Files

Abstract

The interplay between dopamine and alpha-synuclein (AS) plays a central role in Parkinson's disease (PD). PD results primarily from a severe and selective devastation of dopaminergic neurons in substantia nigra pars compacta. The neuropathological hallmark of the disease is the presence of intraneuronal proteinaceous inclusions known as Lewy bodies within the surviving neurons, enriched in filamentous AS. In vitro, dopamine inhibits AS fibril formation, but the molecular determinants of this inhibition remain obscure. Here we use molecular dynamic (MD) simulations to investigate the binding of dopamine and several of its derivatives onto conformers representative of an NMR ensemble of AS structures in aqueous solution. Within the limitations inherent to MD simulations of unstructured proteins, our calculations suggest that the ligands bind to the (125)YEMPS(129) region, consistent with experimental findings. The ligands are further stabilized by long-range electrostatic interactions with glutamate 83 (E83) in the NAC region. These results suggest that by forming these interactions with AS, dopamine may affect AS aggregation and fibrillization properties. To test this hypothesis, we investigated in vitro the effects of dopamine on the aggregation of mutants designed to alter or abolish these interactions. We found that point mutations in the (125)YEMPS(129) region do not affect AS aggregation, which is consistent with the fact that dopamine interacts non-specifically with this region. In contrast, and consistent with our modeling studies, the replacement of glutamate by alanine at position 83 (E83A) abolishes the ability of dopamine to inhibit AS fibrillization.

Details

Actions

Preview