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Abstract

We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the
brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amy-
loidogenic proteins b-amyloid and a-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril
formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF
amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical
ultracentrifugation. The fibrillar structures formed by MIF bind Congo red and exhibit the characteristic green birefringence under
polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group
of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and
amyloid fibril formation in vivo.
� 2005 Elsevier Inc. All rights reserved.
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Amyloidogenic proteins undergo a conformational
change either prior to or coincident with their self-assembly
into highly ordered fibrils that have a characteristic cross
b-structure [1]. The presence of amyloid fibrils surrounding
dead neurons in the brain is a hallmark of certain neurode-
generative conditions, including Alzheimer�s disease, Par-
kinson�s disease, and Prion diseases. Amyloid formation
in tissues can also be a pathological sequelae of many
chronic inflammatory diseases [2,3]. Electron microscopic
examination of the amyloid fibrils that form in vivo reveals
long and unbranching filaments that are typically 10 nm in
diameter. These fibrils often are detected in vivo by their
ability to bind to the dye Congo red, which produces a
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characteristic green birefringence when illuminated by a
polarized light source. Approximately 20 human proteins
have been demonstrated to form amyloid in vivo, and
several of these have been linked by genetic evidence with
neurodegeneration and/or organ dysfunction [4]. A com-
parison of the primary sequence or tertiary structure of
the 20 amyloidogenic proteins that occur in vivo has re-
vealed no clear homology. Nevertheless, these amyloido-
genic proteins are each capable of forming highly ordered
fibrils of similar structure as discerned by X-ray fibril dif-
fraction, electron, and atomic force microscopy [5]. The
ability of these structurally and functionally diverse pro-
teins to form amyloid fibrils with a common structure [6]
is puzzling, and has been explained by the apparent tenden-
cy of these proteins to adopt a common, alternative b-sheet
rich conformation (amyloidogenic intermediate(s)) that
facilitates conversion into a cross-b amyloid structure
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[4,7]. In the case of the ‘‘structured’’ amyloidogenic pro-
teins transthyretin [8] and lysozyme [9] for instance, the for-
mation of amyloidogenic intermediate(s) has been shown
to occur via partial denaturation of the native protein. In
the case of ‘‘unstructured’’ amyloidogenic proteins such
as b-amyloid, and a-synuclein, amyloid fibril formation ap-
pears to proceed via partial folding and linked self-assem-
bly [7]. Recent evidence that several non-amyloidogenic
proteins can convert into amyloid under the appropriate
conditions nevertheless suggests that amyloid fibril forma-
tion is a generic property of many proteins [3,4].

Macrophage migration inhibitory factor (MIF) is a
pro-inflammatory cytokine that is highly expressed in
many tissues and disease states [10]. Its cellular actions
include glucocorticoid counter-regulation [11], sustained
MAP kinase activation [12], inhibition of p53-dependent
growth arrest [13,14], and control of Jab1 transcriptional
effects [15]. There is a significant level of baseline MIF
expression in the neurons of the hippocampus as well
as in other regions of the brain, and pro-inflammatory
stimuli lead to a marked upregulation of neuronal MIF
mRNA and protein [16]. MIF�s function in the brain is
not understood, but its intrinsic tautomerase activity
has suggested a possible role in the detoxification of oxi-
dized catecholamines [17]. Interestingly, MIF also has
been isolated in association with the Alzheimer�s disease,
b-amyloid protein [18], which is the main constituent of
the fibrils in Alzheimer�s disease plaques, thereby sup-
porting an emerging theory of a pro-inflammatory etiol-
ogy for this neurodegenerative disease.

Human MIF is encoded by a unique gene, and its three-
dimensional crystal structure is that of a homotrimer. Each
monomer consists of 114 amino acid residues and has a
molecular weight of 12,343 Da. As revealed by X-ray crys-
tallography [19,20], the tertiary structure of MIF defines a
novel protein fold, which is characterized by the packing of
an extended 4-stranded b-sheet and two antiparallel a-heli-
ces (Fig. 1A). Three subunits interact via contacts between
Fig. 1. Ribbon diagram of human macrophage migration
the b-sheets and wrap completely around to form a sym-
metrical trimer of a unique a/b structure with a solvent-ex-
posed central channel (Fig. 1B). Although MIF crystallizes
as a trimer [19], experimental studies employing NMR
spectroscopy [21], size-exclusion chromatography [22],
chemical cross-linking [23,24], and analytical ultracentrifu-
gation support the existence of dimeric and monomeric
forms in solution [24].

We have observed that partial acid denaturation of re-
combinant MIF is sufficient to induce amyloid fibril forma-
tion. We considered that investigation of the mechanism by
which MIF converts from its normally folded, solution
form into amyloid fibrils may contribute to a better under-
standing of the factors which govern protein conformation-
al changes and amyloid fibril formation in vivo. A closer
definition of the physicochemical properties of MIF also
adds to our comprehension of this mediator�s role in immu-
nopathology and neurodegenerative processes.
Material and methods

Protein expression and purification. Recombinant human MIF was
expressed in Escherichia coli and purified to homogeneity by two succes-
sive chromatographic steps as described previously [25]. Buffers used for
acid denaturation were 0.05 M phosphate, 0.05 M acetate, and 0.05 M
glycine/HCl in the presence of 0.15 M NaCl.

Evaluating secondary structural changes by far-UV circular dichroism.

Circular dichroism (CD) spectroscopy was used to evaluate the sec-
ondary structural requirements for MIF amyloid fibril formation. The
far-UV CD spectra of MIF as a function of pH were recorded on an
Aviv Model SF202 spectrometer (25 �C). MIF solutions at a concen-
tration where aggregation does not occur (0.1 and 0.02 mg/mL) and at
the desired pH (50 mM acetate or phosphate buffer, 100 mM NaCl)
were prepared by dilution of a 0.7–1.0 mg/mL stock solution (10 mM
phosphate, 100 mM KCl, and 1 mM EDTA). The CD studies carried
out at 0.02 and 0.1 mg/mL were performed using 0.1 cm quartz cuv-
ettes. A step size of 0.2 nm, an averaging time of 3 s, and an average of
15 scans were recorded to generate the data reported in units of mean
residue ellipticity. The far- and near-UV CD data were smoothed using
a Stineman function (KalidaGraph software), which reduced the noise
without perturbing the data.
inhibitory factor (MIF) monomer (A), and trimer (B).
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Evaluating quaternary structural changes by analytical ultracentrifu-

gation. Sedimentation velocity analytical ultracentrifugation experiments
were performed to monitor changes in the quaternary structure of MIF
during acid-induced denaturation/amyloid fibril formation. Sedimenta-
tion velocity experiments were carried out using 400–410 lL of protein
solution (0.1–0.3 mg/mL), and data were recorded at rotor speeds of
3000–50,000 rpm in continuous mode at 25 �C with a step size of
0.005 cm. The sedimentation velocity absorbance profiles then were
analyzed by fitting the absorbance data using the direct boundary fitting
approach or by the time derivative (dc/dt) method to obtain the
apparent distribution of sedimentation coefficients g(s*) for all the
quaternary structures in solution using the DCDT analysis programs
described previously [26].

Aggregation assays. Amyloid formation by MIF as a function of pH
was probed using a combination of turbidity and Thioflavin binding as-
says. For Thioflavin T binding, 29 lL of 0.2 mg/mL solutions of MIF in
the appropriate incubation buffer was added to a solution of 10 lL of
100 lM ThT+61 lL of 90 mM glycine–NaOH (pH 8.5 at 25 �C) and ThT
fluorescence was measured at kemission = 482 nm (kexcitation = 450 nm).

Congo red birefringence. Drops of fibril-containing solutions were air-
dried on gelatin-coated slides. Fibrils produced in vitro by incubation of b-
amyloid (Alzheimer�s amyloid protein) were used as a positive control.
The procedure for Congo red staining of the samples was adapted from
that given in [27]. The slides were incubated for 15 min in 80% (v/v) eth-
anol containing 2% (w/v) Congo red. This was followed by a single wash
with saturated lithium carbonate solution and rinsing with distilled water.
The slides then were washed in 100% ethanol three times and allowed to
dry before being examined between cross-polarizers on a Nikon BN2
microscope.

Electron microscopy. Samples for electron microscopy (EM) were
prepared by placing 5 lL of the sample on a glow-discharged carbon-
coated grid and allowing the solution to stand for 2 min before removing
excess solution. The grid then was washed once with distilled water and
once with 1% uranyl acetate before staining the sample with fresh 1%
uranyl acetate for another 2 min. The samples were studied with a Phillips
CM-100 electron microscope. All electron micrographs were taken at
100 kV.

Tissue preparation and histology. Transgenic mice for the human
amyloid precursor protein containing the Swedish mutation (Tg2576)
and their wild-type littermates were anesthetized with sodium pento-
barbital (150 mg/kg, intraperitoneally) and perfused transaortically with
0.1 M sodium/potassium phosphate buffer (PB, pH 7.4), followed by
4% paraformaldehyde in PB at room temperature. Immediately after
beginning the perfusion, 1.0 U/g heparin (Upjohn, Kalamazoo, MI) was
administered transaortically. Following perfusion the brain was placed
in the fixative for 2 h, and then transferred to a solution containing
20% glycerol and 2% dimethyl sulfoxide dissolved in 0.1 M sodium
phosphate buffer, and stored at 4 �C until it was sectioned. Serial
coronal sections (40 lm) were cut and every fifth section was stained
with IIID9, a mouse monoclonal antibody against mouse [28]. The
proinflammatory mediator macrophage migration inhibitory factor
(MIF) induces glucose catabolism in muscle. J. Clin. Invest. 106:1291–
1300. Adjacent series was stained with 6E10, a mouse monoclonal
antibody that selectively binds to human Ab and stains both pre-am-
yloid and Ab plaques [29]. Staining was performed according to a
protocol in a mouse-on-mouse (MOM) peroxidase-based immunode-
tection kit (Vector Laboratories, Burlingame, CA). Briefly, following
pretreatment, sections were incubated in: (1) 6E10 (kindly provided by
Richard Kascsak, Institute for Basic Research) at a 1:1000 dilution; or
(2) IIID9 at a 1:600 dilution. The biotinylated anti-mouse IgG sec-
ondary antibody as well as the avidin and peroxidase were used at a
1:2000 dilution. The sections were reacted in 3,3 0-diaminobenzidine
tetrahydrochloride (Sigma, St. Louis, MO) with nickel ammonium
sulfate (Ni; Mallinckrodt, Paris, KY) intensification. Subsequently, the
tissue was mounted on slides, dried, defatted, and coverslipped. Staining
was also performed on paraffin embedded pre-mounted sections from
the temporal cortex of a patient with Alzheimer�s disease, with con-
firmed Ab plaque deposition. Following deparaffinization, these sections
were stained in a similar manner as the mouse sections but the com-
position of the primary antibody diluent was as described [30]. Some of
these sections were pretreated with formic acid and subsequently
incubated in the primary antibody overnight at 4 �C. In control mouse
and human sections, the primary antibody was omitted.
Results

Since the initial cloning and expression of recombinant
MIF by our laboratory, it was noticed that purified MIF
has a high tendency to aggregate despite storage under
physiological conditions. MIF aggregation was observed
to be time- and concentration-dependent, and consequently
MIF is usually stored at low solution concentrations
(<1 mg/mL), or as a lyophilized powder. MIF�s unusual
structural properties (an oligomeric a/b protein), and re-
cent reports demonstrating amyloid fibril formation by
apparently non-amyloidogenic proteins prompted us to
investigate whether the MIF aggregates comprised amyloid
fibrils. For most structured proteins (amyloidogenic and
non-amyloidogenic), amyloid fibril formation requires a
conformational change(s) to produce an aggregation prone
intermediate(s) which then self-assembles into amyloid fi-
brils. Manipulation of protein solution conditions such as
pH and temperature typically has been used to induce con-
formational changes that can promote amyloid fibril. Be-
cause native MIF is an oligomeric protein, we considered
that partial denaturation of the oligomeric protein and/or
dissociation to monomer may be necessary to create a
non-native intermediate(s) capable of initiating amyloid fi-
bril formation.

Protofibrils and fibril formation by MIF is pH-dependent and

low pH favors fibril formation

Partial denaturation under acidic conditions has been
shown to be sufficient to induce amyloid fibril formation
by several proteins including those that are not implicat-
ed in amyloid diseases [8,31–33]. To determine whether
acid-mediated denaturation of MIF is sufficient to induce
amyloid fibril formation, we incubated recombinant MIF
(0.1 mg/mL) at different pHs (9, 7, 6, 5, 4, 3, and 2) in
appropriate buffers (see Material and methods) and in
the presence of 0.15 M NaCl for 48–72 h at 37 �C.
Employing a stagnant solution, the extent of MIF aggre-
gation as a function of pH was evaluated by monitoring
turbidity (330 or 405 nm), ThT binding, and electron
microscopy analyses. Both turbidity and ThT measure-
ments clearly show that MIF exhibited maximal aggrega-
tion and amyloid formation at a pH of 2–3 (Fig. 2).
After 48 of incubation, solutions of MIF also exhibited
some turbidity in the pH range of 6–9, however, these
aggregates did not bind strongly to ThT, suggesting the
formation of amorphous non-amyloid like aggregates.
Over the pH range of 4–5 MIF does not aggregate or
it aggregates into high molecular weight soluble oligo-
mers that do not bind strongly to ThT.



Fig. 2. Bar graph depicting the extent of MIF aggregation as determined by turbidity at 330 nm after 48 h as a function of pH.
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Electron microscopy studies

To obtain more information regarding the nature of the
acid-induced MIF aggregates, MIF samples (0.1 mg/mL)
were incubated at 37 �C for 3 days and studied by electron
microscopy. Negatively stained electron micrographs re-
vealed the MIF aggregates to form amyloid-like structures
with a morphology that was highly dependent on pH
(Fig. 3). In the pH range of 6–8, MIF formed long fila-
ments with an average diameter or 11 nm. Some amor-
phous aggregates also were present (Fig. 3A).
Interestingly, short protofibril-like structures were the
dominant species at pH 4 and 5 (Figs. 3B and C). In accor-
Fig. 3. MIF aggregates to form amyloid-like structures with a morphology tha
MIF after incubation at 37 �C (72 h) at pH 7 (A), pH 4 (B), pH 5 (C), and p
dance with the visible absorbance measurements described
above, these structures would not be expected to show
solution turbidity or strong ThT binding. At pH 2 and 3,
extensive formation of amyloid fibrils was observed
(Fig. 3D). Long helical filaments with an average diameter
of 10 nm were the main species detected, consistent with
the maximal turbidity observed at pH 2. Protofibrillar
structures were absent at these pHs (2–3).

Congo red binding studies

To further investigate the amyloidogenic nature of the
fibrillar structures, the MIF aggregates formed at different
t was highly dependent on pH. Negatively stained electron micrographs of
H 2 (D). The scale bar represent 100 nm.



Fig. 5. Sedimentation velocity profiles of MIF (0.1 mg/mL) at pH 7.0
(Overlay of the data sets recorded approximately 10 min apart) and the
sedimentation coefficient distribution obtained from analysis of the
sedimentation profiles by the dc/dt method.
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pH conditions were examined for their ability to bind the
amyloid specific dye Congo red. Congo red is a small
organic dye that binds with high affinity to amyloid fibrils,
and this interaction results in a characteristic green bire-
fringence when viewed by polarized light microscopy. Both
MIF protofibril-like structures (formed at pH 4–5) and
amyloid fibrils (formed at pH 2.0) bound Congo red and
displayed amyloid-specific green birefringence (Fig. 4).
We can not exclude the possibility that these protofibril-
like structures could convert to amyloid fibrils during the
drying procedure and preparing the sample for Congo
red birefringence.

Analytical ultracentrifugation analysis of the pH-dependent
quaternary structural changes of MIF

There is some controversy regarding the native oligo-
meric state of MIF despite the availability of X-ray and
NMR structure data for MIF and for MIF complexed with
different ligands [34,35]. X-ray crystallography studies indi-
cate that MIF exists predominantly in a trimeric form
[36,37], whereas NMR [21], sedimentation velocity [24],
size exclusion chromatography [22], and solution cross-
linking studies [23] indicate that MIF also may exist in
dimeric and monomeric forms. However, recent studies
reexamining the molecular size and hydrodynamic proper-
ties of MIF in solution suggest that it exists in solution pre-
dominantly (>95%) as a trimer, which sediments with a
sedimentation coefficient of 3.1S [38].

To study changes in the quaternary structure of MIF in-
duced by acid denaturation and amyloid fibril formation,
we used sedimentation velocity analytical ultracentrifuga-
tion. For these studies, the MIF solutions were incubated
at room temperature for 4–7 h at 25 �C instead of 37 �C
so as to minimize protein aggregation. Over the pH range
of 9–3, MIF (0.1–0.3 mg/mL) sediments predominantly
(96%) as a single species with an s value of 3.1S (±0.1S),
consistent with that reported by Philo et al. [38]
(Fig. 5A). The sedimentation velocity data also revealed
the presence of a second species with an average s value
of 5.3, which suggests the presence of a small amount
(<5%) of high MW oligomeric species, consistent with pre-
vious observations [38]. At pHs 6 3 sedimentation velocity
analysis revealed the presence of two species (s1 = 2.9, S
Fig. 4. MIF protofilaments (formed at pH 4–5) and amyloid fibrils (form
birefringence. Congo red binding of MIF from an aggregated sample which w
68%, s2 = 1.1 S 32%), suggesting that significant dissocia-
tion to the monomer occurs at these pHs. A similar sedi-
mentation coefficient value has been reported for
monomeric MIF [38].

Far-UV CD of MIF as a function of pH

To further analyze the conformational changes associat-
ed with MIF amyloid fibril formation, we conducted
ed at pH 2.0) bound Congo red and displayed amyloid-specific green
as incubated (37 �C, 48 h) at pH 4 (A) and pH 2 (B).



Fig. 7. A schematic depiction of the acid denaturation/amyloid fibril
formation pathway of MIF based on the biophysical data presented.

Fig. 6. Far-UV CD spectra of MIF (0.02 mg/mL) as a function of pH.

978 H.A. Lashuel et al. / Biochemical and Biophysical Research Communications 338 (2005) 973–980
far-UV CD studies under conditions where aggregation is
minimized (0.02 mg/mL, 25 �C). The pH-dependent, far-
UV CD spectra of MIF reveals that secondary structural
changes during amyloid fibril formation are subtle
(Fig. 6). At pH 7 (native conditions), the far-UV CD
spectrum of MIF shows a broad minimum between 208
and 220 nm, and a maximum at 197 nm, which is charac-
teristic of a protein composed of mixed a-helical and
b-sheet structures. Over the pH range of 9–3, the far-UV
CD spectrum did not exhibit any significant changes. Upon
lowering the pH 2, the intensity of the minimum and the
maximum band decreased significantly, indicating the pres-
ence of secondary structural changes associated with the
unfolding of the protein. These results suggest that MIF re-
tains most of its secondary structure even at pH 2.0. These
observations are consistent with previously reported data
[22,39] which suggest that the main structural changes in
MIF between pH 7 and 2 are in its tertiary structure.

Discussion

The pro-inflammatory cytokine MIF can be readily in-
duced by acid denaturation to form amyloid fibrils. Circu-
lar dichroism measurements clearly demonstrate that MIF
is stable over the pH range of 9–4. Furthermore, sedimen-
tation velocity experiments also demonstrate that MIF
dissociation does not take place over this pH range, sug-
gesting that a change in tertiary structure may be sufficient
to allow for partial rearrangement of the MIF, thereby
facilitating MIF self-assembly into high-molecular weight,
fibrillar aggregates of different morphologies. Given that
the sedimentation velocity experiments were carried out
within a few hours of incubation, whereas MIF aggrega-
tion was probed after 2–3 days of incubation, we cannot
role out the possibility that MIF aggregation goes through
a monomeric intermediate under these conditions. The
fibrillar aggregates of MIF formed in the pH range of
5–4 were shown to bind Congo red and exhibit the charac-
teristic amyloid green birefringence when viewed under
polarized light. Over the pH range of 3–2, MIF begins to
undergo dissociation and partial denaturation and exhibits
all of the spectroscopic properties of a molten globule A
state, which is characterized by the lack of a well-defined
tertiary structure. The lack of amyloid formation in the ab-
sence of salt at low pHs is consistent with this hypothesis
(Fig. 2). Taken together, these data provide a link between
the disappearance of tertiary structure and MIF oligomer
dissociation, and implicate a molten globule, monomeric
MIF species in fibril formation at low pH (3–2). The CD
spectrum of MIF at pH 2.0 also demonstrates that MIF
does not undergo complete unfolding, but retains signifi-
cant secondary structure.

Our results are consistent with previously reported data
on the acid denaturation of MIF using far, near-UV CD,
and fluorescence spectroscopy [22]. These studies showed
a pH transition for MIF at a pH of 3.5 ± 0.2. Although
MIF did not exhibit any loss in secondary structure over
the pH range of 9–4, near UV-CD studies indicate that
MIF begins to lose tertiary structure over the pH range
of 5–4. Overall, these results clearly support the presence
of several structural intermediate(s), including ‘‘A state’’
intermediates, in the acid denaturation pathway for MIF,
which are capable of self-assembly into fibrillar aggregates.
The morphology of the fibrillar species that form is highly
dependent on solution pH, and this is likely due to differ-
ences in the tertiary structure of the intermediate that pop-
ulates a particular pH.

The biophysical and electron microscopy data suggest a
scheme for MIF partial denaturation and amyloid fibril
formation which is depicted in Fig. 7, where N is native
MIF, I is a structured intermediate, A is a molten globule
intermediate, and U is the unfolded state of MIF. The cir-
cular dichroism studies reported here, as well as elsewhere
[22], support the presence of several structured intermedi-
ates with variable tertiary structures over the pH range of
5–3. Conceivably, other intermediates not detected by our
techniques could be transiently populated at each pH and
contribute to fibril formation.

MIF is highly expressed in neurons within different re-
gions of the brain, including the cerebral and cerebellar
cortex, the hippocampus, and the hypothalamus. The
expression of MIF protein in neuronal tissue is both consti-
tutive and inducible, as revealed by studies of intracisternal
endotoxin injection [16]. MIF�s precise function in the
brain is unknown. MIF-KO mice display no gross central
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nervous system abnormalities [40,41]; nevertheless, MIF�s
ability to sustain ERK-1/2 MAP kinase activation and
override p53-mediated apoptosis suggests a potentially
important role for this protein in neuronal survival
[11,12,14]. The recent report of a physical association and
co-localization of MIF with the Alzheimer�s disease b-am-
yloid protein combined with the ability of MIF to form
amyloid fibrils suggests that MIF may play a role in plaque
formation and/or deposition in Alzheimer�s disease [18].
However, we failed to observe colocalization of MIF with
plaques in the Tg2576 mice or in Alzheimer�s brain (data
not shown). The staining in the mouse brain was similar
to MIF staining in rat brain [42]. Immunoreactivity ap-
peared to be primarily located in axons and nerve termi-
nals. Staining in the human brain was more prominent in
the formic acid-treated sections and resembled the distribu-
tion in the mouse brain. No staining was evident in sections
in which the primary antibody was omitted. Further stud-
ies are required to investigate the normal function of MIF
in the brain and whether it has a potentially pathogenic
role in the neuronal cell damage that underlies Alzheimer�s
neurodegeneration.
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