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Abstract

Many parallel applications exhibit unpredictable communication
between threads, leading to contention for shared objects. The
choice of contention management strategy impacts strongly the
performance and scalability of these applications: spinning pro-
vides maximum performance but wastes significant processor
resources, while blocking-based approaches conserve processor
resources but introduce high overheads on the critical path of com-
putation. Under situations of high or changing load, the operating
system complicates matters further with arbitrary scheduling deci-
sions which often preempt lock holders, leading to long serializa-
tion delays until the preempted thread resumes execution.

We observe that contention management is orthogonal to the
problems of scheduling and load management and propose to
decouple them so each may be solved independently and effec-
tively. To this end, we propose a load control mechanism which
manages the number of active threads in the system separately
from any contention which may exist. By isolating contention
management from damaging interactions with the OS scheduler,
we combine the efficiency of spinning with the robustness of
blocking. The proposed load control mechanism results in stable,
high performance for both lightly and heavily loaded systems,
requires no special privileges or modifications at the OS level, and
can be implemented as a library which benefits existing code.

Categories and Subject Descriptors D.4.1 [Operating
Systems]: Process =~ Management —  Synchronization,
multiprocessing/multiprogramming/multitasking, scheduling;

D.4.8 [Operating Systems]: Performance — Measurements; H.2.4
[Database Management]: Systems — Concurrency

General Terms Performance, Measurement

Keywords Concurrency control; load management; contention;
spinning; blocking; scheduling; thread; multicore.

1.

The rise of multicore architectures has several important implica-
tions for parallel software. Stagnant single-thread performance
favors multicore architectures, which in turn pressure software
developers to parallelize all applications, not just ones which lend
themselves easily to parallel execution. Further, exponentially
growing core counts require increasingly fine-grained synchroni-
zation to minimize scalability-limiting contention among threads.
Enforcing synchronization among threads imposes non-trivial
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overheads on the critical path, and a poor implementation can both
aggravate existing serialization points and create new, artificial,
ones. Software utilizing fine-grained parallelism is especially vul-
nerable because acquiring a mutex lock (even when uncontended)
can take as long as executing the short critical section it protects.
Further, even “well-behaved” applications, achieving over 99%
parallel execution, face enough contention to limit their scalability
on today’s hardware. The net result is that application performance
is increasingly sensitive to the implementations of synchronization
primitives and contention management policies.

Synchronization primitives generally resolve contention by
either busy waiting (spinning) until the desired resource becomes
free, by descheduling the waiting thread (blocking), or through
some combination of the two. Spinning is attractive because wait-
ing threads respond to lock handoffs very quickly, minimizing the
dead time where no thread has access to the resource. Unfortu-
nately, polling is highly resource-intensive. Techniques such as
exponential backoff [1] and queue-based primitives [24] ease pres-
sure on caches and memory systems, but by design every type of
spinning wastes CPU time and waiting threads compete with oth-
ers in the system. In particular, spinning tends to produce a kind of
priority inversion where spinning threads prevent the lock holder
they wait on from running and releasing the lock; the problem
becomes especially prominent in systems under high load and can
limit scalability even in software that is otherwise well-behaved. In
contrast, blocking removes waiting threads from the system, mini-
mizing wasted resources and potentially allowing other threads to
do useful work. However, blocked threads must be rescheduled
once the lock is available, adding significant delays to the critical
path and introducing a scheduling bottleneck which also limits
scalability.

The weaknesses of spinning and blocking are well-known and
have prompted many proposals which combine spinning with
blocking [27], but hybrid implementations face the further chal-
lenge of balancing competing objectives: removing threads from
the system while preserving fast response times. The optimal bal-
ance between spinning and blocking varies increasingly, and per-
formance drops steadily, as core and thread counts grow [6].
Figure 1 illustrates the challenges that face the current state-of-the
art synchronization primitives. We plot the performance of a data-
base transaction processing workload running on a 64-thread Niag-
ara II system (see Section 4 for details). Load, defined as the
number of runnable threads in the system, varies from 1 to 192
threads along the x-axis and the y-axis plots the corresponding
throughput in thousands of transactions per second. We plot results
for two versions of the application: one uses a sophisticated and
scalable spinlock implementation [15], while the other uses the
state-of-the-art spin-then-block Solaris pthread mutex (modern
operating systems avoid purely blocking primitives). The software
is over 99% parallel and throughput should ideally increase with
parallelism until the machine is fully loaded at 64 threads, then
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Figure 1. Weaknesses in state-of-the-art synchronization primi-
tives which use blocking and spinning.

level off but remain steady as load continues to increase. Instead,
as load increases, blocking synchronization overwhelms the OS
scheduler, causing poor performance after 32 threads. Spinning
fares better at first, but as load crosses 100% its performance also
drops off drastically due to priority inversions.

Nearly all of the challenges which arise with either spinning or
blocking are due to scheduling concerns. Spinning gives optimal
performance under light load (when no scheduling is needed), but
performs poorly under high load because preempted lock holders
trigger priority inversions. Similarly, blocking synchronization
performs badly because it potentially causes a context switch with
every lock handoff. Frequent context switching leads to scheduling
bottlenecks and adds significant overhead to the critical path. Fine-
grained synchronization aggravates the problem because it favors
frequent, short critical sections — much shorter than a context
switch — over longer and more coarse-grained ones.

We argue that the solution to the spinning-blocking trade-off
lies not with a more effective hybrid scheme, but in decoupling
load control from contention management. Effective contention
management uses spinning for fast lock hand-offs and does not
block in response to contention. Effective load control then pre-
vents spinning threads from causing overload while keeping load
low enough that lock holders are not preempted. We propose a
mechanism which achieves both goals by notifying a random sub-
set of spinning threads to block in response to overload, waking
them when load drops or after a timeout of roughly one scheduler
time slice. Spinning threads are attractive targets because they can-
not make forward progress by definition, so removing them does
not hurt performance in the short term. Further, removing some
spinning threads from a loaded system ensures that lock holders
responsible for the wait are able to run, while leaving enough other
spinning threads to preserve fast lock handoffs. Finally, OS time
slicing operates normally in the absence of contention, though load
control remains active to disrupt any convoys which might arise.

In summary, this paper makes three main contributions:

1. We show that scheduler activity on the critical path of lock
handoffs underlies performance problems with the current
state-of-the-art in both spinning and blocking primitives.

2. We propose to decouple contention management from schedul-
ing, which moves the OS scheduler completely off the critical
path and allows applications to exploit the best properties of
spinning and blocking instead of merely trading them off.
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Figure 2. Problem space for contention management policies

3. We design and implement a load control mechanism which
achieves the proposed decoupling without modifications to the
OS kernel or scheduler. For a variety of benchmarks, we
achieve peak performance for lightly loaded machines, while
retaining 85% of that peak even with 200% load (two runnable
threads per hardware context).

The rest of the paper is organized as follows. The next section
expands on the evolution of synchronization algorithms, and
related issues such as scheduling and preemption resistance.
Section 3 introduces our proposed load control mechanism and
discusses implementation issues. Sections 4-6 present and evaluate
the load control implementation. Section 7 compares load control
with alternative approaches, followed by conclusions in Section 8.

2. Managing Load and Contention

This section examines different approaches related to conflict reso-
lution for locking primitives (see Section 7 for a discussion of
alternatives to locking). We focus on locking because it is a gen-
eral-purpose and widely-utilized approach to synchronization.
Contflict resolution is necessary because threads which encounter
contention must wait for the lock to be released. As mentioned,

spinning and blocking — as well as variants which extend and
combine the two to mitigate their various weaknesses. Figure 2
illustrates the space of challenges encountered in implementing
locking primitives and how solutions for these evolved; each
underlined text block is a challenge and connecting arrows are
existing solutions which attempt to overcome the challenge.
Under blocking schemes (grouped toward the right of Figure
2), threads are descheduled in response to contention. Blocking has
the primary benefit of freeing the CPU until the waiting thread can
make progress again. As an added advantage, the scheduler can
cooperate with blocking synchronization, for example by desched-
uling threads which wait for a preempted lock. Blocking is an
expensive operation, however, because it requires two context
switches (with corresponding OS scheduling decisions), adding
10-15us to the critical path of the system. A longer critical path
increases the likelihood that other threads will encounter conten-
tion and block, forming a vicious cycle of extremely slow lock
handoffs known as a convoy [5]. Because convoys are so damag-
ing to scalability, purely blocking contention management is only
used in uniprocessor systems where spinning leads to deadlock.
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Figure 3. Spinning: priority inversion
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In contrast to blocking, spinning or “busy waiting” schemes
(grouped on the left side of Figure 2) leave waiting threads on
CPU as they poll a memory location for changes that indicate a
lock handoff. Pure spinning is highly responsive (1-2 cache miss
delays per handoff) and avoids context switching or system calls
on the critical path. However, it also wastes CPU time other
threads might have been able to use. In addition, naive spinlock
implementations create heavy traffic in the memory system and
thus interfere with computation. Finally, the OS scheduler cannot
distinguish between threads which spin and those which make for-
ward progress, leading to situations where a lock holder gets pre-
empted, only to have the new thread waste its time slice spinning.

To show how severe the problem of preempted lock holders can
be, we run a database telecommunication benchmark (TM-1) on a
64-context machine (see Section 4 for details), using a state-of-the-
art spinlock. We instrument the code to differentiate between spin-
ning due to true contention and spinning due to priority inversion.
Figure 3 shows the resulting breakdown of work. We vary the
number of threads along the x-axis, and measure CPU time spent
doing useful work, spinning due to contention, and spinning due to
priority inversion. For fewer than 64 active threads, machine utili-
zation is less than 100% and contention is low. However, as soon
as utilization passes 100% priority inversions quickly dominate,
wasting up to 85% of CPU time. It is important to note that true
contention is not the concern: at peak performance, less than 10%
of CPU time is wasted spinning on contended locks, and that frac-
tion drops rapidly when the OS scheduler preempts lock holders.

2.1 Preemption-resistant Spinlocks

Queue-based spinlocks [22][24] and to a lesser extent, ticket
locks [29], provide excellent scalability because waiting threads
form a FIFO queue and each lock handoff targets a specific thread
(“MCS” in Figure 2). Queue-based locks also give each thread its
own memory location to spin on, eliminating unnecessary coher-
ence traffic. Further, the orderly handoff is an elegant solution for
the “thundering herd” problem, where all waiting threads race for
the lock at each release and cause both contention and memory
traffic. However, the same FIFO ordering makes such algorithms
especially vulnerable to preemptions because every thread in the
queue is effectively a lock holder: A thread preempted from the
queue will almost certainly become the lock holder before it wakes
again, and other threads cannot bypass it even if it was preempted
before acquiring the lock. As a result, load must remain strictly
below 100% in order to avoid convoys.
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Figure 4. Blocking: scheduler overload

Time-published MCS locks [15] (“TP-MCS” in Figure 2) allow
lock holders to remove preempted threads from the lock queue
instead of passing the lock to them. By only handing the lock to
running threads, time-published locks eliminate the main weakness
of queue-based spinlocks while retaining their superior scalability.
However, even with TP-MCS locks, a few extra threads in a 32-
processor system add 50-100% to the execution time of some
SPLASH-2 benchmarks [15]. This behavior arises because time-
published locks only protect the queue, leaving lock holders vul-
nerable to preemption (the results in Figure 3 are based on TP-
MCS). Preempted lock holders impact all locks which do not
cooperate with the OS scheduler, and are the focus of this work.

2.2 Backoff and Spin-then-block Hybrids

Many approaches exist to ameliorate some of the weaknesses of
spinning and blocking. Backoff-based spinning provides another
solution to the “thundering herd” problem by limiting the number
of waiting threads which can respond simultaneously. Test-and-
test-and-set with exponential backoff [1] and spin-then-yield
variants [14][27], fall into this category, with the latter removing
threads from the CPU completely. Backoff schemes suffer from a
fundamental weakness, however, in that they impose competing
objectives: Long backoffs are best for reducing wasted resources,
but shorter backoffs give the fastest response to lock handoffs. The
best tuning for backoff-based schemes does not necessarily per-
form well (see next subsection), and tuning for the general case is
challenging because the hardware, OS, application, and the num-
ber of active threads all influence the optimal balance [6].

Hybrid spin-then-block schemes [6][27] improve on backoft by
allowing the lock holder to explicitly wake waiting threads. The
capability to both sleep and wake threads allows threads to block
without timeouts, without the risk of leaving a contended lock idle.
Where spin-then-yield schemes are essentially spinlocks which use
the scheduler as a form of backoff, hybrid spin-then-block schemes
use spinning to reduce context switching imposed by a blocking
primitive. However, as with backoff, hybrid schemes can cause
undesirable side effects on load (see below). Heavyweight OS
mutex implementations usually employ spin-then-block strategies,
including the Solaris adaptive mutex [23] and the Linux futex [12].

The Solaris adaptive mutex is an advanced spin-then-block
design that minimizes the need for context switching under low
and moderate contention, and which switches to blocking under
high contention. However, as presented in Figure 1, its behavior
still leaves much room for improvement. To identify the reason
behind the lock’s poor performance we modify the TM-1 bench-
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mark to use the Solaris mutex instead of spinning, then measure
both throughput and context switching rates of the system as load
increases. Figure 4 shows that, for fewer than around 37 client
threads on the x-axis, threads do not block; there is only one con-
text switch per transaction due to the database log commit, which
requires a disk I/O. After 37 threads, however, the adaptive mutex
begins to break down as more and more threads exhaust their
patience for spinning and block. Soon, all waiting threads have
blocked and every lock handoff requires a context switch. This
both increases significantly the critical path length and saturates
the OS scheduler, leading to a steady performance drop as conten-
tion rises.

2.3 Load-triggered Backoff

We proposed recently a form of contention management [19] that
combines aspects of the backoff and spin-then-block strategies. In
the proposed approach the system monitors load and spinning
threads sleep for an exponentially distributed amount of time
whenever an overload situation is detected. The scheme partly
decouples load and contention management in that threads never
block if load remains below 100%; it matches the performance of
spinning under low load while retaining the robustness of blocking
under overload situations. While load-triggered backoff is effec-
tive in the sense that it achieves the best of both worlds, its perfor-
mance approaches that of a blocking mutex for load even slightly
over 100%, leaving significant room for improvement.

We now present further analysis which shows that load-trig-
gered backoff suffers from a one-sided control mechanism. Once a
thread has gone to sleep it cannot be woken until it times out. The
fundamental weakness of backoff is especially clear as it causes
both dips in load (because sleeping threads did not wake soon
enough) and spikes (when the OS wakes groups of sleeping
threads simultaneously at scheduler clock ticks). The net effect is
that load variability increases significantly and yet, on a loaded
system, contended lock acquires are still associated with context
switches. Figure 5 captures this behavior: we set artificially the
load target at 32 contexts, then enable the backoff scheme during
execution of the TM-1 benchmark with 63 client threads. The
number of running threads is shown on the y-axis as time pro-
gresses along the x-axis. Though the baseline benchmark includes
significant I/O and other sources of context switches, its behavior
is relatively uniform. Once the backoff scheme becomes active,
however, the number of active threads begins to fluctuate wildly,
with large variations around the 32 context target even at the rela-
tively long time scale shown. The unpredictability takes two
forms: the long-scale average tends to wander around low values,
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Figure 6. Workload variability at short time scales

while frequent spikes push load much higher for short intervals.
The behavior shown reflects a careful tuning of the backoff distri-
bution. Poor tuning leads to complete unpredictability, with utiliza-
tion swinging between 0 and 100% at millisecond time scales.

In this work we develop further the idea behind load-triggered
backoff to produce a scheme which retains the performance of
spinning even under overload situations, to the extent that perfor-
mance is better in a somewhat overloaded system than a nearly-
loaded one. Further, where load-triggered backoff required some
cooperation from the application, the new scheme is completely
transparent to both application and OS.

2.4 Variability and Admission Control

Many important applications, including server and database work-
loads, exhibit irregular parallelism and scheduling behavior as
threads block and unblock due to changes in demand, contention,
and I/O requests. In response to this challenge, admission control
strategies [3][8][25] monitor key statistics (CPU, memory, request
response times, even lock contention) which they use to tune the
amount of work allowed into the system. Such monitoring is
important to keep system load within reasonable limits over mac-
roscopic time scales. On the other hand, unpredictable and irregu-
lar thread behavior over short time scales leads to large variations
in load about the average maintained by admission control. These
variations occur because, at any moment, many threads are asleep
waiting for resources or I/O completions. Threads wake at unpre-
dictable times, often in groups, and trigger load spikes that can
lead to preemptions if the average is high. When a load spike trig-
gers a lock holder preemption, threads which would have normally
acquired the lock and finished their computation will instead spin
and prolong the spike’s duration. With more threads in the system
than processors, the effect reinforces itself and quickly overloads
the machine. Admission control is too coarse-grained to prevent
such priority inversion and bad scheduling decisions directly, and
it can only mitigate the effects indirectly by reducing the number
of threads it allows to enter the system. However, this solution
tends to leave the machine underutilized most of the time.

Figure 6 shows how the number of runnable threads in the sys-
tem varies over half a second of the TPC-C database benchmark
with 32 client threads running on a machine with 64 hardware con-
texts (see Section 4 for details). This setup allows us to see the
number of threads which can run at any moment, given enough
processing power. We used the Solaris DTrace utility [7] to record
every context switch during the measurement interval, giving an
accurate view of variations in instantaneous load. Most of the time
between 12 and 24 threads are active, with the average near 16.



The dotted lines mark two possible extremes in admission control
policies. For a machine with 12 processors, allowing 32 client
threads to run as shown is quite aggressive in that the machine
would be 100% utilized nearly all the time (bottom line). In a
machine with 24 processors, on the other hand, allowing only 32
client threads is quite conservative and the machine would be
lightly loaded except during especially tall spikes (top line).

Our load control scheme is designed to manage variations in
load over millisecond time scales and relies on admission control
to maintain a reasonable long-term average. We assume an aggres-
sive control policy that maintains high but not overwhelming load.

3. Effective Load Control

The previous section highlights the fact that spinning and blocking
are best suited to very different tasks: Spinning is good for achiev-
ing quick lock hand-offs, while blocking works best at longer time
scales to reduce competition among threads for processor cycles.
Complications arise when either is used for other purposes. We
therefore propose to decouple load control, with its associated
scheduling overheads, from contention management, which must
occur on the critical path and favors spinning. By applying spin-
ning and blocking where each is most effective, we achieve highly
responsive lock hand-offs while keeping load low enough to avoid
the OS preemptions that cause convoys and priority inversion. The
proposed mechanism has several desirable features:
e Itdiscourages the OS scheduler from preempting lock holders
(causing priority inversions) and encourages rapid reschedul-
ing when an unwanted preemption does occur.

e Scheduling and other high-overhead operations occur off the
critical path in order to avoid creating or aggravating bottle-
necks in the system.

e It has a stabilizing influence on the system by counteracting
quickly variations in load which arise. When more threads
become active in the system, the mechanism compensates by
removing spinning threads that are wasting CPU time.

¢ Decisions are based on a view of the entire process rather than
local information available to any one mutex lock.

The last point marks an important difference between our
approach and the state-of-art lock implementations (e.g. Solaris
mutex, Linux futex): load control acts on all locks as a group rather
than making local decisions the way a traditional blocking primi-
tive would. This is a key feature as we are no longer limited by
static trade-offs between spinning and blocking. The most con-
tended locks in the system will still tend to donate the most threads
as de-scheduling victims (as they cause the most spinning), but
contention will not cause load to drop excessively or context
switch rates to increase drastically. Bottleneck locks also see
reduced contention as a beneficial side effect.

3.1 Load Controller Design Overview

Our load control mechanism consists of two parts: an application
visible spinlock and a dedicated control daemon thread (called
from now on the controller) that maintains system statistics and
decides when to (de)schedule threads. The controller and user
threads communicate through the sleep slot buffer, a shared data
structure that captures scheduling decisions taken by both control-
ler and user threads.

3.1.1 Controller implementation

Figure 7 gives a more detailed overview of the mechanism’s com-
ponents, where the controller (left) and application threads (right)
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communicate via the shared sleep slot buffer (center). The control-
ler uses existing OS services such as high-resolution timers to
wake periodically (out of phase with the OS scheduler tick). The
controller uses OS process accounting facilities to monitor a single
“sensor”’ value: overload, defined as the number of excess runna-
ble threads in the system (negative in underload situations). The
controller makes scheduling decisions based on the intuitive policy
that threads should be removed from CPU in response to overload,
and re-scheduled when load drops.

The heart of the load control mechanism is the sleep slot buffer,
which serves a dual purpose. The controller uses it to notify spin-
ning threads how many should block in response to overload.
Threads also register themselves in the sleep slot buffer before
blocking so the controller can identify and wake them in response
to underload. The controller adapts to changes in load by adjusting
the size of the sleep slot buffer. Spinning threads check the buffer
for empty slots, which they “claim” by placing their thread ID
inside before blocking. Whenever the buffer grows (or threads
time out and leave), any spinning threads present will quickly
claim the empty space and block, reducing load. When the buffer
shrinks, the controller wakes any threads which no longer need to
sleep, allowing them to re-enter the system immediately (in con-
trast to load-triggered backoff, where they must time out before
waking). To avoid races the controller uses atomic instruction to
clear slots of threads that need to wake up, and each thread checks
whether the controller cleared its slot before going to sleep.

3.1.2 User side thread load control mechanism

The user-visible part of load control is an augmented spinlock. Our
experiments extend the TP-MCS lock, though any high-perfor-
mance spinlock which allows threads to abort attempts would also
work. Once a thread joins the lock queue, it checks for space in the
sleep slot buffer while polling for a lock handoff; if it finds avail-
able space it uses an atomic compare-and-swap (CAS) to place its
TID at the buffer’s head. CAS failure indicates that another thread
arrived first and the thread continues polling. If the CAS succeeds,
the thread must sleep and attempts to leave the lock queue. If the
thread acquires the lock during this time, it simply clears the sleep
slot it claimed and enters the critical section. Otherwise, it blocks
as long as the sleep slot remains set to its own TID (the controller
may clear it before the thread blocks even once) or until 100ms
pass, whichever comes first. Once the thread wakes it restarts the
lock acquire process as if it just arrived.

It is important to note that the controller responds to load, not to
individual preemptions, which is key to fast response. In an over-
loaded system with no contention, the controller maintains a suit-
able sleep target, but most or all sleep slots remain empty because
there are no spinning threads to claim them. However, when
untimely preemptions trigger convoys the resulting spinning
threads immediately claim sleep slots and block. The drop in load
allows the OS to reschedule the preempted lock holder and break
the cycle, all without specific intervention by the controller thread.

3.2 Implementation and Performance Issues

This subsection presents some of the low-level issues which arise
when implementing the load control mechanism. For example,
load control, which is implemented entirely in user space, depends
on existing operating system facilities to work. In addition,
because the sleep slot array is a central point of communication, it
must be accessed carefully to avoid lengthening the critical path of
the computation or causing excessive memory traffic.
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3.2.1 OS support required for load control

Load control depends on three OS facilities: the ability to (a)
schedule periodic daemon thread wakeups independent from the
system clock tick (to avoid measurement and scheduling anoma-
lies), (b) measure load accurately and with high resolution
(~100us), and (c) deschedule and wake threads efficiently.

High-resolution timers are an effective way to wake the con-
troller thread at scheduler-independent intervals, and are widely
available as POSIX real-time extensions. To measure load, we use
the Solaris microstate accounting statistics, which have nanosec-
ond precision and include time spent on CPU and waiting in run-
queues. The statistics can be used to derive the number of CPUs
which the process would have used had they been available.
Microstate accounting has also been prototyped in at least two
Linux variants (Gelato and Carrier Grade Linux). It is also possible
to use dynamic tracing facilities such as DTrace or SystemTap (the
Linux equivalent to DTrace) to emulate microstate accounting,
though admittedly the emulation approach is cumbersome and
imposes high “probe effect” overhead (at least for the DTrace ver-
sion we tested).

In order to deschedule and wake threads efficiently we use
lightweight system call primitives available in different forms in
both Linux and Solaris. In Linux, the futex [12] system call adds
the target thread to a sleep queue associated with an arbitrary
address and forms the basis of all user-space blocking primitives.
Solaris provides a Iwp_park syscall that removes the calling
thread from the OS scheduler until a Iwp_unpark call from
another thread reinstates it. Unlike futex, however, lwp_park
is libc-private and requires some effort to make available to appli-
cation code. Because a real world implementation of load control
would likely reside in libc, we opt to use Iwp_park for our
experiments. However, with some effort we were also able to emu-
late the syscall using per-thread pthread mutex and
pthread_cond pairs.

3.2.2 Implementing an effective sleep slot buffer

The sleep slot buffer has several important requirements: many
threads must be able to access it concurrently without causing
undue contention, spinning threads must be able to find available
slots efficiently, and there should be no races that leave threads
asleep during underload. The first requirement is somewhat easier
than it sounds because threads only access the buffer when there is
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significant contention elsewhere already, and because the number
of threads which actually claim slots is quite limited (some hun-
dreds per second at most). Further, priority inversions are not a
problem because threads accessing the buffer are already attempt-
ing to sleep and do not hold the lock.

To keep fast response time in the common case where no sleep
slots are available and to avoid excessive memory traffic, threads
must be able to determine quickly whether there is space in the
sleep buffer. We achieve this goal using a circular buffer imple-
mented over a large array. We maintain two counters associated
with the buffer: the number of threads which have ever slept (S),
and the number which have awoken and left (W). The controller
also maintains a sleep target (7), the number of threads which
should sleep. S serves as the head pointer of the buffer (modulo its
physical size), where threads join. There is no explicit tail pointer
because threads may leave in any order and the buffer usually con-
tains gaps. Instead, threads compute S-W < T when deciding
whether to sleep, and the controller reclaims space by scanning
from the last-known-end during each cycle as it searches for
threads to wake.

Figure 7 (center) shows an example of the sleep buffer where
S§=58 threads have ever slept and W=>54 threads have since woken
and left. The four sleeping threads which remain are spread over
seven slots. Because the sleep target is 7=4, the sleep buffer is cur-
rently full and no new threads will attempt to sleep. If T increases
or a thread wakes and leaves, the next thread to join the buffer will
insert itself at the arrow (above TID 4).

3.2.3 Augmenting spinloops unobtrusively

Though the sleep slot buffer and sleep target are efficient and fairly
straightforward to implement, in the common case where conten-
tion is minor and there are no open slots in the buffer, the extra
overhead still slows down lock handoffs. For an in-order architec-
ture such as the Niagara II, the delay is especially painful because
it triggers cache misses that the hardware cannot hide, reducing
peak performance by about 10% on our benchmarks even when
load was less than 100%. One solution is to spin for some period of
time before checking the sleep target. However, this imposes the
trade-off that comes with other back-off schemes: if a thread
checks load control infrequently enough to not impact its response
to lock handoff, it does not respond as well to changing sleep tar-
gets (and vice-versa). Our solution is to manually unroll the TP-
MCS polling loop several times, placing appropriate prefetch



instructions and interleaving load control operations with frequent
checks for lock handoff. Though tedious, this approach allows a
thread to poll the lock and the sleep buffer at the same time.

4. Experimental Methodology

This section describes our platform and our methodology for
obtaining the different measurements reported in this paper. We
perform all experiments on a Sun T5220 “Niagara II”” server with
64GB RAM, running Solaris 10. The Niagara II has 16 processor
pipelines which are shared by a total of 64 hardware contexts. This
machine offers more hardware contexts on one chip than any other
server platform currently available, giving a glimpse into the future
for all platforms as on-chip core counts rise. We implement load
control as a library which can be replaced with either time-pub-
lished spinlocks or pthread_mutex in order to simplify compari-
sons. We use DTrace [7] to capture information — such as
instantaneous load and preemptions of spinlock holders — which
would otherwise be difficult to obtain, and measure load with the
OS microstate accounting facilities. Microstate accounting uses
high-resolution timers to track precisely how much time a process
spends in various states: user, system, interrupts, blocked, waiting
for a processor, etc. Because it does not depend on sampling,
microstate accounting is immune to sampling anomalies.

In this paper, we evaluate three classes of benchmark: a series
of microbenchmarks to isolate and examine specific behaviors;
Raytrace, a member of the SPLASH-2 benchmark suite [33]; and
database transaction processing workloads executing in the open
source Shore-MT storage manager [20]. We describe each of these
in detail in the following paragraphs.

In order to isolate performance characteristics of the load con-
trol mechanism, we employ a microbenchmark modeling a
straightforward scenario: M threads running on N hardware con-
texts acquire and release repeatedly a single global lock. The “crit-
ical section” consists of a single call to gethrtime, which takes
between 40 and 80ns to execute on our machine.! Between lock
acquires, threads busy-wait for a fixed period of time before trying
again. All threads begin executing before the first measurement
and stop after the last one. Threads increment a local counter with
each lock release, and the benchmark harness computes throughput
by comparing two successive readings of each thread’s counter
while threads continue to run.

To compare with previous work in preemption resistant
spinlocks [15] and as an example of the medium-sized applications
developers commonly encounter, we evaluate the Raytrace appli-
cation from the SPLASH-2 suite [33]. Unlike most of the bench-
marks in the suite, the load balancing in this application introduces
irregular parallelism, meaning it cannot be easily pipelined or par-
titioned in a way that eliminates all contention. This irregularity
makes it a good candidate for load control, especially since conten-
tion levels depend on thread counts, not input size. We use the
car.geo input, rendered at 1280x1024 resolution with an anti-
aliasing radius of one pixel. With these parameters and 64 active
threads the application is more than 99% parallel.2 Because runs
complete in 5 seconds or less on our machine, we report an aver-
age of six runs per data point.

Our final workload, database transaction processing, differs
significantly from the traditional parallel benchmarks because it is
large and complex (150kLoC), utilizes OS services extensively,
and exhibits fine-grained and irregular parallelism. It also repre-

1. We break with the tradition of accessing N cache lines because con-
tended data can be accessed very quickly thanks to a shared L2 cache.

2. Replacing the custom memory allocator in Raytrace with Solaris’
threaded malloc eliminates previously-reported scalability problems.
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sents an important class of commercial applications which are oth-

erwise underrepresented. The database server experiments employ

transactions from two benchmarks, both running within Shore-MT:

¢ TPC-C [31] models an online retailer which receives, pro-
cesses, and delivers orders made by customers over the Inter-
net, developed by a consortium of database, OS, and
hardware vendors. It features a mix of update transactions and
queries ranging from very small to fairly large and complex,
exhibits heavy application-level contention (from database
locks), and generates intense disk 1/0.

o TM-1 (a.k.a NDBB and TATP3) [26][18] models a cell phone
provider database and was originally developed by Nokia to
vet the offerings of database vendors. It consists of seven very
small transactions, both update and read-only. The application
exhibits little logical contention, but the workload generates
significant physical contention within the engine itself [19].

We choose these workloads because they exercise the database
engine differently. We also note that database workloads are
unusual in that they must cope with two forms of contention: trans-
actions serialize data accesses at the logical level (typically by
acquiring database locks), and threads must acquire large numbers
of mutex locks (often called “latches”) to protect the internal data
structures of the engine as it executes transactions.

TPC-C experiments use a 100 Warehouse dataset (~13GB) and a
12GB buffer pool. Though the workload is memory-resident on
our machine, it still generates a heavy stream of random writes to
disk because all updates must eventually be flushed disk for dura-
bility. The stream easily overwhelms our 48-disk array, so we
place both the database and log files in tmpfs, then use Shore-MT’s
fake I/O latency setting to force each “disk request” to take at least
6msec. All requests thus proceed in parallel, but with latency as if
from a random seek by one of many disk heads in a very large disk
array. TM-1 uses a 100,000 subscriber dataset (~200MB), also
with all files in tmpfs. However, TM-1 is not I/O-intensive and
disk performance does not affect it strongly.

3. TM-1 became NDBB, which in turn became TATP while this paper
was under review. The earlier two benchmarks have since disappeared.
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5. Evaluating Load Control

In the subsections which follow we analyze the behavior of load
control using the microbenchmarks and applications introduced in
Section 4. We begin by evaluating the potential of load control,
then show its impact on full applications, and discuss special cases.

5.1 Response to Control (“Bump test”)

In order for load control to be effective, the system must respond
quickly and predictably to changes in the control output. For
example, the load-triggered backoff scheme we discussed earlier
suffers from unpredictable system response as the sleep target
changes. In contrast, Figure 8 illustrates the effectiveness of our
proposed approach using a “bump test” which modifies the sleep
target of our microbenchmark in a fixed pattern over time. A con-
trollable system will respond to sudden changes in control with a
fast and proportional (predictable) change in its steady state behav-
ior. As the figure shows, every change in the sleep target results in
an immediate adjustment to the number of active threads. The first
thread responds within 30us of a change and the system has stabi-
lized at the new thread count within 200us. These results indicate
that the control mechanism is sound, assuming we can update the
sleep target accurately and often enough (see Section 5.3).

5.2 Effectiveness as Contention Levels Vary

Because load control can only remove spinning threads from the
system, the amount of contention in the system impacts the respon-
siveness of load control. Though low contention leads to little
spinning and a small pool of suitable victim threads, load control
remains effective for two reasons. First, normal OS scheduling
causes very few priority inversions in the absence of contention,
and load control has no need for victim threads. In the more com-
mon case of locks which are heavily used but not contended, pre-
empting a lock holder triggers priority inversion which produces
spinning threads for load control to work with.

Figure 9 demonstrates this effect using a microbenchmark
where threads contend for a single global lock, with a fixed delay
between requests. High contention occurs for short requests on the
left of the x-axis and drops off moving toward the right. We con-
sider three cases, the base case where the machine is 95% loaded
(61 threads) as well as 150% loaded machine (96 threads) both
with and without load control. As we move right along the x-axis,
decreasing contention leads to two effects. First, the 95% loaded
system quickly reaches a state of low contention where throughput
is determined only by the number of active threads, not the amount
of time they spend holding the lock. Second, for the overloaded
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case, less time spent in critical sections means a lower probability
of a preemption catching a lock holder, steadily reducing the per-
formance penalty due to priority inversions. With extremely high
contention (the 12us case), load control is less effective because
lock holders are preempted too often. Even though load control
responds quickly by removing a spinning thread, the lock holder
must still be rescheduled, leading to roughly a 12us delay on the
critical path. Overall, however, we see a significant benefit from
load control over a wide range of contention levels.

5.3 Sensitivity to Controller Update Rate

We have already seen that load control has response times in the
tens of us. However, the control output must also be accurate and
timely or the system will respond faithfully to unhelpful load tar-
gets. For example, if load has dropped back to normal by the time
load control registers a load spike, too many threads will sleep and
causing underutilization of the machine. On the other hand, updat-
ing the load control target requires an expensive syscall, and doing
so too often hurts performance. Figure 10 illustrates the trade-off
between timeliness and overhead as we execute TM-1 and vary the
load control update interval along the x-axis. The y-axis gives sys-
tem throughput for 98%, 110%, and 150% load (63, 72, and 96
threads, respectively) with load control active. For extremely fre-
quent load measurements, high overhead slows all three cases. The
cost increases with load because the Solaris traverses every thread
in the process for each load measurement. In the middle region (3-
10ms), the benefits of load control outweigh the overheads, except
for the 98% load, which sees only the overhead. Finally, as the
interval increases past 10ms (the system tick interval), load control
makes poor decisions due to stale data. In order to maximize per-
formance for all load factors, we set the update interval to 7msec
for our experiments.

5.4 Graceful Degradation Under High Load

The most important measure of load control is its performance as
the number of threads in the system increases. Ideally, the extra
threads would not change the throughput of the system, through
per-thread throughput would necessarily drop. In practice, context
switching is not free and preemptions still occur occasionally, lead-
ing to a gradual drop in performance as load continues to rise. The
goal is therefore to allow performance to degrade gracefully,
depending on admission control to keep load from going so high as
to exhaust system resources. Figure 11 compares the performance
of Raytrace, TM-1, and TPC-C as load varies from near-idle to
overloaded (128 threads). Results for each application are clus-
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Figure 11. Application performance as the thread count varies (64 threads is 100% load).

tered together, with throughput given for pthreads, TP-MCS, and
load control as different colors.

As the figure shows, with TP-MCS Raytrace outperforms the
standard pthread_mutex by a wide margin as long as load remains
under 100%, corroborating prior findings that heavyweight OS
mutex locks are ill-suited for high-performance computing. How-
ever, even with preemption resistance, the priority inversions
which afflict all spin-based primitives quickly destroy perfor-
mance. At the highest load shown in the figure the spinlock loses
more than 60% of its peak performance. In contrast, load control
makes spinlocks perform far better, with a slight advantage over
TP-MCS even for load below 100% as the OS will occasionally
preempt threads to allow other processes to run. The results for
TM-1 are similar to Raytrace, except single-thread performance is
unaffected by the higher cost of acquiring the OS mutex compared
to a lightweight spinlock. This occurs because the database engine
spends less time inside critical sections. However, TM-1 is still
highly sensitive to preemption, leading to the same poor perfor-
mance as spinning without load control to protect it.

For TPC-C, the high levels of application-level contention
reduce significantly the pressure on internal mutex locks because
threads block frequently on database locks instead. As a result, the
system becomes less sensitive to preemptions, and the TP-MCS
lock provides acceptable performance even near 150% load. For
the same reason, pthread_mutex does not become overloaded and
performs as well as load control. This is also to be expected,
because an adaptive mutex under low contention is just a spinlock
with the ability to deschedule spinning threads if the lock holder is
preempted — the same effect load control provides. We verified
that the behavior is due to contention for database locks by remov-
ing the badly behaved Delivery transaction from the workload mix.
Doing so boosted performance significantly, eliminated nearly all
variance in throughput, and made all synchronization approaches
behave similarly to TM-1.

Overall, load control allows spinning to perform well for a
wide variety of application behaviors and load levels. It imposes
virtually no overhead for light load while preserving performance
as load passes 100%. Even for the highest loads, load control
maintains 85-92% of peak performance, making spinning a viable
approach to contention management. In fact, load control is so
effective that replacing the preemption-resistant TP-MCS with a
standard MCS lock gives only a minor performance penalty, con-
firming that destructive convoys are no longer able to form.
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5.5 Interference from Other Processes

In an unmanaged system where processes receive CPU time based
on the number of runnable threads they produce, load control
potentially puts its host process at a disadvantage compared to pro-
cesses which do not use it. The worry is that a load-controlled pro-
cess will detect an overload due to some other process and respond
by putting its own threads to sleep. In the worst case, a load-con-
trolled process would gradually disappear as more and more of its
threads sleep in response to outside pressure. In order to quantify
this risk we run two TM-1 benchmarks at the same time, forcing
them to compete for processor time.

Figure 12 shows the outcome of the following scenario: Sup-
pose process “self” uses 100% of the machine’s processing power
and applies load control. When process “other” appears and com-
petes with “self” for CPU time, it should not be able to cause star-
vation, regardless of who uses load control. We vary the number of
runnable threads in “other” along the x-axis and plot the resulting
throughput for both processes. Each pair of bars shows the effect
when “other” does not or does use load control. As expected, com-
petition from “other” reduces the throughput “self” can achieve,
but it turns out that load control is relatively safe from adversaries.
When both processes use load control they share the system quite
effectively, with only a 10-15% drop in aggregate performance and
a reasonable balance of power. Even when “other” does not use
load control at all and creates excessive numbers of threads, “self”
still retains roughly 35% of its peak performance while “other”
suffers low performance due to priority inversions.

The robustness of load control in the face of external processes
leads us to conclude that, for normal competition, load control
poses little risk to a process. However, if an adversary were to cre-
ate a process whose only purpose is to consume CPU time (with no
regard for its own performance), load control is somewhat vulnera-
ble. However, we note that this vulnerability exists independent of
load control, and has a straightforward solution. All operating sys-
tems provide mechanisms for isolating processes from each other,
including processor sets, usage caps, and priority schemes. Any
mechanism which ensures a process receives CPU time indepen-
dent of the number of threads other processes create will prevent
adversarial processes from pushing an important process off CPU,
whether the latter uses load control or not.

6. Discussion

The previous section demonstrates that load control provides an
effective way to manage heavy load without resorting to blocking
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synchronization. We next discuss some of the limitations of load
control, as well as possible extensions to the scheme.

6.1 Limitations of load control

Though load control is generally quite robust, there exist a handful
of situations in which it performs poorly. This section discusses
two: large, transient changes in load, and nested lock acquires.

6.1.1 Large, transient changes in load

As indicated by the database workload results, normal scheduler
activity due to threads waking and sleeping does not cause difficul-
ties for load control. This occurs for two reasons. First, no change
in load is extremely large, and the changes vary around a relatively
stable average (see Figure 6). However, whenever the system
encounters a large spike (or dip) in load which is small relative to
the load controller’s update interval, load control will respond too
late or not at all, leading to rapid oscillation between priority inver-
sions and low utilization. The challenge, visible in Figure 10, is to
keep controller’s update interval long enough to ignore unimport-
ant spikes in load while still being responsive to important trends,
and if spikes are too large no good balance can be achieved.
Benchmarks which introduce some kind of “think time” are espe-
cially pernicious because, unlike I/O completions or condition
variable signals, the OS will only process timeouts once per sched-
uler tick, usually at 10msec intervals. Load control responds
poorly to the resulting long periods of inactivity punctuated by
large load spikes at scheduler ticks. Fortunately, real-world appli-
cations do not usually rely on timeouts in this way, and we argue
that this effect is uncommon outside the benchmarking world.

6.1.2 Nested critical sections

Our load control mechanism is based on the assumption that
threads which spin are not important to forward progress in the
short term and are thus good candidates to block in response to
overload. However, if a thread holding a lock enters load control
while spinning to acquire a second lock, any other thread which
attempts to acquire the first lock will encounter priority inversion
caused by load control. While this effect is clearly undesirable,
neither of our large-scale benchmarks exhibits the problem. Ray-
trace acquires no nested locks at all. Shore-MT acquires several,
but the outer lock is virtually contention-free and serves only to
protect against rare races with at most one other thread, which lim-
its the risk load control introduces.
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In general, we expect scalable applications not to nest acquires
of contended locks because it increases critical section lengths and
causes threads to wait for resources they do not want (because the
thread holding their desired resource waits). However, it should be
straightforward to extend the load control mechanism to allow
threads to request waking lock holders which were load controlled
while spinning. Doing so would limit the duration of priority
inversions to roughly a context switch time, the same as any other
unwanted preemption which load control compensates for.

6.2 Extending Load Control

Although the load control implementation presented in this paper
performs well under a variety of circumstances, several extensions
could potentially enable even better performance, especially for
the kinds of corner cases outlined in the previous section.

6.2.1 Applying principles from control theory

Many of the weaknesses of the load control implementation pre-
sented here — such as sensitivity to high-frequency oscillations
and inaccurate measurements — are well-known challenges
addressed by a large body of work in the field of control theory.
The robustness of load control would likely improve greatly with
the application of a low-pass filter to smooth oscillations in mea-
sured load and a well-tuned PID control loop [13] to stabilize con-
trol output. More sophisticated approaches such as Kalman
filtering [21], which filter out noise and predict the state of the sys-
tem in between measurements, could yield even greater improve-
ments. When incorporating control theory principles, however, the
designer must ensure that the overhead imposed by a more sophis-
ticated scheme does not impact the critical path and cause a net
loss in performance (see Section 3.2.3, for example).

6.2.2 Improved OS support

The primary limitation of the current load control scheme is diffi-
culty of obtaining accurate process usage statistics. Mainstream
Linux kernels do not even track these statistics, and Solaris mecha-
nism is not designed for frequent use: cost increases linearly with
the number of threads (and, hence, the importance of load control),
and serializes other kernel operations which affect those threads,
particularly scheduling decisions. As a result, scheduler-intensive
applications, such as TPC-C, see a small performance penalty even
for the relatively infrequent load control update interval we use.

Another weakness of load control is that it must measure load
at periodic intervals because it cannot communicate with the
scheduler. If the OS provided a lightweight way to notify applica-
tions about sudden changes in the number of runnable threads
(such as raising a signal), load control could respond asynchro-
nously to transient load changes and avoid the tradeoffs that poll-
ing imposes.

Finally, Solaris ‘“scheduling control” (which our spinlock
implementations use) allows threads to discourage the scheduler
from preempting them [2]. However, the effectiveness of schedul-
ing control appears to decrease quickly with rising load and
contention [19] because the OS must maintain fair scheduling
regardless of an application’s wishes to the contrary. One potential
improvement would be to allow threads to not only activate sched-
uling control, but indicating a different thread from the same appli-
cation which the scheduler should preempt instead. This would
allow the OS to honor scheduling control requests without penaliz-
ing other processes — at worst a process can only penalize its own
performance by specifying victims unwisely.

The difficulty with relying on, or suggesting, OS enhancements
is that they are seldom accepted immediately (if ever), and even
less often do they become widespread enough that applications



using them are reasonably portable. Scheduling control (Solaris
only, originally part of a much larger proposal [2]), futex (Linux
only), and microstate accounting (Solaris only), all illustrate the
problem.

7. Alternative Approaches

Our proposed load control mechanism strives to make lock-based
synchronization and OS scheduling work well together by avoid-
ing the situations which cause bad interactions between them.
However, a large body of research proposes alternatives which
instead circumvent either locks or the OS scheduler. This section
highlights briefly these approaches and how they relate to load
control. In general, the alternatives are complimentary to load con-
trol in that they provide high-performance solutions for specific
cases, at the expense of significant design and implementation
effort. In contrast, the goal of load control is to provide reasonable
performance in a way that both is general-purpose and easy to
deploy.

7.1 Alternatives to Locking
Lock-free approaches [16] exploit a deep knowledge of the under-
lying algorithms and data structures to break critical sections into
atomic operations which each leave the system in a consistent
state. Contention manifests as operations which must be retried or
compensated (spinning), but lock-free approaches are immune to
preemption because other threads ignore or undo the preempted
thread’s partial work instead of waiting for it to complete. The
drawback of lock-free approaches is that they lead to specialized
and complex designs which may not apply to the problem at hand.
Transactional memory trades the complexity and overhead of
mutual exclusion for an intuitive transactional model which detects
and resolves conflicts after they arise. Software [30] implementa-
tions are available, if somewhat slow, and hardware [17] support
has also been proposed. Transactions relieve the user from most
concerns about spinning, blocking, and preemptions, but these
issues resurface in the underlying conflict management implemen-
tation. Optimistic approaches retry conflicting transactions repeat-
edly until they succeed (spinning), while pessimistic approaches
block conflicting threads until they can safely continue or deadlock
is detected. Lock-based (blocking) contention management
schemes typically outperform more optimistic ones under
load [10]; the latter respond poorly to OS preemptions [11] for the
same reasons that spinlocks suffer. These results indicate that
transactional memory systems also have the potential to benefit
from advances in contention management and scheduling.

7.2 Alternatives to OS Scheduling

User level threading provides a cooperative threading model to
avoid unwanted preemptions. Such environments can safely use
spinlocks because accidental priority inversion never arises. How-
ever, the developer must reimplement (and supplant) the OS
scheduler in order to add domain-specific knowledge, and user-
level scheduling requires OS kernel support to handle asynchro-
nous events and competing processes robustly. Proposals as Sched-
uler Activations [2], which would provide such support, have not
yet been adopted by mainstream OS vendors.

Event-based programming models convert control flow into
dataflow, replacing contention management with queue manage-
ment and load balancing. This approach is highly effective for
applications such as web servers, where request context is light-
weight or even stateless, and frameworks such as SEDA [32] ease
significantly the burden of scheduling and load balancing. How-
ever, the specialization these approaches enable is also their main
drawback. The programming model is more complex than thread-
ing, and each application requires a tailored solution. In particular,
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the user must identify opportunities to exploit dataflow, pipelining,
and data partitioning; and effective load balancing is a particular
challenge.

The DORA database engine [28] highlights some of the chal-
lenges posed by migrating to an event-based programming model.
DORA converts Shore-MT into an event-driven database engine
which schedules transactions based on the data they access rather
than the actions they perform. Careful scheduling, asynchronous I/
O, and data partitioning reduce significantly the irregular data
accesses common to transaction processing, but the new model
requires a significant redesign of the database execution engine
and opens up new research challenges. Transactions are much
more stateful than web applications, and database operations vary
greatly in complexity and relative utilization, which impedes load
balancing efforts. Identifying (automatically) fine-grained data-
flow from user-specified SQL remains an open problem, and data
dependencies which cannot be resolved statically impede efforts to
partition data.

8. Conclusions

Contention management and thread scheduling are fundamental
concerns in any parallel application, and unwanted interactions
between the two often lead to poor performance. Spinning-based
synchronization primitives suffer from priority inversion due to
preempted lock holders, while blocking-based primitives add high
overhead to the critical path of lock handoff. This paper proposes a
third approach, using blocking to control the number of runnable
threads and then spinning in response to contention. Treating load
and contention separately allows applications to avoid blocking on
the critical path and is effective even in the presence of high load
and competition from other processes. We find that load control
allows superior performance to blocking synchronization for all of
the workloads examined, while remaining robust to OS preemp-
tions, unlike normal spinning. Our implementation is transparent
to the application and could easily be incorporated as a standard
library to improve performance of existing applications which rely
on OS-provided mutex locks. The effectiveness of the straightfor-
ward load control scheme presented in this paper indicates that
there remains a significant opportunity for operating systems and
libraries to make parallel programming easier and better perform-
ing. Finding lightweight methods of improving the communication
between OS and application is key to achieving this goal.
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