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Abstract—We study a problem where wireless service providers
compete for heterogenous and atomic (non-infinitesimal) wireless
users. The users differ in their utility functions as well as in the
perceived quality of service of individual providers. We model
the interaction of an arbitrary number of providers and users
as a two-stage multi-leader-follower game, and prove existence
and uniqueness of the subgame perfect Nash equilibrium for
a generic channel model and a wide class of users’ utility
functions. We show that, interestingly, the competition of resource
providers leads to a globally optimal outcome under fairly
general technical conditions. Our results show that some users
need to purchase their resource from several providers at the
equilibrium. While the number of such users is typically small
(smaller than the number of providers), our simulations indicate
that the percentage of cases where at least one undecided user
exists can be significant.

I. INTRODUCTION

Due to the deregulation of telecommunication industry, one
can imagine that in the future wireless users will not be
contractually tied to a single service provider, but be free to
switch in real time to the provider (or providers) offering the
best tradeoffs. In this work, we consider a situation where
wireless service providers want to earn profit by selling limited
amount of wireless resources (e.g., frequency bands, time
slots, transmission power) to a group of users. The users are
rational economic agents who experience different channel
conditions to the base stations of different providers and differ
in willingness to pay.

The focus of our study is to understand the user-provider
association and resource allocation in a general heterogenous
wireless network setting. We model this interaction as a two-
stage extensive game of complete information. The providers
announce resource prices in the first stage, and the users select
which provider(s) to connect to as well as the corresponding
amount of resource in the second stage. A user may choose a
provider with an inferior channel if the price of the resource
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is low enough, or choose a more expensive provider if the
channel is better. The providers select their prices to maximize
their revenues, keeping in mind the impact of their prices
on the demand of the users. As in [1], [2], we consider the
case where users pay for the resources they use instead of the
services they receive.

The contributions of our work are as follows:

• General Heterogeneous Wireless Network Model: We
study a general network model that captures the het-
erogeneity of wireless users and service providers. The
users have different utility functions, the providers have
different resource constraints, the channel gains between
users and providers are modeled by independent con-
tinuous random variables of arbitrary distributions (not
necessarily and more general than location dependent),
and the numbers of users and providers can be arbitrary.

• Unique Socially Optimal Allocation: We first study the
problem of maximizing social welfare under the general
utility function model. Despite the non-strict convexity of
the optimization problem, we show that with probability
1 there exists a unique optimal solution to the problem.
This follows from the fact that channel gains are drawn
from continuous distributions so the event that multiple
solutions exist has zero probability.

• Existence, Uniqueness, and Zero Efficiency Loss of Equi-
librium: We further prove existence and uniqueness of
the subgame perfect Nash equilibrium in the two-stage
game. Moreover, we show that the unique equilibrium
maximizes the social welfare under an easily verifiable
sufficient condition on the users’ utility functions, despite
the selfish nature of the providers and users.

• Fractional Equilibrium with Atomic Users: Our model
represents the case of finitely many atomic users, where
each user has a finite demand so a single user’s impact
on the provider equilibrium can not be ignored. We show
that the unique equilibrium of the game can possibly
be fractional, where some users will purchase resource
from two or more providers simultaneously. We provide
an algorithm that uniquely determines such fractional
equilibrium under the proper equilibrium prices.



Linear usage-based pricing schemes are frequently consid-
ered in the literature, (e.g. [3]–[5]). Analyzing such pricing
yields more than just economic insight: for example the exist-
ing TCP protocol can be interpreted as a usage-based pricing
scheme that solves a network utility maximization problem [3].
Schemes where users pay for used resources and not obtained
services often lead to desirable outcomes. In [1] and [6], users
are charged for sent instead of received packets; as a result
users reduce their transmission probabilities when congestion
occurs. In a wireless setting, a usage based system gives users
an incentive to chose primarily the provider that offers a
good channel quality, which leads to more efficient resource
utilization. The benefits of usage-based pricing schemes are
clear despite some unresolved implementational issues (e.g.,
on the fly billing, global secure identities, etc.) [7], [8].

There exists a rich body of related literature on using
pricing and game theory to study provider resource allocation
and interactions of service providers. The related research in
the wireless setting can be divided into several categories:
optimization-based resource allocation of one provider (e.g.,
[9]–[13]), game theoretical interactions between the users
of one provider (e.g., [14]–[16]), competition of different
service providers on behalf of the users (e.g., [17], [18]), and
providers’ price competition to attract users (e.g., [19]–[26]).
Our current work falls into the last category.

In our work we simultaneously consider several assumptions
that reflect diverse wireless network scenarios: an arbitrary
number of wireless providers compete for an arbitrary number
of atomic users who are heterogenous in their channels gains
and in their willingness to pay. In related work where providers
price-compete to attract users [19], [21], [22], purchasing a
unit of resource from different providers brings the same
amount of utility to a user. In related results where Wardrop
concept is used (e.g., [6], [24], [25]) users are infinitesimal
and non-heterogenous. One of the early work that explicitly
takes into account the channel differences for different (but
non-atomic) users is [26]. Recently, a model similar to ours
(although for less general utilites and channel gains) was
considered for a three-tier system in [23].

As already mentioned, we assume that users are not only
heterogenous in their utility functions, but also in terms of how
they perceive the resource sold by the providers, which is a
distinct feature of wireless communication. As a consequence
of this model, even identical providers (in terms of available
resource) are perceived differently by each user, leading to an
asymmetric equilibrium with probability 1.

After introducing the provider competition game, utility
functions and communication model in Section II, we discuss
the socially optimal resource allocation in Section III and
the (subgame perfect) Nash equilibrium in Section IV. We
provide some numerical results and dicussion in Section V
and conclude in Section VI.

II. PROBLEM FORMULATION

We consider a set J = {1, . . . , J} of service providers and
a set I = {1, . . . , I} of users. Provider j ∈ J maximizes

its revenue by selling a maximum amount of Qj resource to
the users. A user i ∈ I maximizes its payoff by purchas-
ing resources from one or more providers. We model the
interaction as a multi-leader-follower game (see [27], [28]),
where providers are the leaders and users are the followers.
We assume that the channel gains of all users are roughly
constant for the duration of the game, and furthermore, that
they are known to all game participants (e.g. each provider
collects its channel condition information to each user, and
then broadcasts this information to all users and providers).

A. Provider competition game

Definition 1: (Provider competition game) The game con-
sists of two stages. In the first stage, providers announce prices
p = [p1 · · · pJ ], where pj is the unit resource price chosen by
provider j. In the second stage, user i ∈ I chooses a demand
vector qi = [qi1 · · · qiJ ], where qij is the demand to provider
j. We denote by q = [q1 · · · qI ] the demand vector of all
users. Taking prices p as given, a user i’s goal is to choose
qi to maximize its payoff (i.e., utility minus payment):

vi(qi,p) = ui

 J∑
j=1

qijcij(hij)

− J∑
j=1

pjqij , (1)

where hij is the channel gain between user i and base station
of provider j, and cij(h) is the channel quality offset function.
A provider j chooses price pj to maximize its revenue
pj
∑I
i=1 qij subject to the resource constraint

∑I
i=1 qij ≤ Qj

by taking into account the demand of the users in the second
stage. Note that we consider linear pricing and no price
discrimination across the users.

Under this model, a user is allowed to purchase from several
providers at the same time, which gives an upper bound on
efficiency of any situation where users purchase from one
provider alone. Interestingly, our results show that for most
users the optimal strategy is to choose exactly one provider.

B. Model assumptions

We make the following assumptions about the model:
Assumption 1: Utility functions: For every user i ∈ I, ui(x)

is differentiable, strictly increasing and strictly concave in x.
Assumption 2: Channel gains and channel quality offset

functions: Channel gains hij are drawn from arbitrary inde-
pendent continuous probability distribution (e.g., Ralyleigh,
Rician, distance-based path-loss model). The offset function
cij(h) is increasing and continuous in h. As a result, cij’s
also follow continuous distributions and Pr(cij = ckl) = 0
for any i, k ∈ I, j, l ∈ J . The offset function accounts for the
effect that buying the same amount of resource from different
providers typically has different effects on a user’s quality of
service. For notation simplicity we write cij instead of cij(hij)
and recall that cij is increasing in hij .

Assumption 3: Atomic and price-taking users: We assume
atomic users where the demand of each user is not infinitely
small and can have an impact on providers’ prices. Precise
characterization of this impact is one of the focuses of this



paper. On the other hand, users are price-takers by the assump-
tion of the two-stage game, and can not strategically influence
prices.

We illustrate the physical meaning of our model by the
following example:

Example 1: Consider wireless providers operating on or-
thogonal frequency bands Wj , j ∈ J , and let qij be the
fraction of time that user i is allowed to transmit exclusively
on the frequency band of network j,

∑
i∈Ij qij = 1, j ∈ J .

Furthermore, assume that each user has a peak power con-
straint Pi. Then, by taking cij = Wj log(1 + Pi|hij |2

Wjσ2
ij

), where

σ2
ij is the noise variance of an additive white Gaussian noise

(AWGN) channel between user i and network j, a user’s
utility becomes an increasing function of obtained rate, with
diminishing returns: vi = ui(

∑J
j=1 qijcij)−

∑J
j=1 pjqij .

Similarly, our model can be used if providers are selling
exclusive access to other types of resource (e.g., bandwidth,
OFDM tones) with the peak power of a user fixed. In Example
1, the cij offset factor was made to be the channel capacity,
but it may be any increasing function of the channel gain. In
particular it may model any coding schemes or technology
where rate is an increasing function of channel gain.

To analyze the properties of the provider competition game,
in Section III we study a related socially optimal resource
allocation problem and show the uniqueness of its solution
(in terms of users’ demands). Then, in Section IV, we show
that such solution corresponds to the unique equilibrium of
the game, in which case the selfish and strategic behavior of
providers and users leads to zero efficiency loss.

III. SOCIAL OPTIMUM

A. Social welfare maximization

In this Section we consider the social welfare problem,
which aims at maximizing the summation of the users’ payoffs
and the providers’ revenues. This is equivalent to maximizing
the sum of users’ utility functions since the payments between
users and providers are system internal transfers and thus
cancel out. For the following exposition, it will be useful to
define x = [x1 · · · xI ] as the vector of weighted resources,
where xi(qi) =

∑J
j=1 qijcij .

The social welfare optimization problem NUM (network
utility maximization) is:

max u(x) =
I∑
i=1

ui (xi) (2)

subject to
J∑
j=1

qijcij = xi i ∈ I (3)

I∑
i=1

qij = Qj , j ∈ J (4)

over qij ≥ 0 ∀i ∈ I, j ∈ J . (5)

There are two different variables in NUM: weighted re-
source vector x and demand vector q. In particular, a vector
q uniquely determines a vector x through equations (3) (we

write x(q) = x), which in term uniquely determines the
objective function u(x). With some abuse of notation we will
write u(q) when we mean u(x(q)).

Lemma 1: The social welfare optimization problem NUM
has a unique maximizing solution x∗.

Proof: Since ui(xi) is strictly concave in xi, then u(x) =∑I
i=1 ui(xi) is strictly concave in x. The feasible region

defined by constraints (3)-(5) is convex. Hence, u(x) has a
unique maximizing solution x∗.

B. Uniqueness of the socially optimal demand vector q∗

Even though ui(·)’s are strictly concave in xi, they are not
strictly concave in the demand vector qi. Hence, NUM is
non-strictly concave in q. It is well-known that a non-strictly
concave maximization problem might have several different
global optimal optimizers (several different demand vectors q
in our case) (see e.g. [29], [30]). In particular, one can choose
cij’s, Qj’s and ui(·)’s in such a way that a maximizing vector
of NUM is not unique. However, it turns out that such cases
arise with zero probability whenever channel offsets factors
cij’s are drawn from continuous distributions.

In the remainder of this Section we show that NUM has
a unique maximizing demand vector with probability 1. We
begin by proving Lemma 2, an intermediary result stating
that any two maximizing demand vectors of NUM must have
different non-zero components. We observe that any convex
combination of two maximizing demand vectors is also a
maximizing demand vector. We then show that all convex
combinations of maximizing demand vectors have the same
non-zero components, which is a contradiction with Lemma
2. This proves the main result of this Section (Theorem 3).

To make our argument precise, let us first define the support
set of a demand vector qi as follows.

Definition 2: (Support set): The support set of qi contains
the indices of its non-zero entries, i.e.:

Ĵi(qi) = {j ∈ J : qij > 0}.

Given a demand vector q, the ordered collection of support
sets Ĵ1, Ĵ2, . . . , ĴI is denoted by {Ĵi}Ii=1.
The support set Ji contains the providers that user has strictly
positive demand from.

Lemma 2: Let {Ĵi}Ii=1 be a collection of support sets of
some maximizing demand vector q∗. Then, q∗ is almost
surely1 the unique maximizing demand vector with that spe-
cific collection of support sets.

Proof: Consider a collection of support sets {Ĵi}Ii=1

constructed from some maximizing demand vector q∗ (a
maximizing demand vector satisfies x(q∗) = x∗ and equations
(4) and (5)). To prove the lemma, we will uniquely construct
q∗ from x∗ and {Ĵi}Ii=1.

The users can be divided into three categories. The decided
users purchase from only one provider (|Ĵi| = 1), and the
undecided users from several (|Ĵi| > 1). It is also possible
that some users have zero demand to all providers, i.e. for such

1This holds on the probability space defined by the distributions of cij ’s.



users q∗i = 0, the all zero vector. Without loss of generality,
we treat such users as decided. For all users the demand vector
q∗i is such that x∗i =

∑J
j=1 q

∗
ijcij . For a decided user i who

purchases only from provider j̄, this reduces to x∗i = q∗
ij̄
cij̄ ,

so we can uniquely find the maximizing demand vector of a
decided user i as q∗i = [0 · · · 0 x

∗
i

cij̄
0 · · · 0].

For undecided users, q∗i cannot be found directly as there
is more than one q∗i such that

∑
j∈Ĵi q

∗
ijcij = x∗i . To show

that the demand of undecided users is unique we use bipartite
graphs. We construct the bipartite graph representation (BGR)
G of the undecided users’ support sets in the following way:

BGR construction
1: Represent undecided users by circles.
2: Represent providers with undecided users as squares.
3: Place an edge (i, j) between a provider node j and a
user node i if j ∈ Ĵi.

In Figure 1 we give an example of a BGR constructed for
Ĵ1 = {a, b, c}, Ĵ2 = {b, d}, Ĵ3 = {d, e, f} and Ĵ4 = {b, g}.

1

P1 = x∗1

2

P2 = x∗2

3
P3

4

q∗4bc4b + q∗4gc4g

P4 = x∗4 =

a
Sa

b
Sb

c
Sc

d
Sd

e
Se

f
Sf

g Sg =
Qg −

∑
i 6=4 q

∗
ig

q∗1a q∗4b q∗4g

Fig. 1. Bipartite graph representation

The BGR has the following properties (refer to Figure 1):
1) A BGR is not necessarily a connected graph, i.e., it may

consist of several components.
2) The sum of weighted resource on all the edges con-

necting user i is the optimal weighted resource x∗i =∑
j∈Ĵi q

∗
ijcij = Pi. We call Pi the check-sum of a user

node.
3) The sum of all edges connecting to provider node j is

the supply Qj minus the demand from decided users
who connect to provider j:

∑
i:(i,j)∈G q

∗
ij = Qj −∑

i:(i,j)/∈G q
∗
ij = Sj . We call Sj the check-sum of a

provider node.
4) With probability 1, the BGR does not contain any loops.

Property 4) is proved in Appendix A. Properties 1)-3) follow
directly from the way that a BGR is constructed.

We now give an informal description of an algorithm that
finds the optimal and unique values of q∗i for undecided users
(the formal description is given in [31]). We call this algorithm
the BGR decoding algorithm. Since BGR has no loops, it is a
(unrooted) tree. Hence, we can run a simple iterative algorithm

which removes a leaf node (node with a single incoming edge)
and its associated edge at each iteration. We begin by finding
a leaf node in the BGR. We then determine the demand of the
edge associated to the leaf node either from BGR Property 2)
or 3). Using this value we update the check-sum value of the
parent node. In the final step of the iteration we remove the leaf
node and the associated edge. We then look for the next leaf
node in the reduced graph and repeat the process: we remove
the edge associated to the leaf node after determining the edge
demand, find the next leaf node etc. We repeat the process until
there are no more edges in the graph. Property 4) is crucial
in this procedure since it guarantees that we can always find
a leaf node in the reduced tree. Note that this property is a
consequence of the model, and not an assumption.

We illustrate the procedure for determining q∗i for undecided
users using the example in Figure 1. Consider leaf node g and
edge q∗4g . This BGR implies that user 4 is the only undecided
customer of provider g (i.e. q∗1g = q∗2g = q∗3g = 0), and since
the demand of all decided customers was determined, it must
be that q∗4g = Sg = Qg −

∑
i 6=4 q

∗
ig . We then remove edge

q∗4g and node g, and update the check-sum value of node 4 to
P4 = x∗4− q∗4gc4g . We can now consider node 4 and edge q∗4b.
It must be that q∗4bc4g = P4, hence q∗4b = P4

c4b
. Next we can

consider node a, e, or f , and so on.

In each step of the algorithm we determine the unique value
of q∗ij associated with an edge, and this is independent of the
order in which we pick the leaf nodes. So, we can construct
unique demand vectors q∗i for all undecided users i in the
BGR. Hence, the constructed demand vector q∗ is the only
maximizing demand vector of NUM with collection of support
sets {Ĵi}Ii=1.

Theorem 3: The social welfare optimization problem NUM
has a unique maximizing solution q∗ with probability 1.

Proof: Assume there exist two maximizing demand vec-
tors q∗ and q′. Then, by Lemma 2, q∗ and q′ have different
collections of support sets {Ĵ ∗i }Ii=1 and {Ĵ ′i }Ii=1 almost
surely. Next, consider a convex combination demand vector
qλ = λq∗ + λ̄q′ where λ ∈ (0, 1), λ̄ = 1 − λ. Since
x∗i =

∑J
j=1 q

∗
ijcij =

∑J
j=1 q

′
ijcij , then

∑J
j=1 q

λ
ijcij =

λ
∑J
j=1 q

∗
ijcij + λ̄

∑J
j=1 q

′
ijcij = x∗i , so it follows that qλ is

also a maximizing solution of NUM for any λ ∈ (0, 1). Then,
the support set Ĵ λi (qλ) = {j ∈ J : qλij = λq∗ij+λ̄q

′
ij > 0} for

user i is Ĵ λi = Ĵ ∗i ∪ Ĵ ′i , for all λ ∈ (0, 1). In particular, the
support set collections {Ĵ λi }Ii=1 are the same for all λ ∈ (0, 1),
which, using Lemma 2, implies that qλ = q for all λ ∈ (0, 1),
which further implies q∗ = q′ = q.

Hence, the maximizing demand vector q∗ of the social
welfare optimization problem NUM is unique with probability
1. From optimization theory [32] we know that there will be
a unique Lagrangue multiplier vector p∗ (with J components)
associated with the resource constraints of all providers of
the unique optimal demand vector q∗. In the next section we
show that (q∗,p∗) is the unique equilibrium of the two-stage
provider competition game.



IV. ANALYSIS OF THE TWO STAGE GAME

In this section we show that there exists a unique equilib-
rium (defined more precisely shortly) of the provider com-
petition game. In particular, this equilibrium corresponds to
the unique social optimal solution of the welfare optimization
problem NUM and the associated Lagrange multipliers. The
idea is to interpret these Lagrange multipliers as the prices
proposed by the providers to the users. Moreover, we show
that there are at most J−1 undecided users at this equilibrium.

As the equilibrium concept, we adopt the following defini-
tion of the subgame perfect equilibrium [33]:

Definition 3: (Subgame perfect equilibrium (SPE)) A price
demand tuple (p∗, q∗(p∗)) is a subgame perfect equilib-
rium of the provider competition game if no player has
an incentive to deviate unilaterally. In particular, each user
i ∈ I maximizes its payoff given prices p∗. Each provider
j ∈ J maximizes its revenue given other providers’ prices
p∗−j = (p∗1, · · · , p∗j−1, p

∗
j+1, · · · p∗J) and the users’ demand

function q∗(p∗).

A. Equilibrium strategy of the users

Notice that here we consider a perfect information game
where each user/provider knows the complete information
of other participants. Consider users who are facing prices
p in the second stage. Each user is maximizing his payoff
ui

(∑J
j=1 qijcij

)
−
∑J
j=1 pjqij . By differentiating with re-

spect to qij and examining the first order conditions, we see
that the maximizing demand for user i satisfies

∂ui(xi)
∂xi

= argmin
k∈J

pk
cik

, where xi =
∑

j∈argmink
pk
cik

qijcij , (6)

and qij = 0 for j /∈ argmink∈J
pk
cik

. This motivates the
following definition:

Definition 4: (Preference set) For any price vector p, user
i’s preference set Ji(p) is the set of those providers j ∈ J
with pj

cij
= mink∈J pk

cik
. A collection of preference sets of all

users J1,J2, . . . ,JI is denoted by {Ji}Ii=1.
Since ui(·) is strictly increasing and strictly concave, we see

from (6) that a user’s payoff is maximized by a unique value
of xi, which we denote x∗i . Suppose that x∗i > 0 (otherwise
qi = 0). In this case we have again decided and undecided
users as in the social welfare optimization problem in Section
3. Here a decided user has a preference set with cardinality
one, and there is a unique demand vector qi (with only one
positive element) that maximizes its payoff. For an undecided
user, the cardinality of its preference set is larger than one, and
this user has infinite choices of demand vectors to maximize
its payoff (i.e. any qi ≥ 0 such that x∗i =

∑
j∈Ji qijcij).

There is a close relationship between the support sets from
Section III and preference sets. Namely, for any provider j
that the user i gets positive resource from (i.e. j ∈ Ĵi) we
have that j is in the preferred set of that user (j ∈ Ji). Hence
the support set of a user is a subset of its preference set:
Ĵi(q(p)) ⊂ Ji(p). In addition, we can construct a BGR based
on the preference sets. It can be shown that, with probability

1, this BGR also has no loops (proof is similar to that of
Appendix A).

In particular, since the provider competition game is a game
of complete information, once the prices p are announced each
user knows all other users’ preference sets, and can construct
the corresponding BGR. Undecided users can now uniquely
determine their demand vector by running the BGR decoding
algorithm. This is one of undecided user’s infinitely many
best responses. If all undecided users choose their resource
amounts by running the BGR decoding algorithm with the
same complete information, then the total demand to each
provider equals his supply. However, if some of the users
choose a different best response, total demand is not equal
to supply for some providers who then have an incentive to
change their strategy.

Hence, the only best response q∗(p) of the users that guar-
antees that they get what they ask for is to deduce their demand
vectors from the BGR. More importantly, the providers know
that BGR decoding algorithm is the best response of the users,
so they can choose the prices such that the best response of the
users leads to the maximized profit. We can also show that it is
possible to achieve this best response by running a distributed
algorithm that relies only on local information [34].

B. Equilibrium strategy of the providers

For a specific class of utility functions, it is easier to
characterize the profit maximizing criterion for the providers.
Let us define the coefficient of relative risk aversion of user i
as kiRRA = −xu

′′
i (x)

u′i(x) . The coefficient of relative risk aversion
indicates a user’s elasticity of demand.

Assumption 4: For each user i ∈ I, the coefficient of
relative risk aversion is less than 1.

Assumption 4 implies that the demand of the users is such
that a monopolistic provider should sell all of its resource Qj
to maximize its revenue. It is satisfied by some commonly
used utility functions (such as log(1 +x) and the α−fairness2

x1−α

1−α , for α ∈ (0, 1) [35], [36]). Based on this assumption,
the providers maximize their profit when demand equals the
supply.

C. Analysis of the provider competition game

Theorem 4: Under assumption 4, the unique socially opti-
mal demand vector q∗ and the associated Lagrangian multi-
plier vector p∗ constitute the unique sub-game perfect equi-
librium (SPE) of the provider competition game.

The proof is given in Appendix B.
It is quite surprising to see that the SPE of the provider

competition game is also a social optimum, i.e. that the
competition of providers does not reduce efficiency. This is
not a simple consequence of the strict concavity of the utility
functions of the users; instead it is also related to the elasticity
of users’ demand. If the users have utility functions that satisfy
Assumption 4, then the best strategy for the providers is

2For α ≥ 1 the α−fair utility function does not satisfy Assumption 4,
where for α = 1 the α−fair utility function is log(x).



to sell all of their resource. Otherwise, the demand of the
users may not be elastic enough, and a provider’s strategy
to maximize profit may be to increase the price beyond the
market clearing price. For example, the provider competition
game involving users with α−fair functions with α > 1
will not have the socially optimal equilibrium since the profit
maximizing strategy of a provider is to sell less than its
entire resource3. The class of utility function resulting in a
unique SPE (constrained by Assumption 4) is smaller than the
class of utility functions resulting in a unique socially optimal
allocation (Assumption 1).

What makes our analysis non-straightforward is the pres-
ence of undecided users, who are fundamentally different
than decided users. To compute the equilibrium achieving best
response, the undecided users need to take into account the in-
formation of other participants. This increases the complexity
of decision making, so an interesting question that one might
ask is how many undecided users can there be in a given
game. Although in practice the number of users is generally
much larger than the number of providers, it turns out that for
any given price vector (and in particular the equilibrium price
vector) there exist at most J − 1 users who are undecided.

Lemma 5: Given any price vector p, the number of unde-
cided users is at most J − 1.

The proof is omitted for brevity, and can be found in [31].
The main idea is to observe that if the number of undecided
user nodes in a BGR is greater than the number of provider
nodes (which is at most equal to the total number of providers),
this leads to a BGR with loops, which by Property 4 occurs
with zero probability.

V. SIMULATIONS AND DISCUSSION

One of the result of our analysis is that some users may
connect to more than one provider at the equilibrium. While
Lemma 5 gives an upper bound to the number of undecided
users, it does not say much about the possibility of having
such users in the system. Our simulations results indicate
that for a relatively large number of users a significant per-
centage of cases involves at least one undecided users. As
an example, we consider a three provider network with the
base-stations of the networks fixed, and users locations are
drawn uniformly at random on a square area. Figure 2 shows
that percentage of instantiations having undecided users at
the equilibrium for different number of users (ranging from
10 to 50). We assume that three providers have equal total
resource, i.e., Q1 = Q2 = Q3. The users’ utility function
is ai log(1 +

∑3
j=1 qijcij), where cij is the channel capacity

log(1 + SNR|hij |2), qij is the amount of allocated time, and
ai’s are the individual willingness to pay factors (drawn from
an exponential distribution). The channel gain amplitudes |hij |
are drawn from an exponential distribution with mean equal
to the distance between user i and provider j. For each choice
of user number ranging from 10 to 50, we generated 500 sets

3For users with log(x) utility function (i.e. α−fair utility function with
α = 1) the provider gets the same profit regardless of how much resource it
sells to the user.

of channel coefficients, and found the percentage of equilibria
with users connecting to multiple networks. The percentage
has a decreasing trend with a larger user population, although
it is significant even with 50 users.
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Fig. 2. Percentage of equilibria with at least one undecided user

Technically speaking, the difference between decided and
undecided users is significant. The decided users have a
unique demand vector that maximizes their payoffs, while
the undecided users have an infinite number of such vectors.
This is not an issue in the complete information case as we
have described. However, in practical networks where full
information is difficult to obtain, it would be interesting to
know what kind of distributed learning algorithm can lead to
the same unique equilibrium. We are investigating this as part
of our ongoing work [34].

The number of undecided users is small and its upper bound
(J − 1) does not grow with the number of users. Future
systems may replace user choices by the actions of software
agents in charge of connection and handover between different
providers. In this case, splitting over different providers may
become feasible. This is not very much unlike soft handoff
(soft handover), a feature used by CDMA and WCDMA
standards [37]. On the other hand, when the number of users is
large, the impact on the price of a single undecided user may
be small. Hence, sub-optimal decisions of a few undecided
users may not have a great impact on the experienced quality
of service, although the exact loss remains to be quantified.

In the model we consider, we observe the “locally monop-
olistic” nature of wireless commerce, which does not exist
for most other traditional goods. Namely, a user that has a
strong channel to some provider, but a weak one to others, is
willing to pay a much higher price to the provider with the
strong channel, and is thus not influenced by price competition.
On the other hand, users with similar channel gains to all
providers will be more sensitive to price competition. This
local monopoly is in contrast to some other wireless resource
allocation models where users’ association is based solely on
the price, so given the choice between wireless providers, all
users go to the cheaper one.



VI. CONCLUSIONS AND FUTURE WORK

We have studied the competition of an arbitrary number
of wireless service providers for atomic users who are het-
erogenous in both willingness to pay and the channel quality.
We model this interaction as a two-stage wireless provider
game and characterize its equilibrium state. We obtain a result
that competition leads to the unique globally optimal outcome
for a broad class of utility functions and a generic channel
model. Our results show that some users need to purchase their
resource from several providers at the equilibrium. While the
number of such users is typically small (no larger than J-1), our
simulations indicate that the percentage of cases where at least
one undecided user exists can be significant. Our future work
will focus on developing decentralized algorithms that result in
equilibrium prices as well as the equilibrium demand vectors
using only local knowledge. We will further study fractional
equilibria with the goal of characterizing the losses that occur
when undecided users are unable to split their resource demand
in an optimal way. Finally, it would be interesting to consider
communication models where users cause externalities (such
as interference or congestion) to each other.

APPENDIX A
PROOF OF BGR PROPERTY 4

First, we look at the properties of the demand vector that
maximizes NUM. We will express the NUM in terms of the
demand vector q by substituting directly equation (3) into
equation (2). Let p = [p1 · · · pJ ] be the vector of Lagrangian
multipliers. The Lagrangian for NUM is then

L(q,p) =
I∑
i=1

ui

 J∑
j=1

qijcij

+
J∑
j=1

pj

(
Qj −

I∑
i=1

qij

)
.

(7)

Differentiating the Lagrangian with respect to qij gives

∂L

∂qij
=
∂vi(

∑J
j=1 qijcij)
∂qij

=
∂ui(xi)
∂xi

cij − pj , (8)

where with some abuse of notation we write ∂ui(xi)
∂xi

instead

of ∂ui(x)
∂x

∣∣∣
x=xi=

PJ
j=1 qijcij

. The Karush-Kuhn-Tucker (KKT)

conditions, i.e. the necessary and sufficient conditions fulfilled
by the maximizing solution q for some p can be summarized
as follows:

∂ui(xi)
∂xi

cij − pj ≤0, j ∈ J ; i ∈ I (9)

qij

(
∂ui(xi)
∂xi

cij − pj
)

=0, j ∈ J ; i ∈ I (10)

J∑
j=1

qijcij =xi, i ∈ I (11)

I∑
i=1

qij =Qj , j ∈ J (12)

pj > 0, qij ≥0 j ∈ J ; i ∈ I (13)

We refer to equations (9)-(13) collectively as the KKT
conditions, and say that any maximizing solution q must
satisfy the KKT conditions for some Lagrange multiplier
vector p. Furthermore, any vector q that satisfies the KKT
conditions for some p is a maximizing vector of NUM. Using
the Lagrange multipliers, let us define Ji(p) = {j ∈ J : pj

cij
=

mink∈J pk
cik
} for all i ∈ I (in Section IV this is the definition

of the preference set of user i given prices p, while here the
sets are defined based on Lagrange multipliers). The following
gives us a useful characterization for any two networks that a
user has strictly positive demand from.

Recall that Ĵi(qi) = {j ∈ J : qij > 0}. From equation
(10) we can see that qij > 0 only when ∂ui(xi)

∂xi
= pj

cij
. Hence

pj
cij

= mink∈J pk
cik

is a necessary condition for qij > 0, i.e.
Ĵi(q) ⊂ Ji(p), for all i ∈ I. Then, qij > 0 and qij′ > 0
implies pj

cij
= pj′

cij′
= mink∈J pk

cik
. In particular, qij > 0 and

qij′ > 0 implies
cij
cij′

=
pj
pj′

. (14)

We now consider the BGR defined by the support sets
{Ĵi}Ii=1 of undecided users. For any two edges (i, j) and (i, k)
of BGR, where i is a user index and j, k are provider indices,
qij > 0 and qik > 0 so by (14) we have cij

cik
= pj

pk
.

i1 i2 i3 in

j1 j2 j3 jn−1 jn

· · ·

Fig. 3. A bipartite graph representation loop

Suppose that a loop exists in BGR (refer to Figure 3 for this
part of the proof). Then, a sequence of nodes i1, j1, i2, j2, . . . ,
in, jn, i1 exists, where i1, . . . , in are the user nodes and
j1, . . . , jn are the provider nodes, such that (ik, jk) and
(jk−1, ik) are edges in BGR for k = 1, . . . n (with 0 = n).
The members of the sequence are distinct (if they are not, that
only means that there is a smaller loop that we can consider).
Since both (ik, jk) and (jk−1, ik) are edges, equation (14)
implies that αjk−1jk

ik
= cik−1

cik
= p∗k−1

p∗k
. Hence, αjnj1i1

= p∗n
p∗1

,

αj1j2i2
= p∗1

p∗2
, . . . , αjn−2jn−1

in−1
= p∗n−2

p∗n−1
, αjn−1jn

in
= p∗n−1

p∗n
. From

this, it can be concluded that a loop in the preference graph
implies:

αjnj1i1
αj1j2i2

. . . α
jn−2jn−1
in−1

α
jn−1jn
in

=
p∗n
p∗1

p∗1
p∗2
. . .

p∗n−2

p∗n−1

p∗n−1

p∗n
= 1.

Note that αjj
′

i = cij
cij′

is the ratio of two independent
continuous random variables, hence it is a continuous random
variable itself, for any i ∈ I, j, j′ ∈ J . Also αjj

′

i is indepen-
dent from αkk

′

l for l 6= i ∈ I and all j, j′, k, k′ ∈ J . However
the probability that the product of independent continuous
random variables equals a constant is zero. In other words,



the event that a BGR has a loop is of zero measure.

APPENDIX B
PROOF OF THEOREM 4

Assume that the providers charge prices p = [p1 . . . pJ ] to
the users. Then, each user faces a local maximization problem
USERi(p):

max ui

 J∑
j=1

qijcij

− J∑
j=1

pjqij (15)

over qij ≥ 0, ∀j ∈ J

This is a non-strictly concave maximization problem. By
differentiating and looking at the first order conditions, we
conclude that the maximizing conditions are:

∂ui(
∑J
j=1 qijcij)
∂qij

=
∂ui(xi)
∂xi

cij − pj =0, qij > 0 (16)

≤0, qij = 0, (17)

where xi =
∑J
j=1 qijcij . Since ui(·) is strictly increasing

and strictly concave, there is a unique value of xi that is
maximizing a user’s payoff. Equations (16) and (17), together
with xi =

∑J
j=1 qijcij are equivalent to equations (9)-(11)

and (13). Furthermore, for a demand vector to be a subgame
perfect equilibrium of the provider competition game, it is
required that the demand each provider is facing equals to
the supply, i.e.

∑I
i=1 qij = Qj , for all j ∈ J , which is

equation (12). Hence, the SPE is a price vector tuple p, q that
satisfies KKT conditions (9)-(13). But, any vector tuple p, q
that satisfies the KKT conditions is a maximizing solution of
NUM. Furthermore, we know that there is exactly one such
tuple. Hence, we have established formal equivalence between
the SPE of the provider competition game and the maximizing
demand vector of NUM.
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