to test how
our method would perform in real conditions. The decoration samples were
chosen to exhibit a large variety of colors and textures. Clipping of light colors
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Figure 4.10: Luma Y = (R + G + B)/3) and normalized color coordinates r =
R/(R + G + B) and g = G/(R + G + B) compared for each pair of cameras.
The x-axis shows (from left to right) cameras HP R-967 and Nokia 7310 and the
y-axis shows (from top to bottom) cameras Nokia 7310 and Sony W580i. The
black dotted line indicates the identity relation.
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also contributes to the error; we see in Figure 4.10 that the luma component
Y shows an important deviation for values close to 1, due to the clipping of
light colors in images taken with the Nokia 7310 camera. The average object
color differences ΔEc02 across cameras remain reasonable and range from 3.49
to 6.18 (Table 4.2).

The color correction of an object is considered good if its color is similar
to the colors in the calibration target. In other words, the color correction
accuracy depends whether the object color is located “close enough” to the
volume formed by the target values in sRGB. Importantly, the target gamuts
do not fill the entire sRGB gamut, i.e., the targets are not optimal for all
the samples. We tested which samples are most likely to be accurately color
corrected by looking at the position of the object color in sRGB with respect
to the convex hull of the corresponding calibration target, as already presented
in Section 3.4.1. We used as criterion the difference in volume between the
convex hulls of the target points with the object color point Vt+o and of the
target points alone Vt. The color correction is considered as sufficient if the
difference in volume is less than 10%, i.e., if

Vt+o − Vt
Vt

< 0.1 . (4.3)

38 samples satisfy the criterion. Figures 4.10 and 4.11 take all 63 samples into
account, while Figures 4.12 to 4.14 use the 38 samples satisfying (4.3).

This criterion allows deciding whether the calibration target is adapted for
the correction of a given object. This could be used to detect failing cases, as
to guide users in the choice of the target.

4.3.4 Color correction and expert’s rating
The expert was shown each sample along with 9 palettes of four colors each,
i.e., a total of 36 paints, chosen to be of similar colors as the object. She was
first asked to choose a paint out of the 36 that she would pick as the best match
for each of the 63 samples. The database of paints did not offer enough colors
for her to systematically pick an optimal color. She was thus asked to rate her
own choices. The grades go from 1 to 5 according to the following rating:

1. The sophistication of a high quality expert recommendation, perfect given
the palette selections

2. Competent work by an expert given the palette selections

3. Close, but not perfect, typical of an untrained consumer

4. Poor selection, other selections are much better

5. Terrible, unacceptable, even for a consumer.

The expert was asked to give integer grades and keep uniform intervals
between them. After she made her choice, we presented her the system’s results
and asked her to rate them as previously. The system’s and expert’s results
were then compared and analyzed. We did not ask the expert to rate the quality
of the color palettes picked by the system, but rather to rate the quality of the
match.
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Figure 4.11: This figure shows the occurrence of each rating, for the system (left)
and expert (right) choices. The colors in the right plot correspond to the grades of
the system’s choices, i.e., it shows the proportion of samples whose matches were
similarly rated.

The expert gave the grade 1, meaning “perfect,” to 29 of the 63 paints
selected by our system, while she similarly rated 47 of her own choices. The
grades occurrences can be seen in Figure 4.11. The system and expert top
choices match for one third of the objects, but the remaining results are also
good. Many different paint patches have very similar CIECAM02 values, es-
pecially in beige tones. The expert graded most of the system results 1 - as
perfect - or 2 - good for an expert. The average grades are 2.09 (σ = 1.34)
and 1.57 (σ = 1.21) for the system and expert, respectively. These results
are satisfying, but do not take the quality of the color correction into account.
If we consider only the grades corresponding to the 38 samples satisfying the
criterion (4.3), the distribution of grades is as follows: 18 samples receive a 1,
12 samples a 2, 3 samples a 3, 1 sample a 4, and 4 samples a 5. The remaining
25 samples will be ignored in the following sections for a more precise analysis.

The goal of this experiment is to determine if we can give automated color
advice that an expert would consider as good. The two important factors are
the quality of the color correction and the metric used to match the objects
with the paint samples. We have seen that, when the target is correctly chosen
according to the object’s color, the color correction is good with an accuracy of
a few percents in sRGB. We now need to determine whether our metric (4.2)
is appropriate.

We assumed that we can mimic how an expert matches a sample with
paint colors by minimizing the CIECAM02 distance between them. We verify
the validity of this assumption by comparing the CIECAM02 distance (4.2)
used by the system to assign matches with the grades the expert gave to the
results. Figure 4.12 shows clearly that the paints that are close to the object
in CIECAM02 (ΔE02 � 5) get the best grade, i.e., what the expert considers
a good match corresponds to a small ΔE02. Figure 4.12 also shows that the
difference in (a, b) is more critical than the difference in lightness J . Figure 4.13
shows the same CIECAM02 differences as Figure 4.12, ΔE02 distances being
represented on a polar plot. The radius, i.e., the distance between a cross and
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Figure 4.12: ΔE02 differences between the object and paints colors as a function
of the grades given by the expert computed for the 38 samples satisfying Equation
(4.3). Δab stands for

√
Δa2 + Δb2. The bars show the standard deviation σ.

Only one sample was graded as 4.

the origin, corresponds to the CIECAM02 difference between the object and
the selected matching paint. The polar angle corresponds to the object hue.
The colored lines correspond to the 252 paints in the database, also ordered by
their hue angle. This alternative representation of the results shows how the
hue of the objects and paints are distributed. It also shows that the grades 4
and 5 (magenta and red crosses) mostly correspond to object hue angles for
which the paint density in the database is low. We can thus assume that a
denser database would have allowed finding satisfying matching paints for all
samples.

A modified metric for better results

The above results suggest that hue plays a role more important to the expert
than lightness when choosing color matches. The current metric (4.2) can be
modified to give less weight to the lightness. Moreover, the CIECAM02 model
defines cartesian coordinates (Eq. 2.14 and 2.15) that are better perceptual
attributes than the approximated cartesian coordinates 100a an 100b used in
(4.2). We tested a new metric by varying the parameter α ∈ [0, 2] in

ΔEc,α02 =
√

(2− α)(Jo − Jp)2 + α[(ac,o − ac,p)2 + (bc,o − bc,p)2] (4.4)

in order to better mimic the expert’s method of matching colors. When α = 1,
Equation (4.4) simply becomes

ΔEc02 =
√

(Jo − Jp)2 + (ac,o − ac,p)2 + (bc,o − bc,p)2 . (4.5)

We varied α by 0.01 steps and ran our system for each α. We computed how
many newly assigned paints match with the expert choices for each iteration.
Figure 4.14 shows the result of the optimization. We see that giving slightly
more weight to the ac and bc components gives better results. The maximum
is centered around α ∼ 1.2. Looking at the two extreme cases α = 0 and α = 2
also shows that hue is more important than lightness for the expert. Indeed,
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Figure 4.13: The distance between the crosses and the origin corresponds to the
CIECAM02 differences ΔE02 between the paints and objects computed for the 38
samples satisfying Equation (4.3). The angles represent the objects hues. The
color of the crosses corresponds to the grades - 1 is green (18 samples), 2 is cyan
(12 samples), 3 is blue (3 samples), 4 is magenta (1 sample), and 5 is red (4
samples). The colored lines correspond to the paints in the database ordered by
their hue angle.
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Figure 4.14: The metric is optimized by weighting the lightness J with respect to
(ac, bc) by varying α. The optimum is chosen as α such that the highest number
of system and expert recommendations match.

completely discarding the lightness (α = 2) still gives some matching results,
while we do not obtain any match when α = 0.

4.4 Discussion
Accurate color cannot be retrieved from uncalibrated images taken with uncal-
ibrated cameras. However, a limited range of colors can be estimated by using
appropriate color information in the form of a target present in the scene. A
color transform mapping the scene target color values onto pre-computed tar-
get reference values is calculated by least mean square estimation in sRGB and
applied to the entire image. We demonstrate that this method can be suc-
cessfully applied to Home Décor. All colors can be corrected using a limited
number of color calibration targets. When the colored object is within the tar-
get colors’ convex hull, its color is corrected with an accuracy of ΔE02 � 2.19
(ΔEc02 � 2.03). The color correction consistency across cameras is lower and
the average cross-camera values range from ΔE02 � 3 to ΔE02 � 6. This
is due to the variety of samples textures, reflective properties, and color non-
uniformities. According to the expert’s rating, a distance ΔE02 � 5 still allows
a good match. The system presented here is basic and could be easily improved.
For example, we used the object pixel mean value, but the distribution of the
pixel values could be employed to detect samples that have important textures
or color non-uniformities; clipping should also be detected.

The detection of objects was not addressed here. Decoration objects can
have any shape and, as opposed to faces, cannot be easily detected in an auto-
mated way. The targets could be easily modified by adding a cut-out allowing
to place the target on the sample and detected it like any other patch in the
target. Moreover, this would ensure that the illumination is the same on both
the target and sample, avoiding another important source of error.
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We show that we can match any colored object by minimizing a CIECAM02
distance between the object color and a database of paints, allowing to return
coordinated colors for the object. We obtain results similar to what an expert
would do. The metric can be modified by giving more weight to hue to even
better match the expert’s selection.

The least mean square estimation of the color correction matrix in sRGB
allows a fast and computationally low color correction, which can be used in a
variety of applications.

Future versions of the method will help users dynamically choose the cal-
ibration target using feedback. As we can test whether the object color falls
within the targets’ gamut, the system will be able to indicate whether the ob-
ject can be adequately color corrected. If it is not the case, the system will
indicate which target users should employ.

4.5 Summary
We have demonstrated that the skin color assessment method presented in
Chapter 3 can be extended to virtually any object color by using a set of
calibration targets instead of one. With nine targets covering all hues, color can
be assessed with an accuracy of ΔEc02 � 2. The method is applied to a Home
Décor application. Rather than generating color harmonies complementing the
object, which is a difficult task, we use the corrected object pixel values to
find the best match in a database of coordinated paint colors by minimizing
a Euclidian distance in CIECAM02 between the object’s and paints’ colors.
The system is fed with an image of a decoration item, which is color corrected.
The object’s pixels are extracted, their values converted in CIECAM02 and
compared against an existing database of CIECAM02 values for paint samples
grouped by palettes of four coordinated colors. The system returns the paint
color best matching the object and three complementing colors. Our results
were rated as very good by a Home Décor expert. The CIECAM02 distances
correlate well with the expert’s grades and we obtain a consistent cross-camera
color correction. The error, measured on the target patches, is of about 2%.
The quality of the color correction on actual decoration objects is lower due to
variety of textured and non Lambertian materials. It also depends whether the
object color lies close to the colors in the calibration target. By comparing the
object color with respect to the reference values in sRGB, we can determine
if the target is appropriate, which could be employed to guide the user in the
target choice.
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Chapter 5

Illuminant retrieval for fixed
location cameras

5.1 Introduction

In this chapter, we aim to solve for color constancy in the specific framework
of fixed location cameras. Images taken with such devices will exhibit changes
in lighting and dynamic content but will also contain static objects in the
background. These objects, while unknown, are identical across all images and
must thus have the same reflectance spectrum. We use a set of N images
to recover NE = N scene illuminants using a few selected surfaces present in
every image, i.e., the constant background objects. To solve for color constancy
in this framework, we invert an image formation model for a series of test
illuminants and obtain a corresponding series of test reflectances. By forcing
these reflectances to match, we can deduce the illuminant in every image.

The algorithm consists of two steps: we first define an error function fe,
the distance between the Nσ reflectance descriptors σ = {σnσ}Nσnσ=1 of the Np
surfaces present in N = NE images and whose variables are the Nε descriptors
ε = {εnε}Nεnε=1 of the NE illuminants. The error function fe is minimized in a
second step. The illuminants corresponding to the N = NE scenes satisfy

arg min
ε
fe(σ) , (5.1)

where the reflectance descriptors σ = σ(ε) depend on the test illuminant by
inversion of the image formation model (2.2). We will see which illuminant and
reflectance descriptors can be used to define an appropriate error function fe,
and how fe can be minimized.

87
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5.2 Our approach
At each pixel location, the image formation model (Section 2.1) gives a system
of three linear equations of the form

ρk = s[λ]Tdiag(e[λ])rk[λ] =
31∑
i=1
eisir

k
i , k = 1, 2, 3 , (5.2)

where e[λ] = {ei}31
i=1, s[λ] = {si}31

i=1, and rk[λ] = {rki }31
i=1 are the vectors

representing the illuminant, reflectance, and sensitivity of the kth sensor, re-
spectively. In the present framework, we know the color responses ρk for each
surface and the camera sensitivities rk[λ], while both the illuminant and re-
flectance spectra are unknown. Their 31 samples cannot be retrieved without
additional information or without introducing further assumptions. One way
of reducing the dimension of this ill-posed problem is to express the illuminant
and reflectance spectra as weighted sums of a small number of basis functions.
Determining the illuminant and reflectance spectra then reduces to determining
the weights.

5.2.1 Linear models and illuminant retrieval
In Section 2.6, we saw that daylight illuminants as well as most reflectance
spectra could be accurately approximated by weighted sums of three and six
to eight basis functions, respectively, and expressed as

e[λ] =
Nε∑
i=1
εiEi[λ] (5.3)

s[λ] =
Nσ∑
j=1
σjSj [λ] , (5.4)

where Ei[λ] and Si[λ] are the illuminant and reflectance basis functions in
vector form and εi and σi are the illuminant and reflectance descriptors, re-
spectively. If we express the reflectance spectra as (5.4), the equations (5.2)
are rewritten as

ρk =
∑
λ

rk[λ]
Nε∑
i=1
εiEi[λ]

Nσ∑
j=1
σjSj [λ], k = 1, 2, 3 . (5.5)

We define the Nε ×Nσ matrix Λk by its elements

(Λk)i,j =
∑
λ

rk[λ]Ei[λ]Sj [λ] (5.6)

and rewrite (5.5) as
ρk = εTΛkσ = σTΛTk ε , (5.7)

where ε and σ are Nε × 1 and Nσ × 1 vectors containing illuminant and re-
flectance descriptors, i.e., the weights.
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This image formation model using linear models for the illuminant and
reflectance spectra is called bilinear. It is illustrated by the form of (5.7) in
which σ and ε have symmetrical roles. If we fix ε, the system becomes linear
in σ, and vice versa. If the illuminant is fixed (5.7) can be written as

ρk = Λε,kσ , (5.8)

where Λε,k = Λkε is the lighting matrix. It can also be expressed in the form

ρ = Λεσ , (5.9)

with the 3×Nε matrix Λε = Rdiag(e)Bs, where R is a 3×31 matrix containing
the sensor sensitivities and Bs is a 31×Nσ matrix containing reflectance basis
functions. σ and ρ are Nε×1 and 3×1 vectors, respectively. If p = ρ represents
the average pixel value of a surface extracted from an RGB image, we compute
its reflectance descriptors for any illuminant characterized by ε by inverting
(5.9) as

σ = Λ+
ε p , (5.10)

where + represents the Moore-Penrose pseudo-inverse. In this expression, σ is
an Nσ × 1 vector, Λ+

ε is an Nσ × 3 matrix, and p is a 3× 1 vector.

5.2.2 Building the error function
We consider N unknown scenes taken with fixed location cameras and that
contain a few static background elements. They are viewed under N = NE
unknown illuminants, which we assume to be uniform. We extract Np patches
of uniform color from the objects present in every image and average their
pixel values. For each of the N ·Np surfaces, we solve a system of three linear
equations (5.2) for each surface: its mean RGB value p allows computing the
corresponding reflectance descriptors σ (5.10) for any illuminant. We thus
compute N · Np systems (5.10) in parallel for a series of test illuminants and
obtain a set of reflectance descriptors. By forcing the reflectances of each
surface to match across the N = NE images, we can deduce the NE illuminants.
Figure 5.1 illustrates the principle.

Rather than matching reflectances descriptors σ directly, we compute and
compare, for each patch, the corresponding color responses pD65 as viewed
under the standard daylight illuminant D65.

Preliminary experiments matching reflectance descriptors σ directly gave
poor results. The reflectance basis functions are computed by principal com-
ponent analysis and ordered by decreasing influence of their contribution to
the reflectance spectra. The different weights σi are thus not equally impor-
tant and σ1 contributes more to the resulting spectra than, e.g., σ7. We were
computing a Euclidian distance between the σi’s in R

Nσ and, doing so, were
giving the same importance to all the components σi’s, which is most likely
why this approach failed. We decided not to characterize the surfaces by their
actual reflectance spectra, but rather by the color that they would have as
viewed under the standard daylight illuminant D65. The argument in favor
of this approach is the following: the inverse image formation model (5.10)
returns only one set of reflectance descriptors for each test illuminant, while
there always exists a set of metameric surface reflectances that would yield to
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Figure 5.1: Illustration of the principle: We select the RGB values ofNp redundant
elements across N images. By computing metameric pairs of test illuminants and
reflectances (Ê(λ), Ŝ(λ)), and varying Ê(λ) until the Ŝ(λ) match, we can retrieve
the N image illuminants.

the same RGB values and that we cannot discriminate using this approach.
There is thus no intrinsic reason to match reflectance spectra directly. Instead,
we are computing a Euclidian distance between the points in R

3 representing
the color responses denoted pD65 for each illuminant and each surface. This
distance is more meaningful than a Euclidian distance between reflectance de-
scriptors in R

Nσ . Indeed, the three RGB components contribute equally to the
resulting color, as opposed to the reflectance descriptors, which correspond to
basis functions having different contributions to the reflectance spectra. The
color responses pD65 are computed as

pD65
k =

∑
λ

rk[λ]
Nσ∑
i=1
σiSi[λ]eD65[λ], k = 1, 2, 3 , (5.11)

where σi are related to a test illuminant etest(λ) via Λε (5.10). For any combi-
nation of NE illuminants we can compute a set of NE ·Np corresponding color
responses pD65, which allows defining an error function reaching its minimum
when the sensor responses under illuminant D65 match or, indirectly, when the
reflectance spectra match. The error function is computed as the Euclidean
distance between the NE · Np sensor responses pD65 and to a combination of
NE illuminants represented by Ek = (e1(k), ..., eNE (k)),

fe(k) = 1
Np

1
N

[ Np∑
np=1

N∑
j=2,j>i

N∑
i=1

[pD65
i,np (Ek)− pD65

j,np(Ek)]
2
] 1

2
, (5.12)
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where the indices i and j run over the images and np runs over the Np patches.
The double sum on i and j > i indicates that the distance is summed over the(
NE

2
)

possible image pairs; for example, if we consider three images, Equation
(5.12) becomes

fe(k) = 1
Np

1
3

[ Np∑
np=1

[(pD65
1,np − pD65

2,np)
2 + (pD65

2,np − pD65
3,np)

2 + (pD65
1,np − pD65

3,np)]
2
] 1

2
.

(5.13)
A least square error function is used for computational simplicity.

The NE scene illuminants corresponding to the N = NE images satisfy

Êk = arg min
k
fe(k) . (5.14)

We can test all combinations of NE illuminants from a test set of Ne � NE illu-
minant candidates and return the NE illuminants minimizing fe. This becomes
computationally heavy as the number of iterations increases exponentially with
the number of images considered. We can also find the solution of (5.14) by
performing a gradient descent on fe. In this case, the illuminant spectrum
is represented by a linear sum of three basis functions (5.3) and fe must be
redefined as a function of the illuminant descriptors.

5.2.3 Spherical sampling and daylight illuminants
We have seen in Section 2.6 that daylight illuminants can be approximated by a
weighted sum of three basis functions. Once the basis functions Ei(λ) are fixed,
the weights εi, named the illuminant descriptors, characterize the illuminant.
Using this formalism, any daylight illuminant can be represented as a point
in a tri-dimensional space. Moreover, the chromaticity of the illuminant only
depends on its relative spectral power distribution; we are generally not inter-
ested in absolute values for such spectra. Any illuminant can be normalized
and thus be represented by a point on a unit sphere. A daylight illuminant is
then expressed by two descriptors, its azimuthal and polar angles (θnE , φnE ),
where nE indexes the illuminant. The CIE standard daylight illuminants rep-
resented on a sphere lie on a line that can be approximated by the quadratic
function

φ(θ) = π2 − 0.206θ2 + 0.0657θ − 0.0936 , (5.15)

represented by the dotted line (see Figure 5.2). A standard daylight illuminant
is then described using only one parameter, or descriptor, θ. We define and
test error functions fe according to one, two, or three parameters when the
daylight illuminants are represented by one angle θ, two angles (θ, φ), or the
usual descriptors (ε1, ε2, ε3), respectively. These functions will be minimized
by gradient descent.

5.2.4 Gradient descent
A gradient descent algorithm is a first order optimization method allowing
to find the minimum of a function. Starting from some initial condition xo,
one computes the function gradient ∇f - or its estimate - and takes one step
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Figure 5.2: When represented on a sphere, standard daylight illuminants can be
approximated by a quadratic function (dashed line). The 13 standard daylight
illuminants D40 to D100 are represented, from left to right, by the ‘x’.

proportional to the negative of the gradient. The operation is repeated until
a minimum is reached. At each iteration, the function is evaluated at a new
position xt+1 depending on the values of the function f at xt

xt+1 = xt − αt∇f(xt) . (5.16)

The adaptation rate αt can be recomputed at each step or left constant,
i.e., αt = α. The first solution can be time consuming, while the second
solution may result in slow convergence. Moreover, if the function f is not
globally convex, the algorithm may converge to a local minimum. Minimiza-
tion by gradient descent is simple, but its convergence is not guaranteed and
depends strongly on the adaptation rate α and step size.

In this chapter, fe is minimized as function of the illuminant descriptors ε
with the following the gradient estimate

∇εife = fe(εi + ε)− fe(εi − ε) ∝ fe(εi + ε)− fe(εi − ε)
ε

, (5.17)

where the step size ε is fixed. If ε is too small, the convergence may be slow,
whereas a large ε may lead to erroneous results.

At each step, the illuminant descriptors, either θ, (θ, φ), or (ε1, ε2, ε3), are
updated according to

εk+1 = εk − α[fe(εk + ε)− fe(εk − ε)] . (5.18)

We use fixed α and ε. In cases where ε is too large, it can generate oscillations.
To overcome this issue, the sign of the gradient is stored at each step and
compared at successive steps. Changes of sign are interpreted as oscillations
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and, if they occur, the amplitude of ε is reduced. The details of the algorithm
are reported in Appendix F.

5.2.5 Illuminant and image normalization
The “color” of an illuminant does not depend on its intensity. Whether it
is specified as an RGB white-point or as its spectral power distribution, the
intensity information can generally be discarded. Most color constancy algo-
rithms recover illuminant spectra up to a positive multiplicative factor or as
normalized chromaticity coordinates (x, y) or (r, g). Nevertheless, illuminant
normalization influences our algorithm, we will thus review different ways of
normalizing illuminants and their influence upon the norm of the resulting
white-point ρE .

A daylight illuminant expressed as E(λ) =
∑3
i=1 εiEi can be normalized in

the following ways

1.
∫
λ
E(λ)dλ = 1 or in vector form

∑31
i=1 ei = 1

2. maxλE(λ) = 1 or in vector form max1�i�31 ei = 1

3. ‖ ε ‖= 1, which is equivalent to representing illuminants on a unit sphere

4. max1�j�3 εj = 1.

The norm of the color response to a perfectly reflective surface S(λ) ≡ 1
computed using the image formation model (2.1) changes with the illuminant,
independently of its normalization. Let us set S(λ) ≡ 1 in (2.1) and compute
the white-point of E(λ)

ρEk =
∫
λ

E(λ)Rk(λ)dλ, k = 1, 2, 3 . (5.19)

When the shape of the illuminant spectrum varies, the surface of the cross-
section of E(λ) and Rk(λ) - i.e., the integral of E(λ)Rk(λ) - changes. Figure
5.3 shows the norm of the color responses ρE of a white surface S(λ) ≡ 1
computed for the 13 standard daylight illuminants D40 to D100 for the four
normalizations described above. We see that the norm of ρE varies across the
illuminants and the variations of the white-point norm amplitude depend on
the normalization. Expressing daylight illuminants with spherical sampling is
equivalent to normalizing the illuminant as ‖ ε ‖=

√
ε21 + ε22 + ε23 = 1.

We are working with RGB values that have been normalized by an unknown
factor such that the maximum value of the image is equal to one. The nor-
malization of the test illuminant, when computing reflectance descriptors for
these RGB values, has an influence on the norm of the reflectance descriptors
(5.10). Consequently, the norm of the test color responses pD65 depends on
both the image and test illuminant normalizations. As we are computing a
Euclidian distance between these color responses, the relative norm of pD65

may not be meaningful, which may be a source of error. We thus normalize
the color responses pD65 (5.11) in the error function computation (5.12). We
will see that this normalization is unnecessary when the daylight illuminants
are expressed using three descriptors (5.3), as the relative amplitudes of ε1, ε2,
and ε3 can adjust.
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(a)
∑
λ

e(λ) = 1 (b) maxλ e(λ) = 1

(c) ‖ ε ‖= 1 (d) max(ε) = 1

Figure 5.3: The norm of the white-point ρE varies across illuminant depending on
the illuminant normalization. The numbers 1 to 13 designate the standard daylight
illuminants D40 to D100.

5.3 Experiments and results
We created sets of RGB values for a series of illuminants and reflectances.
The illuminants database consists of a total of 173 spectral power distributions
(SPD) containing both computed and measured illuminant spectra, including
the 89 measurements from (Funt et al. 1995). We created three subsets of
illuminants, namely standard daylight (13 spectra), real daylight (45 spectra),
and artificial illuminants (36 spectra). Whenever the illuminant description
was not completely unambiguous or indicated a mixture of daylight and arti-
ficial illuminants, it was left aside. Plots of the selected SPD can be seen in
Appendix F.2. The reflectance database contains 24 MacBeth, 462 Munsell,
and 219 Natural spectra. We computed RGB patches values for each of the
24 + 462 + 219 = 705 reflectance spectra and 13 + 45 + 36 = 94 illuminant
spectra. The sensor sensitivities are the ones of a Canon 350D camera plotted
in Figure 5.4. RGB values were normalized such that the overall maximum is
equal to one for each different set of reflectance and each of the 94 illuminants.
In other words, the normalization factor varies among illuminants such that it
is representative of how RGB images are generally normalized, i.e., such that
their maximum value is one. Most simulations were run on synthetic patch
values. We generated series of 104 random combinations of NE illuminants
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Figure 5.4: Canon 350D camera sensitivities.

and Np reflectances for each of the three illuminant and three reflectance types
and used the corresponding RGB values to test our algorithm. NE takes the
values 2, 3, 4, 6, and 10 and Np takes the values 6 and 10.

The different parts of the chapter correspond to the type of illuminant con-
sidered, as reported in Table 5.1. We demonstrate the validity of our method
using the small set of 13 standard daylight illuminants in Section 5.3.1. We
show that we can retrieve the illuminants by either testing illuminant candi-
dates permutations or by gradient descent. The method is extended to real
daylight illuminants in Section 5.3.2. Artificial illuminants, such as fluorescent
light sources, often have peaky SPD that cannot be accurately approximated
by a small number of basis functions. We see how our method can be applied
to such illuminants in Section 5.3.6.

5.3.1 Standard daylight illuminants

Optimization by testing illuminant combinations

We consider here the 13 standard daylight illuminants D40 to D100 represented
in Figure 2.11. The algorithm is tested on several sets of 104 combinations of
synthetic RGB values corresponding to NE illuminants and Np surfaces, as re-
ported in Table 5.2. We take advantage of the small size of the considered set of
illuminants and use Ne = 13 illuminant candidates. For each the 104 combina-
tions of RGB values corresponding to NE illuminants and Np surfaces, we test
the
(
Ne=13
NE

)
illuminants combinations and return the one minimizing the error

function fe (5.12). The color responses pD65 (5.11) are normalized. The actual
number of illuminant combinations to be tested is

(
Ne
NE

)
NE !,

(
Ne
NE

)
being the

number of illuminant combinations multiplied by the number of permutations
NE !. We sorted the images and used ordered combinations of illuminants to
reduce the number of runs by a factor NE !. The illuminant estimation error is
quantified as the angular error (Section 2.7.3), i.e., the angle in degrees between
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Illuminant type Optimization method Surface type Section
Standard daylight Test combinations MacBeth 5.3.1, p. 95

Munsell
Natural

Gradient descent MacBeth p. 97
on fe = fe(θ) Munsell

Natural
Real daylight Test combinations MacBeth 5.3.2, p. 101

Munsell
Natural

Gradient descent MacBeth p. 103
on fe = fe(θ, φ) Munsell

Natural
Gradient descent MacBeth p. 103
on fe = fe(ε1, ε2, ε3) Munsell

Natural
Artificial Test combinations MacBeth 5.3.6, p. 113

Munsell
Natural

Test combinations Real objects p. 115

Table 5.1: The different parts of this chapter correspond to the different illuminant
considered. This table reports the illuminant types, optimization methods, and
surface types. It also indicates the section and page for each experiment.
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NE Np MacBeth Munsell Natural
2 6 69.00 79.15 61.75
3 6 88.80 93.67 86.00
4 6 96.80 98.92 92.10
6 6 99.47 99.78 96.88
6 10 100.00 99.90 97.90
10 6 100.00 99.88 98.74

Table 5.2: The algorithm was run 104 times using different combinations of Np
patches and NE standard illuminants. This table reports the percentage of the
104 ·N images for which the standard illuminant was perfectly estimated.

the vectors ρE and ρ̂E formed by the real and retrieved white-points in sRGB:

eang = arccos( ρE ◦ ρ̂E

‖ ρE ‖‖ ρ̂E ‖ ) .

The resulting angular errors are generally very small, we thus reported the
results as the percentage of the NE · 104 images for which the illuminant was
perfectly estimated. These values are reported in Table 5.2 for MacBeth, Mun-
sell, and Natural reflectances. The illuminant estimation becomes more robust
as the number of illuminants considered increases and is perfect for MacBeth
reflectances when NE � 6. It depends on the reflectance type and is generally
better for Munsell reflectance and lower for Natural reflectances.

Optimization by gradient descent on fe = fe(θ)

The other approach is to minimize the error function fe (5.12) by gradient
descent. The standard daylight illuminants are then represented using spher-
ical sampling (Section 5.2.3) and are indexed by one angle θnE . fe becomes
a function of N = NE variables and fe = fe(Θ), where Θ = (θ1, .., θNE ).
This requires to transform the spherical coordinates (r = 1, θ, φ(θ)) into the
cartesian coordinates (ε1, ε2, ε3) prior to the computation of the inverse image
formation model (5.10). We used the same 104 sets of NE illuminants and
Np surfaces RGB as previously. The algorithm was run using two different
initializations of the angles θnE . They were either initialized to θo,nE = 0 ,∀nE
or initialized to NE random values θo,nE ∈ [−1, 1] and the final angles were
averaged over three runs. The range [−1, 1] represents roughly the angle val-
ues in radian corresponding to the 13 standard daylight illuminants. Tables
5.3 and 5.4 report the respective results as the median and maximum angular
errors eang for each set of parameters. The corresponding error distribution for
MacBeth reflectances can be seen in Figure 5.5. We indicated under each plot
the percentage of illuminants that were estimated with an angular error under
3◦, which is generally considered as acceptable (Hordley 2006). Similar plots
for the Munsell and Natural reflectances and the gradient descent parameters
are reported in Appendix F.4.1.

The initialization of θnE has a limited influence on the final median angular
error. If we let the angles θnE evolve for an arbitrarily large number of itera-
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MacBeth Munsell Natural
NE Np med eang max eang med eang max eang med eang max eang
2 6 2.88 14.58 2.76 14.45 2.92 14.47
3 6 2.18 12.51 2.12 12.34 2.12 12.49
4 6 1.92 10.99 1.78 10.63 1.94 10.60
6 6 1.81 7.16 1.57 7.61 1.90 8.05
6 10 1.43 6.95 1.34 6.43 1.52 7.22
10 6 0.98 5.13 0.83 4.87 0.95 5.12

Table 5.3: Median error angular eang computed over 104 sets of N = NE images,
i.e., 104N images. The standard illuminants were computed by gradient descent.
The angles were initialized to θo = 0 for all NE illuminants. The error distribution
is plotted in Figure 5.5.

MacBeth Munsell Natural
NE Np med eang max eang med eang max eang med eang max eang
2 6 2.80 15.25 2.99 61.00 3.01 15.19
3 6 2.23 27.64 2.20 49.76 2.24 12.85
4 6 2.04 22.87 1.80 10.83 2.09 10.87
6 6 1.81 7.45 1.62 7.32 1.88 8.23
6 10 1.54 6.82 1.47 6.71 1.48 7.35
10 6 1.17 5.43 1.06 5.28 1.30 5.01

Table 5.4: Median error angular eang computed over 104 sets of N = NE images,
i.e., 104N images. The standard illuminants were computed by gradient descent.
The angles were initialized randomly and the final angles were averaged over three
iterations.
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(a) N = 2 Np = 6, eang � 3◦ for 51.8% (b) N = 3 Np = 6, eang � 3◦ for 64.1%

(c) N = 4 Np = 6, eang � 3◦ for 70.3% (d) N = 6 Np = 6, eang � 3◦ for 74.9%

(e) N = 6 Np = 10, eang � 3◦ for 84.9% (f) N = 10 Np = 6, eang � 3◦ for 94.9%

Figure 5.5: Angular error distributions corresponding to Table 5.3. The algorithm
was run using standard daylight illuminants and MacBeth reflectances. The x-
axis represents the angular error eang in sRGB expressed in degrees. The y-axis
represents the image count. The error distributions for the Munsell and Natural
reflectances are in Section F.4.1.
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tions, they will generally converge to the same result, as illustrated by Figure
5.6, but the convergence can be slow. Imposing the stopping criterion on the
norm of the gradient ‖ f(θ + ε) − f(θ − ε) ‖ is convenient, but may cause the
algorithm not to always completely converge. If we look at Tables 5.3 and
5.4, we see that the final angular errors are still quite close, despite slightly
less favorable results when the angles are initialized randomly (Table 5.4). On
the contrary, the maximum error can be large when the angles are initialized
randomly, as it happened for NE = 2 and NE = 3 for Munsell reflectances. An
error that large means that the angle θnE jumped out of the range representing
actual illuminants, which can by avoided by initializing all angles to θo = 0.

Figure 5.6: Each set of four lines of the same color represent the evolution of
the NE = 4 angles θnE indexing standard illuminants. The experiment is run 10
times for different angles initialized randomly in the interval [−1,+1]. The test
illuminants are D45, D55, D90, and D100. The 10 runs converge to the same
result.

Table 5.5 focuses on a subset of the results for NE = 4 and Np = 6. It
reports the overall smallest and largest angular errors out of the 104 runs and
the corresponding illuminants, as the results for the 10 first runs. We see that
the largest error occurs when the illuminants are analogous: it corresponds to
the illuminants D40, D45, D50, and D55, which are close, while the smallest
error corresponds to illuminants covering the range from D50 to D95. The
error order of magnitude is systematically similar and the direction of the shift
is the same for all NE illuminants.

These results demonstrate that we can retrieve NE daylight illuminants
from a set of RGB values corresponding to Np surfaces as viewed under NE
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Median angular error Illuminants
NE = 1 NE = 2 NE = 3 NE = 4 NE = 1 NE = 2 NE = 3 NE = 4

min 0.07 0.00 0.16 0.17 D50 D55 D90 D95
1 0.11 0.08 0.03 0.63 D40 D65 D75 D95
2 0.20 0.22 0.18 0.19 D55 D65 D80 D100
3 0.32 0.28 0.33 0.26 D60 D65 D80 D85
4 0.49 0.51 0.42 0.48 D50 D75 D80 D100
5 0.52 0.57 0.48 0.80 D50 D75 D85 D100
6 0.63 0.58 0.63 0.60 D50 D65 D75 D95
7 0.63 0.68 0.76 0.90 D45 D65 D85 D100
8 1.21 1.27 1.19 1.33 D45 D70 D90 D100
9 3.40 3.39 3.36 3.22 D50 D55 D60 D75
10 4.95 5.25 5.29 5.30 D45 D55 D60 D70
max 10.97 10.99 10.89 10.77 D40 D45 D50 D55

Table 5.5: We report the ten typical angular errors, as the overall smallest and
largest angular errors over the 104 runs, and the corresponding standard illuminants.

different illuminants by inverting NE image formation models in parallel and
forcing their output reflectances to match. This is done through the minimiza-
tion of an error function fe, that can be optimized by either testing a set of
illuminant candidates combinations or by gradient descent.

The results become more robust with an increasing number of illuminants
in both optimization methods. Even when only considering two illuminants,
the gradient descent method returns a median angular error under 3◦. It falls
under 1◦ when NE = 10. The influence of the number of illuminants NE is
also visible on the maximum error, ranging from 15◦ when NE = 2 down to 5◦
when NE = 10.

5.3.2 Real daylight illuminants

Optimization by testing illuminant combinations

We use here the synthetic RGB patch values generated by combination of
45 real measured daylight illuminants and MacBeth, Munsell, and Natural
reflectances. We first select Ne = 20 illuminant candidates from our database of
45 illuminants and test all permutations, as done with the standard illuminants.
We generated series of 104 random combinations of NE illuminants and Np
reflectances and used the corresponding RGB values to test our algorithm. NE
takes the values 2, 3, and 4 and Np takes the value 6. The resulting median
and maximum errors are reported in Table 5.6. We see that the illuminant
estimation is already robust using a small number of illuminants, with the a
median angular error of 1◦ forNE � 3, but the maximum error can still be large.
The error distribution is plotted in Figure 5.7. The percentage of illuminants
that were estimated with an angular error under 3◦ is also indicated. Similar
plots for the Munsell and Natural reflectances can be found in Section F.4.2.
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(a) N = 2 Np = 6, eang � 3◦ for 56.6%

(b) N = 3 Np = 6, eang � 3◦ for 68.7%

(c) N = 4 Np = 6, eang � 3◦ for 71.6%

Figure 5.7: Angular error distributions corresponding to Table 5.6. The algorithm
was run using real daylight illuminants and MacBeth reflectances, by testing all
illuminant combinations. The x-axis represents the angular error eang in sRGB
expressed in degrees.The y-axis represents the image count. The error distributions
for the Munsell and Natural reflectances are in Section F.4.2.
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MacBeth Munsell Natural
NE Np med eang max eang med eang max eang med eang max eang
2 6 1.99 22.86 1.65 22.86 2.44 21.20
3 6 1.00 21.62 0.98 21.62 1.02 21.62
4 6 1.00 19.13 1.00 19.91 1.00 19.91

Table 5.6: The algorithm was run 104 times using different combinations of Np
patches and NE real daylight illuminants. This table reports the median and
maximum angular errors eang.

Optimization by gradient descent

We now propose to minimize the error function fe by gradient descent. The
measured daylight illuminant spectra are expressed as weighted sums of three
basis functions (Section 5.2.1). We present two approaches: we can either use
spherical sampling as previously and express the error function with the polar
and azimuthal angles as variables, i.e., fe = fe(θnE , φnE ) or keep the original
linear model formation formulation (5.3) and express the error function fe with
the three illuminant descriptors as variables, i.e., fe = fe(εnE ,1, εnE ,2, εnE ,3).

Gradient descent on fe = fe(θ, φ)

We have seen that standard daylight illuminants can be represented on a unit
sphere and indexed using one angle θnE (Section 5.2.3). It is naturally ex-
tended to real daylight illuminants by letting the polar and azimuthal angles
(θnE , φnE ) vary. The only modification brought to the algorithm is the change
of variables of fe from the N = NE variables (θ1, .., θNE ) to 2NE variables
(θ1, .., θNE , φ1, .., φNE ). This requires to transform the spherical coordinates
(r = 1, θ, φ) into the cartesian coordinates and illuminant descriptors (ε1, ε2, ε3)
prior to the computation of the inverse image formation model (5.10). The
angles are initialized such that θo,nE = 0 and φo,nE = φ(θo,nE ) ∼= π

2 ,∀nE ,
according to (5.15). Again, the simulation was run on sets of 104 RGB values
corresponding to random combinations of NE = 2, 3, 4, 6, and 10 illuminants
and NE = 6 and 10 surfaces. The results of the simulation are reported in
Table 5.7. We observe a similar trend as for the simulation using standard
daylight illuminants: Both the median and maximum errors decrease as the
number of illuminants NE increases. We see though that the maximum error
is large for all three reflectance types and NE = 4 and Np = 6. This is due to
an isolated set of four illuminants for which the gradient descent diverged, the
rest of the results returning angular errors under 15◦. The error distributions
for the MacBeth reflectances are shown in Figure 5.8. The diverging case is
omitted in plot (c). Equivalent plots for the Munsell and Natural reflectances
can be found in Section F.4.2.

Gradient descent on fe = fe(ε1, ε2, ε3)

We have seen in Section 5.2.5 that the normalization of the test illuminant
spectra influences the algorithm’s performance. The absolute values of the SPD
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(a) N = 2 Np = 6, eang � 3◦ for 22.0% (b) N = 3 Np = 6, eang � 3◦ for 36.7%

(c) N = 4 Np = 6, eang � 3◦ for 43.3% (d) N = 6 Np = 6, eang � 3◦ for 53.3%

(e) N = 6 Np = 10, eang � 3◦ for 52.3% (f) N = 10 Np = 6, eang � 3◦ for 69.9%

Figure 5.8: Angular error distributions corresponding to Table 5.7. The algorithm
was run using real daylight illuminants and MacBeth reflectances, by minimizing
f(θ, φ). The x-axis represents the angular error eang in sRGB expressed in degrees.
The y-axis represents the image count. The error distributions for the Munsell and
Natural reflectances are in Section F.4.2.
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MacBeth Munsell Natural
NE Np med eang max eang med eang max eang med eang max eang
2 6 5.27 19.33 4.81 18.93 5.15 26.21
3 6 4.24 16.62 3.73 16.23 4.03 26.54
4 6 3.45 52.50 3.42 110.56 3.46 130.21
6 6 2.80 11.77 2.79 13.21 2.92 13.49
6 10 2.85 12.50 2.86 12.66 2.95 12.60
10 6 2.08 8.87 2.06 8.65 2.17 9.99

Table 5.7: The algorithm was run 104 times using different combinations of Np
patches and NE real daylight illuminants. The illuminants are described by two
angles and the error function fe = fe(θ, φ). This table reports the median angular
errors eang.

have a direct influence on the norm of the test color responses pD65, which are
compared in the error function fe (5.12). The solution adopted in the two
previous gradient descent approaches is to normalize the color responses pD65.
We now define the error function as a function of not two, but three variables:
the illuminants descriptors (ε1, ε2, ε3), when the illuminants are expressed as

e[λ] =
3∑
i=1
εiEi[λ] .

The previous approach constrained the relative importance of ε1, ε2, and ε3
as
√
ε21 + ε22 + ε23 = 1, while here the εi can vary independently. There is thus

no need to normalize the color responses pD65. This way the relative intensity
between the RGB patches values is preserved.

The algorithm is modified in two minors points: the error function now de-
pends on 3NE variables fe = fe(ε1,1, .., ε1,NE , ε2,1, .., ε2,NE , ε3,1, .., ε3,NE ) and
the transformation from spherical to cartesian coordinates prior to the compu-
tation of (5.10) becomes unnecessary. The results using this formulation are
presented in Table 5.8. The error distribution for the MacBeth reflectances is
shown in Figure 5.9. Equivalent plots for the Munsell and Natural reflectances
can be found in Section F.4.2.

Using three illuminant descriptors instead of two gives better results for
NE � 6. The angular error ranges from 2◦ for NE = 10 to 4◦ for NE = 2.
Both approaches give similar results for NE = 10.

5.3.3 Comparison with D’Zmura and Iverson’s (1993a) algo-
rithm

We present (D’Zmura and Iverson 1993a, D’Zmura and Iverson 1993b) in detail
in Section 2.7 and Appendix B. In this section, we implement both our and
D’Zmura and Iverson’s (1993a) algorithms and study their behavior under the
influence of added shot noise.

D’Zmura and Iverson’s (1993a) algorithm is extremely sensitive to any de-
viation from ideal data and only leads to perfect recovery of the illuminants
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(a) N = 2 Np = 6, eang � 3◦ for 38.1% (b) N = 3 Np = 6, eang � 3◦ for 44.8%

(c) N = 4 Np = 6, eang � 3◦ for 50.7% (d) N = 6 Np = 6, eang � 3◦ for 58.1%

(e) N = 6 Np = 10, eang � 3◦ for 57.9% (f) N = 10 Np = 6, eang � 3◦ for 65.4%

Figure 5.9: Angular error distributions corresponding to Table 5.8. The algorithm
was run using real daylight illuminants and MacBeth reflectances, by minimizing
f(ε1, ε2, ε3). The x-axis represents the angular error eang in sRGB expressed in
degrees. The y-axis represents the image count. The error distributions for the
Munsell and Natural reflectances are in Section F.4.2
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MacBeth Munsell Natural
NE Np med eang max eang med eang max eang med eang max eang
2 6 3.96 18.04 3.91 18.20 3.98 17.98
3 6 3.38 16.02 3.33 15.40 3.42 15.62
4 6 2.96 13.00 2.90 12.90 2.95 13.46
6 6 2.52 11.79 2.43 11.47 2.57 11.34
6 10 2.51 11.36 2.44 11.11 2.59 11.33
10 6 2.19 8.37 2.10 8.30 2.28 9.81

Table 5.8: The algorithm was run 104 times using different combinations of Np
patches and NE real daylight illuminants. The illuminants are described by three
illuminant descriptors and the error function fe = fe(ε1, ε2, ε3). This table reports
the median angular errors eang.

and reflectances if their spectra can be exactly represented by linear models.
Moreover, it is only applicable for specific numbers of illuminants, surfaces,
and descriptors. We consider here Np = 3 surfaces viewed under NE = 2 il-
luminants. The algorithm must then be applied with Nε = 3 illuminant and
Nσ = 3 reflectance descriptors. We use the same number of reflectance and
illuminant descriptors for comparison with our algorithm and thus minimize
an error function fe = fe(ε1, ε2, ε3) (see Section 5.3.2).

To ensure a perfect recovery of the descriptors, we first build a set of RGB
sensor values from ideal tri-dimensional spectra. To do so, we compute the three
first basis functions for the illuminants and reflectances by principal component
analysis over the 13 standard illuminants and the 24 MacBeth reflectances.
Then, for each of them, we build back the tri-dimensional spectra, i.e., compute
the (ε1, ε2, ε3) and the (σ1, σ2, σ3) descriptors minimizing, respectively,

‖ ε1E1(λ) + ε2E2(λ) + ε3E3(λ)− E(λ) ‖ (5.20)

and
‖ σ1S1(λ) + σ2S2(λ) + σ3S3(λ)− S(λ) ‖ (5.21)

and then construct the approximated spectra

E(λ) � ε1E1(λ) + ε2E2(λ) + ε3E3(λ) (5.22)

and
S(λ) � σ1S1(λ) + σ2S2(λ) + σ3S3(λ) . (5.23)

We finally build RGB sensors responses from these approximated illuminants
(5.22) and reflectances (5.23) with the image formation model (2.1).

We apply both algorithms on these perfectly tri-dimensional RGB sensor
responses and observe their outcomes for an increasing amount of shot noise.
The noisy sensor responses are modeled as

ρi = ρi,o ± σshot noise , (5.24)

where ρi,o is the ideal sensor response and σshot noise is modeled by a Poisson
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process of parameter λp = √ρi,o, i.e., centered around √ρi,o. The index i runs
over the red, green, and blue sensor responses. In order to control the amount
of noise, we introduce a parameter Anoise ∈ [0, 1] scaling σshot noise. To create a
model representative of an actual imaging device, the RGB are converted into
integer digital values in [0, 255] and calculated as

ρ
[0,255]
i = ρ[0,255]

i,o ± round(Anoiseσshot noise) . (5.25)

(a) Median angular error in sRGB. RGB
sensor responses are converted to integer
digital values.

(b) Maximum angular error in sRGB. RGB
sensor responses are converted to integer
digital values.

(c) Median angular error in sRGB for small
Anoise. RGB sensor responses are in float-
ing point. The median angular error ob-
tained with our algorithm does not vary be-
tween Anoise = 0.0 and Anoise = 0.1 (red
circles).

(d) Maximum angular error in sRGB for
small Anoise. RGB sensor responses are in
floating point. The maximum angular error
obtained with our algorithm does not vary
between Anoise = 0.0 and Anoise = 0.1 (red
squares).

Figure 5.10: Median (left) and maximum (right) angular errors as a function of
the amplitude of the added shot noise. The red circles and squares correspond to
the results obtained with our algorithm, while the blue triangles correspond to the
results obtained with D’Zmura and Iverson’s (1993a).

Figure 5.10 reports the median and maximum angular errors for both al-
gorithms as a function of the shot noise amplitude. Our algorithm’s perfor-
mance under the influence of shot noise is only slightly decreased with a median
(resp. maximum) angular error ranging from 3.3◦ (resp. 13.9◦) for Anoise = 0
to 3.9◦ (resp. 17.9◦) for Anoise = 1. The median angular error for D’Zmura and
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Iverson’s (1993a) algorithm is around 25◦ (resp. 150◦) even in the absence of
noise. While this result may seem surprising, the instability of the algorithm
for Anoise = 0 is explained by its high sensitivity to small deviations from ideal
data and, in the present case, the error is introduced by the quantization of the
digital values. If we run the same experiment for smaller Anoise while keeping
all RGB in floating point, we see that the algorithm indeed performs perfectly
and returns a zero median angular error in the absence of noise. It starts to
diverge for small values of Anoise and reaches its maximum median error for
Anoise � 0.08. While our algorithm only approximates the illuminants and
never guarantees a perfect recovery of the descriptors, it is quite stable in more
realistic conditions. The results for all Anoise are reported in Table F.5.

5.3.4 Gradient descent in presence of noise
We now run our algorithm forNE = 4 illuminants andNp = 6 reference surfaces
represented by the same RGB sensor responses as in Sections 5.3.1 and 5.3.2,
but with added shot noise modeled by (5.25). The amount of noise is controlled
by a scaling factor Anoise ∈ [0, 1]. We minimize the error function defined as
fe(θ), fe(θ, φ), or fe(ε1, ε2, ε3) by gradient descent. Figure 5.11 shows the
median and maximum angular errors in sRGB as a function of Anoise. The
results for all Anoise are reported in Table 5.9.

fe(θ) fe(θ, φ) fe(ε1, ε2, ε3)
Anoise med eang max eang med eang max eang med eang max eang
0.0 1.98 14.85 4.37 25.65 2.96 13.00
0.1 2.32 21.43 4.58 30.62 2.97 13.08
0.2 2.98 48.07 4.94 34.34 2.95 12.89
0.3 4.02 50.07 5.68 32.76 2.99 12.90
0.4 5.92 51.89 6.76 146.12 3.00 13.22
0.5 9.28 51.89 8.23 130.67 3.03 14.93
0.6 11.60 52.04 8.36 152.30 3.12 14.15
0.7 14.99 140.73 11.20 148.31 3.25 15.23
0.8 17.36 143.80 11.81 144.38 3.25 15.90
0.9 18.58 148.56 12.67 150.97 3.34 15.06
1.0 18.62 149.63 13.66 144.64 3.42 18.64

Table 5.9: The algorithm was run 104 times using Np = 6 patches and NE = 4
daylight illuminants. This table reports the median and maximum angular errors
eang as a function on the amount of shot noise added to the sensor responses.

The minimization on fe(θ) is sensitive to noise and the angular error in-
creases rapidly with Anoise. This is also visible on the standard deviation and
on the maximum error. The median (resp. maximum) angular error increases
from eang = 1.98◦ (resp. eang = 14.85◦) for Anoise = 0 to eang = 18.62◦
(resp. eang = 149.63◦) for Anoise = 1.

We observe a similar trend for the minimization on fe(θ, φ), with the median
(resp. maximum) angular error increasing from eang = 4.37◦ (resp. eang =
25.65◦) for Anoise = 0 to eang = 13.66◦ (resp. eang = 144.64◦) for Anoise = 1.
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Moreover, the effect of the quantization error alone is important: If we compare
the values reported in Table 5.7, the median angular error was only eang = 3.45◦
for NE = 4 and Np = 6, as opposed to eang = 4.37◦ here.

The minimization on fe(ε1, ε2, ε3) is not sensitive to the quantization error
and much more robust to shot noise with only a moderate change in perfor-
mance: The median (resp. maximum) angular error increases from eang = 2.96◦
(resp. eang = 13.00◦) for Anoise = 0 to eang = 3.42◦ (resp. eang = 18.64◦) for
Anoise = 1.

5.3.5 Comparison with a single image color constancy algo-
rithm

In this section, we compare the performance of our algorithm with a single
image one. The gray edge algorithm (van de Weijer and Gevers 2005) relies
on the gray world assumption, yet not applied on the color image, but on
its derivative. While this algorithm shows good performance, it can only be
applied to real images and is thus not adapted to a simulation on synthetic data.
Instead, we use the shades of gray (SoG) method (Finlayson and Trezzi 2004),
which also relies on the gray world assumption, but employs the Minkowsky
p-norm

‖ X ‖p=
{ N∑
i=1

|Xi|p
}1/p
, (5.26)

where X = [X1, ...,XN ] is a vector in R
N . More precisely, rather than estimat-

ing the white-point from the scene average, it applies the gray world algorithm
on the p-norm of the image. The gray world and the max-RGB algorithms are
two particular cases of SoG with, respectively, p = 1 and p =∞. Finlayson and
Trezzi (2004) showed that the best results are obtained for p = 6. In (van de
Weijer and Gevers 2005), the authors report that, while the p = 6−norm gray
edge performs better than the p = 6−norm SoG, both return good results, with
angular errors computed on a set of real images of 5.7◦ and 6.3◦, respectively.

We apply SoG on the same set of synthetic RGB generated from the stan-
dard and measured daylights for the MacBeth, Munsell, and Natural reflec-
tances as in Sections 5.3.1 and 5.3.2. The results are reported in Tables 5.10
and F.6 and should be compared with Tables 5.3, 5.7, and 5.8. Figure 5.12
shows the corresponding error distributions. We also apply SoG for variable
amounts of added shot noise, modeled as (5.25). These results are reported in
Tables F.7 to F.10.

Comparison with SoG in absence of shot noise

Our algorithm generally outperforms SoG in terms of median angular error.
If we consider the optimization by testing illuminants combinations (Tables
5.2 and 5.6), exploiting redundancy across images returns significantly better
results.

The results obtained by gradient descent on fe = fe(θ) (Table 5.3) are gen-
erally better, except when considering a larger number of MacBeth reference
surfaces (Np = 10), in which case both algorithms return similar results. In-
deed, taking Np = 10 surfaces out of the 24 MacBeth reflectances ensures are
large variety of colors, resulting in a good performance of SoG.
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(a) Median angular error in sRGB. Opti-
mization on fe = fe(θ).

(b) Maximum angular error in sRGB. Opti-
mization on fe = fe(θ).

(c) Median angular error in sRGB. Opti-
mization on fe = fe(θ, φ).

(d) Maximum angular error in sRGB. Opti-
mization on fe = fe(θ, φ).

(e) Median angular error in sRGB. Opti-
mization on fe = fe(ε1, ε2, ε3).

(f) Maximum angular error in sRGB. Opti-
mization on fe = fe(ε1, ε2, ε3).

Figure 5.11: Median (left) and maximum (right) angular errors as a function of
the amplitude of the added shot noise for the three gradient descent optimization
methods. The error bars represent the standard deviation. The simulations were
run on Np = 6 MacBeth reflectances viewed under NE = 4 illuminants. fe(θ) was
run on standard daylight illuminants, while fe(θ, φ) and fe(ε1, ε2, ε3) were run on
real ones.

The gradient descent on fe = fe(θ, φ) (Table 5.7) also generally performs
better than SoG, except when considering MacBeth reflectances in the two
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(a) N = 2 Np = 6, eang � 3◦ for 44.3% (b) N = 3 Np = 6, eang � 3◦ for 44.3%

(c) N = 4 Np = 6, eang � 3◦ for 44.2% (d) N = 6 Np = 6, eang � 3◦ for 44.3%

(e) N = 6 Np = 10, eang � 3◦ for 56.1% (f) N = 10 Np = 6, eang � 3◦ for 44.4%

Figure 5.12: Angular error distributions corresponding to Table 5.10. The SoG
algorithm was run using standard daylight illuminants and MacBeth reflectances.
The x-axis represents the angular error eang in sRGB expressed in degrees. The
y-axis represents the image count. The error distributions for the Munsell and
Natural reflectances are in Section F.4.5
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MacBeth Munsell Natural
N Np med eang max eang med eang max eang med eang max eang
2 6 4.15 33.41 5.19 31.91 8.06 26.10
3 6 4.26 34.17 5.19 32.54 8.02 27.07
4 6 4.13 34.88 5.17 32.63 8.03 26.57
6 6 4.16 33.72 5.17 32.63 7.98 27.07
6 10 1.51 22.24 4.09 22.74 6.43 29.36
10 6 4.15 34.88 5.17 32.72 8.04 27.07

Table 5.10: The SoG algorithm was run 104 times using different combinations of
Np patches and NE standard daylight illuminants. This table reports the median
and maximum angular errors eang.

cases Np = 2, where our algorithm returns a weaker result (eang = 5.27◦), and
Np = 10.

The results obtained by gradient descent on fe = fe(ε1, ε2, ε3) (Table 5.8)
are in overall more favorable than the ones obtained with the SoG algorithm,
outside of the particular case of Np = 10 MacBeth reflectances, which presents
ideal conditions for SoG to perform well.

For all the optimization methods, our algorithm systematically remains
more robust in terms of maximum error. Also, it is generally less sensitive to
the type of reflectances and to the number of reference surfaces and returns
better results for Munsell and Natural reflectances.

The SoG results obtained for the real daylight illuminants are very similar
to those obtained for standard illuminants and can be found in Section F.4.5.

Comparison with SoG in presence of shot noise

Figure 5.13 shows the influence of shot noise on SoG for MacBeth reflectances.
When taking Np = 6 reference patches, SoG is only slightly dependent on
shot noise, with a median (resp. maximum) angular error ranging from 4.1◦
(resp. 34◦) for Anoise = 0 to 5.2◦ (resp. 35◦) for Anoise = 1. However, when
taking Np = 10 surfaces, it becomes much more sensitive, with a median
(resp. maximum) angular error ranging from 1.5◦ (resp. 22◦) for Anoise = 0
to 3.7◦ (resp. 27◦) for Anoise = 1 (see Tables F.7 to F.10).

If we compare these results with Section 5.3.4, SoG is more robust to shot
noise than the optimizations by gradient descent on both fe = fe(θ) and fe =
fe(θ, φ). However, the minimization on fe = fe(ε1, ε2, ε3) showed to be quite
stable in presence of noise and outperforms SoG for all noise levels.

5.3.6 Artificial illuminants
Only daylight illuminants can be approximated by a small number of basis
functions, as opposed to artificial illuminants spectra such as fluorescent lights,
which are generally not smooth enough (Smith et al. 1992). For example,
Romero et al. (1997) took seven basis functions to approximate such illumi-
nants. Moreover, they used spectra sampled at 5 nm intervals, rather than
the traditional 10 nm interval sampling (Smith et al. 1992) employed in the
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(a) N = 4 Np = 6 (b) N = 4 Np = 6

(c) N = 6 Np = 6 (d) N = 6 Np = 6

(e) N = 6 Np = 10 (f) N = 6 Np = 10

Figure 5.13: Median and maximum angular errors plotted as functions of the
amplitude of added shot noise for the SoG algorithm. The simulations were run on
MacBeth reflectances and standard daylight illuminants.
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MacBeth Munsell Natural
NE Np med eang max eang med eang max eang med eang max eang
2 6 4.34 36.83 3.64 35.43 5.45 36.83
3 6 3.94 31.08 4.31 30.61 4.34 31.08
4 6 3.35 24.51 3.90 28.16 3.43 28.23

Table 5.11: The algorithm was run 104 times using different combinations of Np
patches and NE artificial illuminants. This table reports the median angular errors
eang.

present approach. We thus cannot apply our gradient descent method for such
illuminants.

Optimization by testing illuminant combinations

The approach of testing illuminant combinations from a set of illuminant can-
didates remains valid. We select Ne = 20 illuminants from the 36 artificial
illuminants database to run our algorithm. Plots of these illuminants can be
found in Figures F.3 and F.4. Table 5.11 reports the median and maximum an-
gular errors eang for NE = 2, 3, and 4 illuminants. The error ranges from 3.35◦
for NE = 4 to 5.42◦ for NE = 2. This is significantly larger than the errors ob-
tained for daylight illuminants. The simulation was run for only NE � 4 due to
the large number of combinations

(
Ne=20
NE

)
to be tested,

(
Ne=20

6
)

= 3.9·104 when
NE = 6. The estimation becomes slightly more robust when NE increases, but
only half the illuminants are estimated with an angular error smaller than
3◦. Figure 5.14 shows the error distributions for MacBeth reflectances. The
equivalent plots for Munsell and Natural reflectances can be found in Section
F.4.3.

Lightbooth images

We also tested our algorithm on the four lightbooth images displayed in Figure
5.18. The illuminants are a fluorescent TL83, a fluorescent D65, an incan-
descent A, and a fluorescent TL84. Their spectra are represented by the red
dashed lines in Figures 5.17 and 5.20. We present two typical examples using
two different sets of Ne = 10 randomly chosen illuminant candidates, run with
the six reference patches indicated in Figure 5.15.

We report two sets of results: Example 1 is reported in Figure 5.16 showing
the Ne = 10 illuminant candidates, in Figure 5.17 showing the N = 4 retrieved
illuminants, and in Figure 5.18 displaying the original and corrected images.
Similarly, Example 2 is reported in Figure 5.19 showing the Ne = 10 illuminant
candidates, in Figure 5.20 showing the N = 4 retrieved illuminants, and in
Figure 5.21 displaying the original and corrected images.

These two examples illustrate two important aspects. The first one is that
our method cannot discriminate, for example, an incandescent light from a flu-
orescent illuminant having a similar white-point, that is, it cannot discriminate
metameric illuminants. This is illustrated by Example 1: The reddish fluores-
cent TL83 is estimated as an incandescent, as displayed in Figure 5.17(a). The
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(a) N = 2 Np = 6, eang � 3◦ for 46.9%

(b) N = 3 Np = 6, eang � 3◦ for 47.8%

(c) N = 4 Np = 6, eang � 3◦ for 49.2%

Figure 5.14: Angular error distributions corresponding to Table 5.11. The algo-
rithm was run using artificial illuminants and MacBeth reflectances, by testing all
illuminant combinations. The x-axis represents the angular error eang in sRGB ex-
pressed in degrees. The y-axis represents the image count. The error distributions
for the Munsell and Natural reflectances are in Section F.4.3.
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Figure 5.15: The six patches used to retrieve the illuminants in the series of
images displayed in Figures 5.18 and 5.21 are indicated by the red rectangles.

angular error between the real (red dashed line) and retrieved (solid blue line)
illuminants is only 2.83◦, despite the very different reflectance spectra. Also,
the corresponding image after correction (Figure 5.18(b)) is properly white-
balanced.

The second aspect concerns the sampling of illuminants spectra, namely
that 31 samples may not be sufficient to accurately represent the spectral power
distributions of fluorescent illuminants, due to the loss of information caused by
the approximation by 31 samples. This is especially visible for the illuminants
TL83 and TL84 represented by Figures 5.17(d), 5.20(a), and 5.20(d). For
instance, the height of the peak of TL84 at 550 nm is strongly reduced and
the smaller peak around 440 nm practically disappears. The actual lightbooth
illuminants (Figures 5.17 and 5.20, indicated by dashed red lines) measurements
are sampled at 1 nm intervals, i.e., represented by 301 points. Their 31 samples
versions are represented in Figures 5.16(a) to (d). Our current model is thus
not well adapted for fluorescent illuminants, as the downsampling of illuminant
spectra causes all peaks whose width is smaller than 10 nm to disappear, while
they may have a significant influence in the illuminant chromaticity. Still, the
resulting spectra allow the images to be properly white-balanced.

5.3.7 Reflectances
While our aim is primarily to recover illuminant spectra, we also recover an
estimate of the reflectances of the surfaces selected to run our algorithm. Fig-
ure 5.22 shows an example of the resulting reflectance spectra of the Np = 6
surfaces used in the simulation using MacBeth reflectances and NE = 4 stan-
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(a) Fluorescent TL83 (b) Fluorescent D65 (c) Incandescent A

(d) Fluorescent TL84 (e) No. 4 (f) No. 16

(g) No. 15 (h) No. 31 (i) No. 17

(j) No. 26

Figure 5.16: Test illuminants used in Example 1. Illuminants (a) to (d) are the
lightbooth illuminants. The other illuminants are numbered according to their
description reported in Table F.4. The resulting images and illuminant spectra are
shown in Figures 5.18 and 5.17, respectively.
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(a) Lightbooth fluorescent TL83 (dashed). (b) Lightbooth fluorescent D65 (dashed).

(c) Lightbooth incandescent A (dashed). (d) Lightbooth fluorescent TL84 (dashed).

Figure 5.17: Resulting illuminants for Example 1. The real and retrieved illu-
minants are represented by the red dashed lines and solid blue lines, respectively.
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(a) Original fluorescent TL83 (b) Color corrected, eang = 2.83◦

(c) Original fluorescent D65 (d) Color corrected, eang = 16.02◦

(e) Original incandescent A (f) Color corrected, eang = 0.02◦

(g) Original fluorescent TL84 (h) Color corrected, eang = 7.03◦

Figure 5.18: Lightbooth images used in Example 1 and 2. The images in the
right column are corrected using the retrieved illuminants displayed in Figure 5.17.
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(a) No. 34 (b) No. 13 (c) No. 12

(d) No. 17 (e) No. 10 (f) No. 33

(g) No. 34 (h) No. 2 (i) No. 28

(j) No. 15

Figure 5.19: Test illuminants used in Example 2. The illuminants are numbered
according to their description reported in Table F.4. The resulting images and
illuminant spectra are shown in Figures 5.21 and 5.20, respectively.



122 Chapter 5.

(a) Lightbooth fluorescent TL83 (dashed). (b) Lightbooth fluorescent D65 (dashed).

(c) Lightbooth incandescent A (dashed). (d) Lightbooth fluorescent TL84 (dashed).

Figure 5.20: Resulting illuminants for Example 2. The real and retrieved illumi-
nants are represented by the red dashed lines and solid blue lines, respectively.
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(a) Original fluorescent TL83 (b) Color corrected, eang = 2.03◦

(c) Original fluorescent D65 (d) Color corrected, eang = 16.05◦

(e) Original incandescent A (f) Color corrected, eang = 2.83◦

(g) Original fluorescent TL84 (h) Color corrected, eang = 6.73◦

Figure 5.21: Lightbooth images used in Examples 1 and 2. The images in the
right column are corrected using the retrieved illuminants displayed in Figure 5.20.
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dard daylight illuminants (Section 5.3.1). We also computed the equivalent
CIELAB errors ΔE∗ab under D65 between the actual and average retrieved re-
flectance spectra that we reported below each plot in Figure 5.22. The curves
were normalized such that their maximum over all six is 1 for all illuminants.
They correspond to the set of surfaces and illuminants yielding to the low-
est angular error eang. We see that the four retrieved reflectances, indicated
by the superimposed solid lines, match. The actual MacBeth reflectances are
represented by the dashed lines. Similar plots for the Munsell and Natural
reflectance spectra can be found in Section F.4.9, as plot for measured daylight
illuminants.

5.4 Discussion
We proposed to solve for color constancy using a set of images containing
a small number of redundant surfaces. This framework corresponds to fixed
location cameras, which take images presenting static background elements.
We assume that these elements’ reflectances, though unknown, remain constant
across images. We invert a series of image formation models in parallel for a
set of test illuminants and, by forcing the output reflectances to match, and
deduce the illuminants under which each image was captured. These redundant
elements are modeled by synthetic RGB patch values. We demonstrate the
validity of our method using such patches generated with standard daylight,
real daylight, and artificial illuminants.

We first present a method to retrieve the illuminants from a limited set of
candidate spectra: we compute reflectances by inversion of a series of images
formation models from synthetic RGB values for all possible illuminants per-
mutations successively, and select the one for which the output reflectances are
the closest, i.e., minimize an error function fe. The main advantage of this
approach is that it does not require linear models to represent illuminant spec-
tra and can thus be applied to all types of illuminants. A robust estimation
necessitates a large and varied candidates database, which causes the number
of operations to grow rapidly. Moreover, it also increases with the number of
images in the set, as the number of tested combinations

(
Ne
NE

)
NE !, where NE is

the number of illuminants and Ne the size of the test set, grows exponentially.
The second optimization method does not require a predefined set of illumi-

nants, because the error function fe measuring the surface reflectance similarity
is redefined by different variables when a different type of illuminants is con-
sidered. Standard daylight illuminants were indexed using one parameter and
real daylight illuminants were described by either two or three parameters; the
illuminants were then retrieved by performing a gradient descent on the error
function.

Daylight illuminants

Our method provides good results for both standard and real daylight illu-
minants. Standard illuminants estimated by gradient descent (method No. 2)
exhibit median angular errors under 3◦ for NE � 2. Real illuminants were
estimated with median angular errors of 1◦ by testing combinations of illumi-
nants (optimization method No. 1) with as little as NE = 3 illuminants and
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 5.43 (c) ΔE∗ab = 3.44

(d) ΔE∗ab = 2.03 (e) ΔE∗ab = 2.48

(f) ΔE∗ab = 0.54 (g) ΔE∗ab = 6.61

Figure 5.22: Plots (b) to (g) represent the reflectance estimated through the
illuminant retrieval. These results were obtained using MacBeth reflectances and
standard daylight illuminants (Section 5.3.1). They correspond to the lowest an-
gular error eang.



126 Chapter 5.

with median angular errors under 3◦ by gradient descent (optimization method
No. 2) with as little as NE = 4 illuminants and Np = 6 surfaces. We observed
that the estimation becomes more robust as the number of illuminants NE
increases. There are failing cases and the angular error can be as large as
100◦, meaning that the descriptors leave the range of “reasonable” values and
the algorithm returns spectra that do not represent any realistic illuminants,
which happens if the step size ε or the adaptation rate α are too large. The
minimization by gradient descent on fe = fe(ε1, ε2, ε3) also showed good per-
formances in the presence of shot noise. It also generally outperformed the
results obtained with the single light algorithm shades of gray, especially in
the presence of shot noise. However, the performance of the minimizations on
fe = fe(θ) and fe = fe(θ, φ) decreases rapidly in the presence of noise. It must
be emphasized that we did not impose any positivity or shape constraint on
the illuminant and reflectance spectra, but only set the initial descriptors to be
representative of actual illuminants, such as initializing all illuminants to D65.
The range of typical values for each descriptors is known, hence these cases
failing due to convergence issues can be detected, and the estimation rerun
with new parameters.

Artificial illuminants

Artificial illuminants were retrieved through method No. 1, i.e., testing illumi-
nant combinations from a set of illuminant candidates. The experiments were
run on synthetic images and on four lightbooth images. The resulting median
angular errors are significantly larger than with daylight illuminants, but re-
main under 4◦ when considering NE = 4 synthetic illuminants. Applying our
method to lightbooth images meets two important issues: Firstly, the current
method returns an illuminant having a similar white-point as the actual illumi-
nant, but not necessarily having a spectrum with the same features, such as a
reddish fluorescent light approximated by an incandescent illuminant. In other
words, it cannot discriminate metameric illuminants. Secondly, real fluores-
cent illuminants cannot be approximated accurately by 31 wavelength samples
ranging from 400 mn and 700 nm. Many fluorescent spectra have peaks whose
width is smaller than 10 nm that will not be represented in their downsampled
version, while they may contribute significantly to the color of the illuminant.

General results

Method No. 1 provides good results with a small number of illuminants, but
becomes computationally intensive as NE increases. The quality of the estima-
tion depends on the content and size of the illuminant candidates database and
is thus best adapted to small images sets. Method No. 2, on the contrary, is
applicable for a larger number of images and provides good results for NE � 4.
The results obtained by gradient descent may be improved with a better choice
of parameters, as the gradient descent used fixed step size ε and adaptation
rate α. These values could potentially be adapted dynamically, allowing a
faster and better convergence and lead to even more favorable results.

This method presents most similarities with (D’Zmura and Iverson 1993a,
D’Zmura and Iverson 1993b) presented in Section 2.7 and Appendix B: The
authors combined RGB values for a set of surfaces as viewed under several
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illuminants into one system of linear equations, where the illuminant and re-
flectance spectra are expressed with linear models. They first recover the re-
flectance descriptors by inversion of this system of equations and then take the
obtained reflectances to compute the illuminant descriptors by inversion of a
simple image formation model. This two-stage recovery method can only be
applied with specific numbers of illuminant and reflectance descriptors, namely
Nε � Nρ and Nσ � Np, where Nρ is the number of channels of the imaging
device. The principal comparative advantage of our method is that it only im-
poses weak constraints on the number of images N , reflectance descriptors Nσ,
and surfaces Np. While the quality of the illuminant estimation will depend on
these parameters, the formalism presented here can be applied to any NE � 2,
Nσ � 3, Np � 1, and Nε � 1. In this thesis we have presented results for
a limited number of illuminant descriptors Nε � 3, but the gradient descent
formalism remains applicable when Nε > 3. Furthermore, constraints on the
number of illuminant descriptors can be avoided by using the first optimization
method. Our method is also much more robust to noise. The main comparative
disadvantage is that our method requires many iterations, and is thus slower.

5.5 Summary
We presented a method allowing to retrieve N illuminants in a set of N images
containing a limited number of redundant surfaces. This framework corre-
sponds to fixed location cameras, which take images with changing dynamic
content, but also containing static background elements. We assume that the
reflectance properties of these surfaces, while unknown, remain constant across
the images, which allows us to retrieve the illuminant spectra. For each of the
surface RGB, we can compute pairs of illuminant and reflectance spectra giving
rise to these values. By forcing the reflectance spectra of the redundant image
elements to match, we can deduce the illuminant in each image.

We defined an error function that measures the surface reflectance similarity
as a function of the N test illuminants and we presented two optimization
methods. The first method considers a limited set of illuminant candidates
and tests all combinations from this set. The image illuminants are selected as
the combination minimizing the error function. The second method minimizes
the error function by gradient descent. We expressed the illuminants using one,
two, or three descriptors and applied it to daylight illuminants, which can be
accurately represented by a sum of three basis functions. We could estimate
the illuminants with an angular error under 3◦ with as little as N = 6 images
and Np = 6 surfaces. Our method imposes few constraints on the different
parameters and can be applied with only N = 2 images, Np = 1 surface in
each images, and Nσ = 3 reflectance descriptors. There is no theoretical upper
limit on these parameters other than the increasing computation cost.
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Chapter 6

Conclusion

This thesis covers two quite different projects, which are actually two sides
of the same problem, namely to know which illuminant and reflectance infor-
mation can be extracted from images containing some additional redundant
knowledge.

6.1 Color assessment from uncalibrated images

6.1.1 Summary
The first project, presented in Chapters 3 and 4, tackles the problem from a
practical point of view. The application at hand, namely to give color advice
from standard RGB images in consumer oriented services, requires an accurate
color correction method that is simple to use, that does not demand any specific
training of the customer, and that is inexpensive and fast. Basically, the system
works as follows: a customer images an object using a cell phone integrated
camera and sends the picture to a server where image information is extracted
and exploited in order to return consistent advice. The constraints must be
minimal for the user, who should not have any difficulty employing the system
and should not need any sophisticated equipment or training.

The solution is to provide the customer with a target designed specifically
for the application that s/he must image along with the object of interest. The
target patches are compared with reference colors allowing the computation of
a transform that accurately corrects the object color. We have demonstrated
in the specific case of a makeup advice application that this method can be
successfully applied to small ranges of colors, such as skin tones, which can
be corrected with a precision of ΔE∗ab < 1. The experiment was run on a set
of images of 53 subjects, whose skin spectra was also measured. Face colors
derived from images were shown to correlate well with spectrally derived values.
We have also demonstrated that face colors can be consistently assessed across
cameras from various manufacturers and of different qualities and resolutions,
without bypassing the in-camera processing.

The method was modified to be extended to any arbitrary color by using
several targets instead of one and applied to the specific case of a Home Décor
application providing users with a set of colors complementing the one of a
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decoration object. We designed a set of nine targets covering all hues and
collected a set decoration items samples of various colors and materials. Each
sample was imaged with a target consisting of similar reference colors that were
employed to compute a linear correction transform. The corrected pixels were
then matched with a paint samples database. An expert was asked to rate the
quality of the system’s pick for each sample, which were generally qualified as
really good.

The results underlined an important requirement for the correction to be
accurate: the object color must be “close enough” to the reference ones. We
propose a method to quantify this distance by comparing the volume spanned
by the reference values alone in sRGB with the one spanned by the reference
values and the object’s. Furthermore, results suggest that the accuracy of
the color transform is roughly inversely proportional to the range of colors
considered. Indeed, the hue angle spanned by the skin tones is roughly half
of the one spanned by each of the Home Décor application targets and the
correction accuracy estimated on the skin patches is twice as good in terms of
CIELAB differences.

6.1.2 Future research
We have demonstrated the feasibility of the color assessment method in the
framework of two specific applications. Yet, there are many parameters whose
individual influences are not clear. For instance, in the case of the skin color
assessment application, the image derived face color depends strongly on the
quality of the skin pixels extraction. Similarly, in the case of the Home Décor
application, the color is dependent on the material texture and uniformity.
While the results are satisfying from a practical point of view, in the sense that
the system returns adequate advice, which is sufficiently good for the studied
applications, it would be interesting to set a framework in order to estimate
the influence of each factor individually, such as the extent and sampling of
the reference gamuts without being tributary of the uncontrolled errors due to
materials’ textures or faces’ shadows.

The application itself can also be improved: we compared the relative po-
sitions of objects colors with respect to the reference ones to qualify the image
correction, but it could also be employed to return feedback to the user, such as
detecting when the calibration target is not adapted and guiding in the choice
of the appropriate one. Furthermore, we only used average face and object val-
ues, while the distribution of the pixels could also be exploited. For example, if
they exhibit an important variance, this should be interpreted as a nonuniform
object. If this turns out to be robust enough, it could even be used to identify
the dominant color and discard the others. Clipping of object pixels should
also be detected by examining the pixels distribution.

While face detection is performed using a Viola-Jones algorithm (2001), we
have not addressed the detection of objects in the Home Décor application.
Due to the variety of shapes and sizes we may encounter, robust automatic
detection of objects will be difficult and the simplest alternative is to have a
cut-out in the target that exposes the object.

The design and the number of the targets can be modified; for instance,
we used solely 9 targets to cover “all colors” in order to obtain a system that
is suitable for an untrained customer in the perspective of commercial and
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mobile applications. Still, we could think of other versions of this system for
professionals that would be slightly more complex and may require a minimal
training. It is reasonable to think that with a higher number of targets, a good
quality consumer camera, a more sophisticated computer software, and eventu-
ally a partial control on the illuminant, high accuracy color assessment can be
achieved, which could be employed in applications designed for professionals in
various domains such as dermatology, medicine, Home Décor, clothing advice,
etc.

6.2 Illuminant retrieval for fixed location cameras
6.2.1 Summary
We developed the second method in a theoretical framework corresponding to
the context of fixed location cameras, such as a surveillance or panorama ones,
that capture images containing static elements. While the illuminant and the
dynamic scene content vary, we assume that there will be constant background
objects present in all the images. We model their surface’s pixel values by
synthetic RGB ones to demonstrate that, under the assumption that the re-
flectances of these surfaces remain constant, we can retrieve the illuminants in
a set of images. This is achieved through the minimization of an error func-
tion that measures the similarity between the descriptors of the surfaces across
the image set as a function of the test illuminants. The function reaches its
minimum when the reflectances of the static objects match across all images.

We proposed two error minimization methods. The first solution is simply
to evaluate the error function for a set of illuminant candidates permutations
and return the one minimizing the error. With this approach, the resulting
median angular error is of about 1◦ when three or more images built using
standard or real daylight illuminants are considered. We proposed another
method better adapted for larger sets of images and suggested to minimize
the error by a gradient descent on the illuminant descriptors. The daylight
illuminants were described using one, two, or three descriptors. The resulting
median angular error falls under 3◦ when six or more real daylight illuminants
are considered.

Our illuminant estimation method by gradient descent uses linear mod-
els to represent illuminant and reflectance spectra, but with the advantage of
not imposing upper limits on the number of their descriptors. The frame-
work developed here can thus be to extended linear models of arbitrarily high
dimensions.

6.2.2 Future research
The gradient descent method returned satisfying results, but the algorithm it-
self can be improved. We have indeed used fixed gradient descent parameters,
namely fixed adaptation rate and step size, while a more sophisticated ver-
sion with adaptive parameters should yield to a faster convergence and maybe
even more favorable results. Furthermore, we have limited the gradient de-
scent to daylight illuminants and defined error functions as variables of up to
three parameters. The same formalism can be applied to a higher number of
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illuminant descriptors, in which case convergence should be investigated. If
these experiments return positive results, the method could be applied to non-
daylight illuminants, which require to be represented by more than three basis
functions.

We have set the theoretical framework and validated the approach through
experiments on synthetic RGB values. To be applicable in practice, this should
also be tested using real images, which rises several issues, namely variation
of intensity across the images, mixed illuminants, shadows, and specularities.
Mixed illuminants in particular are an issue in the case of a 360◦ panoramas,
where there will be mixtures of illumination conditions such as direct sunlight
and indirect skylight. The current version of the algorithm should be robust
towards variations in illumination intensity, which is taken care of by simply
normalizing the RGB responses. It should also be possible to detect mixed
illuminants and shadows by comparing the RGB values of the redundant objects
across all the images. Indeed, the ratio of the red, green, and blue components
will change if shadows or different illuminants are projected onto some of the
static image elements, whereas in the case of a uniform illumination, their
relative amplitudes should be constant. Changes in the ratios of the RGB
components of two objects can thus be interpreted as a change in illumination.
While this would help detecting mixed illuminants, it would not discard their
influence. Another approach is to take supplementary information into account,
such as the time of the day, to predict the position of shadows, which would
greatly increase the complexity of the current method.



Appendix A

CIECAM02 model

In this section, we report a summary of derivation of the color appearance
model CIECAM02 (Moroney et al. 2002, CIE 2004), based on Fairchild (2005).

Input data for the CIECAM02 model includes:

• Relative tristimulus values of the test stimulus XYZ

• Relative tristimulus values of the white point XwYwZw

• Adapting luminance, often taken to be 20% of the luminance of a white
object in the scene, LA in cm/m2

• The relative luminance of the surround (dim, dark, average)

• A decision whether to discount the illuminant.

The relative luminance of the surround sets the values of an exponential non-
linearity c, of the chromatic induction factor Nc, and of the maximum degree
of adaptation F (see Table A.1).

Output data of the CIECAM02 model includes:

• Hue

• Lightness

• Brightness

• Chroma

• Colorfulness

Viewing conditions c Nc F
Average surround 0.69 1.0 1.0
Dim surround 0.59 0.9 0.9
Dark surround 0.525 0.8 0.8

Table A.1: Input parameters for the CIECAM02 model.
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• Saturation

• Equivalent cartesian coordinates.
The first step is a linear von Kries type chromatic adaptation transform

(Section 2.5) converting CIE XYZ tristimulus values to RGB responses based
on the transform matrix MCAT02 as⎛

⎝ RG
B

⎞
⎠ = MCAT02

⎛
⎝ XY
Z

⎞
⎠ , (A.1)

where

MCAT02 =

⎛
⎝ 0.7328 0.4296 −0.1624
−0.7036 1.6975 0.0061
0.0030 0.0136 0.9834

⎞
⎠ (A.2)

The degree of adaptation factor D is computed as

D = F
[
1− 1

3.6e
(−(LA+42)

92

)]
, (A.3)

where LA is the adapting luminance and F is chosen as reported in Table A.1.
The responses RGB computed from Equation (A.1) are converted into adapted
tristimulus responses RCGCBC

RC = [(YwD/Rw) + (1−D)]R (A.4)
GC = [(YwD/Gw) + (1−D)]G (A.5)
BC = [(YwD/Bw) + (1−D)]B , (A.6)

where the Y tristimulus value of the white is generally Yw = 100.
A series of factors must be now computed, namely the luminance-level adap-

tation factor FL, the induction factors Nbb and Ncb, and the base exponential
nonlinearity z as follows:

k = 1
5LA + 1 , (A.7)

FL = 0.2k45LA + 0.1(1− k4)2(5LA) 1
3 , (A.8)

n = Yb
Yn
, (A.9)

Nbb = Ncb = 0.725
( 1
n

)0.2
, (A.10)

z = 1.48 +
√
n . (A.11)

The RCGCBC adapted responses must be converted from the MCAT02 spec-
ification to Hunt-Pointer-Estevez fundamentals (Hunt and Pointer 1985) that
more closely represent cone fundamentals as⎛

⎝ R′G′
B′

⎞
⎠ = MHPEM−1

CAT02

⎛
⎝ RCGC
BC

⎞
⎠ , (A.12)
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where

MHPE =

⎛
⎝ 0.38971 0.68898 −0.07868
−0.22981 1.18340 0.04641
0.00000 0.00000 1.00000

⎞
⎠ (A.13)

and

M−1
CAT02 =

⎛
⎝ 1.096124 −0.278869 0.182745

0.454369 0.473533 0.072098
−0.009628 −0.005698 1.015326

⎞
⎠ . (A.14)

Nonlinearities are then applied to the R′G′B′

R′a = 400(FLR′/100)0.42

27.13 + (FLR′/100)0.42 + 0.1 (A.15)

G′a = 400(FLG′/100)0.42

27.13 + (FLG′/100)0.42 + 0.1 (A.16)

B′a = 400(FLB′/100)0.42

27.13 + (FLG′/100)0.42 + 0.1 . (A.17)

These values are then used to compute opponent color responses (a, b)

a = R′a −
12G′a

11 + B
′
a

11 (A.18)

b = 1
9(R′a +G′a − 2B′a) . (A.19)

and the color appearance correlates. Hue is then computed as

h = arctan b
a
. (A.20)

It is measured in degrees counterclockwise from the positive a axis defined by
(A.18). An eccentricity factor is computed as

et = 1
4

[
cos
(
h
π

180 + 2
)

+ 3.8
]
. (A.21)

In order to compute lightness, one must first compute an initial achromatic
response A for nonlinear adapted cone responses and for the whiteAw according
to

A = [2R′a +G′a + (1/20)B′a − 0.305]Nbb . (A.22)

The lightness J is then computed as

J = 100
( A
Aw

)cz
. (A.23)

The brightness Q is computed as

Q = (4/c)
√
J/100(Aw + 4)F 0.25

L , (A.24)

where Aw is the achromatic response for white and c is the surround factor
determined from the relative luminance of the surround, the luminance-level
adaptation factor FL (A.8).
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In order to compute chroma C, an intermediate value t must be computed
as

t = (5 · 104/13)NcNcbet
√
a2 + b2

, R′a +G′a + (21/20)B′a , (A.25)

then
C = t0.9

√
(J/100)(1.64− 0.29n)0.73 . (A.26)

The colorfulness M is obtained from chroma as

M = CF 0.25
L (A.27)

and the saturation s is obtained from chroma and colorfulness as

s = 100
√
M/Q . (A.28)

The cartesian coordinates for the chroma, colorfulness, and saturation di-
mensions are given as

aC = C cos(h) (A.29)
bC = C sin(h) (A.30)
aM = M cos(h) (A.31)
bM = M sin(h) (A.32)
as = s cos(h) (A.33)
bs = s sin(h) . (A.34)

The inverse model is summarized in the following procedure:

1. Calculate t from C and J .

2. Calculate et from h.

3. Calculate A from Aw and J .

4. Calculate a and b from t, et, h, and A.

5. Calculate R′a, G′a, and B′a from A, a, and b.

6. Use the inverse nonlinearity to compute R′, G′, and B′.

7. Convert to RC , GC , and BC , via linear transform.

8. Invert the chromatic adaptation transform to compute R, G, and B and
then X, Y , and Z.

More detailed guidelines can be found in (CIE 2004).
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Two-stage linear recovery for
bilinear models

In (D’Zmura and Iverson 1993a), the authors use the information of several
surfaces viewed under several illuminants to solve for color constancy. By
combining this information into one system of equations, they retrieve the
reflectance and illuminant descriptors. In this section, we present the derivation
their model and its resolution.

Bilinear model for a single view of a single surface

The authors use linear models for reflectance and illuminant spectra (Section
2.6), which are expressed respectively as

S(λ) =
Nσ∑
j=1
σjSj(λ) (B.1)

and

E(λ) =
Nε∑
i=1
εiEi(λ) . (B.2)

They also designate the light reflected from a surface by L(λ)

L(λ) = E(λ)S(λ) =
Nε∑
i=1

Nσ∑
j=1
εiσjEi(λ)Sj(λ) (B.3)

and write the sensor responses, that they refer to as “quantum catches,” as

ρk =
∫
Rk(λ)E(λ)S(λ)dλ =

∫
Rk(λ)

{ Nε∑
i=1

Nσ∑
j=1
εiσjEi(λ)Sj(λ)

}
dλ . (B.4)

They define the Nρ ×Nε bilinear model matrices Bj with entries

(Bj)ki =
∫
Rk(λ)Ei(λ)Sj(λ)dλ, j = 1, . . . , Nσ . (B.5)
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The Nρ rows are indexed by k, the number of sensors, and the Nε columns are
indexed by nε, the number of illuminant descriptors. There are Nσ matrices
Bj , one for each reflectance basis function. The kth sensor response to a surface
viewed under one illuminant, referred as “one view of one surface,” is written
as

ρk =
Nσ∑
i=1

Nε∑
j=1
σj(Bj)kiεi . (B.6)

Bilinear model for multiple views of multiple surfaces

When considering multiple (NE) views of multiple (Np) surfaces, the response
of the kth sensor produced by the nthp surface viewed under the nthE illuminant
is given by

ρnpnEk =
Nσ∑
i=1

Nε∑
j=1
σnpj(Bj)kiεnEi . (B.7)

Let us introduce the Nρ-dimensional “data vector”

dnpnE = [ρnpnEk, . . . , ρnpnENρ ]T (B.8)

and the Nε-dimensional vector

εnE = [εnE1, . . . , εnENε ]T . (B.9)

For all np = 1, . . . , Np and nE = 1, . . . , NE , (B.7) can be rewritten in the
matrix form

dnpnE =
Nσ∑
j=1
σnpjBjεnE . (B.10)

Let us now define the NρNE entries vector

dnp = [dTnp1 . . .dTnpNE ] , (B.11)

the NεNE entries vector
ε = [εT1 . . . εTNE ] , (B.12)

and the NρNE ×NεNE block diagonal matrices whose NE blocks are Bj

Cj = diag[Bj , . . . ,Bj ] . (B.13)

Equation (B.10) becomes

dnp =
Nσ∑
j=1
σnpjCjε . (B.14)

Two-stage linear recovery procedure

For simplicity, the authors treat the case where Np = Nσ and Nρ = Nε and
extend it to Np > Nσ afterwards. The matrices Bj and Cj are thus square.
Let us consider the square matrix R formed by the reflectance descriptors σnpj
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and designate the entries of its inverse R−1 by σ̃jnp . Eq. (B.14) becomes

Np∑
np=1
σ̃jnpC−1

j dnp = ε (B.15)

The surface sensor responses dnp are combined in a NρNe×Nσ “data matrix”

D = [d1 . . .dNσ ] (B.16)

and the inverse reflectance σ̃jnp into the Nσ entries column vectors containing
the inverse reflectance

σ̃j = [σ̃j1 . . . σ̃jNσ ]T . (B.17)

The system (B.15) becomes

C−1
j Dσ̃j = ε, j = 1, . . . , Nσ . (B.18)

If we now define the NρNE ×Nσ matrices Fj as

Fj = C−1D, j = 1, . . . , Nσ , (B.19)

it can be written as
F1σ̃1 = . . . = FNσ σ̃Nσ = ε (B.20)

or equivalently as

F1σ̃1 − F2σ̃2 = . . . = F1σ̃1 − FNσ σ̃Nσ = 0 . (B.21)

The last formula can be rewritten in the form of a homogeneous system of
equations as follows

Fσ̃ = 0 , (B.22)

where F is the (Nσ − 1)NρNE ×N2
σ matrix

F =

⎛
⎜⎜⎜⎝

F1 −F2 0 . . . 0
F1 0 −F3 0
...

. . .
F1 0 −FNσ

⎞
⎟⎟⎟⎠ (B.23)

and σ̃ is a N2
σ-dimensional column vector given by

σ̃ = [σ̃T1 . . . σ̃TNσ ] . (B.24)

The reflectance descriptors are computed by inversion of the linear system
(B.22) returning the inverse reflectance descriptors σ̃j followed by the inver-
sion of the matrix R−1. The illuminant descriptors contained in ε are then
computed as

Fjσ̃j = ε (B.25)

for any j ∈ [1, Nσ].
In the case where Np > Nσ, the matrices Bj are not square anymore and

the system cannot be solved as presented above. This can be solved by simply
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adding entries to the matrices Bj to make them square. These supplementary
entries must be linearly dependent to the existing columns.



Appendix C

Supplementary material for
Chapter 3

C.1 Images of the subjects’ faces
The images of the 53 subjects studied in Chapter 3 are presented in the fol-
lowing pages. The images are taken with a HP 850 camera under uncontrolled
illumination conditions. Each figure shows the uncorrected image (left) and
the image corrected with a color transform computed using the 16 skin colored
patches (right).
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C.2 γvar values for Section 3.4.2

Figure C.1: γvar for, from top two bottom, the HP 850, Canon S400, Nikon
D1, and Nokia 6820 cameras and for, from left to right, the red, green, and blue
channels.
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C.3 Kruskal-Wallis p-values for Section 3.4.2

HP Canon Nikon Nokia
HP 0.040 2.446 · 10−08 6.017 · 10−13 0
Canon 1.942 · 10−07 1.111 · 10−03 1.419 · 10−11 0
Nikon 3.052 · 10−11 7.566 · 10−08 0.012 5.932 · 10−05

Nokia 2.220 · 10−16 0 1.055 · 10−13 0.872

Table C.1: p-values for the comparison of the transform computed with nonlinear
sRGB (NL) values against the one computed with linear sRGB (L1, γ = 2.4).

HP Canon Nikon Nokia
HP 0.707 5.787 · 10−11 2.801 · 10−11 0
Canon 1.833 · 10−03 3.771 · 10−08 9.157 · 10−08 0
Nikon 4.754 · 10−10 5.392 · 10−07 2.319 · 10−07 1.813 · 10−04

Nokia 1.110 · 10−16 0 0 0.607

Table C.2: p-values for the comparison of the transform computed with nonlinear
sRGB (NL) values against the one computed with linear sRGB (L2, γvar).

HP Canon Nikon Nokia
HP 0.029 3.250 · 10−07 9.117 · 10−13 1.110 · 10−16

Canon 6.148 · 10−13 1.483 · 10−03 6.490 · 10−08 0
Nikon 3.606 · 10−13 3.102 · 10−03 2.935 · 10−07 0
Nokia 2.220 · 10−16 0 4.149 · 10−13 0.665

Table C.3: p-values for the comparison of the transform computed with linear
sRGB (L1, γ = 2.4) values against the one computed with linear sRGB (L2, γvar).
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Historical review of color
harmony theories

Color harmony is defined as two or more colors seen in neighboring areas that
produce a pleasing effect (Judd and Wyszecki 1975). While this defines color
harmony, it does not explain how such harmonies can be created. This section
presents a short historical review of different color harmony theories.

Figure D.1: Newton arranged the spectral colors on a hue circle. Missing colors
are those obtained by mixtures of red and blue. Source: Westland et al. (2007).

Newton first understood that white light could be separated into a set of
monochromatic colored components using a prism. He rejected the widely
accepted Aristotle idea that all colors arise from black and white. He identified
seven spectral colors - red, orange, yellow, green, blue, indigo, and violet and
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noticed that the two ends of the visible spectrum were similar. He thus arranged
the spectral colors on a circle (see Figure D.1), which was not closed at the
time, as certain hues cannot be obtained with a single monochromatic light.
He also understood that this representation allowed to geometrically predict
hue and saturation of light mixtures. While he worked mostly with additive
mixtures of lights, artists worked with subtractive mixtures of pigments. It
probably led to a confusion between the additive and subtractive mixtures
theories and to the many primary colors definitions and resulting hue circles.
The basic idea of a color wheel is the arrangement of opposed hues on a circle.
Nowadays, it is known that the optimal additive and subtractive primaries
are respectively red, green, and blue, and yellow, cyan, and magenta. These
primaries are not a consequence of the physical properties of light, but are
due to the physiological response of the human visual system. Secondary hues
of the additive RGB color system are hues obtained by adding two primaries:
yellow is red+green, magenta is red+ blue, and cyan is green+ blue. Tertiary
hue refers to hues created by mixing a primary and a secondary hue or two
secondary hues. Depending on the context, the term primary is also used to
indicate the psychovisual primary hues or pure hues red, green, yellow, and
blue.

Goethe (1810), known as one of the pioneers of color harmony theory, com-
pletely rejected Newton’s work and objected that science and mathematics
could not explain colors1. He believed that harmonious colors must be opposed
to each other on a hue circle and conceptualized the concept of completing col-
ors - named complementary colors nowadays.

Chevreul (1839) created a circle composed of 64 hues derived from three pri-
mary hues, red, yellow, and blue2. He identified two types of color harmonies:
analogous harmonies consist of colors having either neighboring lightness and
saturation and the same hue or neighboring hue and the same lightness and
saturation; contrasted harmonies consist of colors having either lightness and
saturation far apart and the same hue or hue far apart and the same lightness
and saturation. He seems to be the first to have used contrasts of lightness and
saturation in addition to contrasts of hues.

Munsell, Ostwald (1916), and Itten (1961) are three important contributors
from the early 19th century. Their work has in common that color harmonies
are defined using either a color solid or a color order system to represent geo-
metrical relations between colors. Munsell (1905) developed a color represen-
tation system based on the perceptual attributes of colors: hue, chroma, and
lightness. His system is a solid formed by approximately perceptually spaced
colored samples, the Munsell Colors. The central vertical axis represents achro-
matic colors ordered uniformly by increasing lightness, named Munsell Value.
Colored samples are ordered such that their chroma, named Munsell Chroma,
increases when they are placed further away from the achromatic axis. Each
“wedge slice” of the solid represents a hue. The samples were presented in a
book: one hue per page and ordered by increasing chroma - from left to right
- and increasing lightness - from bottom to top. The solid formed by the color
samples corresponds to real colors and is thus not symmetrical. A saturated

1Newton was actually accused to have destroyed the beauty of the rainbow by explaining
the origin of its colors and supposedly inspired John Keats’ poem, Lamia.

2Artists’ primaries are still red, yellow, and blue, probably historically due to the colors
of available pigments.
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yellow is indeed lighter that an equally saturated blue, as shown in Figure D.2.

Figure D.2: Example of Munsell hues: colors are ordered from left to right by
increasing chroma and from bottom to top by increasing lightness. Munsell solid
is not symmetrical. Source: Malacara-Hernandez (2002)

The success of the Munsell system is in the description of colors in terms of
their perceptual attributes in a uniform color system. Munsell also defined rules
for color harmonies using paths in the space defined by his ordering system.
He also defined the “strength” of a color as the product of its Munsell chroma
and value. He also suggested that if a color is stronger than another, its area
should be inversely proportional to its strength for the two colors to remain
balanced.

Moon and Spencer (1944) attempted to provide a formal framework for
the existing color harmony theories. They took advantage of the then recent
advances in colorimetry and used Munsell colors CIE XYZ tristimulus values
(Section 2.4.1) to specify color harmonies rules geometrically. They introduced
a Euclidian metric on an ω-space and transformed (X,Y,Z) coordinates into
the cylindrical coordinates (ω1 = r cos θ, ω2 = z, ω3 = r sin θ) that they sup-
posed to correlate with chroma (r), lightness (z), and hue (θ). They tested
various color harmony schemes defined by varying one, two, or three of the
variables ω and by descriptions such as “points on a straight line” or “n points
on a circle with center on neutral axis.” This experiment was not very success-
ful and may have produced better results using a perceptual color space such
as CIELAB created three decades later.

In contemporary color theories, several color combinations based on 12 hues
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Figure D.3: Most contemporary color theories agree on several basic combinations
of 12 tertiary hues.

are commonly accepted as harmonious (refer to Figure D.3):

Monochromatic harmonies consist of colors having the same hue.

Complementary harmonies consist of colors having opposed hues (e.g., hues
1 and 7).

Analogous harmonies consist of colors having similar hues (e.g., hues 1, 2,
and 3).

Split-complementary harmonies consist of two colors of similar hues facing
a third color (e.g., hues 1, 6, and 8).

This summarizes the commonly accepted codes of color harmony. However,
these rules do not take into account the more subjective aspects of color, such
as emotion or symbolism. Red, orange, and yellow are generally considered as
warm colors and associated warmth, fire, or even blood and anger. Blue, purple,
and green are considered as cool colors and are associated with calm, air, or even
cold and indifference. Some believe that color and color associations have an
influence on our mood and health. It must also be noted that we reviewed color
harmony theories from an occidental point of view, whereas color symbols can
be completely different in other cultures. For example, Chinese brides marry
in red; white, the color of mourning, would certainly be inappropriate for a
wedding.



Appendix E

Supplementary material for
Chapter 4

E.1 Images of decoration samples and complement-
ing color palettes

The 63 decoration samples used in Chapter 4 are presented in the following
pages. The images were taken under fluorescent light with a HP R-967 cam-
era. Each figure represents the uncorrected image (left), the corrected image
(middle), and the palette returned by the system. Each palette contains four
paint samples, the top left color corresponds to the color best matching the
samples as returned by the system (right). The palettes were generated from
paint reflectance spectra measured with an Eye-One Pro spectrometer used to
compute sRGB values. Under each image, we reported ΔV = Vt+o−Vt

Vt
(4.3)

giving an estimate of the distance between the reference target values and the
object’s color and the grade assigned by the expert to the system’s match.

Figure E.1: ΔV = 0.21, grade = 2

157
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Figure E.2: ΔV = 0.01, grade = 1

Figure E.3: ΔV = 0.12, grade = 1

Figure E.4: ΔV = 0.01, grade = 1



E.1. Decoration samples and complementing color palettes 159

Figure E.5: ΔV = 0.31, grade = 1

Figure E.6: ΔV = 0.21, grade = 3

Figure E.7: ΔV = 0.48, grade = 1
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Figure E.8: ΔV = 0.02, grade = 1

Figure E.9: ΔV = 0.06, grade = 1

Figure E.10: ΔV = 0.00, grade = 1
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Figure E.11: ΔV = 0.01, grade = 2

Figure E.12: ΔV = 0.01, grade = 1

Figure E.13: ΔV = 0.06, grade = 2
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Figure E.14: ΔV = 0.00, grade = 1

Figure E.15: ΔV = 0.21, grade = 1

Figure E.16: ΔV = 0.00, grade = 2
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Figure E.17: ΔV = 0.00, grade = 1

Figure E.18: ΔV = 0.01, grade = 1

Figure E.19: ΔV = 0.00, grade = 2
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Figure E.20: ΔV = 0.10, grade = 1

Figure E.21: ΔV = 0.04, grade = 1

Figure E.22: ΔV = 0.00, grade = 2
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Figure E.23: ΔV = 0.20, grade = 1

Figure E.24: ΔV = 0.00, grade = 2

Figure E.25: ΔV = 0.07, grade = 3
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Figure E.26: ΔV = 0.00, grade = 1

Figure E.27: ΔV = 0.21, grade = 3

Figure E.28: ΔV = 0.20, grade = 5
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Figure E.29: ΔV = 0.00, grade = 3

Figure E.30: ΔV = 0.16, grade = 3

Figure E.31: ΔV = 0.00, grade = 1
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Figure E.32: ΔV = 0.09, grade = 5

Figure E.33: ΔV = 0.04, grade = 1

Figure E.34: ΔV = 0.17, grade = 4
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Figure E.35: ΔV = 0.29, grade = 3

Figure E.36: ΔV = 0.05, grade = 4

Figure E.37: ΔV = 0.00, grade = 2
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Figure E.38: ΔV = 0.01, grade = 1

Figure E.39: ΔV = 0.41, grade = 5

Figure E.40: ΔV = 0.04, grade = 5
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Figure E.41: ΔV = 0.19, grade = 2

Figure E.42: ΔV = 0.29, grade = 2

Figure E.43: ΔV = 0.09, grade = 2
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Figure E.44: ΔV = 0.14, grade = 1

Figure E.45: ΔV = 0.21, grade = 1

Figure E.46: ΔV = 0.31, grade = 1
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Figure E.47: ΔV = 0.27, grade = 1

Figure E.48: ΔV = 0.20, grade = 5

Figure E.49: ΔV = 0.05, grade = 1
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Figure E.50: ΔV = 0.04, grade = 5

Figure E.51: ΔV = 0.01, grade = 2

Figure E.52: ΔV = 0.01, grade = 3
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Figure E.53: ΔV = 0.00, grade = 1

Figure E.54: ΔV = 0.20, grade = 1

Figure E.55: ΔV = 0.00, grade = 2
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Figure E.56: ΔV = 0.00, grade = 2

Figure E.57: ΔV = 0.04, grade = 5

Figure E.58: ΔV = 0.07, grade = 2
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Figure E.59: ΔV = 0.12, grade = 4

Figure E.60: ΔV = 0.15, grade = 2

Figure E.61: ΔV = 0.00, grade = 1



178 Appendix E.

Figure E.62: ΔV = 0.15, grade = 3

Figure E.63: ΔV = 0.12, grade = 1
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Supplementary material for
Chapter 5

F.1 MatLab code
The algorithm for the illuminant retrieval method for fixed location cameras
presented in Chapter 5 consists of the following steps:

1. Select the illuminant type (standard daylight, real daylight, or artificial),
the number of images (or illuminants) N , and the number of patches Np.

2. Load the patch pixel values

(a) by loading an image and selecting manuallyNp patches in the images
(b) or by using MacBeth, Munsell, or Natural synthetic patches values.

3. Minimize the error function fe (5.12)

(a) by testing all combinations of N illuminants from a set of Ne illu-
minant candidates

(b) or by minimizing fe by gradient descent

4. Return the N illuminants minimizing fe.

It was coded in MatLab. Three main functions are used in the code:

• fnIllu2ReflDescriptors takes the illuminant descriptors ε, the pixel
values p, the illuminants basis functions E, the reflectance basis functions
S, and the camera sensitivities r as input and returns the reflectance
descriptors σ for the Np surfaces. The code is displayed below.

• fnRefl2rho_D65 takes the illuminants basis functions E, the reflectance
basis functions S, and the surface reflectance descriptors σ computed by
fnIllu2ReflDescriptors as input and returns the color responses pD65

of the surfaces viewed under the illuminant D65 (5.11) simply computed
as (5.10).

179
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• fnEuclidianErrorMultiImages takes the color responses pD65 of all sur-
faces computed by fnRefl2rho_D65 and returns the error (5.12) com-
puted over all pairs of images. The input argument PairedIndices is a
list of images (or illuminants) number pairs as they should be compared
in the double sum of the error function (5.12). For example, if N = 3, it
contains the pairs (1, 2), (1, 3), and (2, 3). The code is displayed below.

fnIllu2ReflDescriptors
1 function s = fnIllu2ReflDescriptors(e1, e2, e3, PixelValues, S, E, R)

2 NbReflDesp = size(S, 2);
3 NbPatches = size(PixelValues,1);
4 NbImages = size(PixelValues,2)/3;
5 s = zeros(NbReflDesp, NbPatches*NbImages);

6 n = 1;
7 while n <= NbImages
8 M = R’ *diag(Illu)* S(:,1: NbReflDesp);
9 pinvM = pinv(M);
10 for p = 1:NbPatches
11 s(:,p +(n-1)*NbPatches) = pinvM* PixelValues(p,3*n-2:3*n)’;
12 end
13 n = n+ 1;
14 end

fnEuclidianErrorMultiImages
1 function Error = ...

fnEuclidianErrorMultiImages(rho_D65, NbPatches, NbImages, PairedIndices)

% normalization (comment if needed)
2 rho_D65 = rho_D65./repmat(sqrt(sum(rho_D65.^2, 2)), 1, 3);

3 err_tmp = [];
4 for j = 1:size(PairedIndices,1)

% indices in rho_D65 that correspond to the paired images
5 p1 = PairedIndices(j,1); ind1 = (p1-1)*NbPatches + 1: p1*NbPatches;
6 p2 = PairedIndices(j,2); ind2 = (p2-1)*NbPatches + 1: p2*NbPatches;

% euclidian distance
7 err_tmp = [err_tmp; (rho_D65(ind1,:) - rho_D65(ind2,:)).^2];
8 end
9 Error = sqrt(sum(err_tmp(:)))/(NbPatches*NbImages);

For any set of N test illuminants indexed by Ek = (e1(k), ..., eN (k)), the
error fe (5.12) can be computed using these three functions. To find the illu-
minants combination Ek satisfying

arg min
k
fe(k) , (F.1)
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one must either compute fe(k) for a set of illuminant candidates and return k
for which fe is minimum or minimize fe by gradient descent.

Gradient descent
When fe is minimized by gradient descent, the illuminants are represented by
one angle θ (standard daylight illuminants), two angles (θ, φ), or the three
illuminants descriptors (ε1, ε2, ε3) (real daylight illuminants). The function
fnIllu2ReflDescriptors takes the illuminant descriptors (ε1, ε2, ε3) as input.
When the illuminants are expressed using polar angles, they must first be con-
verted into cartesian coordinates using a function fnCoordPolar2Cartesian
(line 3). Below is the portion of the code performing the gradient descent in
the case of standard daylight illuminants.

1 for j = 1:NbImages
% Error(Theta + deltaTheta)

2 new_theta = theta + eps(:,j);
3 [e1, e2, e3] = ...

fnCoordPolar2Cartesian(1, new_theta, pi/2-fnTheta2Phi(new_theta));
4 s = fnIllu2ReflDescriptors(e1, e2, e3, PixelValues, S, E, R);
5 rho_D65 = fnRefl2rho_D65(S, R, s);
6 Error_plus(j) = ...

fnEuclidianErrorMultiImages(rho_D65, NbPatches, NbImages, PairedIndices);
7 end
8 for j = 1:NbImages

% Error(Theta - deltaTheta)
9 new_theta = theta - eps(:,j);
10 [e1, e2, e3] = ...

fnCoordPolar2Cartesian(1, new_theta, pi/2-fnTheta2Phi(new_theta));
11 s = fnIllu2ReflDescriptors(e1, e2, e3, PixelValues, S, E, R);
12 rho_D65 = fnRefl2rho_D65(S, R, s);
13 Error_minus(j) = ...

fnEuclidianErrorMultiImages(rho_D65, NbPatches, NbImages, PairedIndices);
14 end

15 grad = Error_plus - Error_minus;

22 sign_grad_new = sign(grad);
23 theta = theta - (alpha.*grad)’;
24 if sum(abs(sign_grad_old-sign_grad_new))> 0
25 eps = 0.98*eps;
26 end
27 sign_grad_old = sign_grad_new;

Lines 22 and 24 to 27 help suppressing oscillations - detected by the change of
sign of grad - by reducing the norm of the gradient computation step size ε,
expressed by the variable eps in the code.

When the illuminant is expressed with polar and azimuthal angles (θ, φ),
the variable theta containing N × 1 angles θ is replaced by the variable
angle = [theta,phi] containing N angles θ and N angles φ and line 3 is
replaced by
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[e1, e2, e3] = fnCoordPolar2Cartesian(1, angle_new(1:NbImages), ...
pi/2-angle_new(NbImages+1:2*NbImages));.

When the illuminant is expressed using (ε1, ε2, ε3) lines 3 and 10 are simply
suppressed. Lines 1 to 27 are repeated until the norm of the gradient is smaller
than a fixed threshold, coded as while norm(grad) < norm_grad.
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F.1.1 Parameters
The parameters α and ε were determined by trial-and-error. We started by
running the algorithm for each new number of images N and patches Np on a
dozen of randomly chosen illuminant sets for arbitrarily large α and ε values,
which were decreased until the illuminant descriptors remained in the range
of values representing actual illuminants and converged to reasonable results.
However, it is not possible to find optimal fixed parameters that would yield
to an optimal convergence for all the images. Every set of patches and illumi-
nants spectra brings different RGB patches values and thus define a new error
function, whose optimal parameters may be different. The parameters used in
the simulations of Sections 5.3.1 and 5.3.2 are reported in Tables F.1 to F.3.

N Np α ε norm_grad
2 6 10.00 0.05 10−4

3 6 15.00 0.05 10−4

4 6 15.00 0.05 10−4

6 6 15.00 0.05 10−4

6 10 25.00 0.05 10−4

10 6 25.00 0.05 10−4

Table F.1: Parameters for the minimization by gradient descent for standard
illuminants. They correspond to the results presented in Tables 5.3 and 5.4.

N Np α ε norm_grad
2 6 15.00 0.01 10−5

3 6 30.00 0.01 10−5

4 6 50.00 0.01 10−5

6 6 50.00 0.01 10−5

6 10 50.00 0.01 10−5

10 6 50.00 0.01 10−5

Table F.2: Parameters for the minimization by gradient descent for real illumi-
nants. f(θ, φ). They correspond to the results presented in Table 5.7.
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N Np α ε norm_grad
2 6 50.00 0.01 10−5

3 6 50.00 0.01 10−5

4 6 50.00 0.01 10−5

6 6 50.00 0.01 10−5

6 10 50.00 0.01 10−5

10 6 100.00 0.01 10−5

Table F.3: Parameters for the minimization by gradient descent for real illumi-
nants. f(ε1, ε2, ε3). They correspond to the results presented in Table 5.8.
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F.2 Test illuminants
The simulations presented in Sections 5.3.2 and 5.3.6 used 45 and 36 illuminant
spectra, respectively. Subsets of Ne = 20 illuminants were chosen as illuminant
candidates. The spectral power distributions of these illuminants are shown in
Figures F.1 to F.4. Table F.4 presents the description of the artificial illumi-
nants selected to run the experiments in Section 5.3.6. The descriptions are
reported as provided in the illuminant database. We added measurements of
our laboratory’s lightbooth, a GTI ColorMatcher, designated by “IVRG light-
booth.”
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Figure F.1: Test daylight illuminants, subset of Ne = 20 spectral power distri-
butions used as reference illuminants. The x-axis represents the wavelength in
nanometers. The y-axis represents the relative power.
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Figure F.2: Test daylight illuminants. The x-axis represents the wavelength in
nanometers. The y-axis represents the relative power.
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Figure F.2: Test daylight illuminants. The x-axis represents the wavelength in
nanometers. The y-axis represents the relative power.
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Illuminant description
1 F21

2 F71

3 F111

4 Daylight2

5 Spectrumlite2

6 Daylight D50 filters3

7 CWF3

8 Horizon3

9 Incandescent3

10 Daylight with d65 filters3

11 Grahams’s desk at 2:00pm with blue sky AND overhead4

12 Lab 565

13 CF5

14 Daylight ultra 25

15 Halogen5

16 Philips universal home light5

17 Solux bulb 3500K
18 IVRG Lightbooth fluorescent TL 83
19 IVRG Lightbooth fluorescentD65
20 IVRG Lightbooth incandescent A
21 Coolwhite2

22 MacBeth booth SpectraLite cwf
23 Lab overhead4

24 Xenon lamp spectra from Greeley
25 Brillo fluorescent5

26 CWD5

27 KBU fluorescent5

28 US residential Florescent5

29 Philips econo-watt alta5

30 Philips worklite5

31 Philips home cool5
32 Solux bulb 3758K
33 Solux bulb 4000K
34 Solux bulb 4500K
35 Solux bulb 4700K
36 IVRG Lightbooth fluorescent TL84

Table F.4: Artificial lights descriptions. The illuminant spectra 1 to 20 and 21 to
36 are plotted in Figures F.3 and F.4, respectively.

1Digitized from Hunt’s “Reproduction of Color”
2Digitized from Sylvania phosphor mixtures
3MacBeth booth SpectraLite
4Simon Fraiser University’s dataset
5Various fluorescents
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Figure F.3: Test artificial illuminants, subset of Ne = 20 spectral power distri-
butions used as reference illuminants. The x-axis represents the wavelength in
nanometers. The y-axis represents the relative power.
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Figure F.4: Test artificial illuminants. The x-axis represents the wavelength in
nanometers. The y-axis represents the relative power.
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F.3 Illuminant and reflectance basis functions

(a) (b)

(c)

Figure F.5: Daylight illuminants basis functions computed by principal component
analysis on the 45 real daylight illuminants represented in Figures F.1 and F.2.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure F.6: Reflectance basis functions computed by principal component analysis
on the MacBeth, Munsell, and Natural reflectance spectra.



194 Appendix F.

F.4 Additional results
This section reports additional results for the simulations presented in Section
5.3.

F.4.1 Angular error distributions for standard daylight illumi-
nants

(a) N = 2 Np = 6, eang � 3◦ for 53.7% (b) N = 3 Np = 6, eang � 3◦ for 67.6%

(c) N = 4 Np = 6, eang � 3◦ for 73.4% (d) N = 6 Np = 6, eang � 3◦ for 77.9%

(e) N = 6 Np = 10, eang � 3◦ for 87.0% (f) N = 10 Np = 6, eang � 3◦ for 97.9%

Figure F.7: Angular error distributions corresponding to Table 5.3. These results
were obtained using Munsell reflectances and standard daylight illuminants. The
error function is expressed as f(θn). The x-axis represents the angular error eang
in sRGB expressed in degrees. The y-axis represents the image count.
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(a) N = 2 Np = 6, eang � 3◦ for 51.3% (b) N = 3 Np = 6, eang � 3◦ for 66.3%

(c) N = 4 Np = 6, eang � 3◦ for 68.0% (d) N = 6 Np = 6, eang � 3◦ for 72.4%

(e) N = 6 Np = 10, eang � 3◦ for 81.9% (f) N = 10 Np = 6, eang � 3◦ for 93.1%

Figure F.8: Angular error distributions corresponding to Table 5.3. These results
were obtained using Natural reflectances and standard daylight illuminants. The
error function is expressed as f(θn). The x-axis represents the angular error eang
in sRGB expressed in degrees. The y-axis represents the image count.
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F.4.2 Angular error distributions for real daylight illuminants

(a) N = 2 Np = 6, eang � 3◦ for 57.7%

(b) N = 3 Np = 6, eang � 3◦ for 69.0%

(c) N = 4 Np = 6, eang � 3◦ for 71.7%

Figure F.9: Angular error distributions corresponding to Table 5.6. These results
were obtained using Munsell reflectances and real daylight illuminants. The error
function is minimized by testing a set of test illuminants. The x-axis represents the
angular error eang in sRGB expressed in degrees. The y-axis represents the image
count.
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(a) N = 2 Np = 6, eang � 3◦ for 53.2%

(b) N = 3 Np = 6, eang � 3◦ for 68.6%

(c) N = 4 Np = 6, eang � 3◦ for 71.9%

Figure F.10: Angular error distributions corresponding to Table 5.6. These results
were obtained using Natural reflectances and real daylight illuminants. The error
function is minimized by testing a set of test illuminants. The x-axis represents the
angular error eang in sRGB expressed in degrees. The y-axis represents the image
count.
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(a) N = 2 Np = 6, eang � 3◦ for 26.5% (b) N = 3 Np = 6, eang � 3◦ for 41.0%

(c) N = 4 Np = 6, eang � 3◦ for 45.2% (d) N = 6 Np = 6, eang � 3◦ for 53.5%

(e) N = 6 Np = 10, eang � 3◦ for 52.5% (f) N = 10 Np = 6, eang � 3◦ for 68.9%

Figure F.11: Angular error distributions corresponding to Table 5.7. These results
were obtained using Munsell reflectances and real daylight illuminants. The error
function is expressed as f(θn, φn). The x-axis represents the angular error eang in
sRGB expressed in degrees. The y-axis represents the image count.
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(a) N = 2 Np = 6, eang � 3◦ for 24.7% (b) N = 3 Np = 6, eang � 3◦ for 38.0%

(c) N = 4 Np = 6, eang � 3◦ for 44.3% (d) N = 6 Np = 6, eang � 3◦ for 51.2%

(e) N = 6 Np = 10, eang � 3◦ for 50.8% (f) N = 10 Np = 6, eang � 3◦ for 66.8%

Figure F.12: Angular error distributions corresponding to Table 5.7. These results
were obtained using Natural reflectances and real daylight illuminants. The error
function is expressed as f(θn, φn). The x-axis represents the angular error eang in
sRGB expressed in degrees. The y-axis represents the image count.
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(a) N = 2 Np = 6, eang � 3◦ for 39.6% (b) N = 3 Np = 6, eang � 3◦ for 44.9%

(c) N = 4 Np = 6, eang � 3◦ for 51.8% (d) N = 6 Np = 6, eang � 3◦ for 59.5%

(e) N = 6 Np = 10, eang � 3◦ for 59.7% (f) N = 10 Np = 6, eang � 3◦ for 68.8%

Figure F.13: Angular error distributions corresponding to Table 5.7. These results
were obtained using Munsell reflectances and real daylight illuminants. The error
function is expressed as f(εn). The x-axis represents the angular error eang in
sRGB expressed in degrees. The y-axis represents the image count.
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(a) N = 2 Np = 6, eang � 3◦ for 37.3% (b) N = 3 Np = 6, eang � 3◦ for 44.4%

(c) N = 4 Np = 6, eang � 3◦ for 50.7% (d) N = 6 Np = 6, eang � 3◦ for 57.3%

(e) N = 6 Np = 10, eang � 3◦ for 57.4% (f) N = 10 Np = 6, eang � 3◦ for 64.6%

Figure F.14: Angular error distributions corresponding to Table 5.7. These results
were obtained using Natural reflectances and real daylight illuminants. The error
function is expressed as f(εn). The x-axis represents the angular error eang in
sRGB expressed in degrees. The y-axis represents the image count.
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F.4.3 Angular error distributions for artificial illuminants

(a) N = 2 Np = 6, eang � 3◦ for 47.6%

(b) N = 3 Np = 6, eang � 3◦ for 46.6%

(c) N = 4 Np = 6, eang � 3◦ for 47.7%

Figure F.15: Angular error distributions corresponding to Table 5.11. These
results were obtained using Munsell reflectances and artificial illuminants. The error
function is minimized by testing a set of test illuminants. The x-axis represents the
angular error eang in sRGB expressed in degrees. The y-axis represents the image
count.
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(a) N = 2 Np = 6, eang � 3◦ for 43.7%

(b) N = 3 Np = 6, eang � 3◦ for 46.6%

(c) N = 4 Np = 6, eang � 3◦ for 49.1%

Figure F.16: Angular error distributions corresponding to Table 5.11. These
results were obtained using Natural reflectances and artificial illuminants. The error
function is minimized by testing a set of test illuminants. The x-axis represents the
angular error eang in sRGB expressed in degrees. The y-axis represents the image
count.
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F.4.4 Comparison with D’Zmura and Iverson’s (1993a) algo-
rithm

D’Zmura and Iverson fe(ε1, ε2, ε3)
Anoise med eang max eang med eang max eang
0.0 24.06 153.14 3.42 14.20
0.1 25.70 151.72 3.42 14.48
0.2 25.81 148.83 3.45 14.41
0.3 24.81 147.76 3.39 14.98
0.4 25.66 148.27 3.38 14.06
0.5 23.72 148.41 3.42 14.30
0.6 24.19 154.36 3.41 13.89
0.7 25.12 146.97 3.33 15.34
0.8 23.86 148.27 3.44 14.57
0.9 25.42 149.71 3.48 15.30
1.0 27.46 152.43 3.46 15.47

Table F.5: The algorithm was run 104 times using Np = 3 patches and NE = 2
standard daylight illuminants. This table reports the median and maximum angular
errors eang as a function on the amount of shot noise added to the sensor responses
for both D’Zmura and Iverson’s (1993a) and our algorithm.



F.4. Additional results 205

F.4.5 Angular error distributions for standard daylight illumi-
nants obtained with the Shades of Gray algorithm

(a) N = 2 Np = 6, eang � 3◦ for 26.7% (b) N = 3 Np = 6, eang � 3◦ for 26.9%

(c) N = 4 Np = 6, eang � 3◦ for 26.7% (d) N = 6 Np = 6, eang � 3◦ for 26.7%

(e) N = 6 Np = 10, eang � 3◦ for 34.85% (f) N = 10 Np = 6, eang � 3◦ for 26.6%

Figure F.17: Angular error distributions corresponding to Table 5.10. The algo-
rithm was run using standard daylight illuminants and Munsell reflectances. The
x-axis represents the angular error eang in sRGB expressed in degrees. The y-axis
represents the image count.



206 Appendix F.

(a) N = 2 Np = 6, eang � 3◦ for 12.4% (b) N = 3 Np = 6, eang � 3◦ for 12.4%

(c) N = 4 Np = 6, eang � 3◦ for 12.5% (d) N = 6 Np = 6, eang � 3◦ for 12.5%

(e) N = 6 Np = 10, eang � 3◦ for 10.58% (f) N = 10 Np = 6, eang � 3◦ for 12.5%

Figure F.18: Angular error distributions corresponding to Table 5.10. The algo-
rithm was run using standard daylight illuminants and Natural reflectances. The
x-axis represents the angular error eang in sRGB expressed in degrees. The y-axis
represents the image count.
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F.4.6 Angular errors for real daylight illuminants obtained with
the Shades of Gray algorithm

MacBeth Munsell Natural
N Np med eang max eang med eang max eang med eang max eang
2 6 4.06 34.18 5.09 31.89 7.78 27.19
3 6 4.13 36.03 5.12 32.61 7.75 27.03
4 6 4.16 36.03 5.10 32.74 7.83 26.91
6 6 4.07 35.02 5.09 32.65 7.77 27.19
6 10 1.53 22.26 4.01 22.85 6.30 29.84

10 6 4.13 35.71 5.08 32.86 7.73 27.07

Table F.6: The SoG algorithm was run 104 times using different combinations of
Np patches and NE measured daylight illuminants. This table reports the median
and maximum angular errors eang.
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F.4.7 Angular error distributions for real daylight illuminants
obtained with the Shades of Gray algorithm

(a) N = 2 Np = 6, eang � 3◦ for 44.4% (b) N = 3 Np = 6, eang � 3◦ for 44.4%

(c) N = 4 Np = 6, eang � 3◦ for 44.5% (d) N = 6 Np = 6, eang � 3◦ for 44.6%

(e) N = 6 Np = 10, eang � 3◦ for 56.2% (f) N = 10 Np = 6, eang � 3◦ for 44.5%

Figure F.19: Angular error distribution corresponding to Table F.6. The algorithm
was run using measured daylight illuminants and MacBeth reflectances. The x-
axis represents the angular error eang in sRGB expressed in degrees. The y-axis
represents the image count. The error distributions for the Munsell and Natural
reflectance are in Section 5.3.5
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(a) N = 2 Np = 6, eang � 3◦ for 26.7% (b) N = 3 Np = 6, eang � 3◦ for 26.7%

(c) N = 4 Np = 6, eang � 3◦ for 27.0% (d) N = 6 Np = 6, eang � 3◦ for 27.3%

(e) N = 6 Np = 10, eang � 3◦ for 39.9% (f) N = 10 Np = 6, eang � 3◦ for 26.9%

Figure F.20: Angular error distribution corresponding to Table F.6. The algorithm
was run using measured daylight illuminants and Munsell reflectances. The x-
axis represents the angular error eang in sRGB expressed in degrees. The y-axis
represents the image count.
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(a) N = 2 Np = 6, eang � 3◦ for 12.9% (b) N = 3 Np = 6, eang � 3◦ for 13.4%

(c) N = 4 Np = 6, eang � 3◦ for 13.2% (d) N = 6 Np = 6, eang � 3◦ for 13.0%

(e) N = 6 Np = 10, eang � 3◦ for 11.7% (f) N = 10 Np = 6, eang � 3◦ for 13.2%

Figure F.21: Angular error distribution corresponding to Table F.6. The algorithm
was run using measured daylight illuminants and Natural reflectances. The x-
axis represents the angular error eang in sRGB expressed in degrees. The y-axis
represents the image count.
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F.4.8 Angular errors for Shades of Gray in presence of shot
noise

MacBeth Munsell Natural
Anoise N Np med eang max eang med eang max eang med eang max eang
0 2 6 4.15 33.41 5.19 31.91 8.06 26.10

3 6 4.26 34.17 5.19 32.54 8.02 27.07
4 6 4.13 34.88 5.17 32.63 8.03 26.57
6 6 4.16 33.72 5.17 32.63 7.98 27.07
6 10 1.51 22.24 4.09 22.74 6.43 29.36
10 6 4.15 34.88 5.17 32.72 8.04 27.07

0.1 2 6 4.15 33.54 5.20 31.98 8.05 26.06
3 6 4.24 33.99 5.20 33.17 8.00 27.27
4 6 4.13 34.65 5.21 32.52 8.02 26.85
6 6 4.21 33.91 5.20 33.08 7.99 27.43
6 10 1.63 22.45 4.09 22.84 6.44 29.58
10 6 4.18 34.72 5.20 33.01 8.05 27.05

0.2 2 6 4.23 33.31 5.27 31.31 8.01 26.06
3 6 4.25 34.20 5.17 32.13 7.94 27.30
4 6 4.17 35.48 5.23 33.69 8.05 26.67
6 6 4.31 33.68 5.25 32.24 7.98 27.68
6 10 1.77 22.82 4.11 22.76 6.48 28.74
10 6 4.23 35.36 5.22 33.55 8.04 27.31

0.3 2 6 4.19 33.84 5.26 31.52 7.97 26.45
3 6 4.39 34.41 5.24 33.56 8.02 28.17
4 6 4.25 35.74 5.29 32.34 7.99 27.17
6 6 4.24 34.13 5.27 33.08 8.03 27.88
6 10 1.98 23.29 4.15 23.31 6.51 28.81
10 6 4.30 34.55 5.27 33.02 8.03 27.83

0.4 2 6 4.24 33.51 5.28 32.60 8.05 26.53
3 6 4.30 35.33 5.34 32.94 8.12 27.84
4 6 4.36 33.66 5.34 33.81 8.04 26.91
6 6 4.35 34.24 5.31 33.71 7.98 26.99
6 10 2.19 22.50 4.23 23.47 6.51 29.19
10 6 4.26 33.77 5.38 33.56 8.05 27.67

0.5 2 6 4.43 32.13 5.41 32.95 8.11 27.98
3 6 4.48 35.70 5.41 33.43 8.17 28.53
4 6 4.31 34.98 5.43 32.67 8.00 27.27
6 6 4.41 33.43 5.41 35.27 8.07 27.91
6 10 2.56 24.18 4.29 23.55 6.62 29.83
10 6 4.42 35.39 5.42 34.22 8.05 29.20

Table F.7: Median and maximum angular errors eang obtained for the shades
of gray (SoG) algorithm with shot noise. The simulations were run on standard
daylight illuminants and for Anoise = 0− 0.5.
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MacBeth Munsell Natural
Anoise med eang max eang med eang max eang med eang max eang
0.6 2 6 4.45 34.86 5.52 30.27 7.93 28.00

3 6 4.50 33.22 5.55 33.12 8.21 28.52
4 6 4.48 36.32 5.52 36.82 8.11 27.79
6 6 4.54 34.61 5.38 32.26 8.09 29.24
6 10 2.74 23.98 4.33 22.99 6.61 28.74
10 6 4.49 35.09 5.51 35.42 8.13 28.64

0.7 2 6 4.64 35.06 5.58 36.12 8.15 27.38
3 6 4.60 34.87 5.64 30.65 8.05 30.31
4 6 4.59 36.06 5.67 36.08 8.14 28.15
6 6 4.60 34.55 5.53 33.51 8.10 27.78
6 10 3.06 24.42 4.43 24.64 6.70 29.44
10 6 4.66 35.06 5.59 35.03 8.09 29.04

0.8 2 6 4.69 33.58 5.77 30.41 8.14 28.51
3 6 5.00 34.84 5.71 31.24 8.18 29.38
4 6 4.80 35.79 5.76 34.69 8.20 30.98
6 6 4.63 33.35 5.74 38.01 8.14 28.24
6 10 3.32 25.41 4.51 24.85 6.82 29.15
10 6 4.83 34.98 5.73 34.80 8.15 28.65

0.9 2 6 4.97 34.78 5.82 29.84 8.27 30.16
3 6 5.06 35.80 5.86 32.24 8.13 29.35
4 6 4.93 35.09 5.89 34.54 8.18 28.99
6 6 4.91 34.68 5.73 32.65 8.19 31.50
6 10 3.67 24.25 4.64 24.42 6.91 28.31
10 6 5.02 37.20 5.84 36.14 8.22 29.81

1 2 6 5.25 35.46 5.91 31.59 8.26 28.48
3 6 5.14 37.14 5.90 35.88 8.40 29.54
4 6 5.24 34.42 5.89 31.41 8.36 29.96
6 6 5.17 35.62 5.91 34.03 8.27 31.24
6 10 3.96 26.97 4.76 23.15 7.00 29.05
10 6 5.10 38.36 5.94 33.86 8.28 30.43

Table F.8: Median and maximum angular errors eang obtained for the shades
of gray (SoG) algorithm with shot noise. The simulations were run on standard
daylight illuminants and for Anoise = 0.6− 1.0.
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MacBeth Munsell Natural
Anoise N Np med eang maxEang med eang max eang med eang max eang
0 2 6 4.06 34.18 5.09 31.89 7.78 27.19

3 6 4.13 36.03 5.12 32.61 7.75 27.03
4 6 4.16 36.03 5.10 32.74 7.83 26.91
6 6 4.07 35.02 5.09 32.65 7.77 27.19
6 10 1.53 22.26 4.01 22.85 6.30 29.84
10 6 4.13 35.71 5.08 32.86 7.73 27.07

0.1 2 6 4.06 34.51 5.08 31.96 7.77 26.90
3 6 4.14 35.55 5.11 31.98 7.76 27.26
4 6 4.21 36.06 5.11 32.87 7.83 27.13
6 6 4.09 34.59 5.09 33.16 7.75 27.58
6 10 1.63 22.57 4.03 22.72 6.31 29.54
10 6 4.15 36.05 5.10 33.82 7.73 27.52

0.2 2 6 4.14 34.47 5.17 30.26 7.85 27.32
3 6 4.29 35.78 5.14 32.95 7.77 27.61
4 6 4.20 37.05 5.17 33.27 7.87 27.24
6 6 4.14 34.19 5.15 32.98 7.78 28.12
6 10 1.79 22.37 4.06 23.07 6.34 29.72
10 6 4.16 36.26 5.12 33.30 7.76 27.87

0.3 2 6 4.21 34.13 5.25 29.45 7.88 27.35
3 6 4.15 35.10 5.25 32.66 7.81 27.11
4 6 4.22 34.90 5.18 32.29 7.89 27.62
6 6 4.25 34.11 5.21 34.69 7.81 27.92
6 10 1.99 22.89 4.10 22.71 6.38 30.01
10 6 4.19 35.46 5.21 33.95 7.79 27.77

0.4 2 6 4.36 34.70 5.21 28.90 7.86 28.79
3 6 4.15 36.36 5.30 32.71 7.87 28.45
4 6 4.28 35.88 5.28 33.65 7.90 27.72
6 6 4.21 35.19 5.24 35.09 7.86 28.19
6 10 2.24 22.41 4.15 23.21 6.41 30.23
10 6 4.27 35.90 5.25 33.44 7.84 28.63

0.5 2 6 4.52 33.72 5.48 32.00 7.85 26.89
3 6 4.38 37.71 5.37 33.65 7.92 28.85
4 6 4.29 36.96 5.40 32.17 7.88 28.02
6 6 4.29 34.52 5.38 33.72 7.92 27.73
6 10 2.52 22.63 4.14 24.59 6.48 31.10
10 6 4.39 36.11 5.35 34.58 7.84 28.39

Table F.9: Median and maximum angular errors eang obtained for the shades
of gray (SoG) algorithm with shot noise. The simulations were run on measured
daylight illuminants and for Anoise = 0− 0.5.



214 Appendix F.

MacBeth Munsell Natural
Anoise med eang max eang med eang max eang med eang max eang
0.6 2 6 4.49 35.42 5.37 31.80 8.04 26.72

3 6 4.45 35.84 5.38 34.53 8.06 28.51
4 6 4.42 35.89 5.44 31.50 7.93 27.43
6 6 4.45 36.57 5.48 35.11 7.88 29.62
6 10 2.74 23.69 4.26 23.92 6.49 29.59
10 6 4.48 37.55 5.41 35.76 7.81 28.79

0.7 2 6 4.76 36.35 5.61 31.32 8.00 29.70
3 6 4.56 38.67 5.50 33.61 7.95 29.89
4 6 4.49 33.77 5.48 33.50 7.94 29.06
6 6 4.55 35.65 5.47 34.92 8.00 29.36
6 10 3.04 23.44 4.31 23.74 6.53 30.19
10 6 4.64 36.76 5.56 34.05 7.97 30.07

0.8 2 6 4.72 34.76 5.67 34.63 7.98 28.29
3 6 4.73 36.29 5.68 35.95 8.01 30.26
4 6 4.79 33.18 5.62 34.77 7.96 28.13
6 6 4.71 35.25 5.66 33.53 8.07 29.49
6 10 3.32 24.26 4.45 22.19 6.68 32.48
10 6 4.76 36.48 5.65 37.48 7.97 28.71

0.9 2 6 5.14 36.14 5.81 32.44 8.03 30.64
3 6 4.93 38.92 5.77 33.47 8.23 29.39
4 6 4.88 36.36 5.70 37.44 7.99 30.13
6 6 5.02 38.57 5.82 37.27 8.05 30.81
6 10 3.61 24.86 4.53 21.73 6.76 27.31
10 6 4.96 37.65 5.69 35.38 8.14 30.31

1 2 6 5.17 35.91 5.81 32.84 8.11 28.14
3 6 5.21 37.53 5.84 35.97 8.13 30.75
4 6 5.22 33.18 5.78 31.82 8.16 30.16
6 6 5.13 37.01 5.96 38.81 8.03 30.59
6 10 3.90 24.05 4.65 21.99 6.75 31.56
10 6 5.16 38.09 5.85 37.01 8.05 29.64

Table F.10: Median and maximum angular errors eang obtained for the shades
of gray (SoG) algorithm with shot noise. The simulations were run on measured
daylight illuminants and for Anoise = 0.6− 1.0.
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F.4.9 Reflectances estimates

(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 0.69 (c) ΔE∗ab = 1.13

Figure F.22: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using Munsell reflectances and
standard illuminants. They correspond to the lowest angular error eang.
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(d) ΔE∗ab = 1.10 (e) ΔE∗ab = 3.55

(f) ΔE∗ab = 0.84 (g) ΔE∗ab = 0.64

Figure F.22: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using Munsell reflectances and
standard illuminants. They correspond to the lowest angular error eang.
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 1.99 (c) ΔE∗ab = 1.53

(d) ΔE∗ab = 1.96 (e) ΔE∗ab = 1.47

(f) ΔE∗ab = 3.38 (g) ΔE∗ab = 2.00

Figure F.23: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using Natural reflectances and
standard illuminants. They correspond to the lowest angular error eang.
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 1.55 (c) ΔE∗ab = 0.31

(d) ΔE∗ab = 5.89 (e) ΔE∗ab = 3.10

(f) ΔE∗ab = 3.55 (g) ΔE∗ab = 1.81

Figure F.24: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using MacBeth reflectances and
real daylight illuminants. The error function is expressed as fe(θn, φn). They
correspond to the lowest angular error eang.
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 0.48 (c) ΔE∗ab = 1.59

(d) ΔE∗ab = 3.36 (e) ΔE∗ab = 1.38

(f) ΔE∗ab = 2.28 (g) ΔE∗ab = 1.23

Figure F.25: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using Munsell reflectances and
real daylight illuminants. The error function is expressed as fe(θn, φn). They
correspond to the lowest angular error eang.
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 0.78 (c) ΔE∗ab = 4.31

(d) ΔE∗ab = 9.36 (e) ΔE∗ab = 0.41

(f) ΔE∗ab = 0.85 (g) ΔE∗ab = 2.68

Figure F.26: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using Natural reflectances and
real daylight illuminants. The error function is expressed as fe(θn, φn). They
correspond to the lowest angular error eang.
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 2.92 (c) ΔE∗ab = 7.83

(d) ΔE∗ab = 7.89 (e) ΔE∗ab = 3.33

(f) ΔE∗ab = 2.89 (g) ΔE∗ab = 3.77

Figure F.27: Plots (b) to (g) represent the reflectances estimated through the illu-
minant retrieval. These results were obtained using MacBeth reflectances and real
daylight illuminants. The error function is expressed as fe(εn). They correspond
to the lowest angular error eang.
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab =2.21 (c) ΔE∗ab = 2.74

(d) ΔE∗ab = 2.45 (e) ΔE∗ab = 1.29

(f) ΔE∗ab = 2.38 (g) ΔE∗ab = 2.76

Figure F.28: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using Munsell reflectances and real
daylight illuminants. The error function is expressed as fe(εn). They correspond
to the lowest angular error eang.
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(a) The real and retrieved illuminants are
represented by the dotted and solid lines,
respectively.

(b) ΔE∗ab = 4.35 (c) ΔE∗ab = 3.47

(d) ΔE∗ab = 0.11 (e) ΔE∗ab = 5.80

(f) ΔE∗ab = 0.72 (g) ΔE∗ab = 1.00

Figure F.29: Plots (b) to (g) represent the reflectances estimated through the
illuminant retrieval. These results were obtained using Natural reflectances and real
daylight illuminants. The error function is expressed as fe(εn). They correspond
to the lowest angular error eang.
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