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Abstract

Designing a communication protocol for sensor networks of-

ten involves obtaining the “right” trade-off between energy

efficiency and reliability. In this paper, we show that net-

work coding provides a means to elegantly balance these two

goals. We present the design and implementation of SenseC-

ode, a collection protocol for sensor networks—and, to the

best of our knowledge, the first such protocol to employ net-

work coding. SenseCode provides a way to gracefully intro-

duce a configurable amount of redundant information in the

network, thereby increasing reliability in the face of packet

loss. We compare SenseCode to the best (to our knowledge)

existing alternative and show that it improves reliability (in

our experiments typically by 15%−20%), while consuming

a comparable amount of network resources. We have im-

plemented SenseCode as a TinyOs module, and evaluate it

through extensive TOSSIM simulations.

1. Introduction

Sensor networks are promising to transform the way we deal

with the physical world, with emerging applications ranging

from environmental or animal monitoring, to healthcare and

military surveillance. Each of these applications has differ-

ent performance requirements and resource constraints, yet

most of them have two needs in common: energy efficiency

and reliability (i.e., the capability of the network to oper-

ate in the face of packet loss). In sensor networks, these are

typically competing goals: increasing reliability requires in-

troducing redundant information in the network (for exam-

ple, transmitting each piece of information multiple times to

compensate for packet loss), which, in turn, leads to higher

energy consumption.

Researchers have already proposed multipath communi-

cation as a way to balance these two goals. However, existing

multipath protocols leave room for improvement: they typ-

ically maintain multiple, preferably disjoint paths between

communicating end-points, often resulting in complicated

routing protocols; yet, in certain cases, they fail to relay a

packet to its destination, even though a viable path does ex-

ist.

In this paper, we show that network coding provides an al-

ternative, elegant way to balance energy efficiency and reli-

ability. We present SenseCode, a collection protocol for sen-

sor networks, which allows to gracefully introduce a con-

figurable amount of redundant information in the network.

SenseCode relies on network coding to enable a new form

of multipath communication, where each node disseminates

information through all available paths, without having to

explicitly discover or monitor these paths—hence, without

having to maintain multiple routing structures. Moreover, it

uses simple, decentralized algorithms that do not exceed the

sensors’ modest processing and memory capabilities. To the

best of our knowledge, our work provides the first imple-

mentation of a collection protocol for sensor networks that

relies on network coding.

Network-coding ideas and techniques have already been

applied to wireless mesh networks [5]–[8]. A natural ques-

tion is, how are sensor networks different—why can’t we

simply apply to them the same ideas and techniques. The

answer is that sensor networks differ in traffic patterns, per-

formance metrics, and the amount of available processing

and memory resources. SenseCode is applicable to sensor

networks that require “many to one” communication, where

a large number of sources send messages to a common sink.

In such networks, the traffic patterns for which network cod-

ing is known to offer benefits (such as the well known pat-

tern shown in Figure 1), do not typically occur. Moreover,

while existing work focuses on throughput gains and band-

width efficiency, our design goal is increased reliability at

low energy cost.

Our contributions can be summarized as follows:

1. We present SenseCode, a new collection protocol for sen-

sor networks, which leverages network coding to balance

energy efficiency and reliability. It uses simple, decen-

tralized algorithms that do not exceed the sensors’ mod-

est processing and memory capabilities.

2. We have implemented SenseCode as a TinyOs [26] mod-

ule, and evaluate it through TOSSIM [25] simulations.

We compare its performance to the collection tree pro-

tocol (CTP) [27], the best, to our knowledge, existing

alternative, and show that it achieves higher reliabil-

ity(typically 15 − 20%), while consuming a comparable

amount of network resources.
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Figure 1. A pattern that does not occur in sensor networks

that rely on “many-to-one” communication: Nodes A and C

exchange packets x1 and x2 via relay B. B receives x1 and

x2 and broadcasts their binary xor, x1 + x2. Node A uses

its knowledge of x1 to retrieve x2, and node C uses x2 to

retrieve x1.

The rest of the paper is organized as follows. Section 2

describes the basic idea behind our approach; Section 3 de-

scribes SenseCode’s design and implementation; Section 4

presents our evaluation; Section 5 discusses alternatives;

Section 6 reviews related work; and Section 7 concludes the

paper.

2. Setup

2.1 Problem Statement and Background

We consider a sensor network that operates in rounds: in

each round, each sensor i needs to communicate a message

xi to a common collecting sink. We focus on the problem

of designing a collection protocol, i.e., a communication

protocol that enables the sensors’ messages to reach the sink.

Our goal is to design a collection protocol that achieves

a desired level of reliability while consuming as little en-

ergy as possible. Reliability refers to the protocol’s ability

to communicate messages to the sink in the face of packet

losses - these may be due to channel and node failures, or

simply congestion - in general events that alter the connec-

tivity graph of the network. We define reliability as the av-

erage fraction of messages that are successfully communi-

cated to the sink during each round; for instance, reliability

0.5 means that, on average, half of the sensors successfully

communicate their message to the sink during each round.

Energy efficiency refers to the amount of energy that the pro-

tocol consumes to communicate a certain amount of infor-

mation to the sink. In sensor networks, the primary source of

energy consumption is the radio, hence, we target a collec-

tion protocol that achieves a certain level of reliability while

minimizing the time of radio utilization.

Our basis for comparison will be the Collection Tree Pro-

tocol (CTP) [27], which, to the best of our knowledge, is

the best existing collection protocol in terms of reliability

and energy efficiency. In CTP, the network nodes build and

maintain a tree rooted at the sink; each sensor that has a mes-

sage to communicate sends that message to its parent node;

each node that receives a message from one of its children

forwards it to its own parent. CTP achieves energy efficiency

by trying to build a “shortest-path tree,” i.e., a tree that con-

Sink

A B

S2 S1 S3 S4

Figure 2. A sensor network, where nodes form a tree rooted

at the sink. Each source Si, i = 1 . . . 4, has a message xi to

communicate to the sink. Each node sends packets only to

its parent, however, each node can overhear the transmis-

sions not only of its children, but of multiple neighbors. S1

overhears S2 and S3; S2 overhears S1; S3 overhears S1 and

S4; S4 overhears S3; A overhears S3; and B overhears S1.

nects each sensor to the sink through the path that results in

the minimum number of packet transmissions. CTP achieves

reliability by dynamically adapting the tree to network con-

ditions: neighboring nodes continuously exchange informa-

tion on the quality of the channel between them; when a

node detects that its connectivity to its parent is degrading,

it switches to a different parent. Note that information on

channel quality is mostly piggy-backed on data traffic so as

to not significantly affect the protocol’s energy efficiency.

2.2 Why a New Collection Protocol

Although CTP—and, in general, dynamic tree-based protocols—

fare well in the face of many failure scenarios (e.g., when a

channel degrades or a node fails), there are certain cases

where we can do better. One limitation of tree-based proto-

cols is that, at any point in time, the currently used tree was

selected based on past network conditions. As a result, it is

possible that a packet does not reach the sink, even though

there does exist a path that would allow it to do so—but that

path has not yet been “discovered” and incorporated in the

tree. The following example illustrates such a scenario.

EXAMPLE 1. Consider the network depicted in Figure 2,

where each source Si has a message xi to communicate to

the sink. The network runs a tree-based collection protocol,

i.e., each source sends its message to its parent node, which

then forwards it to the sink. Suppose node A acknowledges

receiving messages x1 and x2 and then fails1, before for-

warding them to the sink. As a result, x1 and x2 are lost,

even though they could have reached the sink through al-

ternative paths (x1 through B, and x2 through S1 and B).

Hence, during this particular round, we achieve reliability

0.5 (only half the messages reach the sink).

A tree-based collection protocol cannot recover from

such a failure, because the sending nodes (S1 and S2, in

our example) cannot know that their parent will fail, hence

cannot choose in advance the right parent. This motivated

1 i.e., either the node stops operating or the channels that connect it to its

neighbors deteriorate
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us to consider a collection protocol that automatically lever-

ages all available paths in the network, without having to

explicitly discover them and incorporate them in the tree.

2.3 Main Idea

To preserve messages in the face of packet loss, we introduce

redundant information in the network. In SenseCode, nodes

still build and maintain a tree (as in CTP), however, each

node propagates not only its own messages and the informa-

tion sent by its children, but also a small amount of informa-

tion that it has overheard from its neighbors. More specifi-

cally, each node propagates linear combinations of its own

message, the packets it has received from its children, and a

small number of the packets overheard from its neighbors—

essentially, each node performs network coding. The follow-

ing example illustrates how this approach improves reliabil-

ity in the face of packet loss.

EXAMPLE 2. Consider again the network depicted in Fig-

ure 2, where each source Si has a message xi to commu-

nicate to the sink. Suppose that each node tries to send to

its parent the packets specified in Table 1. As in Example 1,

node A acknowledges receiving the packets sent by its chil-

dren, then fails to forward anything to the sink. As a result,

the sink receives only the 4 packets sent by node B; these,

however, contain 4 linearly independent combinations of the

4 messages xi, which means that the sink can form a system

of equations and recover all 4 messages. Hence, during this

particular round, we achieve reliability 1, even though half

of the packets intended for the sink were lost.

In this example, each piece of information travels through

multiple paths in the network, for instance, x2 reaches both

node A (as part of a message directly sent from S2 to its

parent A) and node B (as part of the linear combination

sent by S1 and overheard by node B). In the end, all 4
messages reach the sink, albeit “mixed” with one another

into linear combinations. Since there are 4 messages, the

sink needs to receive 4 linearly independent combinations

of these messages in order to recover all of them. Notice that

each of nodes A and B does send 4 linearly independent

combinations—hence, the sink can recover all 4 messages

whether node A or node B fails.

This increased reliability in the face of packet loss comes

at the cost of extra packet transmissions—to communicate

4 messages to the sink, the sources introduce 2 × 4 pack-

ets in the network. In general, as we will see, SenseCode

enables a straightforward reliability/energy-efficiency trade-

off, where, to communicate N messages to the sink, we in-

troduce R×N packets in the network, and, in exchange, we

achieve reliability 1 as long as any set of N packets reach

the sink.

2.4 Why Network Coding

One could argue that, to introduce redundant information in

the network, nodes could simply send each message mul-

Node Overheard Sent

S1 x2, x3 x1, x1 + x2 + x3

S2 x1 x2, x1 + x2

S3 x1, x4 x3, x1 + x3 + x4

S4 x3 x4, x3 + x4

A x3, x1 + x3 + x4 x1, x2, x3, x3 + x1 + x4

B x1, x1 + x2 + x3 x3, x4, x1, x1 + x2 + x3

Table 1. The contents of the packets that were overheard

and sent by each node from Figure 2 during the scenario

described in Example 1. The sink can decode the linear

combinations through the use of coding vectors.

tiple times, or forward some (or all) of the packets they

overhear—why perform linear combinations, which add

to the processing load of the nodes? The reason is that,

compared to these alternatives, network coding can achieve

higher reliability in a more energy-efficient manner.

To illustrate, we consider the simplified model2 of Fig-

ure 3, where a single source wants to communicate N mes-

sages xi, i = 1 . . . N , to a sink, over a single channel with

packet erasure probability ǫ. Suppose we are interested in a

communication protocol that achieves reliability 1, i.e., al-
lows the source to communicate all N messages to the sink.

One possible communication protocol is for the source to

copy each message xi into a separate packet, hence send N

packets to the sink. This protocol introduces no redundancy

(the source sends each message exactly once) and achieves

reliability 1 − ǫ (of the N messages—and packets—sent to

the sink, the latter is expected to receive (1 − ǫ)N ).

Now suppose that, to increase reliability, the source is

willing to introduce redundant information by a factor of

2—i.e., if it needs x bits to represent the N messages, it is

willing to send 2x bits to the sink. Coding theory tells us

that this amount of redundancy is, theoretically, sufficient

for achieving reliability 1, as long as ǫ < 0.5—in other

words, if the source sends twice as many bits as necessary

to represent its messages, the sink should be able to recover

all messages as long as it receives at least half the bits sent to

it. Hence, given a communication protocol with redundancy

factor 2, we will consider it “good,” as long as it approaches
this behavior—i.e., achieves reliability 1 as long as ǫ < 0.5.

We consider three communication protocols with redun-

dancy factor 2.

1. Non-coded communication: The source copies each

message xi into 2 separate packets. To successfully re-

ceive message xi, the sink only needs to receive one of

the two packets.

2. Fully-coded communication: The source produces 2 ×
N linear combinations of the N messages, such that any

2We do not use this model to prove any properties about sensor networks

or SenseCode, merely to illustrate the intuition behind why network coding

is more energy efficient than the alternatives.
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Figure 3. Abstraction of a sensor network as a point-to-

point network, where all sources are co-located, and packet

loss is captured with a single erasure channel that connects

the collocated sources to the sink.

N of these combinations form a linearly independent

set, and copies each linear combination into a packet. In

this case, a single packet is not useful by itself—it does

not carry a full message. However, as long as the sink

receives any of the N packets sent to it, it can form a

linear system of equations and solve it to recover all N

messages.

3. Systematic communication: The source sends N “un-

coded” packets, each containing a message xi, as well as

N “coded” packets, each containing a linear combination

of the N messages.

Figure 4 shows the reliability of these three protocols,

as a function of the erasure probability ǫ. First, we see that

non-coded communication achieves reliability 1 only when

ǫ = 0; thereafter, its reliability degrades with ǫ. In contrast,

fully-coded communication achieves reliability 1 as long as

ǫ < 0.45; thereafter, its reliability sharply drops. The reason

is that, as long as fewer than half of the transmitted packets

get lost, the sink receives at least N linear combinations of

the N messages, hence, can successfully recover all of them;

however, if more than half of the transmitted packets get lost,

then the sink receives fewer than N linear combinations of

the N messages and, as a result, cannot recover.

So, coded communication clearly outperforms non-coded

communication in terms of reliability. However, it comes

at the cost of longer packets: To decode a received coded

packet, the sink needs to know the linear combination that

the packet contains. This can be achieved by appending to

each packet what is called a coding vector, which specifies

the contained linear combination [19]. This coding vector

can constitute a significant fraction of the payload, especially

when the messages sent by the source are short.

Systematic communication reduces the coding-vector

overhead, by employing coding (and incurring the corre-

sponding overhead) only in half of the transmitted packets,

Thus, it offers a practical trade-off between non-coded and

fully-coded communication, i.e., performs as well as the

former for ǫ < 0.5 in terms of reliability, yet significantly

reduces the coding-vector overhead. This is the approach we

adopt for SenseCode.
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Figure 4. Reliability as a function of packet loss, for differ-

ent communication protocols. Assume that the virtual source

from Figure 3 has N = 36 messages to communicate to the

sink. We plot reliability as a function of the erasure probabil-

ity ǫ, when the virtual source sends M uncoded and C coded

packets per message.

2.5 A Practical Challenge

The challenge in implementing coded or systematic com-

munication in a sensor network lies in the fact that the in-

formation that needs to be communicated to the sink is dis-

tributed throughout the network: unlike the setting depicted

in Figure 3, in a sensor network, there is no single source

that knows all N messages, hence, no straightforward way

to create linearly independent combinations of these mes-

sages.

Our approach is to implement what we term spatial cod-

ing, where a packet may enter the network “uncoded” (i.e.,

carrying a single message), and the “coding” (i.e., mixing

with other messages) happens opportunistically along the

way. I.e., before forwarding the packet to the next hop to-

ward the sink, each intermediate node further “encodes” it

by linearly combining its contents with other information it

has collected.

To achieve high reliability, it is important that the sink re-

ceives linearly independent combinations of many (ideally

all) messages. This, in turn, requires that each intermedi-

ate node collect and mix messages (or linearly independent

combinations of messages) from multiple other nodes. Such

mixing can be achieved in two ways: First, through a small

amount of opportunistic overhearing. The nature of wireless

networks is such that, when one node transmits a packet,

that is potentially overheard by multiple neighbors. In Sec-

tion 4.3, we show that, even if nodes overhear a small frac-

tion of the traffic transmitted by their neighbors, they are

able to acquire enough information to properly perform spa-

tial coding. Second, mixing can be achieved by leveraging

routing dynamics. If the tree changes during a round, the

packets flowing along a certain path carry information from

packets previously flowing through different paths. I.e., there
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is more information mixing when the routing topology is

unstable—precisely the situation in which reliability needs

to be boosted.

To summarize, we propose a collection protocol for sen-

sor networks which, instead of propagating messages to the

sink, propagates linear combinations of these messages;

these linear combinations are opportunistically added to

packets, as the latter travel though the network.

3. The SenseCode Protocol

3.1 Design

Topology Construction The sensors use a routing protocol

to create and maintain a routing structure that allows nodes

to forward packets toward the sink. SenseCode can work on

top of any routing protocol. It simply assumes that, at any

point in time, each node has a routing table that specifies

one or more “parents”—the next-hop neighbors to which the

node addresses all the packets it transmits. For simplicity,

and without loss of generality, we will assume, from now

on, that each node has a single parent.

Node Input Each node maintains two packet queues. In the

first one, it stores all the messages it has generated itself and

all the packets it has received from its children during the

current round. In the second queue, it stores information it

has overheard from its neighbors during the current round.

Relaying A node sends packets to its parent in two cases:

1. When it has a new message to communicate to the sink.

In this case, the node creates a new packet x that includes

the new message, marks it as “uncodable,” and sends it

out; we call these packets that include only a message

from a single node original packets. Moreover, the node

creates R − 1 packets that are linear combinations of

x and the packets in the node’s queues, marks them

as “codable,” and sends them out. R is a configurable

parameter, called redundancy factor.

2. When it receives a new packet y from a child. If y is an

uncodable packet, the receiving node simply forwards it.

If y is a codable packet, the receiving node sends out a

linear combination of y and information from the node’s

queues.

In summary, each node that has a new message to commu-

nicate to the sink sends out R packets (1 uncodable, the rest

codable), while each node that acts as an intermediary re-

lays exactly as many (uncodable and codable) packets as it

receives from its children.

Decoding At the end of a round, a total of R × N packets

have been sent to the sink, where N is the number of nodes

that had a message to communicate during the round. Each

of these received packets is a linear combination of the

N messages. Hence, to recover all N messages, the sink

needs to receive N linearly independent combinations. The

sources append coding vectors to the packets to enable the

sink to decode [3]. We discuss the overhead of the coding

vectors in Section 5.2.

MAC Layer Collection protocols typically assume a reli-

able MAC layer, where a sending node transmits each packet

multiple times until (1) it receives an acknowledgment from

the parent or (2) a maximum number of retransmissions is

reached.

SenseCode also uses such a layer, but with the following

modifications: When a node transmits a codable packet, if

the packet is not acknowledged by the parent, the node trans-

mits a new linear combination of x and the packets in the

node’s queue (instead of simply retransmitting). This has the

following goal: When a node transmits a packet to its parent,

even if the parent does not receive it, some other neighbor(s)

may overhear it. By transmitting new information with every

“retransmission,” we are supplying these overhearing neigh-

bors with more information, hence, increasing the level of

information spreading in the network.

Controlling Information Redundancy The redundancy

factor R enables a “clean,” predictable reliability/energy-

efficiency trade-off: Assuming that information is suffi-

ciently spread across the network, a redundancy factor of

R allows the sink to recover all information sent by the sen-

sors, even if the network loses (R−1)N of the packets sent.

This happens at the cost of each sensor generating R (as

opposed to 1) packets for each new piece of information. R

does not have to be an integer: we can set it, for instance,

to 1.5, in which case each sensor generates on average 1.5
packets for each new piece of information. Note that this

trade-off, although conceptually straightforward, is not eas-

ily achievable with traditional multi-path protocols.

3.2 Implementation Choices

We now describe and justify our basic implementation

choices.

Relaying According to the SenseCode design, each node

keeps a queue with information it has overheard during the

current round. This queue has room for M packets; every

time a new packet is overheard, it is added to each of the

M queue slots (using a different coding coefficient for each

slot). Based on our experiments, M can be as small as a few

packets. We also experimented with an alternative approach,

where each node kept only the k most recently overheard

packets. It turned out that, in practice, this required a larger

queue to achieve the same performance.

In an earlier implementation attempt, we ensured that

each packet added to the queue was linearly independent

from all the other packets in the queue, i.e., added new

information—an optimization frequently used with network

coding [3]–[4]. This, however, required performing Gaus-

sian elimination [20] for each newly overheard or received

packet; we tested this operation on a TinyNode [28] sen-

sor and found that it took several milliseconds to complete,
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hence, would introduce non-negligible latency. It turned out

that, in practice, if we use a field of size 16, the probabil-

ity of overhearing or receiving linearly dependent packets

becomes negligible. Hence, in our current implementation,

each node simply adds packets to its queue without ensuring

they are not redundant.

Recent work claims that randomized network coding is

too complex to be used with sensor networks, using this as

part of the motivation to design a new coding scheme [12].

We assume that this conclusion was due to the expensive

Gaussian elimination mentioned above. Our conclusion was

different: Even though we do agree that Gaussian elimina-

tion is not suitable for sensor networks, we found that, in

practice, it is unnecessary—the simple, computationally in-

expensive version of network coding that we use introduces

negligible processing overhead.

Overhearing In sensor networks, receiving a packet typ-

ically consumes comparable energy with transmitting one,

hence, overhearing comes at an energy cost [29]. Luckily,

we found that randomly selecting a small number of packets

to overhear is sufficient for achieving the same performance

achieved with constant overhearing (Section 4.3). Hence,

SenseCode is compatible with energy-efficient sensor plat-

forms, where the sensor is “asleep” most of the time and

wakes up only when it hears a packet addressed to it. Lim-

ited overhearing can be easily implemented by programming

such a platform, such that the sensor wakes up not only when

it hears a packet addressed to it, but also, with a small prob-

ability, when it hears a packet addressed to a different node.

Coding Operations We use a finite field of size 16 for

our coding operations. The reason for this choice is that,

from our experiments, we found that this field size makes it

unlikely that a node receives or overhears a “useless” packet

(i.e., a packet that contains a linear combination that is not

linearly independent from the combinations that the node

has already overheard).

A concern with network coding is that, the larger the size

of the employed field, the larger the processing requirements

for the coding operations—hence, the higher the correspond-

ing energy consumption. We measured the power consumed

by a TinyNode sensor running SenseCode for performing

coding operations and found it to be a small fraction (less

than 5%) of the energy consumed transmitting packets.

4. Evaluation

4.1 Methodology

We start by presenting the setup that we used to test SenseC-

ode performance and the alternative protocols that we com-

pared to.

Routing We consider two types of tree topologies:

1. Adaptive, where the tree adapts to network conditions as

dictated by CTP.We selected the CTP adaptation scheme,

because, given a certain “energy budget,” we found it

to be the most reliable of the publicly available routing

protocols for sensor networks.

2. Static, where the tree topology remains unchanged for the

duration of the experiment. To select the static tree, we let

CTP run in absence of losses for a few rounds, and then

“freeze” the chosen tree.

Alternative Collection Protocols We now describe the

three alternative collection protocols to which we compare

SenseCode.

1. CTP: Our first goal is to determine whether adding

SenseCode on top of an already robust routing protocol

like CTP improves reliability. To this end, we compare

the reliability achieved by SenseCode to that achieved by

plain CTP.

2. CTP with redundancy: To make a more fair comparison,

we modify CTP, such that it also introduces a config-

urable level of redundancy. For instance, suppose that we

run SenseCode with redundancy R = 2 (i.e., each node

that has a new message to communicate injects two new

packets in the network). It may be unfair to compare this

to CTP, where each new message is injected in the net-

work only once. Hence, we modify CTP, such that each

node that has a new message to communicate also injects

two packets in the network, i.e., performs “repetition cod-

ing” with redundancy R.

3. Fully-coded SenseCode: We also compare our version

of SenseCode that employs systematic communication

to a different version, in which all transmitted packets

are coded. Our goal is to validate that fully-coded and

systematic communication result in similar reliability, as

expected based on our simplified modeling in Section 2.

In all protocols, we enable overhearing at the sink, i.e., the

sink maintains and processes not only the packets it explic-

itly receives, but also all the packets it overhears. This trivial

optimization increases the performance of all protocols and,

since the sink typically does not have energy constraints, it

not affect the energy efficiency of the network.

Environment We implemented SenseCode and the alter-

natives as TinyOs modules and tested them on a simulated

square grid, created with the TOSSIM simulator [25]. The

simulated network consists of N = 36 nodes, located on

a 6 × 6 grid. One of the nodes in the corner of the topol-

ogy is the sink, while all other nodes act as both sources

and forwarding nodes. All the nodes are used according to

their specifications, i.e., the physical distance between them

(roughly 20m) is the maximum distance that enables reliable

communication between neighbors.

Sampling Period Each simulation is divided in rounds. At

the beginning of each round, the sink floods a request for

messages to all nodes in the network using the standard dis-
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Figure 5. Reliability vs. Congestion

semination protocol of TinyOS. We define Sampling Period

to be the duration of each round. After receiving the request,

the source nodes insert packets in the network at random

times during the first half of the round. We made this choice

as we found in our experiments that the network becomes

seriously congested if all the source nodes insert their trans-

mitted packets in a synchronized manner.

Metrics We use two performance metrics.

Reliability quantifies the amount of useful information

that reaches the sink. We compute the reliability of a col-

lection protocol during a particular round as the number of

distinct messages that are successfully decoded by the sink

during that round, divided by the total number of distinct

messages sent to the sink during the round. For instance,

reliability 1 means that all messages sent to the sink were

successfully decoded.

Transmission energy quantifies the amount of energy

spent in transmitting packets. We compute it by measur-

ing the time the radios of the nodes are in the transmit state

and multiplying it by the power consumed by the transceiver

in TX mode. Since TOSSIM simulates MicaZ sensors, we

used the power-consumption values provided in [29].

Every data point plotted in the graphs in this section

is an average measured over a sufficiently large number

of experiments (ranging from 5 to 100). Each experiment

simulates the network for 104 seconds.

Backoff mechanism When we started experimenting with

CTP, we initially used the CTP code that comes with TinyOs.

However, we observed that, when the sampling period is

small, reliability is low because of network congestion. In

such a situation, adding redundancy not only does not help,

but is, in fact, detrimental to reliability, as it increases the

network load, which in turn leads to more congestion. Fig-

ure 5 shows that adding redundancy R = 2 to a congested

network decreases reliability by 25%. Then we realized that

CTP’s congestion-avoidance mechanism was simple back-

off; we substituted this with exponential backoff, which led

to a significant improvement in reliability (in certain cases

up to 30%), as plotted in Figure 5. In the rest of our experi-

ments, we consistently use exponential backoff.

4.2 Dynamically Changing Networks

In this section, our goal is to test how well our protocols

adapt to a changing network topology. We thus study net-
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Figure 6. Reliability vs. Sampling rate

works where nodes can be occluded and therefore are tem-

porarily disconnected.

Node occlusion is modeled using a two-state Markov

Chain. Each node can be either in a connected or in a discon-

nected (outage) state. We use as parameters of the model the

mean time between failures (MTBF), i.e., the average time a

node is in the connected state, and the mean time to repair

(MTTR), i.e., the mean time a node stays disconnected. Ev-

ery second and for every node a biased coin decides whether

it should change state or not. If a disconnected (in outage)

node happens to have packets to send, it will keep trying to

contact its parent and these transmissions will fail. Eventu-

ally, if the outage lasts too long, the maximum number of

retransmissions will be exceeded and the packet will be dis-

carded.

We first study reliability as a function of the sampling

period. Figure 6 shows, for each protocol, the reliability

achieved, while Figure 7 shows the associated energy con-

sumption per round. In these experiments we set MTTR to

1000 seconds and MTBF to 100 seconds, thus roughly 90%
of the nodes are up at any given time.

First, we observe that when the network is congested, i.e.,

for very low values of the sampling period, introducing re-

dundancy does not help, as it increases the network load,

and can in fact deteriorate the performance in the case of

CTP with redundancy. As the sampling rate increases and

congestion is no longer the dominating cause of losses, we

observe that CTP with redundancy slightly improves the reli-

ability of CTP by at most 5%; on the other hand, SenseCode

successfully communicates up to 20%more messages to the

sink than CTP with redundancy.

One reason for the lower performance of CTP with redun-

dancy is that, both packets follow the same route to the sink,

and thus if the selected route is perturbed due to node discon-

nection, the tree adaptation is not sufficiently fast to success-

fully reroute packets already in transit to the sink. In con-

trast, SenseCode spreads pieces of each message across the

network, making it more likely for enough pieces to reach

the sink such that the latter can decode the message. Thus,

redundancy alone without spatial spreading is not sufficient.
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Figure 7. TX Energy vs. Sampling rate
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Figure 8. Reliability vs. Frequency: the MTBF of each ex-

periment is set to be 100 · c while the MTTR is set to be

10 · c

Second, from Figure 7 we can see that introducing a re-

dundancy factor of R = 2, increases the transmit energy

consumption for all protocols, but does not necessarily dou-

ble it: this is because control traffic used to broadcast re-

quests and maintain the tree does not change with R.

Third, we note that as expected, SenseCode and fully-

coded SenseCode have similar reliability, however, SenseC-

ode has lower energy consumption as it uses fewer coded

packets and thus avoids part of the overhead of the coding

vectors. The experiments plotted in Figure 7 use a payload of

77 bytes, which amounts to an overhead of 23% in terms of

bytes and per coded packet. This overhead, as compared to

CTP withR = 2, results in an overhead in terms of energy of

8% for SenseCode and 17% for fully-coded SenseCode, i.e.,

the energy overhead doubles for fully-coded as expected.

Note that part of the energy used for a packet transmission

does not depend on the length of the payload; but we expect

that, as the payload increases, the energy overhead per coded

packet will become negligible. Indeed, when we used a pay-

load of 99 bytes, which amounts to a per coded packet over-

head of 18% in bytes, the energy overhead of fully-coded

SenseCode reduced from 17% to 13%. We here discuss

and depict only energy consumed in transmission; we dis-

cuss energy consumed in packet reception in Section 4.3.

We next look deeper in the performance of our protocols

in a regime where dynamic changes (as opposed to network

congestion) is the dominating cause of performance deteri-
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Figure 9. Reliability vs. MTBF
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Figure 10. Reliability vs. Redundancy

oration. We thus fix the sampling rate to 60 seconds, which

leads to a network state without congestion. First, we plot

in Figure 8 how the reliability behaves when the frequency

with which nodes change state increases. We can see that as

the network changes more slowly, CTP alone becomes suf-

ficient, as tree adaptation has more time to rebuild the tree.

Second, we explore, in Figure 9, the reliability as a func-

tion of the average fraction of nodes that are up at any given

time. In this case, we fix the MTTR to be 10 seconds and

we vary the MTBF. We again observe that when nodes fail

frequently, even if they recover rapidly CTP cannot adapt

the tree sufficiently fast resulting in a low reliability, while

SenseCode offers an improvement.

Finally, we explore in Figure 10 how adding redundancy

larger than R = 2 may help. In this experiment the sam-

pling rate is fixed to 60 seconds, the MTBF to 1000 seconds

and the MTTR to 100 seconds. We can see, from the graph,

that SenseCode allows to increase the reliability as more re-

dundancy is added while with simple CTP the performance

improvement quickly flattens out.

4.3 Amount of Overhearing

In typical sensor hardware [28, 29], the energy consumed

for packet transmission and reception is comparable; thus,

one could argue that the benefits of SenseCode our out-

weighed by energy consumed overhearing. Note that the cur-

rent implementation of CTP also has nodes constantly over-

hear from their neighbors to collect connectivity informa-

tion; however, one may imagine that an improved version of

CTP could reduce the current amount of overhearing. This
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Figure 11. Reliability vs. Overhearing: in the same setup

CTP (R=1) has reliability 70% and CTP (R=2) has perfor-

mance 74%
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Figure 12. Reliability vs. Sampling rate

section studies how reduced overhearing affects the perfor-

mance of SenseCode.

Figure 11 shows the performance of SenseCode as a func-

tion of the percentage of overheard packets. In our experi-

ment we flip a biased coin each time a packet is overheard

by CTP to decide whether we use it in SenseCode. The sam-

pling rate is set to 60 seconds, the MTBF to 1000 seconds

and the MTTR to 100 seconds. We see that even with 0%
overhearing, SenseCode offers a significant improvement in

reliability as compared to CTP: this is because the tree adap-

tation alone can result in packet mixing. Moreover, overhear-

ing a small fraction of packets we get the same advantage as

constant overhearing.

4.4 Adaptive vs. Static Routing

In this section, we examine whether it is sufficient to rely

solely on SenseCode to recover from dynamic changes in the

network. Thus, we run SenseCode (and fully-coded SenseC-

ode) on top of a static, as opposed to an adaptive tree.

Figure 12 shows the reliability of the protocols when the

MTBF is set to 1000 seconds and the MTTR to 100 sec-

onds. We observe that the achieved reliability is higher than

when running SenseCode on top of an adaptive tree (com-

pare with Figure 6). This indicates that, when the network

changes are fast, attempting to adapt the tree might obstruct

the information flow. Several not essential packets may get

misdirected towards the same surviving paths causing con-

gestion. In such cases, it is better to rely on spatial coding

for recovery. Notice that even at low sampling periods the
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Figure 13. Reliability vs. Frequency: the MTBF of each

experiment is set to be 100 · c while the MTTR is set to be

10 · c
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Figure 14. Reliability vs. Overhearing: in the same setup

Static (R=1) has reliability 85% and Static (R=2) has perfor-

mance 88%

network is not in congestion, and therefore introducing re-

dundancy through SenseCode provides an advantage.

In Figure 13, we see that, when the tree is static, higher

frequencies of node-state changes entail higher reliability.

Contrast this with CTP (see Figure 8) where the opposite

occurs. This happens because, if the nodes recover fast, they

can forward their packets before the round finishes.

Figure 14 shows how overhearing contributes to the per-

formance of SenseCode when using static routing. We can

see that SenseCode doesn’t have a significant advantage over

CTP when no transmissions are overheard: this is expected

since there are no routing path changes that can help mix the

information from the descendants of a failed node. However,

notice that as soon as few packets are overheard the perfor-

mance of SenseCode reaches its maximum.

5. Discussion

5.1 Multipath

We now compare our approach to traditional multipath com-

munication, the most popular existing approach for balanc-

ing reliability and energy efficiency.

In a k-multipath protocol, the sensor nodes build and

maintain k trees, and sources inject each packet on each of

the trees; the k paths from a node to the sink are selected

such that at least one path is likely to survive spatially corre-

lated failures [6, 16, 17, 30].

One disadvantage of traditional multipath is the need for

additional control traffic, as each node needs to monitor its
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connection to k different parents. There is evidence that

maintaining more than k = 2 paths per node (or more than

two incoming and outgoing links per node) requires con-

trol traffic that outweighs the benefits of multipath, as it

can consume a significant portion of network resources (en-

ergy, bandwidth, processing time) [16]. In contrast, SenseC-

ode leverages the fact that multiple neighbors are likely to

overhear each transmission, without forcing the transmitter

to explicitly register these neighbors as parents. Hence, in

some sense, SenseCode is a multipath protocol, albeit one

that does not require maintaining multiple trees, but oppor-

tunistically “creates” them on the fly.

We should also note that building multiple trees such that

at least one is likely to survive spatially correlated failures is

not straightforward. For instance, selecting two edge-disjoint

minimum-cost paths between a pair of vertices’s (nodes) in a

graph (network) is an NP-hard problem, even in a centralized

setting (where a single entity knows the quality of all links).

Finally, traditional multipath protocols rely on non-coded

communication, which, from a coding theory point of view,

is a suboptimal use of the introduced redundancy [21]. For

instance, we expect a 2-multipath protocol to consume the

same amount of energy as SenseCode with redundancy fac-

tor 2, yet achieve lower reliability (see also Section 2).

5.2 Compressed Coding Vectors

A valid concern regarding deploying network coding in sen-

sor networks is the overhead of the coding vectors. Such a

vector needs to be appended to each codable packet, to keep

track of the linear combination of the original packets the

coded packet contains [19]. A different approach that has re-

cently been proposed is subspace coding [22, 23]. Unfortu-

nately, this approach proves also difficult to deploy in sensor

networks [24].

In parallel and complementary to this work, we proposed

a novel design with much lower overhead based on the use of

compressed coding vectors [24]. Our observation was that,

both coding vectors and subspace coding are designed under

the strong assumption that potentially all source packets get

linearly combined in the network. However, in practice, in

a sensor network, packets from sources that are significantly

separated topologically may never get mixed together. Given

that allowing all source packets to get combined in a single

coded packet might be a too strong and unnecessary require-

ment for many practical situations, we can relax it, and re-

quire that each coded packets contains a linear combination

of at most m out the n source packets.

For this problem, we developed a design that reduces the

length of the coding vectors from n to O(m log n), where n

is the number of source packets injected in the network [24].

Our design is transparent to and has no extra processing at

intermediate nodes, but comes at the cost of some additional

processing at the sink. However, this additional processing

can be performed with standard hardware implemented al-

gorithms.

6. Related work

Network coding was introduced in [1, 2], see also for tutorial

articles and monographs [3, 4], and has been successfully

applied in wireless ad-hoc and mesh networks, see for ex-

ample [5]–[8]. Our work builds on this foundation, but is ad-

dressed to a fundamentally different problem, due to the spe-

cial constraints and requirements of the sensor network en-

vironment. For example, the focus in [7] is in bandwidth ef-

ficiency through per-flow network coding; we are instead in

optimizing for energy and reliability coding for inverse mul-

ticast traffic, thus coding across several information sources.

Protocols for network coding over sensor networks have

been proposed for example in [9]–[10], but the literature

work is theoretical and through simulations. In contrast, the

new design we propose is driven by implementation related

issues, such as easy deployment on top of existing routing

protocols, and as far as we know offers the first practical

implementation.

Coding for sensor networks has also been proposed in

[11, 12] from a viewpoint of distributed storage. Between

these, the work closer to ours is [12], which proposes a

form of spatial coding to improve partial recovery of data

in emergency situations. The emphasis in [12] is in the cau-

tious encoding of information packets to ensure that even

a small number of the resulting coded packets allow to de-

code some information. Our work differs in several ways.

First, we are interested in stable network operation, where

energy consumption is of importance, unlike [12] where en-

ergy is of no consideration and an arbitrary number of pack-

ets might be sent from each surviving node. Second, we

leverage opportunistic broadcasting to implement our infor-

mation mixing, as opposed to explicitly exchanging mes-

sages with neighboring nodes. Third, our experimental re-

sults compare against state-of-the-art adaptation protocols

such as CTP.

End-to-end coding using algebraic codes has also been

proposed for sensor networks [13, 14], however, unlike net-

work coding this approach does not protect from spatially

correlated failures. Multipath diversity, that was developed

to address spatially correlated failures, for sensor networks is

a well studied and active research field, see for example [15–

17]. The use of coding we introduce allows to take advan-

tage of broadcasting, with reduced control information, and

allows to achieve different points in the energy-reliability

trade-off.

Synopsis diffusion [18] offers a framework that abstracts

properties of duplication and order insensitive protocols in

sensor networks. Network coding, although it does have

similar properties, cannot be directly cast in the synopsis

framework for several reasons. More prominently, (i) unlike

synopsis, in network coding information extracted from a

single node may be scattered throughout the network and

not fully contained to any single packet, and (ii) network

coding offers probabilistic as opposed to hard guarantees
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of duplication insensitivity. These differences have lead us

to develop a generalized framework, which we term clue

diffusion, and that accepts both network coding and synopsis

diffusion as special cases. For lack of space, this is provided

in Appendix 7.

7. Conclusion

We propose SenseCode, a communication protocol specif-

ically designed for sensor networks that leverages network

coding techniques, and can be efficiently deployed in sensor

networks. SenseCode targets the case where we require in-

creased redundancy inside the network. We showed through

experimental results that with our techniques we can achieve

an increased level of robustness without additional control

information and minimal modifications of existing proto-

cols. TOSSIM simulations show that SenseCode provides

significantly increased reliability as compared to state-of-the

art alternative approaches.
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Appendix: Clue diffusion

We here describe the clue diffusion framework that general-

izes the network coding and synopsis diffusion framework.

To capture the differences of network coding with synopsis
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diffusion: (i) we introduce a state associated with every net-

work node. A projection operator produces packets to send

that depend on the node state but do not neccessarily contain

all the useful information the state has, and (ii) we introduce

the notion of approximate (with high probability) validity of

function properties, such as reconstruction at the sink.

Variables

The goal of the information collection protocol is for the sink

to estimate a value in a setD that is a function of the network

node inputs.

Each network node i:

(i) observes an input xi,

(ii) maintains a state σi,

(iii) sends and receives packets c.

The input takes values in a setX . The state and packet values

are drawn from the same set C. We call the elements of C

clues.

Functions

All the information a network node has is reflected in its

state. The state is initialized by the input the node measures.

A node receiving packets uses them to update its state. A

node sends packets that are a function of its current state.

These network operations can be described through the fol-

lowing functions:

1. A clue generation function CG : X → C that creates a

clue from an input; this function is deterministic. This is the

state initialization function.

2. A clue fusion function CF : C × C → C that aggregates

the two clues to create a new one. This is the state update

function, used to update the state once a new packet is re-

ceived.

3. A clue projection function CP : C → C that creates a

clue from another one. This is the packet generation func-

tion that uses the state information to create the next packet

to send.

If the sink had available all the inputs the network nodes

had observed, it could calculate an end-to-end function F :
X → D that given the readings on the nodes returns a value

in the domain D.

Instead, the sink is going to use its received packets to

update its state, and eventually, calculate an output that is a

function of its state. We capture this through an estimation

function f : C → D that is used to estimate the end-to-end

function from a clue.

DEFINITION 1. Given a protocol P , a network state x =
(x1, . . . , xN ), and the estimate f̄ produced by the sink, we

say that f̄ is:

1. Correct, if f̄ = F (x).

2. Correct with high probability, if f̄ = F (x) w.h.p.

3. δ-strong Correct, if given | · |, a norm for elements of D

|F (x) − f̄ | 6 δ.

Special cases

Network Coding

1. The set of clues C is the set of all possible subspaces of

Fℓ
q, where ℓ is the packet length. Each subspace π can be

determined by m vectors of Fℓ
q, with m = dim(π).

2. The clue generation functionCG associates each reading

to a subspace π of Fℓ
q.

3. The clue fusion function is union of the two input spaces

CF(π1, π2) = π1 ∪ π2.

4. The clue projection function generates a subspaceCP(π) =
span(v), where v is a vector randomly sampled from π.

The clue generated can therefore be described by 1 vector
instead of dim(π) vectors.

Synopsis diffusion

We here use the function notation in [18].

1. The set of clues C is the set of all synopses S.

2. The clue generation function CG is the function SG.

3. The clue fusion function is the function SF.

4. The clue projection function is CP(s) = s.

Order and duplicate insensitive collection

DEFINITION 2. (Duplicate insensitive functions) The triple

of functions CG : X → C,CF : C × C → C, CP : C →
C are called order- and duplicate insensitive if the following

properties hold:

P1: (Commutative property) ∀s1, s2 ∈ S,

CF(s1, s2) = CF(s2, s1).
P2: (Associative property) ∀s1, s2, s3 ∈ S

CF(CF(s1, s2), s3) = CF(s1,CF(s2, s3)).
P3: (Same synopsis idempotent) ∀s ∈ S, CF(s, s) = s.

P4: (Information conservation of projection) ∀c1, c2 ∈
C : f(CF(CP(c1), c2)) = f(CF(c1, c2)).

Under the previous conditions, both synopsis diffusion

and network coding achieve information dissemination trans-

parent to the node topology and the ordering of the opera-

tions. The proof of this for synopis is provided in [18], while

for network coding it is a direct implication of proof of the

main theorem in [1].
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